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The questions on this sheet are to be discussed during the two tutorials and the practical sessions; some
questions are to be done “by hand”, others require to use GAP. In the following, p always denotes a prime
and n is a positive integer. This sheet also contains some comments on the solutions.

Question 1 (tutorial)
LetG be a nontrivial finite p-group acting on a finite set Ω. Recall that theG-orbit of ω ∈ Ω is defined as
the subset ωG = {ωg | g ∈ G} ⊆ Ω; its stabiliser is the subgroup StabG(ω) = {g ∈ G | ωg = ω} ≤ G.

a) Prove the Orbit-Stabiliser-Theorem, that is, show that |G|/|StabG(ω)| = |ωG|.
b) Denote by FixΩ(G) = {ω ∈ Ω | ∀g ∈ G : ωg = ω} the set of G-fixed points in Ω. Use a) to prove

that |Ω| ≡ |FixΩ(G)| mod p; in particular, if |Ω| is a p-power, then |FixΩ(G)| is divisible by p.

c) Use b) to prove that the center Z(G) = {h ∈ G | ∀g ∈ G : hg = h} of G is non-trivial.

d) Let H < G be a proper subgroup. Consider an action of H and use b) to prove that NG(H) > H .

SOLUTION: a) The map ψ : G → Ω, g 7→ ωg induces ψ̂ : StabG(ω)\G → ωG, StabG(ω)g → ωg.
Clearly, ψ̂ is well-defined: if StabG(ω)g = StabG(ω)h, then h = sg for some s ∈ StabG(ω), and
so ωh = ωsg = ωg. By construction, ψ̂ is surjective. If StabG(ω)g and StabG(ω)h are mapped
to ωg = ωh, then gh−1 ∈ StabG(ω), and so StabG(ω)g = StabG(ω)h. This proves that ψ̂ is a
bijection, and therefore |ωG| = |StabG(ω)\G|; clearly, |StabG(ω)\G| = |G|/|StabG(ω)|.

b) Note that ω ∈ FixΩ(G) if and only if ωG = {ω} is an orbit of size 1. Together with a), if ω ∈ Ω,
then either ω ∈ FixΩ(G) or ωG has size divisible by p. Since theG-orbits in Ω partition Ω, it follows
that |Ω| ≡ |FixΩ(G)| mod p.

c) Let G act on itself via conjugation. Then h ∈ G lies in FixG(G) if and only if hg = h for all g ∈ G,
that is, if and only if h ∈ Z(G); this shows that FixG(G) = Z(G). Clearly, 1 ∈ Z(G), hence
|Z(G)| > 1. Now b) implies that |Z(G)| ≡ |G| mod p, so p | |Z(G)|; together, it follows that Z(G)
is nontrivial.

d) The group H acts via left multiplication on the left cosets G/H = {gH | g ∈ G}. Since |G/H| =
|G|/|H| is a p-power, it follows from b) that FixG/H(H) is divisible by p, and 1H ∈ FixG/H(H)
yields |FixG/H(H)| ≥ p. Thus, there is g ∈ G \H with gH ∈ FixG/H(H), that is, hgH = gH for
all h ∈ H . This implies g−1hg ∈ H for all h ∈ H , that is, Hg = H and g ∈ NG(H) \H .

Question 2 (tutorial)
Let G be a finite p-group.

a) Prove that if N EG and G/N is cyclic, then G′ = [N,G]

b) Prove that if G/γ2(G) is cyclic, then γ2(G) = {1} and G is abelian.

c) Prove that Φ(G) = G′Gp; here Φ(G) is the Frattini subgroup of G (that is, the intersection of all
maximal subgroups of G) and Gp is the subgroup of G generated by all p-th powers.

SOLUTION: a) If G/N = 〈xN〉 for some x ∈ G, then every g ∈ G can be written as g = xin for
some n ∈ N and i ∈ Z. Thus the generators of γ2(G) are

[xin, xjm] = [xi, xjm]n[n, xjm]

= [xi,m]n[xi, xj ]mn[n,m][n, xj ]m

= [xi,m]n[n,m][n, xj ]m ∈ [N,G],



which proves that G′ ≤ [N,G]. Clearly, [N,G] ≤ G′, hence equality.

b) It follows from a) that γ2(G) = [G,G] = [G, γ2(G)] = γ3(G), which forces γ2(G) = 1.

c) Every maximal subgroup M ≤ G has index p and is normal in G, see also Q1d). Since G/M is
elementary abelian, it follows that G′Gp ≤ M ; thus G′Gp ≤ Φ(G). Let I be the intersection of
all maximal subgroups of G which contain G′Gp. Clearly, Φ(G) ≤ I . On the other hand, G/G′Gp

is elementary abelian, so Φ(G/G′Gp) = 1, which implies that I ≤ G′Gp, so Φ(G) ≤ G′Gp. The
claim follows.

Question 3 (practical)
Use the SmallGroups Library of GAP to obtain a list of all p-groups G of size at most max{p6, 1000}
with the property that G admits a subgroup A ≤ G of size p2 with CG(A) = A; note that A necessarily
contains the center of G. Do the following:

a) LetG andA ≤ G be as in the question and supposeG is nonabelian. Determine the orders ofNG(A)
and Z(G); compute a few examples to see what these orders might be.

b) For the groups in your list, compare their nilpotency class with their order; based on your observa-
tions, make a conjecture about the structure of the groups.

c) Challenge Question: Prove your conjecture (for example, use a) and induction on the group order).

SOLUTION: If G = A, then G = A = Z(A) = NG(A) is abelian of order p2 and nilpotency class 1.
Thus, with the GAP code below we only construct those groups with G > A, and stores them in a list
res: an entry in res has the form L=[G,[A1,..,An]] where each Ai < G is self-centralising:

gap> getGoodGroups := function(G,p)
> local c,A,cl;
> c := Center(G);
> if Size(c)>pˆ2 then return []; fi;
> cl := List(ConjugacyClassesSubgroups(G),Representative);
> cl := Filtered(cl,x->Size(x)=pˆ2 and IsSubgroup(x,c) and Centraliser(G,x)=x);
> return cl;
> end;;
gap> myprimes := Filtered(Primes,x->xˆ2<1000);;
gap> res := [];;
gap> for p in myprimes do
> for n in Filtered([3..6],i-> pˆi<1000) do
> Print("start order ",pˆn,"\n");
> for nr in [1..NumberSmallGroups(pˆn)] do
> G := SmallGroup(pˆn,nr);

grps := getGoodGroups(G,p);
> if Size(grps)>0 then Add(res,[G,grps]); fi;
> od; od; od;

a) For each pair G, A computed above, we inspect |G|, |Z(G)|, |NG(A)|, and test whether NG(A) is
abelian:

gap> List(res, x -> [ Size(x[1]), Size(Center(x[1])),
List(x[2], A -> [Size(Normaliser(x[1],A)),

IsAbelian(Normaliser(x[1],A))])]);
[output omitted]

The output indicates thatZ(G) is cyclic of order p andNG(A) is nonabelian of order p3; let us check this:

gap> ForAll(res, x -> ForAll(x[2],A->
Order(Center(x[1]))=PrimePGroup(x[1])
and Size(Normaliser(x[1],A))=PrimePGroup(x[1])ˆ3
and not IsAbelian(Normaliser(x[1],A))));

true



Now we prove this. SinceG is nonabelian,G > A, and soNG(A) > A by Q1d). Note thatNG(A)/CG(A)
embeds into Aut(A). Since A is either cyclic or elementary abelian of order p2, it follows that Aut(A) is
eitherCp(p−1) or GL2(p). In both cases, p divides |Aut(A)|, but p2 does not. SinceCG(A) = A has order
p2, it follows that NG(A) is nonabelian of order p3. Now clearly Z(G) ≤ A ≤ NG(A); if Z(G) = A,
then Z(NG(A)) = A has index p in NG(A), which is not possible since NG(A) is nonabelian; this
proves that Z(G) < A, hence Z(G) is cyclic of order p.

b) Running through the examples, we see that every such group has maximal class, that is, order pn and
nilpotency class n− 1; this can be seen, for example, with the command

List(res , x-> [ NilpotencyClassOfGroup(x[1]),
Collected(FactorsInt(Size(x[1])))[1][2]]);

Thus we conjecture: if a p-group G has a subgroup A ≤ G of order p2 with A = CG(A), then G has
maximal class (that is, nilpotency class n− 1).

c) Let G be a p-group with A ≤ G of order p2 and CG(A) = A. If G = A, then G has maximal class;
now suppose G > A; in particular, NG(A) > A. We know from b) that NG(A) is nonabelian of order
p3 and that Z = Z(G) is cyclic of order p. Now consider G = G/Z and N = NG(A)/Z. Note that
CG(N) ≤ CG(A/Z) ≤ NG(A)/Z = N , thus we can apply the induction hypothesis to G and N and
obtain that G has maximal class. Since G = G/Z(G), it follows that G has maximal class: consider the
upper central series of G.

Question 4 (practical)
There are several ways to store and re-construct a pc-group in GAP; consult the manual at

http://www.gap-system.org/Manuals/doc/ref/chap46.html

for the following tasks.

a) Read about and use the commands CodePcGroup and PcGroupCode.

b) Prove that, indeed, every polycyclic presentation P can be encoded by a positive integer c = c(P ).
Observe that if P has a generating set of cardinality n, then P has n power relations and n(n− 1)/2
commutator relations. One (theoretical) way of encoding P as a number is to make use of the
uniqueness of prime-power factorisations in Z.

c) Read about and use the command GapInputPcGroup.

SOLUTION: For a) and c), just play around with GAP. For b), recall that there are infinitely many primes,
say p0, p1, . . ., where pi denotes the i+ 1-th prime. Now suppose P has a generating set of cardinality n,
say {g1, . . . , gn}; there are n power relations and n(n− 1)/2 commutator relations; choose a canonical
order of these relations (for example, if i ∈ {1, . . . , n}, then the i-th relation is the power relation of
gi, etc.) Each right hand side of a relation is a normalised word in {g1, . . . , gn}, and therefore uniquely
determined by the corresponding list of exponents; to have a uniform description, let every list of expo-
nents be of length n, that is, we included zeroes. Thus, the whole presentation is uniquely determined by
the number e0 = n and n+n(n− 1/2) lists of length n, that is, by a list of m = 1 +n(n+n(n− 1)/2)
nonnegative integers, say (e0, e1, . . . , em). Associate with this list the positive integer c(P ) =

∏m
i=0 p

ei
i .

Given such a number c(P ), its prime power factorisation reveals the list (e0, e1, . . . , em): for example,
the exponent of the largest power of 2 dividing c(P ) is e0 = n, which determines the number of gen-
erators in the presentation. (This encoding is not efficient; see the description of CodePcGroup in the
GAP manual to see how this can be done more efficient.)

Question 5 (tutorial/practical)
Let G = Sym(9) be the symmetric group of rank 9.

a) By hand, determine a polycyclic series and a polycyclic presentation for the Sylow 3-subgroup of G.



b) Now do the same calculation with GAP; compare with your results for a). The following commands
might be useful:

gap> G := SymmetricGroup(9);;
gap> S := SylowSubgroup(G,3);;
gap> iso := IsomorphismPcGroup(S);;
gap> Spc := Image(iso);;
gap> mypcgs := List(Pcgs(Spc),x->PreImagesRepresentative(iso,x));;

SOLUTION: a) Note that |G| = 9!, so every Sylow 3-subgroup of G has order 34 = 81. Note that

S = 〈(1, 2, 3), (4, 5, 6), (7, 8, 9), (1, 4, 7)(2, 5, 8)(3, 6, 9)〉 ≤ G

has order 81, hence S is a Sylow 3-subgroup of G. Write g1 = (1, 4, 7)(2, 5, 8)(3, 6, 9), g2 = (1, 2, 3),
g3 = (4, 5, 6), and g4 = (7, 8, 9); note that each |gi| = 3 and ggij = gj for i, j ≥ 2. Also, gg12 = g3,
gg13 = g4, and gg14 = g2. Thus, if we define Gi = 〈gi, . . . , g4〉, then G = G1 BG2 BG3 BG4B = {()}
is a polycyclic series and X = [g1, g2, g3, g4] is a PCGS with R(X) = [3, 3, 3, 3]. The corresponding pc
presentation is determined as

H = 〈x1, x2, x3, x4 | x3
1 = x3

2 = x3
3 = x3

4 = 1, xx1
2 = x3, x

x1
3 = x4, x

x1
4 = x2 x

xi
j = xj for i, j ≥ 2〉.

b) (Just play around with GAP.)

Question 6 (tutorial/practical)
Let G = 〈g1, g2, g3 | g4

1 = g3, g
4
2 = g3, g

4
3 = 1, gg12 = g2, g

g1
3 = g2

3, g
g2
3 = g3〉.

a) By hand, show that this polycyclic presentation is not consistent.

b) By hand, find a consistent polycyclic presentation of G.

c) Construct G in GAP using the following commands:

gap> F:=FreeGroup(["g1","g2","g3"]);;
gap> AssignGeneratorVariables(F);
#I Assigned the global variables [ g1, g2, g3 ]
gap> R:=[g1ˆ4/g3, g2ˆ4/g3, g3ˆ4, Comm(g1,g2), g3ˆg1/g3ˆ2,g3ˆg2/g3];;
gap> G:=F/R;

Do IsomorphismPcGroup, StructureDescription, and PcGroupFpGroup. The last
command will yield an error message; re-define G by using the consistent pc-presentation you have
obtained in b).

SOLUTION: a) The exponents of this presentation are (4, 4, 4) and the normalised words in the gen-
erators are {ge11 g

e2
2 g

e3
3 | 0 ≤ e1, e2, e3 ≤ 3}. Consistency checks show that the presentation is not

consistent. For example, the collections of (g3g1)g3
1 and g3(g4

1) yield

(g3g1)g3
1 = g1g

2
3g

3
1 = g1g3g1g

2
3g

2
1 = g2

1g
4
3g

2
1 = g4

1 = g3 and g3(g4
1) = g2

3

in G. In particular, this shows that g3 = g2
3 in G and, thus, g3 = 1 in G.

b) Using that g3 = 1, we have that G = 〈g1, g2 | g4
1, g

4
2, g

g1
2 = g2〉; obviously, this presentation is

consistent and describes a group isomorphic to C4 × C4.

c) (Just play around with GAP.)

Question 7 (tutorial)
For a positive integer n let G(n) = 〈a, b | an, bn, [a, b] = a〉.
a) Prove by hand that if n = p is a prime, then G(p) ∼= Cp.

b) Does the same hold when n is not prime? (Maybe compute some examples with GAP.)



SOLUTION: a) Write G = G(p). Note that G′ = 〈[a, b]〉 = 〈a〉, which implies that G/G′ ∼= Cp or
G/G′ ∼= 1; since ap = 1, this also implies that G′ ∼= Cp or G′ = 1. Thus, |G| ∈ {1, p, p2}, so G is
abelian. But this forces G′ = 1 and thus a = 1. Now G = 〈b | bp〉 ∼= Cp.

b) The group G(n) is not always cyclic; here are some non-cyclic examples.

gap> Gn:=function(n)
> local F,R;
> F := FreeGroup(2);
> R := [F.1ˆn,F.2ˆn,Comm(F.1,F.2)/F.1];
> return F/R;
> end;
gap> for i in [1..50] do
> G:=Gn(i);
> if not IsCyclic(G) then
> Display([i,StructureDescription(Image(IsomorphismPcGroup(G)))]);
> fi; od;
[ 6, "C3 x S3" ]
[ 12, "C3 x (C3 : C4)" ]
[ 18, "(C9 : C9) : C2" ]
[ 20, "C5 x (C5 : C4)" ]
[ 21, "C7 x (C7 : C3)" ]
[ 24, "C3 x (C3 : C8)" ]
[ 30, "C15 x S3" ]
[ 36, "(C9 : C9) : C4" ]
[ 40, "C5 x (C5 : C8)" ]
[ 42, "C7 x (S3 x (C7 : C3))" ]
[ 48, "C3 x (C3 : C16)" ]

In general, G = G(n) satisfies G′ = 〈a〉 ∼= Cm for some m | n, and G/G′ ∼= Cn acts via a 7→ a2

on G′. The latter requires that the order of a is odd. For example, if G = G(6), then a3 = 1, so
G′ = 〈a〉 ∼= C3

Question 8 (tutorial/practical)
Consider the dihedral group G = 〈r,m | r2n−1

, m2, rm = r2n−1−1〉.
a) Find the normal form of the element w = rmr2m2r3m3.

b) Find a polycyclic series of G whose associated PCGS has relative orders [2, . . . , 2].

c) Find a polycyclic presentation of G, associated to the PCGS you have found in b).

d) Write a GAP function getDn(n)which constructs this group using the presentation you have found
in c), via PcGroupFpGroup.

SOLUTION: a) First, we use that mi = mi mod 2 for all i, and obtain w = rmr5m. Second, we use that
rm = mr2n−1−1 and get

w = rmr5m = rm2(r2n−1−1)5 = r5(2n−1−1)+1 = r−4 = r2n−1−4;

note that r2n−1−1 = r−1.

b) Note that 〈r〉EG is a normal subgroup of index 2; thus it suffices to find a PCGS of 〈r〉 with relative
orders 2. However, the latter group is cyclic of order 2n−1, so we can choose g1 = m, g2 = r, g3 = r2,
. . . , gn = r2n−1

. If we define Gi = 〈gi, . . . , gn〉, then each Gi+1 has index 2 in Gi, which yields a
polycyclic series G1 > . . . > Gn > 1 with sections of order 2. Thus, X = [g1, . . . , gn] is a PCGS with
relative orders R(X) = [2, . . . , 2].

c) We use the notation of b). Note that all the elements g2, . . . , gn commute pairwise, and g2
i = gi+i for

i = 2, . . . , n− 1. It remains to describe gg1i for i = 2, . . . , n. Note that rm = r−1, hence

gg1i = (r2i−1
)m = r−2i−1

= g−1
i .



Observe also that gigigi+1 · · · gn = g2
i gi+1 · · · gn = g2

i+1gi+2 · · · gn = . . . = g2
n = 1, hence

gg1i = g−1
i = gigi+1 · · · gn

for every i = 2, . . . , n. This yields the following polycyclic presentation for G:

〈 g1, . . . , gn | g2
1 = 1,

g2
i = gi+1 for i = 2, . . . , n− 1,

g2
n = 1,

g
gj
i = gi for 2 ≤ j < i < n

gg1i = gi · · · gn for i = 2, . . . , n 〉.

d) Here is some GAP code for that task:
getDn := function(n)
local gens, i, j, F, R;

F := FreeGroup(n);
gens := GeneratorsOfGroup(F);
R := [gens[1]ˆ2];
for i in [2..n-1] do Add(R,gens[i]ˆ2/gens[i+1]); od;
Add(R,gens[n]ˆ2);
for j in [2..n-1] do for i in [j+1..n] do

Add(R,Comm(gens[i],gens[j]));
od; od;
for i in [2..n-1] do

Add(R,Comm(gens[i],gens[1])/(Product(gens{[i+1..n]})));
od;
Add(R,Comm(gens[1],gens[n]));
return PcGroupFpGroup(F/R);

end;
StructureDescription(getDn(10));
"D1024"

Question 9 (tutorial)
By hand, compute a wpcp of the group

G = 〈a, b, c | a9, b9, c9, [[b, a], a] = a3, (aba)9, (ba)5a = b, [a, c]〉;

you can use that G has order 33.

SOLUTION: First computeH = G/P1(G) as outlined in the lectures; abelianising the relations (and tak-
ing everything modulo 3) yields the 1×3 matrixM = (0 1 0). This tells us thatH = 〈aP1(G), cP1(G)〉
has rank 2, thus H ∼= C2

2 and we can define H via the wpcp H = 〈a, c | a3, c3〉. We define

θ : G→ G/P1(G), (a, c) 7→ (a, c).

The 3-covering of H is H∗ = Pc〈a, c, x1, x2, x3 | a3 = x1, c
3 = x2, [c, a] = x3, x

3
1 = x3

2 = x3
3 = 1〉,

and consistency checks show that this presentation is consistent. Now use θ to evalute the relations of G
in H∗:

a9 = 1 1 = 1 b9 = 1 1 = 1

c9 = 1 1 = 1 [[b, a], a] = a3  1 = x1

(aba)9 = 1 1 = 1 (ba)5a = b x2
1 = 1

[a, c] = 1 x3 = 1,

which tells us that G/P2(G) ∼= H∗/〈x1, x3〉 = Pc〈a, c, x | a3 = 1, c3 = x, x3 = 1〉 ∼= C3×C9. Since
|G| = 27 = |G/P2(G)|, we conclude that this is a wpcp for G.



Question 10 (tutorial)
By hand, show that the nucleus of

Q8 = Pc〈a, b, c | a2 = c, b2 = c, c2 = 1, [b, a] = c〉

in Q∗8 is trivial, and deduce that Q8 has no immediate 2-descendants.

SOLUTION: Write G = Q8 and note that G has p-class k = 2. Let G∗ be the 2-cover with multiplicator
M and nucleus Pk(G∗). We show that Pk(G∗) = 1 so that UPk(G∗) < M for every U < M , that is, M
has no allowable subgroups, and therefore Q8 has no immediate descendants.

To prove that Pk(G∗) is trivial, we first write down a presentation for G∗. By considering G/P1(G)
as before, we find that G = 〈a, b〉 has rank 2. Note that G is already given by a wpcp, and we can choose
a2 = c as the definition of c. Thus, a (inconsistent) presentation for G∗ is

Pc〈a, b, c, x1, . . . , x5 | a2 = c, b2 = cx1, c
2 = x2, [b, a] = cx3, [c, b] = x4, [c, a] = x5, x

2
1 = . . . = x2

5 = 1〉;

note that M = 〈x1, . . . , x5〉 ≤ G∗ is the multiplicator. Moreover, P1(G∗)M/M ≤ P1(G) = 〈c〉, which
shows that P1(G∗) is contained in 〈c, x1, . . . , x5〉. The latter is clearly abelian; if we show that c has
order 2, then P1(G)∗ is elementary abelian, and Pk(G)∗ = 1 follows – which implies the claim.

To show that c has order 2, we need that x2 = 1. We see this by doing a few consistency checks:
aa2 = ac and a2a = ca = acx5 implies that x5 = 1; similarly, bb2 = bcx1 and b2b = cx1b = bcx1x4

implies x4 = 1. Lastly, b2a = cx1a = acx1x5 and b(ba) = babcx3 = abcx3bcx3 = ab2c2x2
3x4 =

acx1x2x4 force x2 = 1; recall that x5 = x4 = 1. Thus, c has order 2 in G∗, and the claim follows as
described above.

Question 11 (practical)
Make sure the GAP package Anupq is installed and running; you might have to do ./configure and
make in pkg/anupq before you can load it in gap with LoadPackage(‘‘anupq’’). Look up the
manual and use . . .

a) . . . the command Pq to compute a wpcp of G,

b) . . . the command PqPCover to compute the 2-covering group G∗ of G

c) . . . the command PqDescendants to compute all immediate descendants of G,

for each group G in the questions above, and for

G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉 with p = 2.

SOLUTION: Here is some GAP code for the last group:
gap> LoadPackage("anupq");
gap> F:=FreeGroup(["x","y"]);;
gap> AssignGeneratorVariables(F);
#I Assigned the global variables [ x, y ]
gap> R:=[Comm(Comm(y,x),x)/xˆ2, (x*y*x)ˆ4, xˆ4, yˆ4, (y*x)ˆ3*y/x];;
gap> G:=F/R;;
gap> Gwpcp:=Pq(G:Prime:=2);;
gap> PrintPcpPresentation(PcGroupToPcpGroup(Gwpcp));
g1ˆ2 = g5
g2ˆ2 = g4
g3ˆ2 = g5
g4ˆ2 = id
g5ˆ2 = id
g6ˆ2 = id
g2 ˆ g1 = g2 * g3
g3 ˆ g1 = g3 * g5
g3 ˆ g2 = g3 * g6
g4 ˆ g1 = g4 * g5 * g6



gap> Size(Gwpcp);
64
gap> Gstar:=PqPCover(Gwpcp:Prime:=2);;
gap> Size(Gstar);
512
gap> imdes:=PqDescendants(Gwpcp:Prime:=2);
[ <pc group of size 128 with 7 generators>,

<pc group of size 128 with 7 generators>,
<pc group of size 128 with 7 generators>,
<pc group of size 128 with 7 generators> ]

Question 12 (tutorial)
For n ∈ N consider the cyclic group G = Cpn = Pc〈r | r(pn)〉; compute G∗ and show that G has
immediate descendants.

SOLUTION: First, we write down a wpcp of G = Cpn , namely

G = Pc〈r1, . . . , rn | rp1 = r2, . . . , r
p
n−1 = rn, r

p
n = 1〉.

The first n− 1 relations are definitions; the non-defining relations are rpn = 1 and the trivial commutator
relations rrij = rj for i < j. Thus we obtain

G∗ = Pc〈r1, . . . , rn, b, bi,j (i < j) | rp1 = r2, . . . , r
p
n−1 = rn, r

p
n = b, rrij = rjbi,j (i < j), each bpi,j = 1〉.

Let’s do a few consistency checks. First, if 1 ≤ i ≤ j < n, then

rpj ri = rj+1ri = rirj+1bi,j+1 and rp−1
j (rjri) = rir

p
j b

p
i,j = rirj+1,

which shows that bi,k = 1 for all 1 ≤ i < k ≤ n; this yields a consistent wpcp, namely

G∗ = Pc〈r1, . . . , rn, b | rp1 = r2, . . . , r
p
n−1 = rn, r

p
n = b, bp = 1〉 ∼= Cpn+1 .

Note that G has p-class c = n since Pi(G) = 〈ri+1〉 for all i = 1, . . . , n− 1, and Pn(G) = 1. Now the
multiplicator of G is M = 〈b〉 ≤ G∗ and the nucleus of G is Pc(G

∗) = 〈b〉 = M , that is, U = 1 ≤M is
an allowable subgroup. This proves that G∗ is indeed an immediate descendant of G.


