Computational aspects of finite p-groups ICTS Bangalore 2016
Question Sheet Heiko Dietrich

The questions on this sheet are to be discussed during the two tutorials and the practical sessions; some
questions are to be done “by hand”, others require to use GAP. In the following, p always denotes a prime
and n is a positive integer. This sheet also contains some comments on the solutions.

Question 1 (tutorial)

Let GG be a nontrivial finite p-group acting on a finite set 2. Recall that the G-orbit of w € 2 is defined as

the subset w¥ = {w9 | g € G} C € its stabiliser is the subgroup Stabg(w) = {g € G | w9 = w} < G.

a) Prove the Orbit-Stabiliser-Theorem, that is, show that |G|/|Stabg (w)| = |w©|.

b) Denote by Fixq(G) = {w € Q| Vg € G : w9 = w} the set of G-fixed points in 2. Use a) to prove
that || = |Fixq(G)| mod p; in particular, if || is a p-power, then |Fixq(G)| is divisible by p.

c) Use b) to prove that the center Z(G) = {h € G | Vg € G : h9 = h} of G is non-trivial.

d) Let H < G be a proper subgroup. Consider an action of H and use b) to prove that No(H) > H.

SOLUTION: a) The map ¢: G — Q, g — w9 induces 1): Stabg(w)\G — w%, Stabg(w)g — w?.
Clearly, ¢ is well-defined: if Stabg(w)g = Stabg(w)h, then h = sg for some s € Stabg(w), and
so wh = w* = w9. By construction, 1 is surjective. If Stabg(w)g and Stabe(w)h are mapped
to w?d = wh, then gh~' € Stabg(w), and so Stabg(w)g = Stabe(w)h. This proves that 1) is a
bijection, and therefore |w®| = |Stabg(w)\G]; clearly, [Stabg (w)\G| = |G|/|Stabg(w)|.

b) Note that w € Fixq(G) if and only if w® = {w} is an orbit of size 1. Together with a), if w € €,
then either w € Fixo(G) or w® has size divisible by p. Since the G-orbits in § partition €2, it follows
that || = |Fixq(G)| mod p.

c¢) Let G act on itself via conjugation. Then h € G lies in Fixg(G) if and only if h9 = h forall g € G,
that is, if and only if h € Z(G); this shows that Fixg(G) = Z(G). Clearly, 1 € Z(G), hence
|Z(G)| > 1. Now b) implies that |Z(G)| = |G| mod p, so p | | Z(G)|; together, it follows that Z (G)
is nontrivial.

d) The group H acts via left multiplication on the left cosets G/H = {gH | g € G}. Since |G/H| =
|G|/|H]| is a p-power, it follows from b) that Fixq,/ g (H) is divisible by p, and 1H € Fixg/q(H)
yields [Fixg/ g (H)| > p. Thus, there is g € G\ H with gH € Fixg,(H), thatis, hgH = gH for
all h € H. This implies g~ *hg € H forall h € H, thatis, HY = H and g € Ng(H) \ H.

Question 2 (tutorial)
Let G be a finite p-group.

a) Prove thatif N < G and G/N is cyclic, then G’ = [N, G]
b) Prove that if G/2(G) is cyclic, then 72(G) = {1} and G is abelian.

¢) Prove that ®(G) = G'GP; here ®(G) is the Frattini subgroup of G (that is, the intersection of all
maximal subgroups of G) and GP? is the subgroup of G generated by all p-th powers.

SOLUTION: a) If G/N = (xN) for some z € G, then every g € G can be written as g = z'n for
somen € N and i € Z. Thus the generators of y2(G) are

[z'n,z'm] = [xzi,:rjm]”_[n, x]m] |
= [xzm]n[xlij]mn[??a m][nvx]]m
= [z',m]"[n,m|[n,2’|" € [N,G],



which proves that G’ < [N, G]. Clearly, [N, G] < G’, hence equality.

b) It follows from a) that 72 (G) = [G, G| = |G, 2(G)] = v3(G), which forces 72(G) = 1.

¢) Every maximal subgroup M < G has index p and is normal in G, see also Q1d). Since G/M is
elementary abelian, it follows that G'GP < M; thus G'GP < ®(G). Let I be the intersection of
all maximal subgroups of G which contain G’GP. Clearly, ®(G) < I. On the other hand, G/G'GP
is elementary abelian, so ®(G/G’'GP) = 1, which implies that I < G'GP, so ®(G) < G'GP. The
claim follows.

Question 3 (practical)

Use the SmallGroups Library of GAP to obtain a list of all p-groups G of size at most max{p%, 1000}
with the property that G' admits a subgroup A < G of size p* with Cg(A) = A; note that A necessarily
contains the center of G. Do the following:

a) Let G and A < G be as in the question and suppose G is nonabelian. Determine the orders of N (A)
and Z(G); compute a few examples to see what these orders might be.

b) For the groups in your list, compare their nilpotency class with their order; based on your observa-
tions, make a conjecture about the structure of the groups.

c) Challenge Question: Prove your conjecture (for example, use a) and induction on the group order).
SOLUTION: If G = A, then G = A = Z(A) = Ng(A) is abelian of order p? and nilpotency class 1.

Thus, with the GAP code below we only construct those groups with G > A, and stores them in a list
res: an entry in res has the form L=[G, [A1l, .., An] ] where each A; < G is self-centralising:

gap> getGoodGroups := function (G, p)

> local c,A,cl;

> ¢ := Center (G);

> if Size(c)>p”2 then return []; fi;

> cl := List (ConjugacyClassesSubgroups (G),Representative);

> cl := Filtered(cl,x->Size(x)=p~"2 and IsSubgroup(x,c) and Centraliser (G, x)=x);
> return cl;

> end;;

gap> myprimes := Filtered(Primes,x->x"2<1000);;

gap> res = [l

gap> for p in myprimes do
> for n in Filtered([3..6],1i-> p~i<1000) do

> Print ("start order ",p"n,"\n");
> for nr in [1l..NumberSmallGroups (p"n)] do
> G = SmallGroup(p n,nr);

grps := getGoodGroups (G,p);

> if Size(grps)>0 then Add(res, [G,grps]); fi;
> od; od; od;

a) For each pair G, A computed above, we inspect |G|, |Z(G)|, |[Ng(A)|, and test whether N (A) is
abelian:
gap> List(res, x —> [ Size(x[1l]), Size(Center(x[1l])),

List(x[2], A -> [Size(Normaliser(x[1],A)),
IsAbelian (Normaliser (x[11,A))1)1);
[output omitted]

The output indicates that Z(G) is cyclic of order p and N (A) is nonabelian of order p?; let us check this:

gap> ForAll (res, x —> ForAll (x[2],A->
Order (Center (x[1]))=PrimePGroup(x[1])
and Size (Normaliser(x[1l],A))=PrimePGroup(x[1]) "3
and not IsAbelian (Normaliser (x[1],A))));

true



Now we prove this. Since G is nonabelian, G > A, andso Ng(A) > Aby Q1d). Note that Ng(A)/Ca(A)
embeds into Aut(A). Since A is either cyclic or elementary abelian of order p?, it follows that Aut(A) is
either Cyy(,_1) or GLy(p). In both cases, p divides |Aut(A)], but p* does not. Since Cz(A) = A has order
p?, it follows that N(A) is nonabelian of order p®. Now clearly Z(G) < A < Ng(A); if Z(G) = A,
then Z(N¢g(A)) = A has index p in Ng(A), which is not possible since N¢g(A) is nonabelian; this
proves that Z(G) < A, hence Z(G) is cyclic of order p.

b) Running through the examples, we see that every such group has maximal class, that is, order p” and
nilpotency class n — 1; this can be seen, for example, with the command
List (res , x—> [ NilpotencyClassOfGroup (x[1]),

Collected (FactorsInt (Size(x[1]1)))[1]1[2]1]1);
Thus we conjecture: if a p-group G has a subgroup A < G of order p? with A = C(A), then G has
maximal class (that is, nilpotency class n — 1).

¢) Let GG be a p-group with A < G of order p? and Ca(A) = A. If G = A, then G has maximal class;
now suppose G > A; in particular, Ng(A) > A. We know from b) that N (A) is nonabelian of order
p% and that Z = Z(G) is cyclic of order p. Now consider G = G/Z and N = Ng(A)/Z. Note that
Ca(N) < C5(A/Z) < Ng(A)/Z = N, thus we can apply the induction hypothesis to G and N and
obtain that G has maximal class. Since G = G/Z(G), it follows that G has maximal class: consider the
upper central series of G.

Question 4 (practical)
There are several ways to store and re-construct a pc-group in GAP; consult the manual at

http://www.gap-system.org/Manuals/doc/ref/chap46.html

for the following tasks.
a) Read about and use the commands CodePcGroup and PcGroupCode.

b) Prove that, indeed, every polycyclic presentation P can be encoded by a positive integer ¢ = ¢(P).
Observe that if P has a generating set of cardinality n, then P has n power relations and n(n — 1)/2
commutator relations. One (theoretical) way of encoding P as a number is to make use of the
uniqueness of prime-power factorisations in Z.

¢) Read about and use the command GapInputPcGroup.

SOLUTION: For a) and c), just play around with GAP. For b), recall that there are infinitely many primes,
say po, 1, - - ., where p; denotes the ¢ 4 1-th prime. Now suppose P has a generating set of cardinality n,
say {g1,--.,gn}; there are n power relations and n(n — 1)/2 commutator relations; choose a canonical
order of these relations (for example, if i € {1,...,n}, then the i-th relation is the power relation of
i, etc.) Each right hand side of a relation is a normalised word in {¢1, ..., g, }, and therefore uniquely
determined by the corresponding list of exponents; to have a uniform description, let every list of expo-
nents be of length n, that is, we included zeroes. Thus, the whole presentation is uniquely determined by
the number ey = n and n+ n(n — 1/2) lists of length n, that is, by alistof m = 1 +n(n+n(n—1)/2)
nonnegative integers, say (eg, €1, . . ., € ). Associate with this list the positive integer ¢(P) = [[;", p;'.
Given such a number ¢(P), its prime power factorisation reveals the list (eg, e, .. ., e,,): for example,
the exponent of the largest power of 2 dividing ¢(P) is ey9 = n, which determines the number of gen-
erators in the presentation. (This encoding is not efficient; see the description of CodePcGroup in the
GAP manual to see how this can be done more efficient.)

Question 5 (tutorial/practical)
Let G = Sym(9) be the symmetric group of rank 9.

a) By hand, determine a polycyclic series and a polycyclic presentation for the Sylow 3-subgroup of G.



b) Now do the same calculation with GAP; compare with your results for a). The following commands
might be useful:

gap> G := SymmetricGroup(9);;

gap> S := SylowSubgroup (G, 3);;

gap> iso := IsomorphismPcGroup(S);;

gap> Spc := Image (iso);;

gap> mypcgs := List (Pcgs (Spc),x->PrelImagesRepresentative(iso,x));;

SOLUTION: a) Note that |G| = 9!, so every Sylow 3-subgroup of G has order 3* = 81. Note that
S§=1((1,2,3),(4,5,6),(7,8,9),(1,4,7)(2,5,8)(3,6,9)) < G

has order 81, hence S is a Sylow 3-subgroup of G. Write g1 = (1,4,7)(2,5,8)(3,6,9), g2 = (1,2,3),
93 = (4,5,6), and g4 = (7,8,9); note that each |g;| = 3 and g}* = g; fori,j > 2. Also, g3' = ga,
95" = ga, and g' = go. Thus, if we define G; = (gi, ..., g4), then G = G1 > G2 > G3 > Ga> = {()}
is a polycyclic series and X = [g1, 92, g3, g4] is a PCGS with R(X) = [3, 3, 3, 3]. The corresponding pc
presentation is determined as

3 3

3 3 B T T T x;
H = (r1,z0,23,24 | 2] =25 =a3 =23 =1, 23" =x3,25"' =x4,2]' =20 27" =

T=wjfori,j > 2).

b) (Just play around with GAP.)

Question 6 (tutorial/practical)

Let G =(91,92.95 | 91 = 93, 93 = 93, 93 =1, 93" = g2, 93' = 43, 9’ = gs).
a) By hand, show that this polycyclic presentation is not consistent.

b) By hand, find a consistent polycyclic presentation of G.
c¢) Construct G in GAP using the following commands:

gap> F:=FreeGroup(["gl","g2","g3"]);;

gap> AssignGeneratorVariables (F);

#I Assigned the global variables [ gl, g2, g3 ]

gap> R:=[gl"4/g3, g2°4/93, g374, Comm(gl,g2), g3°gl/g372,93"°g2/g31;;
gap> G:=F/R;

Do IsomorphismPcGroup, StructureDescription, and PcGroupFpGroup. The last
command will yield an error message; re-define GG by using the consistent pc-presentation you have
obtained in b).

SOLUTION: a) The exponents of this presentation are (4,4,4) and the normalised words in the gen-
erators are {g7'g5°g5° | 0 < e, e2,e3 < 3}. Consistency checks show that the presentation is not
consistent. For example, the collections of (g3g1)g; and g3(g7) yield

(9391)9% = 919397 = 9193919397 = 919397 = g1 = g3 and g3(g}) = g3

in G. In particular, this shows that g5 = g§ in G and, thus, g3 = 1in G.

b) Using that g5 = 1, we have that G = (g1,92 | g1, 93, g3' = g2); obviously, this presentation is
consistent and describes a group isomorphic to Cy x Cy.

¢) (Just play around with GAP.)

Question 7 (tutorial)
For a positive integer n let G(n) = (a,b | a™,b", [a,b] = a).
a) Prove by hand that if n = p is a prime, then G(p) = C,,.

b) Does the same hold when n is not prime? (Maybe compute some examples with GAP.)



SOLUTION: a) Write G = G(p). Note that G’ = ([a,b]) = (a), which implies that G/G’ = C,, or
G /G’ = 1; since aP = 1, this also implies that G’ = C,, or G’ = 1. Thus, |G| € {1,p,p?*}, so G is
abelian. But this forces G’ = 1 and thus a = 1. Now G = (b | b*) = C),.

b) The group G(n) is not always cyclic; here are some non-cyclic examples.

gap> Gn:=function (n)
> local F,R;

> F := FreeGroup(2);

>R := [F.1°n,F.2"n,Comm(F.1,F.2)/F.1];
> return F/R;

> end;

gap> for i1 in [1..50] do

> G:=Gn (i) ;

> if not IsCyclic(G) then

> Display ([i, StructureDescription (Image (IsomorphismPcGroup(G)))1);
> fi; od;

[ 6, "C3 x S3" ]

[ 12, "C3 x (C3 : c4)"
[ 18, "(C9 : C9) : Cc2"
[ 20, "C5 x (C5 : c4)"
[ 21, "C7 x (C7 : C3)"
[

[

[

[

[

[

[V S Y

24, "C3 x (C3 : c8)"
30, "C15 x sS3" ]

36, "(C9 : C9) : C4" ]

40, "C5 x (C5 : c8)" 1]

42, "C7 x (S3 x (C7 : C3))" ]
48, "C3 x (C3 : Cle)" ]

In general, G = G(n) satisfies G’ = (a) = C,, for some m | n, and G/G’ = C,, acts via a — a?
on G'. The latter requires that the order of a is odd. For example, if G = G(6), then a’ =1, so
G'={a) = Cs

Question 8 (tutorial/practical)
Consider the dihedral group G = (r,m | 72", m2, r™m = 2" '=1),
a) Find the normal form of the element w = rmr2m?2r3m3.
b) Find a polycyclic series of G whose associated PCGS has relative orders [2, .. ., 2].
¢) Find a polycyclic presentation of (G, associated to the PCGS you have found in b).

d) Write a GAP function getDn (n) which constructs this group using the presentation you have found
in ¢), via PcGroupFpGroup.

SOLUTION: a) First, we use that m* = m*™°4 2 for all 4, and obtain w = rmr®m. Second, we use that
n—1
rm =mr?" ~!and get

5 2(7“2”*1—1)5 — pp@r =D+

_ n—1_
w=rmr’m =1rm 4=42 4,

=T N

note that 2"~ —1 = p—1,

b) Note that (r) <G is a normal subgroup of index 2; thus it suffices to find a PCGS of (r) with relative
orders 2. However, the latter group is cyclic of order 271 50 we can choose gr=m,gs =71,q93 = r2,

ey G = 72" If we define G; = (9iy---,9n), then each G;;1 has index 2 in G;, which yields a
polycyclic series G1 > ... > G,, > 1 with sections of order 2. Thus, X = [g1,...,¢g,] is a PCGS with
relative orders R(X) = [2,...,2].

¢) We use the notation of b). Note that all the elements go, . . ., g, commute pairwise, and g? = g;4; for
i=2,...,n— 1. It remains to describe g/ fori = 2,..., n. Note that r™ = r~1, hence
21 —2¢71 -1
gl =" ) =17 =g



Observe also that gigigi 11 gn = 97 git1-* n = 9ir19i+2-* Gn = --- = gp = 1, hence
9" =97 = gigit1 gn
for every i = 2, ..., n. This yields the following polycyclic presentation for G:
< g1,---59n ‘ g%:L
gf =gip1fori=2,....n—1,
gn =1,
g/ =gifor2<j<i<n
g'=gi-gnfori=2,....n ).

d) Here is some GAP code for that task:

getDn := function(n)

local gens, i, j, F, R;
F := FreeGroup (n);
gens := GeneratorsOfGroup (F);
R = [gens[1l]72];

for 1 in [2..n-1] do Add(R,gens[1]"2/gens[i+1]); od;
Add (R, gens[n]"2);
for 3 in [2..n-1] do for i in [j+1..n] do
Add (R, Comm (gens[i],gens[]]));
od; od;
for 1 in [2..n-1] do
Add (R, Comm (gens[i],gens[1])/ (Product (gens{[i+1l..n]1})));
od;
Add (R, Comm (gens[1],gens[n]));
return PcGroupFpGroup (F/R);
end;
StructureDescription (getDn (10));
"D1024"

Question 9 (tutorial)
By hand, compute a wpcp of the group

G ={a,b,c|a® v°, &, [[b,a],a] = a®, (aba)®, (ba)’a =b, [a,c]);
you can use that G has order 33.

SOLUTION: Firstcompute H = G/ P;(G) as outlined in the lectures; abelianising the relations (and tak-
ing everything modulo 3) yields the 1 x 3 matrix M = (0 1 0). This tells us that H = (a P, (G), cPi1(G))
has rank 2, thus H =2 C2 and we can define H via the wpcp H = {(a, c | a®,c®). We define

0: G — G/Pi(G), (a,c) (a,c).

The 3-covering of H is H* = Pc{a, c,z1, 72,73 | a® = 71, ¢ = 29, [c,a] = 3, 23 = 23 = 23 = 1),

and consistency checks show that this presentation is consistent. Now use 6 to evalute the relations of G
in H*:

ad=1~1=1 W=1w1=1
d=1~1=1 [[b,al,a] = a® ~ 1=,
(aba)’ =1~1=1 (ba)’a=b~ 22 =1

[a,c] =1~ 23 =1,

which tells us that G/ Py (G) = H* / (w1, x3) = Pcla,c,z | a® =1, ¢3 =z, 2% = 1) = C3 x Cy. Since
|G| =27 = |G/ P2(G)|, we conclude that this is a wpcp for G.




Question 10 (tutorial)
By hand, show that the nucleus of

Qs =Pcla,b,c|a®>=c¢, ¥ =¢, =1, [b,a] = ¢)
in )3 is trivial, and deduce that (g has no immediate 2-descendants.

SOLUTION: Write G = Qg and note that G has p-class k = 2. Let G* be the 2-cover with multiplicator
M and nucleus P (G*). We show that P, (G*) = 1 so that U P, (G*) < M forevery U < M, that is, M
has no allowable subgroups, and therefore (g has no immediate descendants.

To prove that P, (G*) is trivial, we first write down a presentation for G*. By considering G/P;(G)
as before, we find that G = (a, b) has rank 2. Note that G is already given by a wpcp, and we can choose

a? = ¢ as the definition of ¢. Thus, a (inconsistent) presentation for G* is

Pcla,b,c,x1,... x5 | a® = ¢,b* = cx1,c® = x9, [b,a] = cx3, [c,b] = 24, [c,a] = z5,27 = ... :xg =1);

note that M = (x1,...,z5) < G* is the multiplicator. Moreover, P, (G*)M /M < P;(G) = (c), which
shows that P (G*) is contained in (c,z1,...,x5). The latter is clearly abelian; if we show that ¢ has
order 2, then P, (G)* is elementary abelian, and P, (G)* = 1 follows — which implies the claim.

To show that ¢ has order 2, we need that o = 1. We see this by doing a few consistency checks:

aa? = ac and a®a = ca = acxs implies that x5 = 1; similarly, bb? = bexy and b2b = cx1b = bexqay

implies 4 = 1. Lastly, b?’a = cz1a = acrixs and b(ba) = babcxs = abcrsbers = ab*c?zizy =
acrixoxy force x9 = 1; recall that x5 = x4 = 1. Thus, ¢ has order 2 in G*, and the claim follows as

described above.

Question 11 (practical)

Make sure the GAP package Anupq is installed and running; you might have todo . /configure and
make in pkg/anupg before you can load it in gap with LoadPackage ( * ‘anupqg’ ' ). Look up the
manual and use . ..

a) ...the command Pg to compute a wpcp of G,
b) ...the command PgPCover to compute the 2-covering group G* of G
¢) ...the command PgDescendants to compute all immediate descendants of G,

for each group G in the questions above, and for

G = (z,y]| [y, 2], 7] = 22, (zyz)?, 2%, ¢*, (y2)Py =2) withp=2.

SOLUTION: Here is some GAP code for the last group:

gap> LoadPackage ("anupqg") ;

gap> F:=FreeGroup (["x","y"1);;

gap> AssignGeneratorVariables (F);

#I Assigned the global variables [ x, vy ]

gap> R:=[Comm (Comm (y,x),x)/x"2, (x+xyxx)"4, x4, y~4, (yxx) " 3*xy/x];;
gap> G:=F/R;;

gap> Gwpcp:=Pg(G:Prime:=2);;

gap> PrintPcpPresentation (PcGroupToPcpGroup (Gwpcp)) ;

gl®™2 = g5

g2°2 = g4

g3°2 = gb

gd"2 = id

gb"2 = id

g6~2 = id

g2 = gl = g2 % g3

g3 " gl = g3 % g5

g3 " g2 = g3 % g6

gd " gl = g4 x g5 x g6



gap> Size (Gwpcp) ;

64

gap> Gstar:=PgPCover (Gwpcp:Prime:=2);;

gap> Size(Gstar);

512

gap> imdes:=PgDescendants (Gwpcp:Prime:=2);

[ <pc group of size 128 with 7 generators>,
<pc group of size 128 with 7 generators>,
<pc group of size 128 with 7 generators>,
<pc group of size 128 with 7 generators> ]

Question 12 (tutorial)
For n € N consider the cyclic group G = Cpn = Pc(r | r(pn)>; compute G* and show that G has
immediate descendants.

SOLUTION: First, we write down a wpcp of G = Cjn, namely
G=Pc(ri,...,rpn | =ro,... vt | =1y, 12 =1).

The first n — 1 relations are definitions; the non-defining relations are rP =1 and the trivial commutator
relations r;i = r; for i < j. Thus we obtain

G =Pc(ri,...,rn, bybi G< ) |1 =ro,cco,rh _ =rp, rP =0, r" =r;b; j (i < j), each bf] =1).

n J
Let’s do a few consistency checks. First, if 1 <7 < 7 < n, then

P _ — p—1 — o PpP
T‘j’l“i =Tj41T; = Ti"”j+1bi,j+1 and ’I“j (rjri) = ’I“Z‘T‘j bf,j =TiTj+1,

which shows that b; ;, = 1 forall 1 <1 < k < n; this yields a consistent wpcp, namely

G* =Pc(ri,...,r, b ] =ro, ... orh =1y, rh =0, WP =1) = Cpusr.
Note that G has p-class ¢ = n since P;(G) = (rj41) foralli = 1,...,n — 1, and P,(G) = 1. Now the
multiplicator of G'is M = (b) < G* and the nucleus of G is P.(G*) = (b) = M, thatis, U =1 < M is

an allowable subgroup. This proves that G* is indeed an immediate descendant of G.



