
CHAPTER 2

Calculating in hyperbolic space

We will need to manipulate objects in 2 and 3-dimensional hyperbolic
space. This chapter provides a very brief introduction to the tools that will
be needed in the future, the objects that will be studied (lines, triangles,
tetrahedra, metric properties), and examples of calculations that will appear.

We will use terminology and calculations from standard elementary
Riemannian geometry. The reader who is not as comfortable with Rie-
mannian geometry might find it helpful to follow along in the first few
chapters of an introductory Riemannian geometry text, such as do Carmo
[do Carmo, 1992, Chapter 1]. We will not provide all the details to all
the statements given. The idea is that we want to begin calculating on
knot complements and other 3-manifolds immediately, without getting lost
early in details. Thus our aim is to provide just enough information here
to start calculating in future chapters. Many more details and results can
be found in other books, including full books on hyperbolic geometry. An-
derson gives a very nice introduction to 2-dimensional hyperbolic geom-
etry [Anderson, 2005]. More details in all dimensions appear in Rat-
cliffe [Ratcliffe, 2006]. The book by Marden includes more on groups
of isometries of hyperbolic space, including many consequences to infinite
volume hyperbolic 3-manifolds [Marden, 2007]. An introduction to hyper-
bolic geometry that includes a discussion of its visualization is also given by
Thurston [Thurston, 1997].

2.1. Hyperbolic geometry in dimension two

We start with hyperbolic 2-space, H2.
There are several models of hyperbolic space. Here, we will work with

the upper half plane model. In this model, hyperbolic 2-space H2 is defined
to be the set of points in the upper half plane:

H2 = {x+ i y ∈ C | y > 0},

equipped with the metric whose first fundamental form is given by

ds2 =
dx2 + dy2

y2
.
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12 2. CALCULATING IN HYPERBOLIC SPACE

That is, start with the usual Euclidean metric on R2, whose first fundamental
form is dx2 + dy2. To obtain the metric on the hyperbolic plane, rescale the
usual Euclidean metric by 1/y, where y is height in the plane.

Note that a point in H2 can either be thought of as a complex number
x+ i y ∈ C or as a point (x, y) ∈ R2. Both perspectives are useful: R2 leads
more easily to coordinates and calculations, and C works seamlessly with
our definition of isometries below. Changing perspectives does not affect
our results, so we will regularly switch between the two without comment.

Our first task is to explore the meaning of the hyperbolic metric, and
how it affects measurements.

2.1.1. Hyperbolic 2-space and Riemannian geometry. In this
subsection, we briefly review how the metric and the space H2 described
above fits into a more general picture of Riemannian geometry, and the
tools we will use from that subject to calculate. If you are not yet familiar
with Riemannian geometry, feel free to skim this section, noting equations
(2.1), (2.2), and (2.3). This section was primarily written for a student who
has seen some Riemannian geometry, but may have difficulty applying ab-
stract concepts of that field to the specific metric of hyperbolic geometry.
In my experience, a few key equations will be enough to get started.

In Riemannian geometry, a Riemannian metric on a manifold M is de-
fined to be a correspondence associating to each point p ∈ M an inner
product 〈·, ·〉p on the tangent space TpM . This inner product gives us a way
of measuring the lengths of vectors tangent to M at p, as well as computing
areas, angles between curves, etc. Recall that the first fundamental form is
defined by 〈v, v〉p for v ∈ TpM .

In our case, the Riemannian manifold we consider is H2, and we have
natural local coordinates on the manifold given by x+i y ∈ C, or (x, y) ∈ R2,
for y > 0. We may use these coordinates to describe the Riemannian metric.
In particular, at the point (x, y) ∈ H2, a tangent vector v ∈ T(x,y)H2 can also

be described by coordinates v = vx
∂
∂x + vy

∂
∂y , and we write it as a vector

v =

(
vx
vy

)
.

Then the metric on H2 is given by a matrix

〈v, w〉 = (vx, vy)

(
1/y2 0

0 1/y2

)(
wx
wy

)
.

One of the simplest geometric measurements we can compute using the
definition of the metric is the arc length of a curve. If γ(t) is a (differentiable)
curve in H2, for t ∈ [a, b], then we obtain a tangent vector γ′(t) at each point
of γ(t) in H2, called the velocity vector. Recall that the arc length of γ for
t ∈ [a, b] is defined to be

|γ| =
∫ b

a

√
〈γ′(s), γ′(s)〉 ds.
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In the case of H2, we will have coordinates γ(t) = (γx(t), γy(t)), and γ′(t) =
(γ′x(t), γ′y(t))

T . Thus the arc length will be

(2.1) |γ| =
∫ b

a

√
(γ′x(s))2 + (γ′y(s))

2
1

γy(s)
ds.

We will use this formula to compute examples in the next subsection.
Another piece of geometric information we can compute with a metric is

the volume of a region, which we typically call “area” in two dimensions. In
the most general setting, if R ⊂M is contained in a coordinate neighborhood
of the Riemannian manifold M , with coordinates (x1, . . . , xn) and metric
given by the matrix gij in these coordinates, then we can compute the volume
of R to be

(2.2) vol(R) =

∫
R
d vol =

∫
R

√
det(gij) dx1 . . . dxn.

The form d vol is the volume form. Thus in our setting, with M = H2 and
metric as above,

(2.3) area(R) =

∫
R

1

y2
dx dy.

2.1.2. Computing arc lengths and areas. Now we will use the for-
mulas obtained above to make calculations, to better understand the hyper-
bolic space H2.

Example 2.1. Fix a height h > 0, and consider first a horizontal line
segment between points (0, h) = i h and (1, h) = 1 + i h in H2. We may
parametrize the line segment by γ(t) = (t, h), for t ∈ [0, 1]. Note that
because h is fixed, the arc length of γ is just its usual Euclidean length
rescaled by 1/h. That is, the arc length of γ is |γ| = 1/h. Thus when
h = 1, the length of γ is 1. When h becomes large, the arc length becomes
very small. In other words, points with the same height become very close
together as their heights increase. On the other hand, as h approaches
0, the length of γ approaches infinity. In fact, points near the real line
R = {(x, 0) ∈ R2} can be very far apart.

Example 2.2. Consider now a vertical line between points (x, a) and
(x, b), for x, a, b fixed in R, 0 < a < b. Such a line can be parametrized by
ζ(t) = (x, t) for t ∈ [a, b]. So ζ ′(t) = (0, 1). Thus its arc length is given by

|ζ| =
∫ b

a

√
0 + 1

1

s
ds = log

(
b

a

)
.

If we set b = 1 and let a approach 0, note that the arc length of ζ gets
arbitrarily large, approaching infinity. Similarly setting a = 1 and letting b
approach infinity gives arbitrarily long lengths.

The real line R = {(x, 0) ∈ R2} along with the point at infinity ∞
play an important role in the geometry of H2, although these points are not
contained in H2.
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Figure 2.1. The region of example example 2.4

Definition 2.3. We call R∪{∞} the boundary at infinity for H2. Note
it is homeomorphic to a circle S1, and hence is sometimes called the circle
at infinity . It is denoted by S1

∞, ∂H2, and sometimes ∂∞H2.

Areas behave quite differently in hyperbolic space than in Euclidean
space.

Example 2.4. In this example, we will compute the area of the region
R of H2 bounded by the lines x = 0, x = 1, and y = 1. The region is shown
in figure 2.1.

Using equation equation (2.3), we see that the area of the region is given
by

area(R) =

∫
R

1

y2
dx dy

=

∫ 1

0

∫ ∞
1

1

y2
dy dx

=

∫ 1

0
1 dx = 1

This example shows that regions with infinite Euclidean area may have
finite hyperbolic area.

2.1.3. Geodesics and isometries. Recall that a geodesic between
points p and q is a length minimizing curve between those points.

Theorem 2.5. The geodesics in H2 consist of vertical straight lines and
semi-circles with center on the real line. �

Note these are exactly the circles and lines in the upper half plane that
meet S1

∞ at right angles. See figure 2.2.
The proof of theorem 2.5 is left as an exercise in Riemannian geometry.

The simplest way to prove the theorem uses coordinates and a bit more
Riemannian geometry than we have reviewed so far. The interested reader
can work through the details. The fact that these are the geodesics of H2 is
all we will need going forward.

An isometry between Riemannian manifolds M and N is a diffeomor-
phism f : M → N such that

〈v, w〉p = 〈dfp(v), dfp(w)〉f(p) for all p ∈M,v,w ∈ TpM.
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Figure 2.2. Some geodesics and points in H2.

Isometries preserve lengths, angles, and other geometric information.
We are most interested in orientation preserving isometries from hyperbolic
space to itself, i.e. diffeomorphisms φ : H2 → H2 that preserve the metric
and orientation on H2. All such isometries form a group acting on H2. We
will assume the following theorem.

Theorem 2.6. The full group of isometries of H2 is generated by inver-
sions in geodesics in H2.

The group of orientation preserving isometries of H2 is the group of
linear fractional transformations

z 7→ az + b

cz + d
,

where a, b, c, d ∈ R, and ad− bc > 0. �

By taking the quotient of a, b, c, and d by
√
ad− bc, the linear frac-

tional transformation is equivalent to an element of PSL(2,R), the group of
projective 2 by 2 matrices with real coefficients and determinant 1. That is,
we may view A ∈ PSL(2,R) as given by a matrix

A = ±
(
a b
c d

)
,

where a, b, c, d ∈ R and ad− bc = 1. The sign in front reflects the fact that
it is projective; it is well-defined only up to multiplication by ±Id. On the
other hand, A acts on H2 via

Az =
az + b

cz + d
.

Note the action is unaffected when we multiply a, b, c, and d by the same
real constant, thus it is necessary to take projective matrices.

Recall that linear fractional transformations take circles and lines to
circles and lines, so they map geodesics to geodesics. For more information
on these transformations, see for example [Ahlfors, 1978, pp 76–89].

The following lemma is very useful.

Lemma 2.7. Given any three distinct points z1, z2, and z3 in ∂H2, there
exists an orientation preserving isometry of H2 taking z3 to ∞, and taking
{z1, z2} to {0, 1}. It follows that there exists an isometry of H2 taking any
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three distinct points on ∂H2 to any other three distinct points, with appro-
priate orientation.

Proof. This is a standard fact of linear fractional transformations. We
need to take some care to preserve orientation. If necessary, switch z1 and
z2 so that the sequence z1, z2, z3 runs in clockwise order around ∂H2.

If none of z1, z2, and z3 are infinity, then a linear fractional transforma-
tion sending z1 to 1, z2 to 0, and z3 to ∞ is given by

z 7→ z − z2

z − z3

z1 − z3

z1 − z2
.

Because the sequence z1, z2, z3 is in clockwise order, the determinant

(z1 − z3)(z1 − z2)(z2 − z3)

of this transformation is positive. Thus it gives the desired orientation pre-
serving isometry.

If z1 =∞, z2 =∞, or z3 =∞, then the isometry is given by

z 7→ z − z2

z − z3
, z 7→ z1 − z3

z − z3
, z 7→ z − z2

z1 − z2

respectively. One can check that again, because we ensured the sequence
z1, z2, z3 is in clockwise order, the determinant of each transformation is
positive. �

Many metric calculations in H2 can be simplified greatly by applying
an appropriate isometry, including the use of lemma 2.7. For example, the
following lemma is easily proved using an isometry.

Lemma 2.8. Two distinct geodesics `1 and `2 in H2 either

(1) intersect in a single point in the interior of H2,
(2) intersect in a single point on the boundary ∂H2, or
(3) are completely disjoint in H2 ∪ ∂H2.

In the third case, there is a unique geodesic `3 that is perpendicular to both
`1 and `2.

Proof. We may apply an isometry g of H2, taking endpoints of `1 to 0
and ∞, and taking one of the endpoints of `2 to 1. The image of the second
endpoint of `2 under g is then some point w in ∂H2 = R ∪ {∞}. Note that
g(`1) is the vertical line from 0 to ∞ in H2. The point w determines the
image of g(`2).

If w = 0 or if w = ∞, then we are in the second case, and g(`2) is a
semi-circle with endpoints 0 and 1, or a vertical line from 1 to ∞.

If w ∈ R is less than zero, then we are in the first case. The two endpoints
of g(`2) are separated by the line g(`1), so the geodesics must meet.

Finally, if w ∈ R is greater than zero, then we are in the third case, and
the geodesics are disjoint. One way to see that there is a unique geodesic
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perpendicular to both is to apply another isometry h, taking
√
w to 0 and

−
√
w to ∞. That is, let h : H2 → H2 be given by

h(z) =
z −
√
w

z +
√
w
.

Note that h(0) = −1, h(∞) = 1, so h(g(`1)) is the geodesic that is a semi-
circle with endpoints at −1 and 1. Also,

h(1) =
1−
√
w

1 +
√
w

and h(w) =
w −
√
w

w +
√
w

= −1−
√
w

1 +
√
w
.

So h(g(`2)) is the geodesic that is a semi-circle with endpoints h(1) and
−h(1). Thus images of both geodesics are semi-circles with center at 0. The
geodesic from 0 to∞ is therefore perpendicular to both, and it is the unique
such geodesic. Set `3 to be the image of the line from 0 to ∞ under the
composition g−1 ◦ h−1. �

In the previous proof, knowing which isometry h to apply in the last
step required a calculation. However, once that isometry was applied, the
existence and uniqueness of the geodesic `3 was clear.

Computing lengths of geodesics is also simplified by applying isometries.

Example 2.9. Length computation.
Suppose you wish to compute the length of a segment, or the distance

between two points in H2. One strategy for computing is to apply an isom-
etry taking the two points to a simpler picture. For example, in figure 2.2,
we may find an isometry taking the geodesic containing points a and b to
the vertical geodesic from 0 to ∞. Then under this isometry, the points a
and b map to points of the form (0, t1) and (0, t2).

In example 2.2, we already computed the length of the vertical segment
between (0, t1) and (0, t2); its length is log(t1/t2) (assuming here that t2 < t1,
otherwise take the negative of the log). This gives the distance between a
and b.

2.1.4. Triangles and horocycles.

Definition 2.10. An ideal triangle in H2 is a triangle with three geo-
desic edges, with all three vertices on ∂H2.

There is an isometry of H2 taking any ideal triangle to the ideal triangle
with vertices 0, 1, and ∞, by lemma 2.7. Hence all ideal triangles in H2 are
isometric. In fact, we will see that they all have finite area. Because they
are isometric, any ideal triangle has the same area.

Definition 2.11. A horocycle at an ideal point p ∈ ∂H2 is defined as
a curve perpendicular to all geodesics through p. When p is a point on
R ⊂ ∂H2 = R ∪ {∞}, a horocycle is a Euclidean circle tangent to p, as
in figure 2.3. When p is the point ∞, a horocycle at p is a line parallel
to R. That is, in this case the horocycle consists of points of the form
{(x, y) | y = c} where c > 0 is constant.
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Figure 2.3. A horocycle

Definition 2.12. A horoball is the region of H2 interior to a horocycle.

Note a horoball will either be a Euclidean disk tangent to R ⊂ ∂H2 or a
region consisting of points of the form {(x, y) | y > c}.

In example 2.4, we computed the area of a portion of a horoball, and
we observed it was finite. Using this, we can show that the area of an ideal
triangle is finite.

Lemma 2.13. The area of an ideal triangle is finite.

Proof. Given any ideal triangle in H2, we may apply an isometry taking
its vertices to 0, 1, and ∞. Let T denote this ideal triangle. Consider the
intersection of T with the horoball about infinity of height 1. This is the
region R of example 2.4.

Note that the isometries

z 7→ z − 1

z
and z 7→ −1

z − 1

take the horoball about infinity to horoballs of Euclidean diameter 1 centered
at 1 and at 0, respectively, and takes T to T . Thus the intersections of T
with these horoballs also have areas 1.

Finally, note that the complement of these horoballs in T is a compact
region in H2, hence it has finite area. Thus the area of T is 3 plus the area
of the compact region outside of the three horoballs. �

From the lemma, we see that the area of an ideal triangle is larger than
3. In fact, the exercises lead you through a calculation showing that the
area of an ideal triangle is π.

2.2. Hyperbolic geometry in dimension three

Hyperbolic 3-space is defined as follows:

H3 = {(x+ iy, t) ∈ C× R | t > 0},

under the metric with first fundamental form

(2.4) ds2 =
dx2 + dy2 + dt2

t2
.

We have the following theorems, which we will assume. Their proofs can
be found in texts on hyperbolic geometry.
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Figure 2.4. Ideal tetrahedron

Theorem 2.14. The geodesics in H3 consist of vertical lines and semi-
circles orthogonal to the boundary ∂H3 = C ∪ {∞}. Totally geodesic planes
are vertical planes and hemispheres centered on C. �

Theorem 2.15. The full group of isometries of H3 is generated by in-
versions in geodesic planes.

The group of orientation preserving isometries of H3 is PSL(2,C). Its
action on the boundary ∂H3 = C∪ {∞} is the usual action of PSL(2,C) on
C ∪ {∞}, via Möbius transformation. �

That is, an element A ∈ PSL(2,C) can be represented by a matrix, up
to multiplication by ±Id. If

A = ±
(
a b
c d

)
∈ PSL(2,C), then A(z) =

az + b

cz + d
, for z ∈ ∂H3.

We have not described how to extend the action of an element of PSL(2,C)
to the interior of hyperbolic 3-space. There is a unique way to do so; Marden
works through it carefully in [Marden, 2007, Chapter 1]. However, we will
not need the formula, and it is complicated, so we omit it here.

Theorem 2.16. Apart from the identity, any element of PSL(2,C) is
exactly one of three types:

(1) elliptic, which has two fixed points on ∂H3 and rotates about the
axis between them in H3, fixing the axis pointwise,

(2) parabolic, which has a single fixed point on ∂H3,
(3) loxodromic, which has two fixed points on ∂H3, and translates and

rotates about the axis between them.

Definition 2.17. An ideal tetrahedron is a tetrahedron in H3 with all
four vertices on ∂H3.

Since there exists a Möbius transformation taking any three points to
1, 0, and ∞ in C ∪ {∞}, we may assume our tetrahedron has vertices at
0, 1 and ∞, and at some point z ∈ C \ {0, 1}. So any ideal tetrahedron is
parameterized by z. See figure 2.4.
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Figure 2.5. Horosphere

The value of z has geometric meaning. For example, the argument of z is
the dihedral angle between the vertical planes through 0, 1,∞ and through
0, z,∞.

The modulus of z also has geometric meaning. Consider the hyperbolic
geodesic through z ∈ C that meets the vertical line from 0 to ∞ in a right
angle at a point p1. Consider also the geodesic through 1 ∈ C that meets
the vertical line from 0 to ∞ at a right angle at point p2. The hyperbolic
distance between p1 and p2 is exactly | ln |z|| (exercise). Hence

ln z = (signed dist between altitudes) + i(dihedral angle).

Definition 2.18. A horosphere about ∞ in ∂H3 is a plane parallel to
C, consisting of points {(x+ iy, c) ∈ C× R} where c > 0 is constant. Note
for any c > 0, it is perpendicular to all geodesics through ∞. When we
apply an isometry that takes ∞ to some p ∈ C, a horosphere is taken to a
Euclidean sphere tangent to p. By definition, this is a horosphere about p.
A horoball is the region interior to a horosphere.

The metric on H3 induces a metric on a horosphere. This induced metric
will always be Euclidean. When we intersect horospheres about 0, 1,∞ and
z with an ideal tetrahedron through those points, we obtain four Euclidean
triangles. These four triangles are similar (exercise).

2.3. Exercises

Exercise 2.1. Prove theorem 2.5, that is that vertical lines and semi-
circles are geodesics, without using isometries of H2. One way to solve this
problem is to use Riemannian geometry, such as calculations in coordinates
on H2. Break the problem into two steps.

(1) Prove that vertical lines L(t) = (x, t), t > 0, are geodesics in H2.
(2) Prove that semi-circles C(t) = (x+ r cos(t), r sin(t)), t ∈ (0, π) are

geodesics in H2.

Exercise 2.2. Prove that an inversion of H2 in a hyperbolic geodesic is
an isometry of H2. This is an orientation reversing isometry.

Exercise 2.3. Prove that any isometry of H2 is the product of inversions
in hyperbolic geodesics.
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(1, 0)(−1, 0)

θ

Figure 2.6. 2/3-ideal triangle.

Exercise 2.4. Work through the classification of isometries of H2 as
elliptic, parabolic, or hyperbolic. (E.g. Thurston [Thurston, 1979, page
67]).

Exercise 2.5. Lemma 2.7 shows there exists an orientation preserving
isometry of H2 taking any three points of ∂H2 to any other three points,
provided we are careful with orientation. Prove a similar statement for H3:
Given distinct b, c and d in C ∪ {∞}, prove there exists an orientation
preserving isometry of H3 taking b to 1, c to 0, and d to ∞. Write it down
as a matrix in PSL(2,C). Note in H3 we no longer have to worry about
orientation.

Exercise 2.6. Prove an analogue of lemma 2.8 in H3: Two distinct
geodesics `1 and `2 either intersect in a single point in the interior of H3,
intersect in a single point on ∂H3, or are completely disjoint in H3 ∪ ∂H3.
In the third case, show there exists a unique geodesic that is perpendicular
to both `1 and `2.

Exercise 2.7. (Cross ratios.) Given a ∈ C, the image of a under the
isometry of exercise 2.5 is said to be the cross ratio of a, b, c, d, and is denoted
λ(a, b; c, d).

Let x be the point on the geodesic in H3 between c and d such that the
geodesic from a to x is perpendicular to that between c and d. Let y be
the point on the geodesic between c and d such that the geodesic from b to
y is perpendicular to that between c and d. Prove the hyperbolic distance
between x and y is equal to | ln |λ(a, b; c, d)||.

Exercise 2.8. (Areas of ideal triangles.) Prove that the area of an ideal
hyperbolic triangle is π. (E.g. use calculus.)

Exercise 2.9. (Areas of 2/3-ideal triangles.)

(a) A 2/3-ideal triangle is a triangle with two vertices on the boundary at
infinity ∂H2, and the third in the interior of H2 such that the interior
angle at the third vertex is θ. Show that all 2/3-ideal triangles of angle
θ are congruent to the triangle shown in figure 2.6.

(b) Define a function A : (0, π) → R by: A(θ) is the area of the 2/3-ideal
triangle with interior angle π−θ. Show that A(θ1 +θ2) = A(θ1)+A(θ2),
when this is defined. (Hint: Figure 2.7 may be useful.)
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Figure 2.7. Areas of triangles.
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Figure 2.8.

(c) It follows that A is Q-linear. Since A is continuous, it must be R-linear.
Show A(θ) = θ.

Exercise 2.10. (Areas of general triangles.) Using the previous two
problems, show that the area of a triangle with interior angles α, β, and γ
is equal to π − α− β − γ. Note an ideal vertex has interior angle 0.

Exercise 2.11. (Ideal tetrahedra and dihedral angles.) The dihedral
angles on a tetrahedron are labeled A, B, C, D, E, and F in figure 2.8.
Using linear algebra, prove that opposite dihedral angles agree. That is,
show A = E, B = F , and C = D.

Exercise 2.12. (Ideal tetrahedra and cross ratios.) Orient an ideal
tetrahedron with vertices a, b, c, d. When we apply a Möbius transforma-
tion taking b, c, d to 1, 0,∞, respectively, the point a goes to the cross
ratio λ(a, b; c, d). Label the edge from c to d by the complex number
λ = λ(a, b; c, d). We may do this for each edge of the tetrahedron, labeling
by a different cross ratio. (Notice you need to keep track of orientation.)
Find all labels on the edges of the tetrahedra in terms of λ.

Exercise 2.13. (Volume of a region in a horoball) Let R be the region
in H3 given by A × [1,∞), where A is some parallelogram contained in
the horosphere about ∞ of height 1, i.e. A ⊂ {(x + i y, 1)}. Prove that
vol(R) = area(A)/2.


