The questions on this sheet are to be discussed during the two tutorials and the practical sessions; some questions are to be done "by hand", others require to use GAP. In the following, p always denotes a prime and n is a positive integer. This sheet also contains some comments on the solutions.

Question 1 (tutorial)

Let G be a nontrivial finite p-group acting on a finite set Ω. Recall that the G-orbit of $\omega \in \Omega$ is defined as the subset $\omega^{G}=\left\{\omega^{g} \mid g \in G\right\} \subseteq \Omega$; its stabiliser is the subgroup $\operatorname{Stab}_{G}(\omega)=\left\{g \in G \mid \omega^{g}=\omega\right\} \leq G$.
a) Prove the Orbit-Stabiliser-Theorem, that is, show that $|G| /\left|\operatorname{Stab}_{G}(\omega)\right|=\left|\omega^{G}\right|$.
b) Denote by $\operatorname{Fix}_{\Omega}(G)=\left\{\omega \in \Omega \mid \forall g \in G: \omega^{g}=\omega\right\}$ the set of G-fixed points in Ω. Use a) to prove that $|\Omega| \equiv\left|\operatorname{Fix}_{\Omega}(G)\right| \bmod p$; in particular, if $|\Omega|$ is a p-power, then $\left|\operatorname{Fix}_{\Omega}(G)\right|$ is divisible by p.
c) Use b) to prove that the center $Z(G)=\left\{h \in G \mid \forall g \in G: h^{g}=h\right\}$ of G is non-trivial.
d) Let $H<G$ be a proper subgroup. Consider an action of H and use b) to prove that $N_{G}(H)>H$.

Solution: a) The map $\psi: G \rightarrow \Omega, g \mapsto \omega^{g}$ induces $\hat{\psi}: \operatorname{Stab}_{G}(\omega) \backslash G \rightarrow \omega^{G}, \operatorname{Stab}_{G}(\omega) g \rightarrow \omega^{g}$. Clearly, $\hat{\psi}$ is well-defined: if $\operatorname{Stab}_{G}(\omega) g=\operatorname{Stab}_{G}(\omega) h$, then $h=s g$ for some $s \in \operatorname{Stab}_{G}(\omega)$, and so $\omega^{h}=\omega^{s g}=\omega^{g}$. By construction, $\hat{\psi}$ is surjective. If $\operatorname{Stab}_{G}(\omega) g$ and $\operatorname{Stab}_{G}(\omega) h$ are mapped to $\omega^{g}=\omega^{h}$, then $g h^{-1} \in \operatorname{Stab}_{G}(\omega)$, and so $\operatorname{Stab}_{G}(\omega) g=\operatorname{Stab}_{G}(\omega) h$. This proves that $\hat{\psi}$ is a bijection, and therefore $\left|\omega^{G}\right|=\left|\operatorname{Stab}_{G}(\omega) \backslash G\right|$; clearly, $\left|\operatorname{Stab}_{G}(\omega) \backslash G\right|=|G| /\left|\operatorname{Stab}_{G}(\omega)\right|$.
b) Note that $\omega \in \operatorname{Fix}_{\Omega}(G)$ if and only if $\omega^{G}=\{\omega\}$ is an orbit of size 1 . Together with a), if $\omega \in \Omega$, then either $\omega \in \operatorname{Fix}_{\Omega}(G)$ or ω^{G} has size divisible by p. Since the G-orbits in Ω partition Ω, it follows that $|\Omega| \equiv\left|\operatorname{Fix}_{\Omega}(G)\right| \bmod p$.
c) Let G act on itself via conjugation. Then $h \in G$ lies in $\operatorname{Fix}_{G}(G)$ if and only if $h^{g}=h$ for all $g \in G$, that is, if and only if $h \in Z(G)$; this shows that $\operatorname{Fix}_{G}(G)=Z(G)$. Clearly, $1 \in Z(G)$, hence $|Z(G)|>1$. Now b) implies that $|Z(G)| \equiv|G| \bmod p$, so $p||Z(G)|$; together, it follows that $Z(G)$ is nontrivial.
d) The group H acts via left multiplication on the left cosets $G / H=\{g H \mid g \in G\}$. Since $|G / H|=$ $|G| /|H|$ is a p-power, it follows from b) that $\operatorname{Fix}_{G / H}(H)$ is divisible by p, and $1 H \in \operatorname{Fix}_{G / H}(H)$ yields $\left|\operatorname{Fix}_{G / H}(H)\right| \geq p$. Thus, there is $g \in G \backslash H$ with $g H \in \operatorname{Fix}_{G / H}(H)$, that is, $h g H=g H$ for all $h \in H$. This implies $g^{-1} h g \in H$ for all $h \in H$, that is, $H^{g}=H$ and $g \in N_{G}(H) \backslash H$.

Question 2 (tutorial)
Let G be a finite p-group.
a) Prove that if $N \unlhd G$ and G / N is cyclic, then $G^{\prime}=[N, G]$
b) Prove that if $G / \gamma_{2}(G)$ is cyclic, then $\gamma_{2}(G)=\{1\}$ and G is abelian.
c) Prove that $\Phi(G)=G^{\prime} G^{p}$; here $\Phi(G)$ is the Frattini subgroup of G (that is, the intersection of all maximal subgroups of G) and G^{p} is the subgroup of G generated by all p-th powers.

SOLUTION: a) If $G / N=\langle x N\rangle$ for some $x \in G$, then every $g \in G$ can be written as $g=x^{i} n$ for some $n \in N$ and $i \in \mathbb{Z}$. Thus the generators of $\gamma_{2}(G)$ are

$$
\begin{aligned}
{\left[x^{i} n, x^{j} m\right] } & =\left[x^{i}, x^{j} m\right]^{n}\left[n, x^{j} m\right] \\
& =\left[x^{i}, m\right]^{n}\left[x^{i}, x^{j}\right]^{m n}[n, m]\left[n, x^{j}\right]^{m} \\
& =\left[x^{i}, m\right]^{n}[n, m]\left[n, x^{j}\right]^{m} \in[N, G]
\end{aligned}
$$

which proves that $G^{\prime} \leq[N, G]$. Clearly, $[N, G] \leq G^{\prime}$, hence equality.
b) It follows from a) that $\gamma_{2}(G)=[G, G]=\left[G, \gamma_{2}(G)\right]=\gamma_{3}(G)$, which forces $\gamma_{2}(G)=1$.
c) Every maximal subgroup $M \leq G$ has index p and is normal in G, see also Q1d). Since G / M is elementary abelian, it follows that $G^{\prime} G^{p} \leq M$; thus $G^{\prime} G^{p} \leq \Phi(G)$. Let I be the intersection of all maximal subgroups of G which contain $G^{\prime} G^{p}$. Clearly, $\Phi(G) \leq I$. On the other hand, $G / G^{\prime} G^{p}$ is elementary abelian, so $\Phi\left(G / G^{\prime} G^{p}\right)=1$, which implies that $I \leq G^{\prime} G^{p}$, so $\Phi(G) \leq G^{\prime} G^{p}$. The claim follows.

Question 3 (practical)
Use the SmallGroups Library of GAP to obtain a list of all p-groups G of size at most max $\left\{p^{6}, 1000\right\}$ with the property that G admits a subgroup $A \leq G$ of size p^{2} with $C_{G}(A)=A$; note that A necessarily contains the center of G. Do the following:
a) Let G and $A \leq G$ be as in the question and suppose G is nonabelian. Determine the orders of $N_{G}(A)$ and $Z(G)$; compute a few examples to see what these orders might be.
b) For the groups in your list, compare their nilpotency class with their order; based on your observations, make a conjecture about the structure of the groups.
c) Challenge Question: Prove your conjecture (for example, use a) and induction on the group order).

Solution: If $G=A$, then $G=A=Z(A)=N_{G}(A)$ is abelian of order p^{2} and nilpotency class 1 . Thus, with the GAP code below we only construct those groups with $G>A$, and stores them in a list res: an entry in res has the form $\mathrm{L}=[\mathrm{G},[\mathrm{A} 1, \ldots, \mathrm{An}]]$ where each $A_{i}<G$ is self-centralising:

```
gap> getGoodGroups := function(G,p)
> local c,A,cl;
> c := Center(G);
> if Size(c)>p^2 then return []; fi;
> cl := List(ConjugacyClassesSubgroups(G),Representative);
> cl := Filtered(cl,x->Size(x)=p^2 and IsSubgroup(x,C) and Centraliser(G,x)=x);
> return cl;
> end;;
gap> myprimes := Filtered(Primes,x->x^2<1000);;
gap> res := [];;
gap> for p in myprimes do
> for n in Filtered([3..6],i-> p^i<1000) do
> Print("start order ",p^n,"\n");
> for nr in [1..NumberSmallGroups(p^n)] do
> G := SmallGroup(p^n,nr);
    grps := getGoodGroups(G,p);
> if Size(grps)>0 then Add(res,[G,grps]); fi;
> od; od; od;
```

a) For each pair G, A computed above, we inspect $|G|,|Z(G)|,\left|N_{G}(A)\right|$, and test whether $N_{G}(A)$ is abelian:

```
gap> List(res, x -> [ Size(x[1]), Size(Center(x[1])),
    List(x[2], A -> [Size(Normaliser(x[1],A)),
        IsAbelian(Normaliser(x[1],A))])]);
[output omitted]
```

The output indicates that $Z(G)$ is cyclic of order p and $N_{G}(A)$ is nonabelian of order p^{3}; let us check this:

```
gap> ForAll(res, x -> ForAll(x[2],A->
    Order(Center(x[1]))=PrimePGroup (x[1])
    and Size(Normaliser(x[1],A))=PrimePGroup(x[1])^3
    and not IsAbelian(Normaliser(x[1],A))));
```

Now we prove this. Since G is nonabelian, $G>A$, and so $N_{G}(A)>A$ by Q1d). Note that $N_{G}(A) / C_{G}(A)$ embeds into $\operatorname{Aut}(A)$. Since A is either cyclic or elementary abelian of order p^{2}, it follows that $\operatorname{Aut}(A)$ is either $C_{p(p-1)}$ or $\mathrm{GL}_{2}(p)$. In both cases, p divides $|\operatorname{Aut}(A)|$, but p^{2} does not. Since $C_{G}(A)=A$ has order p^{2}, it follows that $N_{G}(A)$ is nonabelian of order p^{3}. Now clearly $Z(G) \leq A \leq N_{G}(A)$; if $Z(G)=A$, then $Z\left(N_{G}(A)\right)=A$ has index p in $N_{G}(A)$, which is not possible since $N_{G}(A)$ is nonabelian; this proves that $Z(G)<A$, hence $Z(G)$ is cyclic of order p.
b) Running through the examples, we see that every such group has maximal class, that is, order p^{n} and nilpotency class $n-1$; this can be seen, for example, with the command

```
List(res , x-> [ NilpotencyClassOfGroup(x[1]),
    Collected(FactorsInt(Size(x[1])))[1][2]]);
```

Thus we conjecture: if a p-group G has a subgroup $A \leq G$ of order p^{2} with $A=C_{G}(A)$, then G has maximal class (that is, nilpotency class $n-1$).
c) Let G be a p-group with $A \leq G$ of order p^{2} and $C_{G}(A)=A$. If $G=A$, then G has maximal class; now suppose $G>A$; in particular, $N_{G}(A)>A$. We know from b) that $N_{G}(A)$ is nonabelian of order p^{3} and that $Z=Z(G)$ is cyclic of order p. Now consider $\bar{G}=G / Z$ and $\bar{N}=N_{G}(A) / Z$. Note that $C_{\bar{G}}(\bar{N}) \leq C_{\bar{G}}(A / Z) \leq N_{G}(A) / Z=\bar{N}$, thus we can apply the induction hypothesis to \bar{G} and \bar{N} and obtain that \bar{G} has maximal class. Since $\bar{G}=G / Z(G)$, it follows that G has maximal class: consider the upper central series of G.

Question 4 (practical)

There are several ways to store and re-construct a pc-group in GAP; consult the manual at

```
http://www.gap-system.org/Manuals/doc/ref/chap46.html
```

for the following tasks.
a) Read about and use the commands CodePcGroup and PcGroupCode.
b) Prove that, indeed, every polycyclic presentation P can be encoded by a positive integer $c=c(P)$. Observe that if P has a generating set of cardinality n, then P has n power relations and $n(n-1) / 2$ commutator relations. One (theoretical) way of encoding P as a number is to make use of the uniqueness of prime-power factorisations in \mathbb{Z}.
c) Read about and use the command GapInputPcGroup.

Solution: For a) and c), just play around with GAP. For b), recall that there are infinitely many primes, say p_{0}, p_{1}, \ldots, where p_{i} denotes the $i+1$-th prime. Now suppose P has a generating set of cardinality n, say $\left\{g_{1}, \ldots, g_{n}\right\}$; there are n power relations and $n(n-1) / 2$ commutator relations; choose a canonical order of these relations (for example, if $i \in\{1, \ldots, n\}$, then the i-th relation is the power relation of g_{i}, etc.) Each right hand side of a relation is a normalised word in $\left\{g_{1}, \ldots, g_{n}\right\}$, and therefore uniquely determined by the corresponding list of exponents; to have a uniform description, let every list of exponents be of length n, that is, we included zeroes. Thus, the whole presentation is uniquely determined by the number $e_{0}=n$ and $n+n(n-1 / 2)$ lists of length n, that is, by a list of $m=1+n(n+n(n-1) / 2)$ nonnegative integers, say $\left(e_{0}, e_{1}, \ldots, e_{m}\right)$. Associate with this list the positive integer $c(P)=\prod_{i=0}^{m} p_{i}^{e_{i}}$. Given such a number $c(P)$, its prime power factorisation reveals the list $\left(e_{0}, e_{1}, \ldots, e_{m}\right)$: for example, the exponent of the largest power of 2 dividing $c(P)$ is $e_{0}=n$, which determines the number of generators in the presentation. (This encoding is not efficient; see the description of CodePcGroup in the GAP manual to see how this can be done more efficient.)

Question 5 (tutorial/practical)
Let $G=\operatorname{Sym}(9)$ be the symmetric group of rank 9 .
a) By hand, determine a polycyclic series and a polycyclic presentation for the Sylow 3-subgroup of G.
b) Now do the same calculation with GAP; compare with your results for a). The following commands might be useful:

```
gap> G := SymmetricGroup(9);;
gap> S := SylowSubgroup (G,3);;
gap> iso := IsomorphismPcGroup(S);;
gap> Spc := Image(iso);;
gap> mypcgs := List(Pcgs(Spc), x->PreImagesRepresentative(iso,x));;
```

Solution: a) Note that $|G|=9$!, so every Sylow 3 -subgroup of G has order $3^{4}=81$. Note that

$$
S=\langle(1,2,3),(4,5,6),(7,8,9),(1,4,7)(2,5,8)(3,6,9)\rangle \leq G
$$

has order 81, hence S is a Sylow 3 -subgroup of G. Write $g_{1}=(1,4,7)(2,5,8)(3,6,9), g_{2}=(1,2,3)$, $g_{3}=(4,5,6)$, and $g_{4}=(7,8,9)$; note that each $\left|g_{i}\right|=3$ and $g_{j}^{g_{i}}=g_{j}$ for $i, j \geq 2$. Also, $g_{2}^{g_{1}}=g_{3}$, $g_{3}^{g_{1}}=g_{4}$, and $g_{4}^{g_{1}}=g_{2}$. Thus, if we define $G_{i}=\left\langle g_{i}, \ldots, g_{4}\right\rangle$, then $G=G_{1} \triangleright G_{2} \triangleright G_{3} \triangleright G_{4} \triangleright=\{()\}$ is a polycyclic series and $X=\left[g_{1}, g_{2}, g_{3}, g_{4}\right]$ is a PCGS with $R(X)=[3,3,3,3]$. The corresponding pc presentation is determined as

$$
\left.H=\left\langle x_{1}, x_{2}, x_{3}, x_{4}\right| x_{1}^{3}=x_{2}^{3}=x_{3}^{3}=x_{4}^{3}=1, x_{2}^{x_{1}}=x_{3}, x_{3}^{x_{1}}=x_{4}, x_{4}^{x_{1}}=x_{2} x_{j}^{x_{i}}=x_{j} \text { for } i, j \geq 2\right\rangle .
$$

b) (Just play around with GAP.)

Question 6 (tutorial/practical)
Let $G=\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{4}=g_{3}, g_{2}^{4}=g_{3}, g_{3}^{4}=1, g_{2}^{g_{1}}=g_{2}, g_{3}^{g_{1}}=g_{3}^{2}, g_{3}^{g_{2}}=g_{3}\right\rangle$.
a) By hand, show that this polycyclic presentation is not consistent.
b) By hand, find a consistent polycyclic presentation of G.
c) Construct G in GAP using the following commands:

```
gap> F:=FreeGroup(["g1","g2","g3"]); ;
gap> AssignGeneratorVariables(F);
#I Assigned the global variables [ g1, g2, g3 ]
gap> R:=[g1^4/g3, g2^4/g3, g3^4, Comm(g1,g2), g3^g1/g3^2,g3^g2/g3];;
gap> G:=F/R;
```

Do IsomorphismPcGroup, StructureDescription, and PcGroupFpGroup. The last command will yield an error message; re-define G by using the consistent pc-presentation you have obtained in b).

Solution: a) The exponents of this presentation are $(4,4,4)$ and the normalised words in the generators are $\left\{g_{1}^{e_{1}} g_{2}^{e_{2}} g_{3}^{e_{3}} \mid 0 \leq e_{1}, e_{2}, e_{3} \leq 3\right\}$. Consistency checks show that the presentation is not consistent. For example, the collections of $\left(g_{3} g_{1}\right) g_{1}^{3}$ and $g_{3}\left(g_{1}^{4}\right)$ yield

$$
\left(g_{3} g_{1}\right) g_{1}^{3}=g_{1} g_{3}^{2} g_{1}^{3}=g_{1} g_{3} g_{1} g_{3}^{2} g_{1}^{2}=g_{1}^{2} g_{3}^{4} g_{1}^{2}=g_{1}^{4}=g_{3} \quad \text { and } \quad g_{3}\left(g_{1}^{4}\right)=g_{3}^{2}
$$

in G. In particular, this shows that $g_{3}=g_{3}^{2}$ in G and, thus, $g_{3}=1$ in G.
b) Using that $g_{3}=1$, we have that $G=\left\langle g_{1}, g_{2} \mid g_{1}^{4}, g_{2}^{4}, g_{2}^{g_{1}}=g_{2}\right\rangle$; obviously, this presentation is consistent and describes a group isomorphic to $C_{4} \times C_{4}$.
c) (Just play around with GAP.)

Question 7 (tutorial)

For a positive integer n let $G(n)=\left\langle a, b \mid a^{n}, b^{n},[a, b]=a\right\rangle$.
a) Prove by hand that if $n=p$ is a prime, then $G(p) \cong C_{p}$.
b) Does the same hold when n is not prime? (Maybe compute some examples with GAP.)

Solution: a) Write $G=G(p)$. Note that $G^{\prime}=\langle[a, b]\rangle=\langle a\rangle$, which implies that $G / G^{\prime} \cong C_{p}$ or $G / G^{\prime} \cong 1$; since $a^{p}=1$, this also implies that $G^{\prime} \cong C_{p}$ or $G^{\prime}=1$. Thus, $|G| \in\left\{1, p, p^{2}\right\}$, so G is abelian. But this forces $G^{\prime}=1$ and thus $a=1$. Now $G=\left\langle b \mid b^{p}\right\rangle \cong C_{p}$.
b) The group $G(n)$ is not always cyclic; here are some non-cyclic examples.

```
gap> Gn:=function(n)
> local F,R;
> F := FreeGroup (2);
>R := [F.1^n,F.2^n, Comm(F.1,F.2)/F.1];
> return F/R;
> end;
gap> for i in [1..50] do
> G:=Gn(i);
> if not IsCyclic(G) then
> Display([i,StructureDescription(Image(IsomorphismPcGroup (G)))]);
> fi; od;
[ 6, "C3 x S3" ]
[ 12, "C3 x (C3 : C4)" ]
[ 18, "(C9 : C9) : C2" ]
[ 20, "C5 x (C5 : C4)" ]
[ 21, "C7 x (C7 : C3)" ]
[ 24, "C3 x (C3 : C8)" ]
[ 30, "C15 x S3" ]
[ 36, "(C9 : C9) : C4" ]
[ 40, "C5 x (C5 : C8)" ]
[ 42, "C7 x (S3 x (C7 : C3))" ]
[ 48, "C3 x (C3 : C16)" ]
```

In general, $G=G(n)$ satisfies $G^{\prime}=\langle a\rangle \cong C_{m}$ for some $m \mid n$, and $G / G^{\prime} \cong C_{n}$ acts via $a \mapsto a^{2}$ on G^{\prime}. The latter requires that the order of a is odd. For example, if $G=G(6)$, then $a^{3}=1$, so $G^{\prime}=\langle a\rangle \cong C_{3}$

Question 8 (tutorial/practical)
Consider the dihedral group $G=\left\langle r, m \mid r^{2^{n-1}}, m^{2}, r^{m}=r^{2^{n-1}-1}\right\rangle$.
a) Find the normal form of the element $w=r m r^{2} m^{2} r^{3} m^{3}$.
b) Find a polycyclic series of G whose associated PCGS has relative orders $[2, \ldots, 2]$.
c) Find a polycyclic presentation of G, associated to the PCGS you have found in b).
d) Write a GAP function get $\mathrm{Dn}(\mathrm{n})$ which constructs this group using the presentation you have found in c), via PcGroupF ${ }^{\text {PGroup. }}$

Solution: a) First, we use that $m^{i}=m^{i \bmod 2}$ for all i, and obtain $w=r m r^{5} m$. Second, we use that $r m=m r^{2^{n-1}-1}$ and get

$$
w=r m r^{5} m=r m^{2}\left(r^{2^{n-1}-1}\right)^{5}=r^{5\left(2^{n-1}-1\right)+1}=r^{-4}=r^{2^{n-1}-4} ;
$$

note that $2^{2^{n-1}-1}=r^{-1}$.
b) Note that $\langle r\rangle \unlhd G$ is a normal subgroup of index 2; thus it suffices to find a PCGS of $\langle r\rangle$ with relative orders 2. However, the latter group is cyclic of order 2^{n-1}, so we can choose $g_{1}=m, g_{2}=r, g_{3}=r^{2}$, $\ldots, g_{n}=r^{2^{n-1}}$. If we define $G_{i}=\left\langle g_{i}, \ldots, g_{n}\right\rangle$, then each G_{i+1} has index 2 in G_{i}, which yields a polycyclic series $G_{1}>\ldots>G_{n}>1$ with sections of order 2 . Thus, $X=\left[g_{1}, \ldots, g_{n}\right]$ is a PCGS with relative orders $R(X)=[2, \ldots, 2]$.
c) We use the notation of b). Note that all the elements g_{2}, \ldots, g_{n} commute pairwise, and $g_{i}^{2}=g_{i+i}$ for $i=2, \ldots, n-1$. It remains to describe $g_{i}^{g_{1}}$ for $i=2, \ldots, n$. Note that $r^{m}=r^{-1}$, hence

$$
g_{i}^{g_{1}}=\left(2^{2^{i-1}}\right)^{m}=r^{-2^{i-1}}=g_{i}^{-1}
$$

Observe also that $g_{i} g_{i} g_{i+1} \cdots g_{n}=g_{i}^{2} g_{i+1} \cdots g_{n}=g_{i+1}^{2} g_{i+2} \cdots g_{n}=\ldots=g_{n}^{2}=1$, hence

$$
g_{i}^{g_{1}}=g_{i}^{-1}=g_{i} g_{i+1} \cdots g_{n}
$$

for every $i=2, \ldots, n$. This yields the following polycyclic presentation for G :

$$
\begin{array}{ll}
\left\langle g_{1}, \ldots, g_{n} \quad\right| & g_{1}^{2}=1 \\
& g_{i}^{2}=g_{i+1} \text { for } i=2, \ldots, n-1 \\
& g_{n}^{2}=1 \\
& g_{i}^{g_{j}}=g_{i} \text { for } 2 \leq j<i<n \\
& \left.g_{i}^{g_{1}}=g_{i} \cdots g_{n} \text { for } i=2, \ldots, n \quad\right\rangle
\end{array}
$$

d) Here is some GAP code for that task:

```
getDn := function(n)
local gens, i, j, F, R;
    F := FreeGroup(n);
    gens := GeneratorsOfGroup(F);
    R := [gens[1]^2];
    for i in [2..n-1] do Add(R,gens[i]^2/gens[i+1]); od;
    Add(R,gens[n]^2);
    for j in [2..n-1] do for i in [j+1..n] do
        Add(R,Comm(gens[i],gens[j]));
    od; od;
    for i in [2..n-1] do
        Add(R,Comm(gens[i],gens[1])/(Product(gens{[i+1..n]})));
    od;
    Add(R,Comm(gens[1],gens[n]));
    return PcGroupFpGroup(F/R);
end;
StructureDescription(getDn(10));
"D1024"
```

Question 9 (tutorial)
By hand, compute a wpep of the group

$$
G=\left\langle a, b, c \mid a^{9}, b^{9}, c^{9},[[b, a], a]=a^{3},(a b a)^{9},(b a)^{5} a=b,[a, c]\right\rangle ;
$$

you can use that G has order 3^{3}.
Solution: First compute $H=G / P_{1}(G)$ as outlined in the lectures; abelianising the relations (and taking everything modulo 3) yields the 1×3 matrix $M=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$. This tells us that $H=\left\langle a P_{1}(G), c P_{1}(G)\right\rangle$ has rank 2 , thus $H \cong C_{2}^{2}$ and we can define H via the wpcp $H=\left\langle a, c \mid a^{3}, c^{3}\right\rangle$. We define

$$
\theta: G \rightarrow G / P_{1}(G), \quad(a, c) \mapsto(a, c)
$$

The 3-covering of H is $H^{*}=\operatorname{Pc}\left\langle a, c, x_{1}, x_{2}, x_{3} \mid a^{3}=x_{1}, c^{3}=x_{2},[c, a]=x_{3}, x_{1}^{3}=x_{2}^{3}=x_{3}^{3}=1\right\rangle$, and consistency checks show that this presentation is consistent. Now use θ to evalute the relations of G in H^{*} :

$$
\begin{array}{rlrl}
a^{9} & =1 \rightsquigarrow 1=1 & b^{9}=1 \rightsquigarrow 1=1 \\
c^{9} & =1 \rightsquigarrow 1=1 & {[[b, a], a]=a^{3}} & \rightsquigarrow 1=x_{1} \\
(a b a)^{9} & =1 \rightsquigarrow 1=1 & (b a)^{5} a=b \rightsquigarrow x_{1}^{2}=1 \\
{[a, c]} & =1 \rightsquigarrow x_{3}=1, &
\end{array}
$$

which tells us that $G / P_{2}(G) \cong H^{*} /\left\langle x_{1}, x_{3}\right\rangle=\operatorname{Pc}\left\langle a, c, x \mid a^{3}=1, c^{3}=x, x^{3}=1\right\rangle \cong C_{3} \times C_{9}$. Since $|G|=27=\left|G / P_{2}(G)\right|$, we conclude that this is a wpep for G.

Question 10 (tutorial)

By hand, show that the nucleus of

$$
Q_{8}=\operatorname{Pc}\left\langle a, b, c \mid a^{2}=c, b^{2}=c, c^{2}=1,[b, a]=c\right\rangle
$$

in Q_{8}^{*} is trivial, and deduce that Q_{8} has no immediate 2-descendants.
Solution: Write $G=Q_{8}$ and note that G has p-class $k=2$. Let G^{*} be the 2 -cover with multiplicator M and nucleus $P_{k}\left(G^{*}\right)$. We show that $P_{k}\left(G^{*}\right)=1$ so that $U P_{k}\left(G^{*}\right)<M$ for every $U<M$, that is, M has no allowable subgroups, and therefore Q_{8} has no immediate descendants.

To prove that $P_{k}\left(G^{*}\right)$ is trivial, we first write down a presentation for G^{*}. By considering $G / P_{1}(G)$ as before, we find that $G=\langle a, b\rangle$ has rank 2 . Note that G is already given by a wpcp, and we can choose $a^{2}=c$ as the definition of c. Thus, a (inconsistent) presentation for G^{*} is
$\operatorname{Pc}\left\langle a, b, c, x_{1}, \ldots, x_{5} \mid a^{2}=c, b^{2}=c x_{1}, c^{2}=x_{2},[b, a]=c x_{3},[c, b]=x_{4},[c, a]=x_{5}, x_{1}^{2}=\ldots=x_{5}^{2}=1\right\rangle ;$
note that $M=\left\langle x_{1}, \ldots, x_{5}\right\rangle \leq G^{*}$ is the multiplicator. Moreover, $P_{1}\left(G^{*}\right) M / M \leq P_{1}(G)=\langle c\rangle$, which shows that $P_{1}\left(G^{*}\right)$ is contained in $\left\langle c, x_{1}, \ldots, x_{5}\right\rangle$. The latter is clearly abelian; if we show that c has order 2, then $P_{1}(G)^{*}$ is elementary abelian, and $P_{k}(G)^{*}=1$ follows - which implies the claim.

To show that c has order 2 , we need that $x_{2}=1$. We see this by doing a few consistency checks: $a a^{2}=a c$ and $a^{2} a=c a=a c x_{5}$ implies that $x_{5}=1$; similarly, $b b^{2}=b c x_{1}$ and $b^{2} b=c x_{1} b=b c x_{1} x_{4}$ implies $x_{4}=1$. Lastly, $b^{2} a=c x_{1} a=a c x_{1} x_{5}$ and $b(b a)=b a b c x_{3}=a b c x_{3} b c x_{3}=a b^{2} c^{2} x_{3}^{2} x_{4}=$ $a c x_{1} x_{2} x_{4}$ force $x_{2}=1$; recall that $x_{5}=x_{4}=1$. Thus, c has order 2 in G^{*}, and the claim follows as described above.

Question 11 (practical)

Make sure the GAP package Anupq is installed and running; you might have to do . / configure and make in pkg/anupq before you can load it in gap with LoadPackage ('`anupq''). Look up the manual and use ...
a) ... the command Pq to compute a wpcp of G,
b) \ldots the command PqPCover to compute the 2-covering group G^{*} of G
c) ...the command PqDescendants to compute all immediate descendants of G,
for each group G in the questions above, and for

$$
G=\left\langle x, y \mid[[y, x], x]=x^{2},(x y x)^{4}, x^{4}, y^{4},(y x)^{3} y=x\right\rangle \quad \text { with } p=2 \text {. }
$$

Solution: Here is some GAP code for the last group:

```
gap> LoadPackage("anupq");
gap> F:=FreeGroup(["x","y"]);;
gap> AssignGeneratorVariables(F);
#I Assigned the global variables [ x, y ]
gap> R:=[Comm(Comm (y,x),x)/x^2, (x*y*x)^4, x^4, y^4, (y*x)^3*y/x]; ;
gap> G:=F/R;;
gap> Gwpcp:=Pq(G:Prime:=2); ;
gap> PrintPcpPresentation(PcGroupToPcpGroup(Gwpcp));
g1^2 = g5
g2^2 = g4
g3^2 = g5
g4^2 = id
g5^2 = id
g6^2 = id
g2 ^ g1 = g2 * g3
g3^ g1 = g3 * g5
g3 ^ g2 = g3 * g6
g4* g1 = g4*g5*g6
```

```
gap> Size(Gwpcp);
6 4
gap> Gstar:=PqPCover(Gwpcp:Prime:=2);;
gap> Size(Gstar);
512
gap> imdes:=PqDescendants(Gwpcp:Prime:=2);
[ <pc group of size 128 with 7 generators>,
    <pc group of size 128 with 7 generators>,
    <pc group of size }128\mathrm{ with 7 generators>,
    <pc group of size 128 with 7 generators> ]
```

Question 12 (tutorial)
For $n \in \mathbb{N}$ consider the cyclic group $G=C_{p^{n}}=\operatorname{Pc}\left\langle r \mid r^{\left(p^{n}\right)}\right\rangle$; compute G^{*} and show that G has immediate descendants.

Solution: First, we write down a wpcp of $G=C_{p^{n}}$, namely

$$
G=\operatorname{Pc}\left\langle r_{1}, \ldots, r_{n} \mid r_{1}^{p}=r_{2}, \ldots, r_{n-1}^{p}=r_{n}, r_{n}^{p}=1\right\rangle .
$$

The first $n-1$ relations are definitions; the non-defining relations are $r_{n}^{p}=1$ and the trivial commutator relations $r_{j}^{r_{i}}=r_{j}$ for $i<j$. Thus we obtain
$G^{*}=\operatorname{Pc}\left\langle r_{1}, \ldots, r_{n}, b, b_{i, j}(i<j)\right| r_{1}^{p}=r_{2}, \ldots, r_{n-1}^{p}=r_{n}, r_{n}^{p}=b, r_{j}^{r_{i}}=r_{j} b_{i, j}(i<j)$, each $\left.b_{i, j}^{p}=1\right\rangle$.
Let's do a few consistency checks. First, if $1 \leq i \leq j<n$, then

$$
r_{j}^{p} r_{i}=r_{j+1} r_{i}=r_{i} r_{j+1} b_{i, j+1} \quad \text { and } \quad r_{j}^{p-1}\left(r_{j} r_{i}\right)=r_{i} r_{j}^{p} b_{i, j}^{p}=r_{i} r_{j+1},
$$

which shows that $b_{i, k}=1$ for all $1 \leq i<k \leq n$; this yields a consistent wpcp, namely

$$
G^{*}=\operatorname{Pc}\left\langle r_{1}, \ldots, r_{n}, b \mid r_{1}^{p}=r_{2}, \ldots, r_{n-1}^{p}=r_{n}, r_{n}^{p}=b, b^{p}=1\right\rangle \cong C_{p^{n+1}} .
$$

Note that G has p-class $c=n$ since $P_{i}(G)=\left\langle r_{i+1}\right\rangle$ for all $i=1, \ldots, n-1$, and $P_{n}(G)=1$. Now the multiplicator of G is $M=\langle b\rangle \leq G^{*}$ and the nucleus of G is $P_{c}\left(G^{*}\right)=\langle b\rangle=M$, that is, $U=1 \leq M$ is an allowable subgroup. This proves that G^{*} is indeed an immediate descendant of G.

