
CHAPTER 7

Twist knots and augmented links

In this chapter, we study a class of hyperbolic knots that have some of
the simplest geometry, namely twist knots. This class includes the figure-8
knot, the 52 knot, and the 61 knot that we have encountered so far. We also
generalize to give examples of hyperbolic knots and links whose geometry is
relatively explicit. This will equip us with many examples.

7.1. Twist knots and Dehn fillings

We first define twist knots and show that they have a geometric limit
that is a link complement.

Definition 7.1. A twist region of a diagram of a knot is a maximal
portion of the knot diagram where two strands twist around each other, as
in figure 7.1.

More precisely, recall that we may consider a diagram of a knot as a 4–
valent graph with over–under crossing information at each vertex. A twist
region is a string of bigon regions in the diagram graph, arranged end–to–end
at their vertices, that is maximal in the sense that there are no additional
bigon regions meeting the vertices on either end. A single crossing adjacent
to no bigons is also a twist region. We will further restrict so that all
twist regions are alternating; if not there is an obvious simplification of the
diagram removing crossings from the twist region.

Figure 7.1. A twist region of a diagram

The condition that twist regions be maximal ensures that there is only
one way to put together exactly two twist regions in a diagram.

Definition 7.2. The twist knot J(2, n) is the knot with a diagram
consisting of exactly two twist regions, one of which contains two crossings,
and the other contains n ∈ Z crossings. The direction of crossing depends
on the sign of n.

Twist knots J(2, 2), J(2, 3), J(2, 4), and J(2, 5) are shown in figure 7.2.
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102 7. TWIST KNOTS AND AUGMENTED LINKS

Figure 7.2. Twist knots J(2, 2) (the figure–8 knot), J(2, 3)
(the 52 knot), J(2, 4) (the 61 or Stevedore knot), and J(2, 5)

Figure 7.3. Two diagrams of the Whitehead link

Definition 7.3. The Whitehead link is the link shown in figure 7.3.
Note the two links shown are isotopic.

We will show in proposition 7.6 that the complement of the Whitehead
link is hyperbolic.

Proposition 7.4. The complement of the twist knot J(2, n) is obtained
by Dehn filling the hyperbolic manifold isometric to the complement of the
Whitehead link.

Proof. The proof uses topological properties of the sphere S3 and the
solid torus. Recall first that the sphere S3 is the union of two solid tori
whose cores are linked exactly once, but each core alone is unknotted.

The diagram of the Whitehead link on the left of figure 7.3 has a com-
ponent at the bottom that is unknotted and does not cross itself. The
complement of this component in S3 is a solid torus. Note then that the
other component is a knot in a solid torus, as shown on the left of figure 7.4.

Now we apply a homeomorphism to the solid torus, which we view as
S1×D2. There is a homeomorphism given by slicing along a disk {x}×D2

of the solid torus, rotating one full time, then gluing back together. This
homeomorphism is shown in the center of figure 7.4.

The homeomorphism replaces the original link in the solid torus by a link
with two additional crossings. By applying the homeomorphism repeatedly,
we see that the complement of the Whitehead link is homeomorphic to the
complement of the link with any even number of crossings encircled by the
unknotted component. In particular, it is homeomorphic to the complement
of the link J(2, 2k) ∪ U , where U is a single unknotted component. By the
Mostow–Prasad rigidity theorem (theorem 6.1), these link complements have
isometric hyperbolic structures.

To obtain the knot J(2, 2k), attach a solid torus to S3 − (J(2, 2k) ∪U),
filling in U in a trivial way to give S3 − J(2, 2k). Thus J(2, 2k) is obtained
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Figure 7.4. The Whitehead link complement is homeomor-
phic to a knot in a solid torus, which we cut, twist, and reglue.
The result is homeomorphic to the complement of J(2, 2)∪U

pull ' ∼= ∼=

Figure 7.5. A sequence of homeomorphisms of the White-
head link complement

from a manifold isometric to the complement of the Whitehead link by Dehn
filling.

So far our proof only works for J(2, n) with n even. Now we consider the
case of the knot J(2, 2k + 1), with odd second component. We may isotope
the Whitehead link, starting with the diagram on the left of figure 7.3, to
reverse the two crossings at the top, and insert a crossing encircled by the
unknotted component at the bottom. This is shown in figure 7.5, left.

Following that figure, we may then reflect the diagram in the plane of
projection, reversing all the crossings. This is a homeomorphism of the
knot complement, hence an isometry. Now just as in the even case, we may
insert any even number of crossings into the two strands encircled by the
unknotted component. To obtain J(2, 2k+1), simply Dehn fill the unknotted
component in the obvious way. �

Corollary 7.5. The complement of the Whitehead link is a geometric
limit of S3 − J(2, n).

Proof. Because they are obtained by Dehn filling the complement of
the Whitehead link, all but finitely many link complements S3 − J(2, n) lie
in any given neighborhood of infinity in the Dehn surgery space for a cusp
of the complement of the Whitehead link. Theorem 6.24 implies that the
Whitehead link is therefore a geometric limit of these manifolds. �
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Figure 7.6. Shown is the boundary of an ideal octahedron
(one vertex at infinity). Pairing faces as shown gives the
complement of the Whitehead link

In order to study the geometry of twist knots, we study the geometry of
the geometric limit, the Whitehead link complement.

Proposition 7.6. The complete hyperbolic structure on the complement
of the Whitehead link is obtained by gluing faces of a regular ideal octahedron,
with the face pairings as shown in figure 7.6.

A regular ideal octahedron is the ideal octahedron in H3 with all dihedral
angles equal to π/2.

Proof. The fact that the Whitehead link complement is obtained by
face pairings of an ideal octahedron can be readily seen by applying the
methods of chapter 1 to the diagram of the Whitehead link on the right
of figure 7.3. After collapsing bigons, we obtain two ideal polyhedra with
four triangular faces and one quadrilateral face. Glue the quadrilaterals to
obtain an ideal octahedron. The form is shown in figure 7.6. We leave the
details for exercise 7.2.

In a regular ideal octahedron, all dihedral angles are π/2, so horospheres
intersect a neighborhood of each ideal vertex in a square. We need to check
that the face pairings give a hyperbolic structure in this case. Note first
that every point in the interior of an octahedron and in the interior of a
face of the octahedron has a neighborhood isometric to a ball in H3. We
need to show that each point on an edge also has such a neighborhood, and
then lemma 3.6 will imply that the gluing is a manifold with a (possibly
incomplete) hyperbolic structure.

Note first that each of the edges (there are three) is glued four times.
Thus the total angle around each edge will be 4π/2 = 2π. This is not quite
enough to show that each point on an edge has a neighborhood isometric
to a ball in H3, because composing the gluings around an edge may intro-
duce nontrivial translation or scale. To show that this does not happen,
consider each end of an ideal edge within a cusp. Any horosphere intersects
a neighborhood of an ideal vertex of the regular ideal octahedron in a Eu-
clidean square. Under the developing map, squares can only patch together
in squares to give a tiling of the universal cover of each cusp by Euclidean
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squares. There are four squares meeting around a vertex in the cusp corre-
sponding to one of our ideal edges. Note that the squares cannot be scaled
or sheared. It follows that edges glue up without shearing singularities, and
the structure is hyperbolic.

To show that the structure is complete, we use theorem 4.10: the struc-
ture is complete if and only if for each cusp, the induced structure on the
boundary is Euclidean. But as already noted, each cusp is tiled by Euclidean
squares corresponding to intersections of a horosphere with an ideal vertex
of the regular ideal octahedron. Under the developing map, squares can
only patch together to give a Euclidean structure: there will be no rotation
or scale. Thus the hyperbolic structure must be complete. �

In chapter 9, we will obtain a formula to calculate the volume of a regular
hyperbolic ideal octahedron. For now, we state that the volume is a constant
voct = 3.66....

Corollary 7.7. The volume of any hyperbolic twist knot is universally
bounded

vol(J(2, n)) ≤ voct,

and as n→∞, vol(J(2, n))→ voct.

Proof. The Dehn filling bound follows immediately from Jørgensen’s
theorem, theorem 6.25. The convergence follows from theorem 6.24. �

We have not yet discussed which twist knots are hyperbolic. We have
seen that the figure-8 knot is hyperbolic, and similar methods can be used
to show each of the knots in figure 7.2 are hyperbolic. More generally, we
will see in chapter 11 (or by other methods in chapter 10) that all twist
knots J(2, n) with n ≥ 2 or n ≤ −3 are hyperbolic. When n = 1 or −2, the
standard diagram of J(2, n) can be easily reduced to a diagram with only a
single twist region, and when n = −1 its diagram can be easily reduced to
that of the unknot. All other twist knots are hyperbolic.

7.2. Double twist knots and the Borromean rings

The results of the previous section generalize immediately to knots and
links with exactly two twist regions, but with any number of crossings in
either twist region.

Definition 7.8. The double twist knot or link J(k, `) is the knot or link
with a diagram consisting of exactly two twist regions, one of which contains
k crossings, and the other contains ` crossings, for k, ` ∈ Z. See figure 7.7.
Note that J(k, `) is a knot if and only if at least one of k, ` is even; otherwise
it is a link with two components.

Just as for twist knots, double twist knots are obtained by Dehn filling
a simple link complement.
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k

`

Figure 7.7. A double twist knot or link has two twist re-
gions, one with k crossings and one with ` crossings

Figure 7.8. Complements of J(k, `) are obtained by Dehn
filling one of these four links. The link on the left is known
as the Borromean rings

Proposition 7.9. The complement of the link J(k, `) is obtained by
Dehn filling the complement of one of the four links shown in figure 7.8,
depending on the parity of k and `.

Proof. The proof is nearly identical to that of proposition 7.4, except
now it is done in two steps, since there are two unknotted components.
Apply a homeomorphism of a solid torus as in figure 7.5 two times. The
details are left to the reader. �

The link on the left of figure 7.8 is equivalent to a link more famously
known as the Borromean rings; its more common diagram is shown in fig-
ure 7.13. We will call the other links of figure 7.8 the Borromean twisted
sisters, and say the links are in the Borromean family . In fact, the middle
two links are equivalent.

Proposition 7.10. The complements of the Borromean rings and the
Borromean twisted sisters all admit complete hyperbolic structures obtained
by gluing two regular ideal octahedra.

Proof. Because the Borromean rings has a diagram that is alternating,
its complement can be split into ideal polyhedra using the methods of chap-
ter 1. However, we present a new way to decompose links of the Borromean
family that we will generalize below.

View the diagrams of figure 7.8 in three dimensions. The two link com-
ponents in each diagram that will be Dehn filled to produce J(k, `) should
be viewed as lying perpendicular to the plane of the paper, which is the
plane of projection S2 ⊂ S3. The other link component(s) should be viewed
as lying in the plane of projection except at crossings; when the component
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Figure 7.9. Shaded 2–punctured disks
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Figure 7.10. Left: slice 2–punctured disks up the middle
(obtain parallel 2–punctured disks, shown here pulled apart).
Middle left: Untwist single crossings. Middle right: Cut
along plane of projection. Right: collapse remnants of the
link to ideal vertices

crosses itself it dips briefly above or below the plane of projection, then
returns to the plane.

The components lying perpendicular to the plane of projection are un-
knotted, and each bounds a 2–punctured disk, shown as shaded in figure 7.9.

As the first step of the decomposition, slice each of these disks up the
middle, replacing a single 2–punctured disk with two parallel copies of the
2–punctured disk. This move is shown on the left of figure 7.10.

Now if a 2–punctured disk is adjacent to a crossing in the plane of
projection, the next step is to rotate that 2–punctured disk 180◦ to unwind
the crossing, as in the middle left of figure 7.10. Note this rotation pulls
the diagram along with it on one side, but the rotation is only performed
on the 2–punctured disk adjacent to the crossing, not on the parallel 2–
punctured disk. After this step, all crossings in the plane of projection have
been removed.

Next, cut along the plane of projection, splitting the complement into
two identical pieces as in the middle right of figure 7.10.

Finally, for each piece, collapse remnants of the link to ideal vertices, as
on the right of figure 7.10. We claim the result in that figure is topologically
an octahedron. To see this, note it has two ideal vertices colored white,
coming from crossing circles, and four ideal vertices colored black, coming
from the component of the link on the plane of projection. There are four
shaded faces that all have three edges, hence all shaded faces are triangles.
There are four white faces, including the one running through the point at
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infinity in the plane of projection, and each of these white faces also has three
edges, so each is a triangle. Thus the result is an ideal octahedron. Recall
that there is actually another octahedron coming from our decomposition:
the other octahedron comes from the region below the plane of projection
after slicing along that plane. So the link complements in the Borromean
family all decompose into two ideal octahedra.

Note that the face pairings of the two ideal octahedra that give back the
original link complement will be different for the different links; they can
be found by tracing backwards through the decomposition process above.
To undo the step of cutting along the plane of projection, we glue matching
white faces of the opposite octahedra together in pairs. To undo the step of
slicing along 2–punctured disks, we glue remaining shaded triangles in pairs;
however there are two options depending on whether or not we untwisted a
crossing. If both parallel 2–punctured disks were adjacent to no crossings,
then corresponding shaded triangles on the same ideal octahedron are glued
across an ideal vertex (one of the white vertices of figure 7.10). If there
was an adjacent crossing, then a shaded triangle on one octahedron is glued
to the opposite shaded triangle on the other octahedron across the (white)
ideal vertex.

Finally, to see that these link complements all admit a complete hyper-
bolic structure, we give each of the two octahedra the geometry of a hyper-
bolic regular ideal octahedron, then argue as in the proof of proposition 7.6.
We check: each edge of the decomposition comes from the intersection of a
2–punctured disk with the plane of projection, and each edge class in the
manifold is obtained by gluing four such edges. Thus the total angle around
each edge will be 4(π/2) = 2π. Again horospheres meet ideal vertices in Eu-
clidean squares, and so the developing image cannot scale, shear, or rotate
these squares. Thus edges glue without shearing singularities, and cusps are
Euclidean. Hence the result is a complete hyperbolic structure. �

Corollary 7.11. The volume of a double twist knot satisfies

vol(J(k, `)) < 2 voct,

where voct = 3.66 . . . is the volume of a regular ideal octahedron.

7.3. Augmenting and highly twisted knots

The above procedure can be generalized.

Definition 7.12. For any twist region of any knot diagram, a new link
is obtained by adding a single unknotted link component to the diagram,
encircling the two strands of the link component. The link is said to be
augmented. The added link component is called a crossing circle.

When a crossing circle is added to each twist region of the diagram, the
link is said to be fully augmented.

The complement of an augmented link is homeomorphic to the comple-
ment of the link with any even number of crossings added to or removed
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from the twist region, by the same argument illustrated in figure 7.4. Thus
the complement of a fully augmented link is homeomorphic to the comple-
ment of the fully augmented link with one or zero crossings adjacent to each
crossing circle.

The four links of figure 7.8 are all examples of fully augmented links.
The decomposition of proposition 7.10 goes through more generally for all
fully augmented links. I learned about this decomposition in the appendix
to [Lackenby, 2004] by Agol and D. Thurston. These links have very beau-
tiful geometric properties, explored further in [Futer and Purcell, 2007],
[Purcell, 2007], [Purcell, 2008], [Futer et al., 2008], and in the survey
article [Purcell, 2011]. I include some of these results below, modeled off
the exposition in [Purcell, 2011].

Theorem 7.13. A fully augmented link decomposes into two identical
ideal polyhedra with the following properties.

(1) Faces of the polyhedra can be checkerboard colored. White faces
correspond to regions of the plane of projection. Shaded faces are
all triangles, and come from 2–punctured disks bounded by crossing
circles.

(2) Ideal vertices are all 4–valent.
(3) Gluing the polyhedra identifies exactly four edges to a single edge

class in the link complement.

Proof. The decomposition is obtained very similarly to that in the
proof of proposition 7.10. First, each crossing circle bounds a 2–punctured
disk, which we shade. Slice along these 2–punctured disks, splitting each
into two parallel 2–punctured disks. Next, apply a 180◦ rotation to those
2–punctured disks adjacent to a crossing, unwinding the crossing. Then slice
along the plane of projection, splitting the complement into two identical
pieces. Finally, shrink remnants of the link to ideal vertices. We check that
each item of the theorem holds.

First, note faces are already checkerboard colored, with shaded faces
coming from 2–punctured disks and white faces coming from the plane of
projection. Note that edges of the decomposition come from intersections
of white and shaded faces. There are exactly three edges bordering each
shaded face, so each shaded face is a triangle.

Ideal vertices of the polyhedra come from remnants of the link. For those
ideal vertices coming from a component of the link in the plane of projection,
the ideal vertex will be adjacent to two edges coming from the 2–punctured
disk on one of its ends, and two edges coming from the 2–punctured disk on
its other end. Thus it is 4–valent. An ideal vertex coming from a crossing
circle is also adjacent to four edges: two from each point where the link
component meets the plane of projection.

Finally, note that each edge class contains four edges: two in each poly-
hedron lying on the parallel copies of the 2–punctured disk. �
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Figure 7.11. Left: a fully augmented link with a diagram
that is not prime. Right: a fully augmented link that is not
reduced. Removing one of the parallel crossing circles will
give a reduced link

Just as with the family of Borromean rings, we can show that many of
these links are hyperbolic, but not all. For example, if a fully augmented
link has only one crossing circle, then the polyhedral decomposition of the-
orem 7.13 will have white bigon regions, and collapsing these will collapse
the entire polyhedron to a triangle (exercise). Similarly, if there are parallel
crossing circles then there will be white bigon faces. We wish to rule these
out.

Definition 7.14. A fully augmented link is called reduced if the follow-
ing hold.

(1) Its diagram is connected.
(2) Its diagram is prime, i.e. any closed curve meeting the diagram

twice bounds a region on one side with no crossings.
(3) None of its crossing circles are parallel. That is, there are no closed

curves in the diagram meeting exactly two crossing circles and ex-
actly two white faces. See figure 7.11.

Lemma 7.15. The polyhedra in the decomposition of theorem 7.13 admit
a hyperbolic structure in which all dihedral angles are π/2 provided the fully
augmented link is reduced and contains at least two crossing circles.

The proof of the lemma uses circle packings.

Definition 7.16. A circle packing is a connected collection of circles
with disjoint interiors. The intersection graph of a circle packing is the
graph with a vertex at the center of each circle, and an edge between vertices
whenever the corresponding circles are tangent.

Figure 7.12 shows an example of a circle packing and most of its in-
tersection graph on the left — the vertex of the intersection graph in the
unbounded region has been omitted.

Theorem 7.17 (Circle packing theorem). Let G be a finite planar graph
that is simple, meaning G has no loops and no multiple edges between a pair
of vertices. Then G is (isotopic to) the intersection graph of a circle packing
on S2. If G is a triangulation of S2, then the circle packing is unique up to
Möbius transformation.
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Figure 7.12. Left: A circle packing and its intersection
graph. Right: Gray circles meeting white circles of a cir-
cle packing

Theorem 7.17 is also known as the Koebe–Andreev–Thurston theorem.
It was first proved by Koebe [Koebe, 1936]. We will use it here without
giving its proof, as the proof is somewhat unrelated to the topic at hand.

Proof of lemma 7.15. Consider a polyhedron P coming from theo-
rem 7.13 for a reduced fully augmented link with at least two crossing circles.
Edges and vertices of the polyhedron form a graph Γ on S2. Form a new
graph G on S2 by taking a vertex for each white face of Γ, and an edge
between vertices of G if two white faces are adjacent across an ideal vertex
of Γ.

If we superimpose G on P , then notice that each region of G will contain
exactly one shaded triangular face of P . Thus G is a triangulation of S2.
We show that G has no loops and no multiple edges.

Suppose first that G has a loop. Then the edge of G forming the loop
can be superimposed on P to run from a white face, through an ideal vertex
of P , then back to the same white face. White faces correspond to regions
of the diagram, and ideal vertices correspond to remnants of the link. Thus
there is a closed curve γ on the link diagram that runs from a region back
to itself crossing over a single component of the link diagram. Because the
link diagram consists of closed curves, this is possible only if the curve γ
runs along a crossing circle from one white region back to the same white
region. Pushing off the crossing circle slightly, this contradicts the fact that
the diagram is prime.

Now suppose that the graph G has a multi-edge. Then there is a pair of
white faces W1 and W2 of P and a pair of ideal vertices v1 and v2 such that
v1 and v2 are both adjacent to W1 and W2. Form a loop in P running from
W1 through v1 to W2, then back through v2 to W1. This loop corresponds
to a loop γ in the diagram meeting the regions on the plane of projection
corresponding to W1 and W2 and meeting two distinct link components
between those regions. If the link components came from components on
the plane of projection, then this contradicts the fact that the diagram is
prime. If the link components came from crossing circles, then it contradicts



112 7. TWIST KNOTS AND AUGMENTED LINKS

the fact that the diagram is reduced. If one link component lies in the plane
of projection and the other is a crossing circle, then we may slide slightly
off the crossing circle to obtain a loop meeting exactly three components in
the plane of projection. This is impossible for a closed curve and closed link
components.

It follows that G is a finite, simple, planar graph that is a triangulation
of S2. The circle packing theorem, theorem 7.17, implies that there is a
unique circle packing of S2 with G as its intersection graph. View S2 as the
boundary at infinity of H3. The circle packing of G is then a circle packing
on ∂H3. Each Euclidean circle on ∂H3 is the boundary of a plane in H3.
Color these planes white.

Because the intersection graph of the circle packing is a triangulations,
regions complementary to the circle packing meet exactly three circles from
the packing. There is a unique Euclidean circle running through the three
points of tangency of the circle packing. Again this defines a geodesic plane
in H3. This plane will intersect the white planes at right angles. Color this
plane gray. See figure 7.12.

For each white plane, remove from H3 the region bounded by that plane
that is disjoint from the other white planes. Similarly for each gray plane.
The result is a right–angled hyperbolic ideal polyhedron that is isomorphic
to P , proving the lemma. �

Theorem 7.18. The complement of a reduced fully augmented link with
at least two crossing circles admits a complete hyperbolic structure, which
is obtained by putting a right–angled structure on each of the polyhedra of
theorem 7.13.

Proof. By lemma 7.15, there exists a right–angled ideal hyperbolic
polyhedron with the combinatorics of one of the polyhedron of theorem 7.13.
We give each of the polyhedra of theorem 7.13 the hyperbolic structure of
this right–angled hyperbolic polyhedron, and glue by corresponding face–
pairing isometries to obtain the fully augmented link.

To show this admits a complete hyperbolic structure, we need to show
the angle around each edge is 2π, that there is no shearing around edges,
and that the cusps are all Euclidean. Because each edge class contains four
edges, and each edge has dihedral angle π/2, the angle sum around each
edge is 2π.

Now consider cusps. Any horosphere meets an ideal vertex of the right–
angled polyhedron in a rectangle. The developing image of a cusp is obtained
by gluing these rectangles according to the gluing isometries on the faces.
Note that white faces are glued by a reflection to the identical white face
on the opposite polyhedron, so gluing across white sides of a rectangle does
not scale or rotate. But then the gluing across shaded faces cannot scale
or rotate either. Hence the developing image of each cusp is a tiling of the
plane by Euclidean rectangles. Thus around each vertex there cannot be
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shearing, and the structure on the cusp must be Euclidean. So this gives
the complete hyperbolic structure on the fully augmented link. �

Corollary 7.19. In a reduced fully augmented link with at least two
crossing circles, each 2–punctured disk bounded by a crossing circle is a
totally geodesic surface embedded in the link complement. The white surface,
obtained by gluing together regions corresponding to regions on the plane of
projection (white faces), is also a totally geodesic surface embedded in the
hyperbolic link complement.

Proof. In the polyhedral decomposition, these surfaces become white
and shaded faces, which are straightened to portions of geodesic planes to ob-
tain the hyperbolic structure. Thus we know that these surfaces are pleated,
i.e. they decompose into ideal polygons, each of which is totally geodesic. In
general pleated surfaces are bent along the edges bounding each polygon, so
they are not necessarily totally geodesic. However, in this case, white faces
meet shaded faces at angle π/2, thus in the gluing, white faces glue to white
faces with angle π, i.e. no bending, and similarly for shaded faces. If follows
that these surfaces are totally geodesic. �

7.4. Exercises

Exercise 7.1. (1) Show by a sequence of diagrams that the two
links in figure 7.3 are isotopic.

(2) Use SnapPy [Culler et al., 2016] to show that the two link com-
plements are isometric. The check using SnapPy is not mathemat-
ically rigorous, but in this case the link has a special property: it is
arithmetic. We will not define an arithmetic link here (we won’t use
the definition elsewhere), but a consequence of arithmeticity is that
the program Snap [Coulson et al., 2000] can be used to give a
mathematically rigorous certification that the two links shown are
isometric.

Exercise 7.2. Use the methods of chapter 1 to prove that the comple-
ment of a Whitehead link can be decomposed into two ideal pyramids with
a square base, which in turn can be glued to an ideal octahedron.

Exercise 7.3. Shown on the left of figure 7.13 is the diagram of a link
which we claim is the Borromean rings. Shown on the right is a more familiar
diagram of the Borromean rings. There are several different ways to prove
the complements of these hyperbolic manifolds are isometric.

(1) Show by a sequence of diagram moves that the links are isotopic.
Why does this suffice to show the complements are isometric?

(2) Find a hyperbolic structure on each by hand, and show by hand
that the manifolds are isometric. This will take some work, and
sounds tedious. The exercise here is to think about why this will
be tedious: list the steps involved.
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Figure 7.13. Two different diagrams of the Borromean
rings are shown

(3) Use computational tools. Use SnapPy [Culler et al., 2016] to
show they are isometric. As in exercise 7.1, these links are arith-
metic, so you can check using Snap [Coulson et al., 2000] that
the link complements are isometric, which gives a mathematically
rigorous certification.

Exercise 7.4. The (p, q, r)–pretzel link. As p, q, r go to infinity, find
geometric limits of pretzel links. Find a universal upper bound on their
volumes.

Exercise 7.5. (Topology of the solid torus) A solid torus V is homeo-
morphic to S1 ×D2, where a specified homeomorphism h : S1 ×D2 → V is
called a framing .

(a) A non-trivial simple closed curve in ∂V is called a meridian if it
bounds a disk in V . Prove that if µ is a meridian, then for some
framing h : S1 ×D2 → V , µ = h({1} × ∂D2).

(b) A non-trivial simple closed curve λ in ∂V is called a longitude if it
represents a generator of π1(V ) ∼= Z. Prove that if λ is a longitude,
then for some framing h : S1 ×D2 → V , λ = h(S1 × {1}).

(c) Prove that there are infinitely many ambient isotopy classes of lon-
gitudes in a solid torus.

Exercise 7.6. For the Whitehead link, find slopes of Dehn filling giving
the twist knot J(2, n) for n even. Write them as pµ+qλ, for relatively prime
integers p and q, where µ is a meridian and λ is the longitude that bounds
a disk in S3. This is called the standard longitude.

Repeat for n odd, using the isometric link.

Exercise 7.7. Using the meridian and standard longitude as a basis for
two boundary components of the exterior of the Borromean rings (i.e. take
a longitude on each component that bounds a disk in S3), find the slopes of
the Dehn fillings of the Borromean rings that give J(2k, 2`).

Repeat for J(2k, 2`+ 1) and J(2k + 1, 2`+ 1).

Exercise 7.8. The simplest fully augmented link has a single crossing
circle; it comes from augmenting a knot with only one twist region. Show
that when we apply the decomposition of this chapter to the fully augmented
link with only one crossing circle, the result is not a decomposition into two
ideal polyhedra. What does the decomposition give?


