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Abstract

The Lexical Access Problem consists of deter-
mining the intended sequence of words corre-
sponding to an input sequence of phonemes (ba-
sic speech sounds) that come from a low-level
phoneme recognizer. In this paper we present
an information-theoretic approach based on the
Minimum Message Length Criterion for solv-
ing the Lexical Access Problem. We model
sentences using phoneme realizations seen in
training, and word and part-of-speech informa-
tion obtained from text corpora. We show res-
ults on multiple-speaker, continuous, read speech
and discuss a heuristic using equivalence classes
of similar sounding words which speeds up the
recognition process without significant deteriora-
tion in recognition accuracy.

1 INTRODUCTION

The Lexical Access Problem consists of determining the
sequence of words that corresponds to an input sequence of
phonemes (basic speech sounds). A lexical access compo-
nent is a major part of a speech recognition system which
discovers the sentences (composed of words from a lexicon)
that correspond to speech signals.

If the sequences of phonemes we are given correspond pre-
cisely to words in the lexicon, we can imagine lexical access
as a table lookup process, i.e., we simply select the words
in the lexicon that have the same canonical phoneme se-
quences as the sequences in the input. However, in reality,
the process of matching input phoneme sequences to words
in a lexicon is more difficult, as these sequences may have
extra or missing phonemes, and some phonemes may have
been transcribed incorrectly. These insertions, deletions
and substitutions may be due to (1) mis-recognition, through
poor equipment, bad recording conditions, or poorly trained
phoneme models; or (2) mis-pronunciation,where a speaker
has said a word in a different way to the lexicon’s canon-
ical versions of that word. Mis-pronunciation is caused
primarily by different dialects and accents. For example,
the word “another” may be pronounced as several different
sequences of phonemes:

Lexicon entry1: another ax n ah dh axr
Data: er n ah dh axr

en ah dh axr
ax n ah dh er

Moreover, lexical access on entire sentences has the added
uncertainty of knowing neither the number of words in the
sentence nor the start and end points for each word in the
sentence. Determining the boundaries of words in contin-
uous speech is an extremely difficult task due to the above
mentioned insertions, deletions and substitutions, and be-
cause often there are no word boundaries in the speech sig-
nal as a result of co-articulation – the “slurring” of sounds
in continuous speech. The co-articulation effect can oc-
cur in any phonemes in an utterance, causing phonemes to
be affected by their surrounding phonemes, which in turn
leads to further mis-recognitions. In practical systems, lex-
ical access is performed by attempting different partitions
of the input phoneme string, and then looking for the opti-
mal fitting of postulated words over the different phoneme
subsequences resulting from these partitions (Myers and
Rabiner, 1981, Lee and Rabiner, 1989).

In this paper, we describe a lexical access method for speech
understanding based on the Minimum Message Length
(MML) principle (Wallace and Freeman,1987). This princi-
ple provides us with a uniform and incremental framework
for applying information from different sources, such as a
language model, lexicon and prosodic information, to the
lexical access problem.

In Section 2 we discuss related research. We then de-
scribe a method for evaluating a sentence in an information-
theoretic framework, and describe the search through the
set of possible sentences corresponding to a given input.
We conclude by discussing results obtained on a test set of
sentences.

2 RELATED RESEARCH

In our study, we have as input a string of phoneme symbols
and hypothesize the sentence that corresponds to it. These
symbols would be the best phoneme candidates from the

1Phonemes are described using ARPAbet symbols, which are
used in the TIMIT corpus (Fisher et al., 1986). ARPAbet is a type-
written version of the standard International Phonetic Alphabet.



Withdraw all phony accusations at once.
withdraw |all |phony |
W ih dh D R ao |ao L |F OW n Y |
W ix th D R aa |aa L |F OW nx Y |

accusations |at |once |
AE K Y uw Z EY SH ix n Z |- ae T |W AH N - S |
AE K Y ux Z EY SH en epi Z |q eh T |W AH N t S |

Figure 1: A typical TIMIT sentence aligned with canonical phonemes from words in the lexicon.

output of a phoneme recognizer that works directly on the
speech signal (Grayden and Scordilis, 1994). In most high-
performance speech recognition systems, the lexical access
operation is integrated with phoneme recognition and lan-
guage modeling in the form of a graph search through, in
effect, a massive Hidden Markov Model (HMM) for sen-
tences, e.g., (Gauvain et al., 1995, Jeanrenaud et al., 1995).
In our research, we isolate two parts of this process, name-
ly word hypothesis generation and language modeling, in
order to study their effect on the lexical access problem.

Efforts in lexical access have often followed the
hypothesize-and-test paradigm, where the waveform corre-
sponding to a word is partitioned and each segment labelled
according to relatively reliable information extracted from
the signal (such as whether the segment is voiced or un-
voiced). Word candidates that fit a given string of labels
undergo a more detailed and time-consuming analysis to de-
termine the candidate that best matches the waveform (Fis-
sore et al., 1988). We use a similar method in our system.
On a sentence level, the analysis of the sentence waveform
to postulate individual words is often guided by detected
word boundaries (Murveit et al., 1987). Our method would
be able to make more informed and quicker decisions if it
had such information regarding word boundaries, but it can
proceed in the absence of such information.

HMMs for sentences are normally built from smaller em-
bedded HMMs for words (Rabiner and Juang, 1993). We
use a mixture of an order two and order three Markov
chain for the language model, but our word model is based
on phonetic similarity, and can be generated directly from
the training data without algorithms such as the Forward-
backward Algorithm (Baum, 1972). In addition, unlike
other methods for encoding acoustic and language models,
e.g., (Béchet et al., 1994, Zue and Lamel, 1986), we take an
information-theoretic approach to representing data. Our
work is similar to recent work on handwriting recognition
(Bouchaffra et al., 1997). But we use

�
-grams to estimate

the parameters of the language model, while they use infor-
mative Dirichlet priors for estimating the same parameters.

3 DOMAIN OF STUDY

Our study was done on the TIMIT corpus (Fisher et al.,
1986), which is a collection of American-English read
sentences with correct time-aligned acoustic-phonetic and
orthographic (word-aligned) transcriptions. The data set
contains 3696 sentences spoken by 462 speakers from 8
different dialect divisions across the United States. Each
speaker says five phonetically-compact sentences and three
phonetically-diverse sentences to give a good coverage of

the phonemes in the language. The sentences were record-
ed using a high-quality, headset-mounted microphone in a
noise-isolated room, and speakers were instructed to read
prompts in a “natural” voice. This training set generated
18854 training words, with a total lexicon of 6236 distinct
words.

An example of a TIMIT sentence aligned with canonical
phonemes from words in the lexicon is given in Figure 1.
The first row shows the words of the utterance, the second
row the phonemes from the lexicon, and the third row the
actual phonemes spoken by one of the TIMIT speakers.
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However, it is not feasible to reliably calculate the condi-
tional probabilities
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1 � for all words and all
partial sentence lengths, therefore we estimate such proba-
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-grams over part-of-speech symbols and words can be
collected from training texts.

One difficulty encountered is that although TIMIT is ex-
cellent for providing many different examples of words in
many different contexts, it is poor training data for a lan-
guage model. This is due to the relatively small number of
different sentences in the training corpus; but more partic-
ularly because the sentences are designed to be diverse and
unusual. A language model trained on unusual sentences
is unlikely to be generally useful, and its usefulness is even
more questionable in the recognition of sentences from an
unusual test set, as is the case in TIMIT. These facts make
TIMIT a poor model for common English.

This problem was handled using TIMIT for the mappings
between words and phoneme strings, and using a set of
classics texts1 to extract word and part-of-speech

�
-grams

required for the language model (Section 4.2.1). This data
provided many more co-locations of words and part-of-
speech symbols and more varied ones than was possible
with the TIMIT data: approximately 17000 distinct part-of-
speech trigrams, compared with only 3000 from the TIMIT
data. A small training set would cause more zero-frequency�

-grams to be encountered during testing than a large train-
ing set, forcing us to use lower-context

�
-grams to estimate

the probabilities of the components of higher-context
�

-

1These publicly available texts include a variety of works such
as Virgil’s Aeneid and Emily Bronte’s Wuthering Heights.



grams. This zero-frequency effect should be reduced by
using a larger training set, but such a training set forces us
to store far more

�
-grams that may ever be encountered

in the input to the system. Finally, using different training
sets produces different probabilities for the

�
-grams; we

would hope that the chosen training set approximates the
“correct” probabilities for any sentence in general English.

4 METHOD
Our approach to the lexical selection problem is based on
the Minimum Message Length (MML) criterion (Wallace
and Freeman, 1987). According to this criterion we imag-
ine sending to a receiver the shortest possible message that
describes a sequence of input phonemes. Now, this message
may be composed of the given phoneme sequence or of a se-
quence of words that correspond to this phoneme sequence,
i.e., a sentence. We postulate that a message that encodes
a sequence of phonemes as a sentence will be shorter than
a message that encodes it directly. Further, we postulate
that the message describing the intended sentence will be
among the sentences of shortest message length (hopeful-
ly the shortest). Thus, in finding the sequence of words
that yields the shortest message given an input phoneme se-
quence we will have solved the lexical access problem. To
find this sequence of words, we perform a search through a
set of likely sentences, evaluating each sentence to find its
message length.

4.1 MINIMUM MESSAGE LENGTH ENCODING

We use a message of two parts to describe a sequence of
phonemes: (1) model description segment that describes
the word sequence that the string of phonemes represents;
and (2) object description segment that describes for each
phoneme in the input string the deviation from its corre-
sponding phoneme in the set of phonemes predicted by the
word sequence. For example, the difference between “dh ae
r” (a possible realization of “there”) and the input sequence
“dh ax r” is the substitution of “ax” for “ae”.

The message can be thought of as an explanation of the da-
ta. The first segment is a theory about the phonemes based
on the words postulated for the sentence, and the second a
description of the actual phonemes in terms of the model
phonemes in the postulated words. If the theory explains
the data well, then the data description will be short. If
the theory is poor, then the data description will be longer,
causing a longer message length. The “best” theory is the
one with the shortest total message length. A complicat-
ed theory segment will not necessarily cause a long total
message length, nor will a short theory automatically cause
a short message length. The final length of a message de-
pends both on the length of the theory and on how well the
theory describes the data.

The Minimum Message Length criterion is derived from
Bayes Theorem:�����

& � �
	 ����� ��� ��� � � � ���
where

�
is the hypothesis and � is the data.

An optimal code for an event � with probability
��� � �

has message length �
	 � � � 	�� log2
����� � � � . Hence, the

message length for a hypothesis given the data is:

�
	 ��� & � �
	�
	 ��� ������	 � � � � ���
which corresponds to the two parts of the message. The
minimization of �
	 ��� & � � is the criterion for model se-
lection.The relationship between MML and Bayesian poste-
rior maximization is discussed in (Oliver and Baxter, 1994).

4.2 EVALUATION OF A SENTENCE

The description of a sequence of phonemes is made up
of two main parts: (1) Language Model, which describes
the words; and (2) Phoneme Realization Difference, which
describes the phonemes corresponding to this model, with
an error function that describes the difference between the
phonemes in the language model and the actual phonemes.

4.2.1 Language Model

Here we have the task of encoding the actual words that
make up our sentence. Since a “sensible” sounding sentence
would be better than a sentence composed of unrelated
words, we require an encoding that will describe sensible
sentences in as few bits as possible. To express how sensible
a combination of words in a sentence is,we take into account
the syntactic role of the words in this combination as well
as the actual usage of these words. The former is done
by preferring frequent part-of-speech combinations, e.g.,
an article followed by a noun, to infrequent ones, e.g.,
an article followed by another article; and the latter by
preferring common word combinations.

Let ��� 	 �
1 � � 2 � . . . � �  be a sentence where word

���
has

been instantiated with part-of-speech
�������

(a word could
correspond to different part-of-speech symbols).
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We take the probability of sentence ��� as:
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At present, we use trigrams for parts-of-speech and bigrams
for words, yielding:��� �����
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To reduce the complexity of the problem we assume that
given the part-of-speech of word
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, and given word
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and that given the previous parts-of-speech
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1 and���������
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dent of the previous word
� ���
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Using these conditional independence assumptions, we get:��� �����
	

 �!�
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����� � � ����� � � � ��� 1 �
� ��� ������� � ��������� 1 � ��������� 2 ���

The part-of-speech trigrams are estimated from frequencies
of a training corpus according to the formula
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where � ��� � is the frequency of

�
seen in the training data.

A similar formula is used to estimate
����� � � ������� � �"��� 1 � .

The larger the number of different symbols used in an
�

-
gram and the larger the value for

�
, the less likely it is that

a given set of training data will have instances of every
�

-
gram. We handle the Zero Frequency Problem by using a
back-off procedure to a lower context

�
-gram. This back-

off is indicated by an escape code of low probability that is
added to the code space of the

�
-gram (Witten and Bell,

1991). For example, if we have no instances of a particular
part-of-speech trigram, we indicate this using the escape
code, and then use a bigram. For words, we back-off from
bigrams to unigrams (there is assumed to be one instance
of every word in the lexicon in the unigram set).

To illustrate the above process, consider the following sen-
tence fragment:

PoS symbols: article adjective adjective noun
Words: the quick brown fox

which is encoded as the product of the following probabil-
ities:
��������� � � ��� � ����� 	 art � ���

art � � ��� 1 � � ��� 2 � 1�����! #"�$&% � ����� � �' #"�$&% 	 adj � ���
adj � art � � ��� 1 �����(!)�*�+-, � �! #"�$�% � (!)�*
+-, 	 adj � ���
adj � adj � art ����/.'*10 � (!)�*
+-, � .'*10 	 noun � ���
noun � adj � adj �

A search through all possible sentences with this evaluation
scheme would tend to generate the most common possible
sentences, without regard to how closely they match our ac-
tual phoneme input. The second part of our model tempers
this effect by incorporating the actual phoneme data.

4.2.2 Phoneme Realization Difference

We have a set of words and a partition of the stream of
phonemes into the words in the set. We have described the
words; now we can make a hypothesis about the phonemes
that correspond to these words, and we can measure how
close reality is to our hypothesis.

Initially, we use the training set to generate for each word in
the lexicon a set of possible phoneme realizations togeth-
er with the frequency of each realization. We use an edit
distance algorithm (Sandoff and Kruskal, 1983) to work
out the realization of a lexicon word which is closest to
our segment of actual phonemes. This algorithm yields an
optimal alignment of the input phonemes with those in lex-
icon words using weights for insertions, substitutions and

1All sentences start with 24365 1 (end of string) and 24375 2 part-
of-speech tags, and an 24375 word.

deletions which were obtained from training data (Thomas
et al., forthcoming). For example, phonetically similar sub-
stitutions are given a low cost (e.g., vowels for vowels).

As stated above, in the framework of the MML principle,
the central idea is that the message sent to a receiver must
contain enough information so that the receiver can recon-
struct the input phonemes. We postulate that the shortest
message will be composed of the lexicon word whose re-
alization best matches the given input, the realization in
question, and a record of the operations required to trans-
form this realization into the actual input phonemes. Recall
that the language model is being used to send the lexicon
word. Hence, at this stage we only need to send the other
two components. For example, suppose we wish to send
the phoneme string “ ax n dx q er”, and we hypothesize
that it corresponds to the word “another”. The following
realizations of this word have been seen in training:

Frequency Word Phonemes
3 another1 ix n ah dh axr
3 another2 ax n ah dh er
2 another3 q ax n ah dh axr
1 another4 q ax n ah dh er
1 another5 q ax n ah dh ax
1 another6 ix nx ah dh uh
1 another7 er n ah dh axr

In this example, the edit distance algorithm chooses the
second realization, and it takes

� log2
Frequency of another28 � Frequency of another

� 	 � log2
�
3 9 12 �

bits to indicate to the receiver which phoneme realization
we are going to use. However, the input phonemes do not
correspond exactly to this realization, so we calculate an op-
timal alignment between our hypothesis phonemes and the
input phonemes. For instance, for the second realization,
the optimal alignment is

“another2” ax n ah dh – er
input ax n – dx q er

where “dh” and “dx” are aligned because they are phoneti-
cally similar (they have a low substitution cost). Since we
have already specified which of the phoneme realizations to
use, we have already encoded the hypothesis phonemes (the
top line). We must now send the actual phonemes (bottom
line), which are sent as a sequence of insertions, deletions
and substitutions. This is performed in two stages: (1)
sending insertions, and (2) sending the rest of the opera-
tions.

Sending insertions. Insertions are special because they
increase the number of operations in the alignment, and
therefore have to be specified using position indicators.

To send insertions, we first specify how many inser-
tions there are in the alignment, so that the length of
the part of the message that describes which phonemes
were inserted can be determined. This information takes
� log2

�������
insertions � � bits to transmit (in our example

only one insertion was performed, namely “q” between
“dx” and “er”).



The probability of having
�

insertions is estimated from
the training corpus as follows: 10% of the database of real-
izations seen in training is removed; each realization in this
subset is optimally aligned with the remaining realizations
for the same word in the database; and the number of ins-
ertions in the closest alignment is recorded. This process is
repeated by removing a different 10% of the database until
all phoneme realizations in the original database have been
used once.

Next, we need to specify what the inserted phonemes are
and the position of the insertions in the alignment. It takes
log2 C

�� 	 log2

�
!��� � � � ! � ! bits to encode the positions of�

insertions in an alignment of length
�

. In our example,
the alignment length is 6 (the number of phonemes in the
chosen lexical realization (5) plus the number of insertions
(1)), yielding log2 6 bits. We complete the insertion portion
of the message by adding to it information about the actual
insertion performed. However, since we have already allo-
cated space in the alignment for the insertion, it has turned
into a substitution, which can be handled in the next step of
the message sending process (it is now a “–” in the phoneme
realization of the lexicon word, which is being substituted
by an input phoneme).

Sending the rest of the operations. This is performed from
left to right in the alignment. Since we know the top line of
the optimal alignment, the bottom line is conveyed by send-
ing a list of conditional probabilities of each input phone-
me given the corresponding intended phoneme, which are
computed from the training corpus, e.g., for “another2” the
probabilities are

���
ax � ax � , ��� n � n � , ��� � � ah � , ��� dx � dh � ,���

q � � � and
���

er � er � . These probabilities correspond to
two exact matches, a deletion, a substitution, an insertion
and an exact match.

Exact matches are common and thus take only a few bits to
encode. In this manner, an input that closely matches one
of the phoneme realizations will be encoded in fewer bits
than one that is very different.

4.2.3 Summary of Sentence Evaluation

In summary, given a sentence ��� 	 �
1 � � 2 � . . . � �  where

a word
� �

has part-of-speech
����� �

, and a partition of the
input phoneme sequence into � segments ��� � 1 � . . . ����� �  ,
we are trying to minimize the following:
� �
	 � ��� ������ � ����� 	8 ���
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� � �
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�������
(estimated from the language

model), and � �
	 � ��� ������ � ��� � � � �"� � is the number of bits
required to send �� � � given

���
(estimated from the phone-

me realization difference):2
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� log2
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���� "!��#5�#�* '(#&) because it is a computational function call.
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� �
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log2 Clength of alignment
number of insertions� �
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	F

phonemes in alignment

� log2
���

input phoneme � intended phoneme ���

The argument B that yields � �
	 � � � ������ � �� � � � �"� � is the
realization B of lexicon word

� �
which yields the shortest

encoding for the phoneme segment �� � � .
4.3 SEARCH THROUGH POSSIBLE SENTENCES

We have described a way to evaluate the quality of a se-
quence of word hypotheses that describe our input phone-
mes. But how do we search through the possible space of
words and word boundaries?

Evaluating all possible sets of words with all possible sets
of word boundaries would be computationally prohibitive.
Thus, we follow an “optimistic selection” principle to elim-
inate partial sentences that are deemed unpromising during
processing. This principle is implemented as follows. Each
time a word is added to the current candidate partial senten-
ces, those that take many more bits to encode than the best
partial sentence at this stage of processing are eliminated
from further consideration. This is because the partial sen-
tences which take more bits to encode are unlikely to over-
come this disadvantage and proceed to become the overall
best when the whole sentence is eventually generated.

In our implementation we use a modified version of the
Level-building algorithm, which proposes word boundaries
and expands all partial sentence hypotheses a word at a time
(Myers and Rabiner, 1981). At the end of each “level”
(new word) we prune the partial sentence hypotheses using
a beam threshold (Lowerre and Reddy, 1980). This allows
us to have a strict control over the total number of partial
hypotheses during the search. The phoneme slots that are
generated by the algorithm are filled with suitably sized
words, so that a slot with a few phonemes is not filled with
a long word and a slot with many phonemes is not filled
with a short word. The resulting words are then assigned
different part-of-speech tags, and evaluated with each tag
as described in Section 4.2.

To evaluate a particular word, optimal alignments are car-
ried out between its phoneme realizations and the input
phonemes. This process is quick due to the small number
of phonemes in most words. However, the evaluation of all
the words in the lexicon (comprising thousands of words)
for a given phoneme string segment is a time consuming
process. To reduce the number of word candidates to be
evaluated at each point, we generate a short-list of likely



Table 1: Breakdown of the message length for two sentences from the TIMIT test set.

Best Sentence Correct Sentence
word PoS bits word phDiff total word PoS bits word phDiff total

bits bits bits bits

the dt 4.22 0.94 3.18 8.34 the dt 4.22 0.94 3.18 8.34
bank nnp 5.45 8.74 18.86 33.05 –
low nnp 2.76 13.40 4.80 20.96 bungalow nn 1.84 14.83 17.88 34.55
was vbd 3.72 4.75 3.37 11.84 was vbn 4.10 3.16 3.37 10.63
pleasantly rb 2.76 11.12 25.17 39.05 pleasantly rb 2.88 11.12 25.17 39.17
situated vbn 2.98 2.32 35.83 41.13 situated vbn 2.98 2.32 35.83 41.13
near in 1.73 4.55 6.25 12.53 near in 1.73 4.55 6.25 12.53
the dt 1.41 0.26 2.87 4.54 the dt 1.41 0.26 2.87 4.54
shore nn 1.37 9.17 0.83 11.37 shore nn 1.37 9.17 0.83 11.37

26.40 55.25 101.16 182.81 20.53 46.35 95.38 162.26

Table 2: Phoneme realizations seen in training, for best and correct words of the first example of Table 1.

Correct the bungalow was pleasantly situated near the shore
sentence dh ax b ah ng g ax l ow w ax z p l eh z en t l iy s ih ch uw ey t ix d n ih axr dh ax sh ao r
phoneme dh ix w ix z n ih r dh ix
realizations dh iy w ah z n ih er dh iy
Input dh ax b ah ng g el ow w ah z p l ah z en l ix s ix ch ax-h w ix dx ih d n ih dh ix sh ao r
Phonemes
Best bank low
sentence b ae ng k l ow
realizations b ay ng k

possibilities. This is achieved by first encoding the phone-
me realizations of words obtained from training as broad
sound group sequences (e.g., the input sequence “dh ax r”,
which is a realization of “there”, may be encoded as “stop
vowel glide”) and classifying each of these sequences into
Equivalence Classes, such that each class contains phone-
me realizations that are similar to each other, but each class
as a whole is different from every other. The number and
composition of these classes are optimized using the MML
principle (Thomas et al., 1996), yielding 38 classes with
the current TIMIT data. During the search, a new string of
input phonemes is placed in the “best” class according to a
similarity measure which compares the sequences of broad
sound groups corresponding to the input phonemes to those
in each class. The words that correspond to the phoneme
realizations in the chosen class become the short-listed can-
didates to be evaluated as described in Section 4.2. A
disadvantage of using the short list is that the input phone-
mes may be put in a class that does not contain an instance
of the correct word, and therefore the correct word will not
be evaluated. Thus, the use of the short-list increases speed
of recognition at the cost of losing some accuracy.

5 RESULTS AND DISCUSSION

Table 1 shows the evaluation of a sample sentence from
TIMIT’s test set. We show the best sentence hypothesis af-
ter search, and also the sentence with the correct words and
word boundaries for comparison. The table also shows the
breakdown of the message into the number of bits required
to encode the part-of-speech

�
-grams, the word

�
-grams

given the part-of-speech symbol and the phoneme differ-
ences. A relatively large part-of-speech cost indicates an

�
-gram of low probability, but that cost may be offset by

a relatively small cost to encode the word given that part-
of-speech symbol or the phonemes given our chosen word.
When the correct sentence requires fewer bits than the sen-
tence found through search (as is the case with the example
in Table 1), this indicates that the search was unable to
find the optimal (correct) solution – the correct hypothesis
was either not suggested or pruned out early. The converse
suggests that the sentence actually found was a better hy-
pothesis (a closer match between the phonemes, or a more
likely word or phoneme sequence according to the language
model) than the correct sentence. This could be due to the
correct sentence being unusual and badly mismatched to
data from training. An unusual sentence needs to have a
good match between input phonemes and phoneme realiza-
tions of lexicon words in order to compensate for the low
probability given by the language model. Table 2 shows
the sample sentence of Table 1 in further detail, showing
the input phoneme sequence, and some of the phoneme
realizations of words for both the sentence found through
search and the correct sentence. This example illustrates
that it can be very difficult to distinguish between words that
are phonetically similar given possible errors in the input;
“bungalow” matches the input phonemes better than “bank
low”. However, the search did not suggest “bungalow” as
a possible word candidate as it didn’t belong to the shortlist
generated for the input phonemes.

The left-hand side of Table 3 shows the results of the recog-
nition of words in the standard core TIMIT test set, which
contains 192 different sentences from 24 different speak-
ers. None of the sentences were previously seen in training
and none of the speakers were used in the training set.



Table 3: Average word error rates per sentence for differing levels of distortion, using word encoding.

Distortion Average Part-of-Speech Word Encoding
threshold number and Word Encoding

of words
average average average average average average average average
number number number word number number number word
of ins of dels of subs error rate of ins of dels of subs error rate

10 8.26 0.30 0.29 1.44 24.53 0.55 0.31 1.73 31.29
20 8.21 0.34 0.26 1.54 26.15 0.59 0.26 1.85 32.85
30 8.19 0.38 0.26 1.68 28.46 0.70 0.26 1.96 35.57
40 8.16 0.41 0.26 1.72 29.25 0.73 0.25 2.00 36.59
50 8.12 0.43 0.25 1.71 29.60 0.76 0.25 2.00 37.03
60 8.15 0.44 0.25 1.71 29.41 0.76 0.24 1.99 36.70
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Figure 2: Error rate for bits/phoneme of 192 sentences.

The table shows the average number of words in the in-
put sentences, and the average number of word insertions,
deletions and non-exact substitutions in the alignment of
the words in each of these sentences and the corresponding
correct sentence. This is followed by the average word
error rate, which is the sum of word insertions, deletions
and non-exact substitutions divided by the true number of
words. We further categorize these results according to the
Distortion Rate. This is an estimate of how closely an input
sequence of phonemes matches the sequence of phonemes
for the corresponding correct sentence. It is calculated by
first extracting the phoneme sequences that make up the
correct words in the input sentence according to the correct
word boundaries, and then finding the optimal alignment
of each of the phoneme realizations of each correct word
with the input phoneme sequence for that word. The num-
ber of insertions, deletions and substitutions in the closest
alignment of a phoneme realization and an input phoneme
sequence is recorded for each of the words in the sentence.
The distortion rate for a sentence is the ratio of the number
of non-exact phoneme matches (insertions, deletions and
non-exact substitutions) to the total number of phonemes in
the input phoneme sequence. For example, the distortion
rate for the sample sentence in Table 2 is calculated as 11
non-exact operations (2 from “bungalow”, 3 from “pleas-
antly”, 5 from “situated” and 1 from “near”) divided by 34

phonemes in the input sequence, giving a distortion rate of
32.35%. In Table 3, each line shows the average word error
rate for all sentences which have a lower distortion rate than
the value in the first column (e.g., for all sentences with less
than 30% distortion, the word error rate was 28.46%).

In order to determine the effect that part-of-speech symbols
have on the results, we analyzed the same set of sentences
using a language model that contains word bigrams only
(right-hand side of Table 3). The language model was
calculated using the formula

��� �����
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Comparing the left and right sides of Table 3 we can see
the improvement in the recognition accuracy when part-of-
speech information is incorporated in the language model.

Figure 2 is a plot of the bits per phoneme versus the word
error rate for each of the 192 sentences. We can see that
as the number of bits per phoneme increases so too does
the error rate. This would allow a recognizer to assess the
likely accuracy of a found sentence – a high number of bits
per phoneme would suggest a high error rate.

At present, the average word error rate is 29%. This recog-
nition accuracy could be improved by careful weighting of
the probabilities so that infrequent words still have a chance
of being accepted if their phoneme realization is close to the
input phonemes, or by using a more advanced method for
modeling co-articulation between words than the one cur-
rently used (not described here due to space limitations).
Other features of the signal such as phoneme duration can
be also included as a further source of information.

Finally, the input to our system is a set of hand-marked
phonemes, with no indication of the confidence of the mark-
ings. In a realistic system, the input would be a lattice of
phoneme candidates and their probabilities. Such infor-
mation could be factored into the encoding of a sentence;
for example, if we have a high degree of confidence in a
particular phoneme, then this might reduce the probability
of non-matching substitutions involving this phoneme in
the optimal alignment. Receiving as input a phoneme lat-
tice would also allow us to compare our results with those
obtained by other systems, e.g., (Rabiner and Juang, 1993).



6 CONCLUSION

We have shown the utility of Minimum Message Length
Encoding for modelling spoken sentences. As with most
corpus-based learning schemes, the quality of the training
data is important. Given the diverse speakers and sentences
involved, the recognition results are encouraging.

Part-of-speech data generally improved the number of bits
required to send phoneme information. More importantly,
it produced a shorter encoding of word hypotheses that were
sensible in English, resulting in fewer word errors.

There was some concern over the lack of training data for
the language model. This problem was reduced by using a
larger body of classic texts, which supplied most common
word

�
-grams, and more importantly, yielded a set of part-

of-speech
�

-grams used commonly in English.

The use of short-lists of word candidates was shown to
improve substantially the recognition speed of the system
by quickly finding likely candidates to investigate more
carefully, with minimal effect on recognition accuracy.

We are considering performance enhancements to the
search, and also the evaluation of sentences, which is a
major bottleneck of the system. Specifically, we are in-
vestigating a method for exploiting the optimistic selection
principle during the evaluation of single words as well as
partial sentence hypotheses. This allows a number of word
evaluations to be carried out in lockstep, and allows the
elimination of unlikely word candidates during evaluation.
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