The questions on this sheet are to be discussed during the two tutorials and the practical sessions; some questions are to be done "by hand", others require to use GAP. In the following, p always denotes a prime and n is a positive integer. This sheet also contains some comments on the solutions.

Question 1 (tutorial)

Let G be a nontrivial finite p-group acting on a finite set Ω . Recall that the G-orbit of $\omega \in \Omega$ is defined as the subset $\omega^G = \{\omega^g \mid g \in G\} \subseteq \Omega$; its stabiliser is the subgroup $\operatorname{Stab}_G(\omega) = \{g \in G \mid \omega^g = \omega\} \leq G$.

- a) Prove the Orbit-Stabiliser-Theorem, that is, show that $|G|/|\operatorname{Stab}_G(\omega)| = |\omega^G|$.
- b) Denote by $\operatorname{Fix}_{\Omega}(G) = \{ \omega \in \Omega \mid \forall g \in G : \omega^g = \omega \}$ the set of G-fixed points in Ω . Use a) to prove that $|\Omega| \equiv |\operatorname{Fix}_{\Omega}(G)| \mod p$; in particular, if $|\Omega|$ is a p-power, then $|\operatorname{Fix}_{\Omega}(G)|$ is divisible by p.
- c) Use b) to prove that the center $Z(G) = \{h \in G \mid \forall g \in G : h^g = h\}$ of G is non-trivial.
- d) Let H < G be a proper subgroup. Consider an action of H and use b) to prove that $N_G(H) > H$.
- SOLUTION: a) The map $\psi \colon G \to \Omega$, $g \mapsto \omega^g$ induces $\hat{\psi} \colon \operatorname{Stab}_G(\omega) \backslash G \to \omega^G$, $\operatorname{Stab}_G(\omega)g \to \omega^g$. Clearly, $\hat{\psi}$ is well-defined: if $\operatorname{Stab}_G(\omega)g = \operatorname{Stab}_G(\omega)h$, then h = sg for some $s \in \operatorname{Stab}_G(\omega)$, and so $\omega^h = \omega^{sg} = \omega^g$. By construction, $\hat{\psi}$ is surjective. If $\operatorname{Stab}_G(\omega)g$ and $\operatorname{Stab}_G(\omega)h$ are mapped to $\omega^g = \omega^h$, then $gh^{-1} \in \operatorname{Stab}_G(\omega)$, and so $\operatorname{Stab}_G(\omega)g = \operatorname{Stab}_G(\omega)h$. This proves that $\hat{\psi}$ is a bijection, and therefore $|\omega^G| = |\operatorname{Stab}_G(\omega) \backslash G|$; clearly, $|\operatorname{Stab}_G(\omega) \backslash G| = |G|/|\operatorname{Stab}_G(\omega)|$.
- b) Note that $\omega \in \operatorname{Fix}_{\Omega}(G)$ if and only if $\omega^G = \{\omega\}$ is an orbit of size 1. Together with a), if $\omega \in \Omega$, then either $\omega \in \operatorname{Fix}_{\Omega}(G)$ or ω^G has size divisible by p. Since the G-orbits in Ω partition Ω , it follows that $|\Omega| \equiv |\operatorname{Fix}_{\Omega}(G)| \mod p$.
- c) Let G act on itself via conjugation. Then $h \in G$ lies in $\mathrm{Fix}_G(G)$ if and only if $h^g = h$ for all $g \in G$, that is, if and only if $h \in Z(G)$; this shows that $\mathrm{Fix}_G(G) = Z(G)$. Clearly, $1 \in Z(G)$, hence |Z(G)| > 1. Now b) implies that $|Z(G)| \equiv |G| \mod p$, so $p \mid |Z(G)|$; together, it follows that Z(G) is nontrivial.
- d) The group H acts via left multiplication on the left cosets $G/H = \{gH \mid g \in G\}$. Since |G/H| = |G|/|H| is a p-power, it follows from b) that $\mathrm{Fix}_{G/H}(H)$ is divisible by p, and $1H \in \mathrm{Fix}_{G/H}(H)$ yields $|\mathrm{Fix}_{G/H}(H)| \geq p$. Thus, there is $g \in G \setminus H$ with $gH \in \mathrm{Fix}_{G/H}(H)$, that is, hgH = gH for all $h \in H$. This implies $g^{-1}hg \in H$ for all $h \in H$, that is, $H^g = H$ and $H \in H$.

Question 2 (tutorial)

Let G be a finite p-group.

- a) Prove that if $N \subseteq G$ and G/N is cyclic, then G' = [N, G]
- b) Prove that if $G/\gamma_2(G)$ is cyclic, then $\gamma_2(G) = \{1\}$ and G is abelian.
- c) Prove that $\Phi(G) = G'G^p$; here $\Phi(G)$ is the Frattini subgroup of G (that is, the intersection of all maximal subgroups of G) and G^p is the subgroup of G generated by all p-th powers.

SOLUTION: a) If $G/N = \langle xN \rangle$ for some $x \in G$, then every $g \in G$ can be written as $g = x^i n$ for some $n \in N$ and $i \in \mathbb{Z}$. Thus the generators of $\gamma_2(G)$ are

$$[x^{i}n, x^{j}m] = [x^{i}, x^{j}m]^{n}[n, x^{j}m]$$

$$= [x^{i}, m]^{n}[x^{i}, x^{j}]^{mn}[n, m][n, x^{j}]^{m}$$

$$= [x^{i}, m]^{n}[n, m][n, x^{j}]^{m} \in [N, G],$$

which proves that $G' \leq [N, G]$. Clearly, $[N, G] \leq G'$, hence equality.

- b) It follows from a) that $\gamma_2(G) = [G, G] = [G, \gamma_2(G)] = \gamma_3(G)$, which forces $\gamma_2(G) = 1$.
- c) Every maximal subgroup $M \leq G$ has index p and is normal in G, see also Q1d). Since G/M is elementary abelian, it follows that $G'G^p \leq M$; thus $G'G^p \leq \Phi(G)$. Let I be the intersection of all maximal subgroups of G which contain $G'G^p$. Clearly, $\Phi(G) \leq I$. On the other hand, $G/G'G^p$ is elementary abelian, so $\Phi(G/G'G^p) = 1$, which implies that $I \leq G'G^p$, so $\Phi(G) \leq G'G^p$. The claim follows.

Question 3 (practical)

Use the SmallGroups Library of GAP to obtain a list of all p-groups G of size at most $\max\{p^6, 1000\}$ with the property that G admits a subgroup $A \leq G$ of size p^2 with $C_G(A) = A$; note that A necessarily contains the center of G. Do the following:

- a) Let G and $A \leq G$ be as in the question and suppose G is nonabelian. Determine the orders of $N_G(A)$ and Z(G); compute a few examples to see what these orders might be.
- b) For the groups in your list, compare their nilpotency class with their order; based on your observations, make a conjecture about the structure of the groups.
- c) Challenge Question: Prove your conjecture (for example, use a) and induction on the group order).

SOLUTION: If G = A, then $G = A = Z(A) = N_G(A)$ is abelian of order p^2 and nilpotency class 1. Thus, with the GAP code below we only construct those groups with G > A, and stores them in a list res: an entry in res has the form L=[G, [A1, ..., An]] where each $A_i < G$ is self-centralising:

```
gap> getGoodGroups := function(G,p)
> local c,A,cl;
> c := Center(G);
> if Size(c)>p^2 then return []; fi;
> cl := List(ConjugacyClassesSubgroups(G), Representative);
> cl := Filtered(cl,x->Size(x)=p^2 and IsSubgroup(x,c) and Centraliser(G,x)=x);
> return cl;
> end;;
gap> myprimes := Filtered(Primes, x->x^2<1000);;</pre>
gap> res := [];;
gap> for p in myprimes do
> for n in Filtered([3..6],i-> p^i<1000) do
> Print("start order ",p^n,"\n");
> for nr in [1..NumberSmallGroups(p^n)] do
    := SmallGroup(p^n,nr);
 grps := getGoodGroups(G,p);
> if Size(grps)>0 then Add(res,[G,grps]); fi;
> od; od; od;
```

a) For each pair G, A computed above, we inspect |G|, |Z(G)|, $|N_G(A)|$, and test whether $N_G(A)$ is abelian:

The output indicates that Z(G) is cyclic of order p and $N_G(A)$ is nonabelian of order p^3 ; let us check this:

Now we prove this. Since G is nonabelian, G > A, and so $N_G(A) > A$ by Q1d). Note that $N_G(A)/C_G(A)$ embeds into $\operatorname{Aut}(A)$. Since A is either cyclic or elementary abelian of order p^2 , it follows that $\operatorname{Aut}(A)$ is either $C_{p(p-1)}$ or $\operatorname{GL}_2(p)$. In both cases, p divides $|\operatorname{Aut}(A)|$, but p^2 does not. Since $C_G(A) = A$ has order p^2 , it follows that $N_G(A)$ is nonabelian of order p^3 . Now clearly $Z(G) \le A \le N_G(A)$; if Z(G) = A, then $Z(N_G(A)) = A$ has index p in $N_G(A)$, which is not possible since $N_G(A)$ is nonabelian; this proves that Z(G) < A, hence Z(G) is cyclic of order p.

b) Running through the examples, we see that every such group has maximal class, that is, order p^n and nilpotency class n-1; this can be seen, for example, with the command

Thus we conjecture: if a p-group G has a subgroup $A \leq G$ of order p^2 with $A = C_G(A)$, then G has maximal class (that is, nilpotency class n-1).

c) Let G be a p-group with $A \leq G$ of order p^2 and $C_G(A) = A$. If G = A, then G has maximal class; now suppose G > A; in particular, $N_G(A) > A$. We know from b) that $N_G(A)$ is nonabelian of order p^3 and that Z = Z(G) is cyclic of order p. Now consider $\overline{G} = G/Z$ and $\overline{N} = N_G(A)/Z$. Note that $C_{\overline{G}}(\overline{N}) \leq C_{\overline{G}}(A/Z) \leq N_G(A)/Z = \overline{N}$, thus we can apply the induction hypothesis to \overline{G} and \overline{N} and obtain that \overline{G} has maximal class. Since $\overline{G} = G/Z(G)$, it follows that G has maximal class: consider the upper central series of G.

Question 4 (practical)

There are several ways to store and re-construct a pc-group in GAP; consult the manual at

```
http://www.gap-system.org/Manuals/doc/ref/chap46.html
```

for the following tasks.

- a) Read about and use the commands CodePcGroup and PcGroupCode.
- b) Prove that, indeed, every polycyclic presentation P can be encoded by a positive integer c=c(P). Observe that if P has a generating set of cardinality n, then P has n power relations and n(n-1)/2 commutator relations. One (theoretical) way of encoding P as a number is to make use of the uniqueness of prime-power factorisations in \mathbb{Z} .
- c) Read about and use the command GapInputPcGroup.

SOLUTION: For a) and c), just play around with GAP. For b), recall that there are infinitely many primes, say p_0, p_1, \ldots , where p_i denotes the i+1-th prime. Now suppose P has a generating set of cardinality n, say $\{g_1, \ldots, g_n\}$; there are n power relations and n(n-1)/2 commutator relations; choose a canonical order of these relations (for example, if $i \in \{1, \ldots, n\}$, then the i-th relation is the power relation of g_i , etc.) Each right hand side of a relation is a normalised word in $\{g_1, \ldots, g_n\}$, and therefore uniquely determined by the corresponding list of exponents; to have a uniform description, let every list of exponents be of length n, that is, we included zeroes. Thus, the whole presentation is uniquely determined by the number $e_0 = n$ and n + n(n-1/2) lists of length n, that is, by a list of m = 1 + n(n + n(n-1)/2) nonnegative integers, say (e_0, e_1, \ldots, e_m) . Associate with this list the positive integer $c(P) = \prod_{i=0}^m p_i^{e_i}$. Given such a number c(P), its prime power factorisation reveals the list (e_0, e_1, \ldots, e_m) : for example, the exponent of the largest power of 2 dividing c(P) is $e_0 = n$, which determines the number of generators in the presentation. (This encoding is not efficient; see the description of CodePcGroup in the GAP manual to see how this can be done more efficient.)

Question 5 (tutorial/practical)

Let G = Sym(9) be the symmetric group of rank 9.

a) By hand, determine a polycyclic series and a polycyclic presentation for the Sylow 3-subgroup of G.

b) Now do the same calculation with GAP; compare with your results for a). The following commands might be useful:

```
gap> G := SymmetricGroup(9);;
gap> S := SylowSubgroup(G,3);;
gap> iso := IsomorphismPcGroup(S);;
gap> Spc := Image(iso);;
gap> mypcgs := List(Pcgs(Spc),x->PreImagesRepresentative(iso,x));;
```

SOLUTION: a) Note that |G| = 9!, so every Sylow 3-subgroup of G has order $3^4 = 81$. Note that

$$S = \langle (1,2,3), (4,5,6), (7,8,9), (1,4,7)(2,5,8)(3,6,9) \rangle \leq G$$

has order 81, hence S is a Sylow 3-subgroup of G. Write $g_1 = (1,4,7)(2,5,8)(3,6,9), g_2 = (1,2,3), g_3 = (4,5,6),$ and $g_4 = (7,8,9);$ note that each $|g_i| = 3$ and $g_j^{g_i} = g_j$ for $i,j \geq 2$. Also, $g_2^{g_1} = g_3, g_3^{g_1} = g_4,$ and $g_4^{g_1} = g_2.$ Thus, if we define $G_i = \langle g_i, \dots, g_4 \rangle$, then $G = G_1 \rhd G_2 \rhd G_3 \rhd G_4 \rhd = \{()\}$ is a polycyclic series and $X = [g_1, g_2, g_3, g_4]$ is a PCGS with R(X) = [3, 3, 3, 3]. The corresponding pc presentation is determined as

$$H = \langle x_1, x_2, x_3, x_4 \mid x_1^3 = x_2^3 = x_3^3 = x_4^3 = 1, \ x_2^{x_1} = x_3, x_3^{x_1} = x_4, x_4^{x_1} = x_2 \ x_i^{x_i} = x_j \text{ for } i, j \geq 2 \rangle.$$

b) (Just play around with GAP.)

Question 6 (tutorial/practical)

Let
$$G = \langle g_1, g_2, g_3 \mid g_1^4 = g_3, g_2^4 = g_3, g_3^4 = 1, g_2^{g_1} = g_2, g_3^{g_1} = g_3^2, g_3^{g_2} = g_3 \rangle$$
.

- a) By hand, show that this polycyclic presentation is not consistent.
- b) By hand, find a consistent polycyclic presentation of G.
- c) Construct G in GAP using the following commands:

```
gap> F:=FreeGroup(["g1","g2","g3"]);;
gap> AssignGeneratorVariables(F);
#I Assigned the global variables [ g1, g2, g3 ]
gap> R:=[g1^4/g3, g2^4/g3, g3^4, Comm(g1,g2), g3^g1/g3^2,g3^g2/g3];;
gap> G:=F/R;
```

Do IsomorphismPcGroup, StructureDescription, and PcGroupFpGroup. The last command will yield an error message; re-define G by using the consistent pc-presentation you have obtained in b).

SOLUTION: a) The exponents of this presentation are (4,4,4) and the normalised words in the generators are $\{g_1^{e_1}g_2^{e_2}g_3^{e_3}\mid 0\leq e_1,e_2,e_3\leq 3\}$. Consistency checks show that the presentation is not consistent. For example, the collections of $(g_3g_1)g_1^3$ and $g_3(g_1^4)$ yield

$$(g_3g_1)g_1^3 = g_1g_3^2g_1^3 = g_1g_3g_1g_3^2g_1^2 = g_1^2g_3^4g_1^2 = g_1^4 = g_3 \quad \text{and} \quad g_3(g_1^4) = g_3^2$$

in G. In particular, this shows that $g_3 = g_3^2$ in G and, thus, $g_3 = 1$ in G.

- b) Using that $g_3=1$, we have that $G=\langle g_1,g_2\mid g_1^4,\ g_2^4,\ g_2^{g_1}=g_2\rangle$; obviously, this presentation is consistent and describes a group isomorphic to $C_4\times C_4$.
- c) (Just play around with GAP.)

Question 7 (tutorial)

For a positive integer n let $G(n) = \langle a, b \mid a^n, b^n, [a, b] = a \rangle$.

- a) Prove by hand that if n = p is a prime, then $G(p) \cong C_n$.
- b) Does the same hold when n is not prime? (Maybe compute some examples with GAP.)

SOLUTION: a) Write G = G(p). Note that $G' = \langle [a,b] \rangle = \langle a \rangle$, which implies that $G/G' \cong C_p$ or $G/G' \cong 1$; since $a^p = 1$, this also implies that $G' \cong C_p$ or G' = 1. Thus, $|G| \in \{1, p, p^2\}$, so G is abelian. But this forces G' = 1 and thus a = 1. Now $G = \langle b | b^p \rangle \cong C_p$.

b) The group G(n) is not always cyclic; here are some non-cyclic examples.

```
gap> Gn:=function(n)
> local F,R;
> F := FreeGroup(2);
> R := [F.1^n, F.2^n, Comm(F.1, F.2)/F.1];
> return F/R;
gap> for i in [1..50] do
> G:=Gn(i);
> if not IsCyclic(G) then
     Display([i,StructureDescription(Image(IsomorphismPcGroup(G)))]);
> fi; od;
[ 6, "C3 x S3" ]
[ 12, "C3 x (C3 : C4)" ]
[ 18, "(C9 : C9) : C2" ]
[ 20, "C5 x (C5 : C4)" ]
[ 21, "C7 x (C7 : C3)" ]
[ 24, "C3 x (C3 : C8)" ]
[ 30, "C15 x S3" ]
[ 36, "(C9 : C9) : C4" ]
[ 40, "C5 x (C5 : C8)" ]
[ 42, "C7 x (S3 x (C7 : C3))" ]
[ 48, "C3 x (C3 : C16)"]
```

In general, G = G(n) satisfies $G' = \langle a \rangle \cong C_m$ for some $m \mid n$, and $G/G' \cong C_n$ acts via $a \mapsto a^2$ on G'. The latter requires that the order of a is odd. For example, if G = G(6), then $a^3 = 1$, so $G' = \langle a \rangle \cong C_3$

Question 8 (tutorial/practical)

Consider the dihedral group $G = \langle r, m \mid r^{2^{n-1}}, m^2, r^m = r^{2^{n-1}-1} \rangle$.

- a) Find the normal form of the element $w = rmr^2m^2r^3m^3$.
- b) Find a polycyclic series of G whose associated PCGS has relative orders $[2, \ldots, 2]$.
- c) Find a polycyclic presentation of G, associated to the PCGS you have found in b).
- d) Write a GAP function getDn (n) which constructs this group using the presentation you have found in c), via PcGroupFpGroup.

SOLUTION: a) First, we use that $m^i = m^{i \mod 2}$ for all i, and obtain $w = rmr^5m$. Second, we use that $rm = mr^{2^{n-1}-1}$ and get

$$w=rmr^5m=rm^2(r^{2^{n-1}-1})^5=r^{5(2^{n-1}-1)+1}=r^{-4}=r^{2^{n-1}-4};$$

note that $r^{2^{n-1}-1} = r^{-1}$.

- b) Note that $\langle r \rangle \subseteq G$ is a normal subgroup of index 2; thus it suffices to find a PCGS of $\langle r \rangle$ with relative orders 2. However, the latter group is cyclic of order 2^{n-1} , so we can choose $g_1 = m$, $g_2 = r$, $g_3 = r^2$, ..., $g_n = r^{2^{n-1}}$. If we define $G_i = \langle g_i, \ldots, g_n \rangle$, then each G_{i+1} has index 2 in G_i , which yields a polycyclic series $G_1 > \ldots > G_n > 1$ with sections of order 2. Thus, $X = [g_1, \ldots, g_n]$ is a PCGS with relative orders $R(X) = [2, \ldots, 2]$.
- c) We use the notation of b). Note that all the elements g_2, \ldots, g_n commute pairwise, and $g_i^2 = g_{i+1}$ for $i = 2, \ldots, n-1$. It remains to describe $g_i^{g_1}$ for $i = 2, \ldots, n$. Note that $r^m = r^{-1}$, hence

$$g_i^{g_1} = (r^{2^{i-1}})^m = r^{-2^{i-1}} = g_i^{-1}.$$

Observe also that $g_ig_ig_{i+1}\cdots g_n=g_i^2g_{i+1}\cdots g_n=g_{i+1}^2g_{i+2}\cdots g_n=\ldots=g_n^2=1$, hence $g_i^{g_1}=g_i^{-1}=g_ig_{i+1}\cdots g_n$

for every i = 2, ..., n. This yields the following polycyclic presentation for G:

$$\langle g_1, \dots, g_n \mid g_1^2 = 1,$$
 $g_i^2 = g_{i+1} \text{ for } i = 2, \dots, n-1,$
 $g_n^2 = 1,$
 $g_i^{g_j} = g_i \text{ for } 2 \le j < i < n$
 $g_i^{g_1} = g_i \cdots g_n \text{ for } i = 2, \dots, n \rangle.$

d) Here is some GAP code for that task:

```
getDn := function(n)
local gens, i, j, F, R;
      := FreeGroup(n);
  gens := GeneratorsOfGroup(F);
   R := [gens[1]^2];
   for i in [2..n-1] do Add(R,gens[i]^2/gens[i+1]); od;
  Add (R, gens[n]^2);
   for j in [2..n-1] do for i in [j+1..n] do
     Add(R,Comm(gens[i],gens[j]));
   od; od;
   for i in [2..n-1] do
     Add(R,Comm(gens[i],gens[1])/(Product(gens{[i+1..n]})));
  Add(R,Comm(gens[1],gens[n]));
  return PcGroupFpGroup(F/R);
StructureDescription(getDn(10));
"D1024"
```

Question 9 (tutorial)

By hand, compute a wpcp of the group

$$G = \langle a, b, c \mid a^9, b^9, c^9, [[b, a], a] = a^3, (aba)^9, (ba)^5 a = b, [a, c] \rangle;$$

you can use that G has order 3^3 .

SOLUTION: First compute $H = G/P_1(G)$ as outlined in the lectures; abelianising the relations (and taking everything modulo 3) yields the 1×3 matrix $M = (0\ 1\ 0)$. This tells us that $H = \langle aP_1(G), cP_1(G) \rangle$ has rank 2, thus $H \cong C_2^2$ and we can define H via the wpcp $H = \langle a, c \mid a^3, c^3 \rangle$. We define

$$\theta \colon G \to G/P_1(G), \quad (a,c) \mapsto (a,c).$$

The 3-covering of H is $H^* = \text{Pc}\langle a, c, x_1, x_2, x_3 \mid a^3 = x_1, \ c^3 = x_2, \ [c, a] = x_3, \ x_1^3 = x_2^3 = x_3^3 = 1\rangle$, and consistency checks show that this presentation is consistent. Now use θ to evalute the relations of G in H^* :

$$a^{9} = 1 \rightsquigarrow 1 = 1$$
 $b^{9} = 1 \rightsquigarrow 1 = 1$ $[[b, a], a] = a^{3} \rightsquigarrow 1 = x_{1}$ $(aba)^{9} = 1 \rightsquigarrow 1 = 1$ $(ba)^{5}a = b \rightsquigarrow x_{1}^{2} = 1$ $[a, c] = 1 \rightsquigarrow x_{3} = 1,$

which tells us that $G/P_2(G) \cong H^*/\langle x_1, x_3 \rangle = \operatorname{Pc}\langle a, c, x \mid a^3 = 1, \ c^3 = x, \ x^3 = 1 \rangle \cong C_3 \times C_9$. Since $|G| = 27 = |G/P_2(G)|$, we conclude that this is a wpcp for G.

Question 10 (tutorial)

By hand, show that the nucleus of

$$Q_8 = \text{Pc}\langle a, b, c \mid a^2 = c, b^2 = c, c^2 = 1, [b, a] = c \rangle$$

in Q_8^* is trivial, and deduce that Q_8 has no immediate 2-descendants.

SOLUTION: Write $G = Q_8$ and note that G has p-class k = 2. Let G^* be the 2-cover with multiplicator M and nucleus $P_k(G^*)$. We show that $P_k(G^*) = 1$ so that $UP_k(G^*) < M$ for every U < M, that is, M has no allowable subgroups, and therefore Q_8 has no immediate descendants.

To prove that $P_k(G^*)$ is trivial, we first write down a presentation for G^* . By considering $G/P_1(G)$ as before, we find that $G = \langle a, b \rangle$ has rank 2. Note that G is already given by a wpcp, and we can choose $a^2 = c$ as the definition of c. Thus, a (inconsistent) presentation for G^* is

$$Pc\langle a, b, c, x_1, \dots, x_5 \mid a^2 = c, b^2 = cx_1, c^2 = x_2, [b, a] = cx_3, [c, b] = x_4, [c, a] = x_5, x_1^2 = \dots = x_5^2 = 1 \rangle;$$

note that $M = \langle x_1, \dots, x_5 \rangle \leq G^*$ is the multiplicator. Moreover, $P_1(G^*)M/M \leq P_1(G) = \langle c \rangle$, which shows that $P_1(G^*)$ is contained in $\langle c, x_1, \dots, x_5 \rangle$. The latter is clearly abelian; if we show that c has order 2, then $P_1(G)^*$ is elementary abelian, and $P_k(G)^* = 1$ follows – which implies the claim.

To show that c has order 2, we need that $x_2=1$. We see this by doing a few consistency checks: $aa^2=ac$ and $a^2a=ca=acx_5$ implies that $x_5=1$; similarly, $bb^2=bcx_1$ and $b^2b=cx_1b=bcx_1x_4$ implies $x_4=1$. Lastly, $b^2a=cx_1a=acx_1x_5$ and $b(ba)=babcx_3=abcx_3bcx_3=ab^2c^2x_3^2x_4=acx_1x_2x_4$ force $x_2=1$; recall that $x_5=x_4=1$. Thus, c has order 2 in G^* , and the claim follows as described above.

Question 11 (practical)

Make sure the GAP package Anupq is installed and running; you might have to do ./configure and make in pkg/anupq before you can load it in gap with LoadPackage (``anupq''). Look up the manual and use ...

- a) ... the command Pq to compute a wpcp of G,
- b) ...the command PqPCover to compute the 2-covering group G^st of G
- c) ... the command PqDescendants to compute all immediate descendants of G,

for each group G in the questions above, and for

$$G = \langle x,y \mid [[y,x],x] = x^2, \ (xyx)^4, \ x^4, \ y^4, \ (yx)^3y = x \rangle \quad \text{ with } p = 2.$$

SOLUTION: Here is some GAP code for the last group:

```
gap> LoadPackage("anupq");
gap> F:=FreeGroup(["x","y"]);;
gap> AssignGeneratorVariables(F);
#I Assigned the global variables [ x, y ]
gap> R:=[Comm(Comm(y,x),x)/x^2, (x*y*x)^4, x^4, y^4, (y*x)^3*y/x];;
gap> G:=F/R;;
gap> Gwpcp:=Pq(G:Prime:=2);;
gap> PrintPcpPresentation(PcGroupToPcpGroup(Gwpcp));
q1^2 = q5
g2^2 = g4
g3^2 = g5
g4^2 = id
q5^2 = id
q6^2 = id
g2 ^g1 = g2 * g3
g3 - g1 = g3 * g5

g3 - g2 = g3 * g6
g4 ^g = g4 * g5 * g6
```

Question 12 (tutorial)

For $n \in \mathbb{N}$ consider the cyclic group $G = C_{p^n} = \operatorname{Pc}\langle r \mid r^{(p^n)} \rangle$; compute G^* and show that G has immediate descendants.

SOLUTION: First, we write down a wpcp of $G = C_{p^n}$, namely

$$G = Pc\langle r_1, \dots, r_n \mid r_1^p = r_2, \dots, r_{n-1}^p = r_n, r_n^p = 1 \rangle.$$

The first n-1 relations are definitions; the non-defining relations are $r_n^p = 1$ and the trivial commutator relations $r_i^{r_i} = r_j$ for i < j. Thus we obtain

$$G^* = \text{Pc}\langle r_1, \dots, r_n, b, b_{i,j} \ (i < j) \mid r_1^p = r_2, \dots, r_{n-1}^p = r_n, \ r_n^p = b, \ r_i^{r_i} = r_j b_{i,j} \ (i < j), \ \text{each } b_{i,j}^p = 1 \rangle.$$

Let's do a few consistency checks. First, if $1 \le i \le j < n$, then

$$r_j^p r_i = r_{j+1} r_i = r_i r_{j+1} b_{i,j+1}$$
 and $r_j^{p-1}(r_j r_i) = r_i r_j^p b_{i,j}^p = r_i r_{j+1}$,

which shows that $b_{i,k} = 1$ for all $1 \le i < k \le n$; this yields a consistent wpcp, namely

$$G^* = \operatorname{Pc}\langle r_1, \dots, r_n, b \mid r_1^p = r_2, \dots, r_{n-1}^p = r_n, r_n^p = b, b^p = 1 \rangle \cong C_{p^{n+1}}.$$

Note that G has p-class c=n since $P_i(G)=\langle r_{i+1}\rangle$ for all $i=1,\ldots,n-1$, and $P_n(G)=1$. Now the multiplicator of G is $M=\langle b\rangle\leq G^*$ and the nucleus of G is $P_c(G^*)=\langle b\rangle=M$, that is, $U=1\leq M$ is an allowable subgroup. This proves that G^* is indeed an immediate descendant of G.