
CHAPTER 10

Two-bridge knots and links

In this chapter we will study in detail a class of knots and links that
has particularly nice geometry, namely the class of 2-bridge knots and links.
The key property of these links that we will explore is the fact that they
admit a geometric triangulation that can be read off of a diagram, or an
algebraic description of the link. In this chapter, we will define 2-bridge
knots and links, describe their triangulations, and mention some of their
geometric properties and consequences.

10.1. Rational tangles and 2-bridge links

In 1956, H. Schubert showed that the class of 2-bridge knots and links
are classified by a rational number, and any continued fraction expansion of
this number gives a diagram of the knot [Schubert, 1956]. In this section,
we work through the description of 2-bridge knots and links via rational
numbers. Additional references are [Burde and Zieschang, 1985] and
[Murasugi, 1996].

First, we define tangles.

Definition 10.1. A tangle is a 1-manifold properly embedded in a 3-
ball B. That is, it is a collection of arcs with endpoints on ∂B and interiors
disjointly embedded in the interior of B, possibly along with a collection
of simple closed curves. For our purposes, we will consider only tangles
consisting of two arcs, thus with four endpoints embedded on the boundary
of a ball.

The simplest tangle is a rational tangle.

Definition 10.2. A rational tangle is obtained by drawing two arcs of
rational slope on the surface of a 4-punctured sphere (pillowcase), and then
pushing the interiors into the 3-ball bounded by the 4-punctured sphere.

The tangles are called rational because they can be defined by a rational
number, as follows. Recall that a rational number can be described by a
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Figure 10.1. Building a rational tangle from the con-
tinued fraction [4,−2,−2, 3]. (Figure adapted from
[Finlinson and Purcell, 2016])

continued fraction:

p

q
= [an, an−1, . . . , a1] = an +

1

an−1 +
1

. . . +
1

a1

.

Now, given a continued fraction [an, . . . , a1], we will form a rational
tangle. Start by labelling the four points on the pillowcase NW, NE, SW,
and SE. If n is even, connect NE to SE and NW to SW by attaching two
arcs as in figure 10.1(a). Perform a homeomorphism of B3 that rotates
the points NW and NE |a1| times, creating a vertical band of |a1| crossings
in the two arcs. If a1 > 0, rotate in a counterclockwise direction, so that
the overcrossings of the result have positive slope. This is called a positive
crossing. If a1 < 0 rotate in a clockwise direction, so that overcrossings have
negative slope, forming a negative crossing. In figure 10.1(b), three positive
crossings have been added. After twisting, relabel the points NW, NE, SW,
and SE to match their original orientation. Next, apply a homeomorphism
of B3 that rotates NE and SE |a2| times, adding crossings in a horizontal
band. Again these crossings will be positive if a2 > 0, and negative if a2 < 0.
Repeat this process for each ai. When finished, we obtain a rational tangle.
An example is shown in figure 10.1.

If n is odd, start with two arcs connecting NW to NE and SW to SE.
In this case we add a horizontal band of crossings first, and then continue
as before, alternating between horizontal and vertical bands for each ai.

Any rational tangle may be built by this process. As a convention,
we require that the left-most term an in the continued fraction expansion
corresponds to a horizontal band of crossings. If we build a rational tangle
ending with a vertical band, as in figure 10.1(b), then we insert a 0 into
the corresponding continued fraction, representing a horizontal band of 0
crossings. For example, the continued fraction corresponding to the tangle
in figure 10.1(b) is [0, 3]. This convention ensures that any continued fraction
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completely specifies a single rational tangle. There are two trivial rational
tangles, namely 0 = [0], with untwisted strands connecting NW to NE and
SW to SE, and ∞ = [0, 0] = 0 + 1

0 , with untwisted strands connecting NW
to SW and NE to SE. The tangle ∞ is shown in figure 10.1(a).

Proposition 10.3 ([Conway, 1970]). Equivalence classes of rational
tangles are in one-to-one correspondence with the set Q ∪ ∞. In particu-
lar, tangles T (an, . . . , a1) and T (bm, . . . , b1) are equivalent if and only if the
continued fractions [an, . . . , a1] and [bm, . . . , b1] are equal.

Proposition 10.3 allows us to put all our tangles into nice form.

Corollary 10.4. Any rational tangle is equivalent to one of the form
T (an, . . . , a1) in which ai 6= 0 for 1 ≤ i < n, and either all ai ≥ 0 or all
ai ≤ 0.

Proof. This follows immediately from exercise 10.2. �

Thus we will assume that positive tangles have only positive crossings,
and negative tangles have only negative crossings. In either case, this will
make the tangle diagram alternating.

Definition 10.5. The numerator closure num(T ) of a rational tangle
T is formed by connecting NW to NE and SW to SE by simple arcs with
no crossings. The denominator closure denom(T ) is formed by connecting
NW to SW and NE to SE by simple arcs with no crossings.

Definition 10.6. A 2-bridge knot or link is the denominator closure of
a rational tangle.

Notice that the denominator closure of the tangle T (an, an−1, . . . , a1) is
always equivalent to the denominator closure of the tangle T (0, an−1, . . . , a1),
since an corresponds to horizontal crossings that can simply be unwound af-
ter forming the denominator closure. Thus when we consider 2-bridge knots,
we may assume that in our rational tangle, an = 0.

Definition 10.7. The 2-bridge knot or link that is the denominator
closure of the tangle T (an, an−1, . . . , a1) (and T (0, an−1, . . . , a1)) is denoted
by K[an−1, . . . , a1].

The above discussion of twisting and taking denominator closure gives a
nice correspondance between diagrams of 2-bridge knots and continued frac-
tion expansions of rational numbers p/q with |p/q| ≤ 1. This is summarised
in the following lemma.

Lemma 10.8. Suppose [0, an−1, . . . , a1] is a continued fraction with either
ai > 0 for all i or ai < 0 for all i. Then the diagram of K[an−1, . . . , a1]
contains n− 1 twist regions, arranged left to right. The twist region on the
far left contains |a1| crossings, with sign opposite that of a1, the next twist
region to the right containing |a2| crossings with sign the same as a2, and
so on, with the i-th twist region from the left containing |ai| crossings, with
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Figure 10.2. The diagram of K[an−1, . . . , a1]. Top: n odd;
bottom: n even. Box labeled ±ai denotes a (horizontal) twist
region with |ai| crossings, with sign of the crossings equal to
that of ±ai.

sign the same as ai if i is even, and opposite ai if i is odd. Twist regions
connect as illustrated in figure 10.2.

Proof. The tangle T (0, an−1, . . . , a1) is obtained by forming horizontal
or vertical bands of |ai| crossings, for i = 1, . . . , n− 1. Thus the diagram of
the denominator closure has n−1 twist regions with the numbers of crossings
as claimed. To put it into the form of figure 10.2, isotope the diagram by
rotating vertical twist regions (with odd i) to be horizontal. This rotates
odd twist regions to be horizontal, but with sign opposite that of ai. �

Lemma 10.9. For a 2-bridge knot or link K[an−1, . . . , a1], we may always
assume |a1| ≥ 2 and |an−1| ≥ 2.

Proof. Exercise. One way to see this is to consider the form of a
2-bridge knot or link with |a1| = 1 or |an−1| = 1, and show that the corre-
sponding twist region can be subsumed into another twist region. �

For the rest of this chapter, we will assume the conclusions of corol-
lary 10.4 and lemma 10.9, namely that if K[an−1, . . . , a1] is a 2-bridge knot
or link, then either ai > 0 for all i or ai < 0 for all i, and |an−1| ≥ 2 and
|a1| ≥ 2.

10.2. Triangulations of 2-bridge links

We now describe a way to triangulate 2-bridge link complements that
was first observed by Sakuma and Weeks [Sakuma and Weeks, 1995]. A
description was also given by Futer in the appendix of [Guéritaud, 2006];
we base our exposition here off of the latter paper.

Consider again our construction of a rational tangle. We started with
two strands in a 4-punctured sphere, or pillowcase. To form each crossing, we
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Figure 10.3. Vertical (left) and horizontal (right) blocks of
the form S × I. The 4-punctured spheres on the outside and
inside correspond to S × {1} and S × {0}, respectively

either rotate the points NE and NW or the points NE and SE. In the former
case, we call the crossing a vertical crossing, and in the latter a horizontal
crossing. For all but the first crossing in a tangle, adding a crossing can
be seen as stacking a region S2 × I to the outside of a pre-existing tangle,
where S2×I contains four strands, two of them forming a crossing. Positive
vertical and horizontal crossings in S2× I are shown in figure 10.3, negative
ones will be in the opposite direction. If we drill the four strands from S2×I,
the region becomes S × I, where S is a 4-punctured sphere.

Lemma 10.10. Let K := K[an−1, . . . , a1] be a 2-bridge link and let C
denote the number of crossings of K; so C = |a1| + · · · + |an−1|. Assume
either ai < 0 for all i or ai > 0 for all i, and |a1| ≥ 2 and |an−1| ≥ 2. Let
N be the manifold obtained from the complement S3−K by removing a ball
neighborhood of the first and last crossings, and let S denote the 4-punctured
sphere. Then N is homeomorphic to S× [a, b], obtained from stacking C−2
copies of S × I end to end, with each copy of S × I corresponding to either
a horizontal or vertical crossing.

• If n is even, the first a1− 1 copies of S× I are vertical, followed by
a2 horizontal copies, a3 vertical, etc, finishing with an−1−1 vertical
copies of S × I.
• If n is odd, the first a1−1 copies of S×I are horizontal, followed by
a2 vertical copies, a3 horizontal, etc, finishing with an−1−1 vertical
copies.

The i-th copy of S × I is glued along S × {1} to S × {0} on the (i + 1)-st
copy, i = 2, 3, . . . , C − 1. �

An example of lemma 10.10 is shown in figure 10.4.
We will obtain a triangulation of a 2-bridge link complement by first

finding a triangulation of the manifold N in lemma 10.10. To do so, we will
consider each of the blocks S × I separately, and then consider how they fit
together.

Denote the blocks of lemma 10.10 by S2× I, S3× I, . . . , SC−1× I, where
Si × I corresponds to the i-th crossing of the tangle. In the description
below, we will consider the case that all crossings are positive, i.e. aj > 0
for all j, so that if the i-th crossing is vertical, then Si × I has the form of
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Figure 10.4. On the left is K[4, 2, 2]. On the right, remove
neighborhoods of inside and outside crossings to obtain a
manifold homeomorphic to S × [a, b]. Each crossing is con-
tained in a block S × I of the form of figure 10.3

Figure 10.5. Effect on ideal edges of isotopies between Si×
{1} and Si × {0}

the left of figure 10.3, and if it is horizontal, then Si× I has the form of the
right. The case of all negative crossings will be similar.

In Si × I, the 4-punctured sphere Si is embedded at any level Si × {t}.
We will focus in particular on Si × {0} and Si × {1}.

Lemma 10.11. There is an ideal triangulation of Si such that when we
isotope the triangulation to Si × {1}, edges are horizontal (from NE to NW
and from SE to SW), vertical (from SW to NW and from SE to NE), and
diagonal, and when we isotope the triangulation to Si × {0}, edges are still
horizontal, vertical, and diagonal, but the diagonals are opposite those of
Si × {1}.

Proof. First consider the outside, Si×{1}. Draw vertical and horizon-
tal ideal edges on Si × {1}; that is, draw horizontal edges from NE to NW
and from SE to SW, and draw vertical edges from SE to NE and from SW
to NW. Now isotope from Si × {1} through Si × {t} inside to Si × {0}, and
track these ideal edges through the isotopy.

In the case that Si×I has a vertical crossing, as on the left of figure 10.3,
notice that the isotopy takes the horizontal edges in Si × {1} to horizontal
edges in Si×{0}, but it takes vertical edges in Si×{1} to diagonal edges in
Si×{0}, as shown on the left of figure 10.5. Now consider the vertical edges
in Si × {0}, i.e. the ideal edges running from SE to NE and SW to NW on
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S × {1} S × {0} S × {1} S × {0}

Figure 10.6. Triangulation of Si×{1} and Si×{0}, shown
for both horizontal and vertical (positive) crossings.

the inside of the block. When we isotope Si × {0} to Si × {1}, notice that
these edges become diagonal edges on Si × {1}, as shown on the right of
figure 10.5. Notice that these diagonals are exactly opposite the diagonals
on the inside on the left of the figure.

When Si × I has a horizontal crossing, as on the right of figure 10.3,
the vertical ideal edges in Si×{1} are isotopic to vertical edges in Si×{0}.
Horizontal edges on Si × {1} isotope to diagonal edges on Si × {0}, and
horizontal edges on Si × {0} isotope to diagonal edges on Si × {1}. Again
the diagonal edges have opposite slopes on the inside and outside.

In either case, add all horizontal and vertical edges to Si on Si×{1} and
add all horizontal and vertical edges to Si on Si×{0}. Since either horizontal
or vertical edges are duplicated, we add six ideal edges total. This is the
triangulation claimed in the lemma. �

The triangulation of Si×{1} and Si×{0} for both vertical and horizontal
crossings is shown in figure 10.6. (We have removed the arrows from the
edges as we will not need to work with directed edges, and keeping track of
direction will unnecessarily complicate the discussion.) Note the ideal edges
cut Si×{1} into four ideal triangles: two on the front and two on the back.
Similarly, these ideal triangles can be isotoped to the inside Si×{0}, giving
two triangles on the front and two on the back, although notice that the
isotopy does not take both triangles in the front of Si × {1} to triangles in
the front of Si × {0}.

So far we only have ideal triangles on surfaces Si, and no ideal tetrahedra.
The ideal tetrahedra are obtained when we put blocks Si−1 × I and Si × I
together, and we now describe how this works.

Lemma 10.12. With Si−1 and Si triangulated as in lemma 10.11, gluing
Si−1 × I to Si × I by identifying Si−1 × {1} and Si × {0} gives rise to two
ideal tetrahedra, each with two faces on Si−1 and two on Si.

Proof. Consider the triangulations of Si−1 × {1} and Si × {0} from
lemma 10.11, shown in figure 10.6. Notice that the diagonal edges of Si−1×
{1} are exactly opposite the diagonal edges of Si × {0}, and so these edges
do not match up. The horizontal and vertical edges on Si−1 × {1} and
Si×{0} can be identified, but the diagonal edges cannot. To keep these edges
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Figure 10.7. When blocks are glued, diagonals of the tri-
angulated surfaces Si and Si−1 are as shown.

embedded, we view the diagonals of Si−1 ×{1} as inside of the diagonals of
Si × {0}, as shown in figure 10.7.

With horizontal and vertical edges identified, notice that the interior of
the region between Si−1 × {1} and Si × {0} lies in two components: one
on the front of the figure, and one on the back. Each of these components
is bounded by four triangular faces, six ideal edges, and four ideal vertices;
each is an ideal tetrahedron as desired. �

By lemma 10.12, when we glue Si×I to Si+1×I, we obtain two additional
tetrahedra, and these will be attached along Si to the two tetrahedra from
Si× I and Si−1× I. Thus as we run from S2× I out to SC−1× I, we obtain
pairs of tetrahedra for each gluing of blocks, and these are glued inside to
outside to form a triangulation of N ∼= S × [a, b].

Now, at this stage, we have a triangulation of N , but there will be four
triangular faces on the very inside corresponding to S2 that are unglued,
and four triangular faces on the very outside corresponding to SC−1 that are
unglued. To complete the description of the triangulation of the 2-bridge
link complement, we need to describe what happens at the outermost and
innermost crossings, e.g. on the left of figure 10.4.

Proposition 10.13. Let K := K[an−1, . . . , a1] be a 2-bridge link with at
least two twist regions, with either ai > 0 for all 1 ≤ i ≤ n− 1, or ai < 0 for
all i. Assume |a1| ≥ 2 and |an−1| ≥ 2. Let C = |a1|+ · · ·+ |an−1| denote the
number of crossings of K. Then S3 −K has a decomposition into 2(C − 3)
ideal tetrahedra denoted by T 1

i , T
2
i , for i = 2, . . . , C − 2.

• For 2 ≤ i ≤ C − 2, the tetrahedra T 1
i and T 2

i each have two faces
on Si and two on Si+1.
• The two faces of T 1

2 on S2 glue to the two faces of T 2
2 on S2.

• Similarly, the two faces of T 1
C−2 on SC−1 glue to the two faces of

T 2
C−2 on SC−1.

Proof. The tetrahedra come from the triangulation of N . By the pre-
vious lemmas, there are two tetrahedra for each pair of adjacent crossings,
omitting the first and last, thus 2(C − 3) tetrahedra. By lemma 10.12, each
tetrahedron in each pair has two faces on Si and two on Si+1, where Si × I
and Si+1 × I are blocks corresponding to the two adjacent crossings. We
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Figure 10.8. Identifying triangles of the outermost 4-
punctured sphere

label the tetrahedra T 1
2 , T 2

2 , T 1
3 , T 2

3 , . . . , T 1
C−2, T 2

C−2, so that the first item
is satisfied.

It remains to show that the innermost and outermost tetrahedra, T 1
2 , T 2

2

and T 1
C−2, T 2

C−2, glue as claimed. We will focus on the outermost tetrahedra
here. The innermost case is similar, but we leave its description to the reader.

For the outermost crossing, recall that we may assume our 2-bridge knot
is the denominator closure of a tangle T (an, an−1, . . . , a1) with an = 0. Thus
the outermost crossing will be vertical, not horizontal. Hence we restrict to
pictures with a single vertical crossing on the outside.

The outermost 4-punctured sphere SC−1 will be triangulated as shown
on the left of figure 10.8. Notice that when we add the outside crossing as
shown, vertical edges and horizontal edges all become isotopic and hence
are identified, by isotopies swinging the endpoints around the strand of the
crossing. One such isotopy is indicated by the small arrow on the left of
figure 10.8.

The diagonal edges are not identified to horizontal or vertical edges.
When we follow the isotopy of figure 10.8, the diagonal edge in the front
wraps once around a strand of the knot, as shown on the right of figure 10.8.
Thus the triangle in the upper left corner of SC−1 maps under the isotopy
to a triangle with two of its edges identified, looping around a strand of the
2-bridge knot.

Now consider the triangle in front in the lower right corner. We will
isotope the triangle by dragging its vertex on the SE corner around the
strand of the knot to the NW corner. If we perform this isotopy while
holding the diagonal fixed, note that the lower left triangle flips around
backwards to be identified to the upper right triangle in the front. Thus
the two triangles on the front of SC−1×{1} will be identified under isotopy.
Similarly for the two back triangles.

Thus inserting the outermost crossing identifies the four outside trian-
gular faces of the outermost tetrahedra in pairs.

The tetrahedra T 1
C−2 and T 2

C−2 have triangular faces on SC−1, shown in

figure 10.7. One of these, say T 1
C−2, will lie in front in that figure and one

will lie in back.
However, note that in figure 10.7, we have isotoped the surface SC−1 to

be in the position of SC−1 ×{0}, while in figure 10.8, when we glue faces of
SC−1, we have isotoped SC−1 to be in the position of SC−1×{1}. Isotoping
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S × {1}S × {0}

Figure 10.9. Locations of faces of T 1
C−2 under isotopy from

S × {0} to S × {1}

from SC−1 × {0} to SC−1 × {1} will move the faces of T 1
C−2 and T 2

C−2. In

particular, the face of T 1
C−2 lying on the upper right of figure 10.7 will be

moved by isotopy to lie in the back on the upper right, and the face of T 1
C−2

lying in the lower left will be moved by isotopy to lie in front, in the lower
right. See figure 10.9.

Thus the identification of triangles on the outside identifies faces of T 1
C−2

to faces of T 2
C−2. �

10.2.1. The cusp triangulation. Now we consider the view of the
tetrahedra from a cusp. Consider first the manifold N with ball neighbor-
hoods of the first and last crossings removed. The manifold N is homeomor-
phic to the product of a 4-punctured sphere and a closed interval. Note that
in N , there are four distinct cusps, corresponding to the product of I and
the four distinct punctures of the 4-punctured sphere. Note that each cusp
meets each 4-punctured sphere Si, and that a curve on Si running around
the puncture forms a meridian. Finally, note that between each Si and Si+1

lie two tetrahedra, as in figure 10.7. Each tetrahedron has exactly one ideal
vertex on each of the four cusps. Thus the cusp triangulation of N consists
of four disjoint cusp neighborhoods. Each cusp neighborhood meets each
Si, in the same order, and each cusp neighborhood meets each tetrahedron
in the decomposition in the same order. Thus the four cusp triangulations
look identical at this stage, at least combinatorially. We will create one of
these four cusps.

In order to see the pattern of tetrahedra in one of these cusps, note that
there will be a stack of triangles in each cusp, each triangle corresponding
to the tip of a tetrahedron. By proposition 10.13, the triangles will be
sandwiched between 4-punctured spheres Si and Si+1, with the bottom of
the stack of triangles bounded by S2 and the top by SC−1. (Recall that the
4-punctured sphere Si actually lies in a block Si× I, so when we refer to Si
in the following it may be helpful to recall that we are referring to a surface
isotopic to Si × {t} for appropriate t.)

When we run along a meridian of the cusp on Si, we stay on edges of
the cusp triangulation. Moreover, note that we pass over exactly three ideal
edges; see the left of figure 10.10. Thus in the cusp triangulation, running
along such a meridian on the surface Si will correspond to running over three
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SiSi
T 1
i

T 2
i

Si+1

Figure 10.10. Form of two meridians running over Si and Si+1

edges of triangles. This is shown in figure 10.10 for Si. The vertical dotted
lines indicate boundaries of a fundamental region for the cusp torus; in this
case running from one dotted line to the other corresponds to a meridian.

When the i-th, (i+ 1)-st, and (i+ 2)-nd blocks are all vertical crossings,
note that the surfaces Si, Si+1, and Si+2 will all share an edge; a horizon-
tal edge in figure 10.6. Similarly adjacent horizontal crossings also lead to
surfaces sharing an edge.

Notation 10.14. In the cusp triangulation we see 4-punctured spheres
S2, . . . , SC−1. Give the label R to each 4-punctured sphere Si corresponding
to a block Si × I containing a horizontal crossing. Give the label L to each
corresponding to a block containing a vertical crossing. A tetrahedron that
lies between layers labeled R and L is called a hinge tetrahedron.

The labels R and L are given for historical reasons; they refer to moves
to the right and left for a path in the Farey graph given by the rational
number of our tangle. We won’t delve into the history of this notation here,
but we will use this notation for ease of reference with other literature. For
more information see [Guéritaud, 2006].

Example 10.15. A cusp triangulation for an example N is shown in
figure 10.11. That figure follows some standard conventions. Because we
have many surfaces Si, we connect edges of Si to form a single connected
jagged line, identifiable as one surface in the cusp, and put a little space
between multiple such surfaces at a vertex they share. We also put vertices
of the triangles in two columns (in a fundamental domain). Finally, we
shade the hinge layers.

Note in the figure as we move inside to out, we move from the bottom of
the cusp triangulation to the top. Tetrahedron T 1

2 lies between surfaces S2

associated with the second innermost crossing (vertical, L) and S3 associated
with the third innermost crossing (horizontal, R). It is a hinge tetrahedron.
Tetrahedron T 1

3 lies between S3 and S4, both of which are associated with
horizontal crossings, R. Note there is an ideal edge shared by all three
surfaces S2, S3, and S4, and this corresponds to a shared vertex of T 1

2 and
T 1

3 in the cusp triangulation (in the center).

Now we determine what happens to cusps when we put in the innermost
and outermost crossings. At the outermost crossing, note that the cusp cor-
responding to the vertex SE becomes identified with the cusp corresponding
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Figure 10.11. On the right is shown the cusp triangulation
of one of the four cusps of N on the left

SC−1

SC−1

T 1

T 2

T 1

T 2

T 1

T 1

T 2

T 2

Figure 10.12. Gluing tetrahedra across SC−1 yields a hair-
pin turn

to the vertex NW, and similarly for SW and NE. Thus the four identical
cusp triangulations we have obtained so far will be glued. Recall that the
gluing is along triangle faces of SC−1 in the case of the outermost crossing.
The faces of T 1

C−2 are glued to faces of T 2
C−2. The result is a “folding” of

triangles. See figure 10.12. We call this a hairpin turn.
If K is a knot, if we follow a longitude of the cusp, starting at one of

the corners of S2, we will see 4-punctured spheres S2, S3, . . . , SC−2, then a
hairpin turn on SC−1 corresponding to the outside crossing as in figure 10.12.
Continuing, we will pass SC−2, SC−3, . . . , S3, then another hairpin turn on
S2 corresponding to the inside crossing, then S3, . . . , SC−1 and a hairpin
turn, and finally SC−2, . . . , S3 and the original S2 with a hairpin turn. A
hairpin turn appears in the cusp triangulation as a single edge stretching
across a meridian, adjacent to two triangles whose third vertex is 3-valent.

We summarize:

Proposition 10.16. Let K := K[an−1, . . . , a1] be a 2-bridge knot with
at least two twist regions, such that either ai > 0 for all i, or ai < 0 for all i,
and |a1| ≥ 2 and |an−1| ≥ 2. Let C = |a1|+ · · ·+ |an−1| denote the number
of crossings of K. The cusp triangulation of K has the following properties.

• It is made of four pieces, each piece bookended by hairpin turns
corresponding to 4-punctured spheres S2 and SC−1. Between lies
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Figure 10.13. An example of a 2-bridge knot and its cusp
triangulation from SnapPy. The shaded region shows a fun-
damental domain for the cusp torus, stretching from one hair-
pin turn through three others back to the same hairpin turn.

a sequence of 4-punctured spheres S3, . . . , SC−2. We call the 4-
punctured spheres zig-zags.
• The first and third pieces are identical; the second and fourth are

also identical and given by rotating the first piece 180◦ about a point
in the center of the edge of the final hairpin turn (and swapping
some labels T 1

i as T 2
i ). Thus the second and fourth pieces follow

the first in reverse.
• When running in a longitudinal direction, the first piece begins with
|an−1| − 1 zig-zags labeled L; the first of these is SC−1, the hairpin
turn corresponding to the outside crossing of the knot. These zig-
zags are followed by |an−2| zig-zags labeled R, then |an−3| labeled L,
and so on. If n is even, finish with |a1| − 1 zig-zags labeled L, the
last of which is the final hairpin turn, corresponding to S2 at the
inside crossing. If n is odd, the final |a1|−1 zig-zags will be labeled
R.
• A meridian follows a single segment of the zig-zag in a hairpin turn,

or three segments of any other zig-zag.

Note we see each Si exactly four times, including seeing S2 twice for each of
the two hairpin turns in the cusp triangulation corresponding to the inside
crossing, and seeing SC−1 twice for each hairpin turn corresponding to the
outside crossing.

An example sketched by SnapPy ([Culler et al., 2016]) is shown in
figure 10.13.

10.3. Positively oriented tetrahedra

The triangulation described in the last section has nice geometry. In
particular, when the 2-bridge link has at least two twist regions, we can
find angle structures on the triangulation. These can be used to prove that
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the 2-bridge link is hyperbolic (corollary 10.20), and to show that in the
complete hyperbolic structure on the link complement, the tetrahedra are
all geometric. Thus we will obtain our first infinite class of knots and links
with known geometric triangulations.

The main theorem of the next two sections is theorem 10.17, below. It
was originally proved by Futer in the appendix to [Guéritaud, 2006].

Theorem 10.17. Let K be a 2-bridge knot or link complement with a
reduced alternating diagram with at least two twist regions. Let T be the
triangulation of S3 − K as described above. Then S3 − K is hyperbolic,
and in the complete hyperbolic structure on S3 −K, all tetrahedra of T are
positively oriented.

The proof of theorem 10.17 uses angle structures on T , as in defini-
tion 8.21, and is done in two steps. First, the space of angle structures
A(T ) is shown to be non-empty. In theorem 8.28, we showed that the exis-
tence of an angle structure is enough to conclude that the manifold admits
a hyperbolic structure. We conclude that these 2-bridge link complements
are hyperbolic.

Second, in the next section, we show that the volume functional can-
not achieve its maximum on the boundary of A(T ). This is all that is
needed: because the volume functional is strictly concave down on A(T )
(lemma 9.15), it achieves a maximum in the interior of A(T ). By theo-
rem 9.13, the maximum corresponds to the complete hyperbolic structure,
and at that structure, all angles are strictly positive, meaning all tetrahedra
are geometric — positively oriented.

Proposition 10.18. Let T be the triangulation of a 2-bridge knot or
link complement with at least two twist regions, as described above. Then
the space of angle structures A(T ) is nonempty.

The proof of the proposition is not hard, but requires additional nota-
tion. First, we need to label the angles of each of the tetrahedra constructed
in the previous section. Remember that the tetrahedra were constructed in
pairs, and the pairs of tetrahedra lie between two 4-punctured spheres of
the manifold N = S × [a, b], as in figure 10.7. In order to show some angle
structure exists, we will first assume that the angles on each of these pairs
of tetrahedra agree. Let zi denote the angle on the outside diagonal edges of
tetrahedra T 1

i and T 2
i . Because opposite edges have the same angle, zi is also

the angle on the inside diagonal edge. Denote the angle at the horizontal
edges by xi and the angle at vertical edges by yi. We may add these angles
to the cusp triangulation. The cusp triangulation was obtained by adding
layers of zig-zagging 4-punctured spheres. Each 4-punctured sphere shares
two edges with the previous 4-punctured sphere, and has one new edge. In
the cusp triangulation, this forms a sequence of triangles in which two ver-
tices are shared, but one new vertex is added. The new vertex corresponds
to the diagonal edge, so is labeled zi. Note that angles labeled xi are glued
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Figure 10.14. Labels on the cusp triangulation of N = S×
[a, b] for an example

together, as are angles labeled yi. Finally, we have oriented tetrahedra so
that angles read xi, yi, zi in clockwise order around a cusp triangle. This
completely determines the labeling on all the cusp triangles of N = S×[a, b].
An example is shown in figure 10.14.

In the example, a 4-punctured sphere corresponding to a horizontal
crossing is labeled R, and one corresponding to a vertical crossing is labeled
L, as in notation 10.14.

Now (xi, yi, zi) give us labels for angles of all the tetrahedra on the 2-
bridge link complement. We will need xi + yi + zi = π for each i to satisfy
condition (8.21) of the definition of an angle structure, definition 8.21. We
also need sums of angles around edge classes to be 2π.

Away from hairpin turns, the edge gluings of S3 −K agree with those
of N = S × [a, b], so we will first consider angle sums around edges of
N , simplifying these conditions to a system of equations in terms of the zi
alone, then deal with hairpin turns later. There will be four cases depending
on whether the i-th tetrahedron lies between two horizontal crossings, two
vertical crossings, a horizontal followed by a vertical crossing, or a vertical
followed by a horizontal crossing. These cases are denoted by RR, LL, RL,
and LR, respectively.

The labels for two consecutive LL 4-punctured spheres are shown in
figure 10.15. Note in this case, there is a 4-valent vertex in the cusp triangu-
lation (or 4-valent ideal edge in the decomposition into tetrahedra). In order
for the angle sum around this edge to be 2π, we need 2xi+zi+1 +zi−1 = 2π,
or xi = 1

2(2π − zi−1 − zi+1). Then in order for xi + yi + zi = π, we need

yi = 1
2(zi−1 − 2zi + zi+1).
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Figure 10.15. Labels in the LL case
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Figure 10.16. Pleating angles for 4-punctured spheres

A similar picture occurs in the RR case. Again there is a 4-valent vertex,
and reading the labels around that vertex we find that we need the formulas
yi = 1

2(2π − zi−1 − zi+1), and xi = 1
2(zi−1 − 2zi + zi+1).

In the LR and RL cases, there is not a single edge all of whose labels we
can read off the diagram. In these cases, we find restrictions by considering
pleating angles. Pleating angles α1, α2, and α3 are the angles determin-
ing the bending of the pleated 4-punctured sphere. They are shown for
4-punctured spheres labeled L and R in figure 10.16.

Lemma 10.19. If the angle structure gives a Euclidean structure on the
cusp, then it will be the case that pleating angles as in figure 10.16 satisfy
α1 + α2 − α3 = 0.

Proof. Exercise. �

To find an angle structure, we will assume this pleating condition holds
in the LR and RL case.

The LR labels are shown in figure 10.17. Note that the pleating angles
for the 4-punctured sphere at the bottom of the diagram are α1 = π − zi,
α2 = π−(2yi+zi+1), and α3 = π−zi−1. Thus the condition α1+α2−α3 = 0
implies yi = 1

2(π+ zi−1− zi− zi+1). The pleating angles on the 4-punctured
sphere on the top of the diagram in figure 10.17 are α1 = π − (2xi + zi−1),
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Figure 10.17. Labels in the LR case

LL RR

xi
1
2(2π − zi−1 − zi+1) 1

2(zi−1 − 2zi + zi+1)

yi
1
2(zi−1 − 2zi + zi+1) 1

2(2π − zi−1 − zi+1)
zi zi zi

LR RL

xi
1
2(π − zi−1 − zi + zi+1) 1

2(π + zi−1 − zi − zi+1)

yi
1
2(π + zi−1 − zi − zi+1) 1

2(π − zi−1 − zi + zi+1)
zi zi zi
Table 10.1. Label conditions in terms of the zi

α2 = π − zi, and α3 = π − zi+1. Thus the pleating condition for this 4-
punctured sphere gives xi = 1

2(π − zi−1 − zi + zi+1). Conditions can be
obtained in a similar manner in the RL case.

In summary, away from hairpin turns, labels must satisfy the conditions
given in table 10.1.

Notice this allows us to express xi and yi in terms of zi−1, zi, and zi+1

alone. Note also that the sum of the angles xi + yi + zi = π in each case.
Finally, we claim that with the conditions in table 10.1, the angle sum

around each edge in N is 2π. To see this, note first that we have constructed
the angles so that the sum is 2π around 4-valent edges. We now check the
remaining edges. The angle sum around one such edge will be

zj−1 + 2xj +

k−1∑
i=j+1

2xi + 2xk + zk+1,

where j and k are indices of hinge tetrahedra, with j between LR and k
between RL, and j < k, and all 4-punctured spheres labeled R between
them; refer to figure 10.14. By the formulas in the tables, this is

zj−1+π−zj−1−zj+zj+1+

k−1∑
i=j+1

(zi−1−2zi+zi+1)+π+zk−1−zk−zk+1+zk+1.

This is a telescoping sum; all terms cancel except 2π, as desired.



176 10. TWO-BRIDGE KNOTS AND LINKS

z2 y2

x2

z2

x2

y2 y2

z2

x2

y2y2

z2

x2

y2

z2

y2

Figure 10.18. Labels from a hairpin turn

The angle sum around another such edge will be

zj−1 + 2yj +
k−1∑
i=j+1

2yi + 2yk + zk+1,

where j and k are hinge indices, with j between RL and k between LR,
and j < k, and all 4-punctured spheres are labeled L between them. Again
check that everything cancels except 2π.

We still need to consider the hairpin turns. With the gluing that comes
from a hairpin turn, labels are as shown in figure 10.18, for the LL case.
The cases RR, LR, RL are similar (exercise).

If we set z1 = 0, the interior angle in which the 4-punctured sphere
S2 is bent at the hairpin turn, then all the equations in table 10.1 hold,
depending on whether the hairpin turn occurs in the case LL, RR, LR, or
RL. It remains only to check the edge equations. For the edge at the sharp
bend, the equation will be identical to one of the previous equations, only
now with angle z1 = 0 included. The sum is still 2π. As for the final edges,
in the case S2 is R, these contribute 2z2 + 4x2 + . . . , where the remainder
of terms depends on whether the hairpin turn occurs at a hinge or not. In
either case, the sum is 2π. Similarly when S2 is L, and similarly for the
outside hairpin turn that occurs at the 4-punctured sphere SC−1.

We are now ready to show the space of angle structures is nonempty.

Proof of proposition 10.18. We show the space of angle structures
is nonempty by showing there is a choice of (z1, z2, . . . , zC−2, zC−1) with
z1 = zC−1 = 0, all other zi ∈ (0, π), and xi, yi ∈ (0, π). For this to hold, the
equations in table 10.1 tell us that:

(10.1)

{
2zi < zi−1 + zi+1 if i is not a hinge (LL or RR)

|zi+1 − zi−1| < π − zi if i is a hinge index (LR or RL)

The first equation is called the convexity equation. The second is the
hinge equation.
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We find a point with all zi ∈ (0, π) that satisfies convexity and hinge
equations. Namely, let z1 = zC−1 = 0. For each hinge index i, let zi = π/3.
Between hinge indices, choose a sequence to satisfy the convexity equations.
For example, if j, k are consecutive hinge indices with j < k, then for all
j ≤ i ≤ k, take

zi =
π

3
− 2(i− j)(k − i)

(k − j)2
.

Then the sequence (z1, z2, . . . , zC−2, zC−1) satisfies all required conditions.
Letting xi and yj be as in the tables, this gives an angle structure. �

Corollary 10.20. Let K[an−1, . . . , a1] be a 2-bridge knot or link with
ai > 0 for all i, or ai < 0 for all i, and |a1| ≥ 2 and |an−1| ≥ 2. Assume
also that n ≥ 3, so there are at least two twist regions in the diagram of K
given by the denominator closure of the rational tangle T (0, an−1, . . . , a1).
Then S3 −K is hyperbolic.

Proof. The link complement S3−K admits a triangulation as in propo-
sition 10.13. Then proposition 10.18 implies the set of angle structures on
this triangulation is nonempty. By theorem 8.28 in chapter 8, any manifold
admitting an angle structure must also admit a hyperbolic structure. �

Corollary 10.20 is a special case of a stronger theorem due to Menasco de-
termining when any alternating knot or link is hyperbolic [Menasco, 1984].
We will return to that theorem in chapter 11.

Remark 10.21. Note that corollary 10.20 will also follow from theo-
rem 10.17, which we will finish proving in the next section, by an appeal
to theorem 9.13 (volume and angle structures). While the proof of corol-
lary 10.20 given above appears short, in fact recall that the proof of the-
orem 8.28 requires the difficult hyperbolization theorem of Thurston, the-
orem 8.17, whose proof is beyond the scope of this book. By contrast,
finishing the proof of theorem 10.17 requires only calculus and some calcu-
lations, and we go through it in the next section. Moreover, when finished,
we will additionally know that the hyperbolic structure on 2-bridge links
arises from a geometric triangulation of the link complements, and that tri-
angulation can be explicitly described. Thus a proof of corollary 10.20 using
the calculations in the next section is in many ways a “better” proof, worth
finishing.

10.4. Maximum in interior

In this section we conclude the proof of theorem 10.17, by proving the
following.

Proposition 10.22. For the 2-bridge links of proposition 10.18, the
volume functional V : A(T )→ R cannot have a maximum on the boundary
of the space of angle structures.
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Remark 10.23 (Summary of proof). The proof is given by a series of
lemmas and calculations, and is quite technical. However, the idea of the
proof is straightforward. First, we show that we can use the conditions on
angle structures obtained in table 10.1; this is done in lemma 10.24. We
then assume the maximum occurs on the boundary. Using the conditions
of table 10.1, we find restrictions on the tetrahedra that arise; this is done
in lemma 10.25. Finally, we show that in all cases that remain there is a
path from the purported maximum on the boundary of the space of angle
structures to the interior for which the directional derivative of V is strictly
increasing. This contradicts the fact that the boundary point is a maximum.

Let K be a 2-bridge knot or link as in proposition 10.18. To obtain angle
structures on S3−K, we made some simplifying assumptions in the proof of
proposition 10.18. Namely, when constructing the triangulation T , we had
two tetrahedra T 1

i and T 2
i at each level, and we assumed that the angles

on the two tetrahedra agreed. This led to the calculations of the previous
section.

Lemma 10.24. The maximum of the volume functional V : A(T ) → R
must occur at a point for which the angles (x1

i , y
1
i , z

1
i ) of T 1

i agree with those
(x2
i , y

2
i , z

2
i ) of T 2

i , for all i, where T 1
i and T 2

i are the two tetrahedra con-
structed at the i-th level.

Proof. Suppose the volume is maximized at an angle structure A for
which angles of T 1

i and T 2
i do not agree. Because of the symmetry of the

construction of T , note that we obtain a new angle structure A′ by swapping
angles of T 1

i with the corresponding angles of T 2
i , for all tetrahedra of A.

Note that since A and A′ contain isometric ideal tetrahedra, V(A) = V(A′).
Then A and A′ are distinct angle structures, and the volume is maximized
on both.

By theorem 9.9, the volume functional is strictly concave down on A(T ).
Thus if the volume obtains its maximum in the interior, then that maximum
is unique, and the fact that V(A) = V(A′) gives an immediate contradiction
in this case. If A lies on the boundary, then A′ also lies on the boundary.
Because A(T ) is convex (proposition 9.11), the line between A and A′ lies
in A(T ). But then along this line, the second directional derivative in the
direction of the line is strictly negative, which implies the maximum cannot
occur at the endpoints. This is a contradiction. �

By lemma 10.24, we may assume angles of T 1
i and T 2

i agree. Thus we
may use the conditions on angles in table 10.1 that we calculated in the
previous section to prove proposition 10.22.

Now assume that the maximum of V does occur on the boundary of the
space of angle structures A(T ). Then there will be a flat tetrahedron (or
more accurately, a pair of flat tetrahedra). We will slowly narrow in on what
type of tetrahedron it is, and where it occurs in the triangulation.
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Note we will switch notation slightly. Rather than refering to the two
tetrahedra between Si and Si+1 as T 1

i and T 2
i , we will simply refer to such

a tetrahedron by ∆i. Because the angles of T 1
i and T 2

i can be assumed to
agree by lemma 10.24, this will simplify our notation.

Lemma 10.25. Suppose the maximum of the volume functional occurs
on the boundary of A(T ).

(1) Then there exists a flat tetrahedron in the triangulation of the 2-
bridge link.

(2) The flat tetrahedron is not adjacent to any other flat tetrahedra.
(3) The flat tetrahedron is not adjacent to a hairpin turn.
(4) The flat tetrahedron occurs at a hinge, and satisfies zi = π, and for

the two adjacent tetrahedra, zi−1 = zi+1.
(5) If some tetrahedron ∆i is type LL or RR, then ∆i−1 and ∆i+1

cannot both be flat.

Proof. By proposition 9.19, if the volume takes its maximum at an
angle structure for which a tetrahedron has an angle equal to 0, then it must
have two angles equal to 0 and one equal to π. This is a flat tetrahedron.
Because we are assuming the maximum is on the boundary, there must be
a flat tetrahedron in the triangulation, say tetrahedron ∆i is flat, where
2 ≤ i ≤ C − 2. This proves item (1).

There are three cases for the angles: (xi, yi, zi) can equal (0, 0, π), (0, π, 0),
or (π, 0, 0). There are also four possibilities for the tetrahedron: type LL,
RR, LR, or RL. The equations of table 10.1 give us angles of adjacent
tetrahedra in all cases, and an analysis of these will lead to the conclusions
of the lemma.

Case (xi, yi, zi) = (0, 0, π).

LL, RR: Equations of table 10.1 imply

0 =
1

2
(2π − zi−1 − zi+1), which implies zi−1 = zi+1 = π.

In this case, both adjacent tetrahedra must be flat.
LR, RL: Equations of table 10.1 imply

0 =
1

2
(zi+1 − zi−1), or zi−1 = zi+1.

Note in this case, it is not necessarily true that both adjacent tetra-
hedra are flat, but if one is flat then so is the other.

Case (xi, yi, zi) = (0, π, 0). .

LL: 0 = 1
2(2π − zi−1 − zi+1) implies zi−1 = zi+1 = π.

RR: 0 = 1
2(zi−1 + zi+1) implies zi−1 = zi+1 = 0.

LR: 0 = 1
2(π − zi−1 + zi+1) implies π + zi+1 = zi−1. Since angles lie in

[0, π], it follows that zi+1 = 0 and zi−1 = π.
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RL: Similar to the last case, zi+1 = π and zi−1 = 0.
For all types of tetrahedra in this case, the the two tetrahedra
adjacent to ∆i are flat.

Case (xi, yi, zi) = (π, 0, 0).

LL: Equations of table 10.1 imply zi−1 = zi+1 = 0.
RR: zi−1 = zi+1 = π.
LR: zi−1 = 0, zi+1 = π.
RL: zi+1 = 0, zi−1 = π.

Again this shows that the two adjacent tetrahedra are both flat in
this case.

In all cases, if two adjacent tetrahedra are flat, then the next adjacent
tetrahedron is also flat. It follows that if there are two adjacent flat tetrahe-
dra, then all tetrahedra are flat, and the structure has zero volume, which
cannot be a maximum for the volume. Thus we cannot have two adjacent
flat tetrahedra. This proves item (2).

Moreover, the only case that does not immediately imply multiple adja-
cent flat tetrahedron is the first case, with zi = π, for the hinge tetrahedra
RL or LR, and the calculation above gives the relationship zi−1 = zi+1,
proving item (4).

If the tetrahedron is adjacent to a hairpin turn, then i = 2 or i = C − 2,
and zi = π. We also have z1 = 0 and zC−1 = 0, hence in either case the
equations above imply that a next adjacent tetrahedron, corresponding to
z3 or zC−3, is flat, and thus all tetrahedra are flat, contradicting item (2).
This proves (3).

Now suppose ∆i−1 and ∆i+1 are flat. By the previous work, we know
zi−1 = zi+1 = π. If ∆i is type LL, the equations of table 10.1 imply
xi = 1

2(2π − π − π) = 0, so ∆i is flat. Similarly if ∆i is of type RR, then
yi = 0 and ∆i is flat. But then we have three adjacent flat tetrahedra,
contradicting item (2). This proves item (5). �

We now know that any flat tetrahedron occurring in a maximum for V
on the boundary has a very particular form. To finish the proof of proposi-
tion 10.22, we will show that the maximum cannot occur in the remaining
cases. For the argument, we will find a path through the space of angle
structures starting at the purported maximum for V on the boundary, and
then show that the derivative at time 0 in the direction of this path is strictly
positive. This will contradict the fact that the point is a maximum.

The paths we consider adjust the angles of the flat tetrahedron ∆i by

(xi(ε), yi(ε), zi(ε)) = ((1 + λ)ε, (1− λ)ε, π − 2ε),

where ε → 0 and λ will be a carefully chosen constant. In such a path,
we will leave as many angles unchanged away from the i-th tetrahedron as
possible. However, the equations in table 10.1 imply that many angles of
adjacent tetrahedra must change with ε as well.
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Recall from lemma 9.15 that the derivative of the volume functional in
the direction of a vector w = (w1, . . . , wn) at a point a = (a1, . . . , an) is

∂V
∂w

=

3n∑
i=1

−wi log sin ai.

The terms of the sum are grouped into threes, with each group corresponding
to a single tetrahedron, with derivative coming from theorem 9.9.

Lemma 10.26. Let γ(t) be a path through A(T ) with the angles of the
i-th tetrahedron ∆i in γ(t) satisfying (xi, yi, zi) = ((1 +λ)t, (1−λ)t, π− 2t).
Then the derivative of the volume of ∆i along this path at t = 0 satisfies

d vol(∆i)

dt

∣∣∣∣
t=0

= log

(
4

1− λ2

(
1− λ
1 + λ

)λ)
.

Proof. By theorem 9.9, the derivative in the direction of γ′(0) = w =
((1 + λ), (1− λ),−2) is

∂ vol

∂w
= lim

t→0

[
− (1 + λ) log sin((1 + λ)t)− (1− λ) log sin((1− λ)t)

+ 2 log sin(π − 2t)
]
.

Using the Taylor expansion sin(At) = At near t = 0, this becomes

∂ vol

∂w
lim
t→0

[
− (1 + λ) log((1 + λ)t)− (1− λ) log((1− λ)t) + 2 log(2t)

]
= log

(
4

(1 + λ)(1− λ)

(
1− λ
1 + λ

)λ)
�

We denote the location of a flat tetrahedron by a vertical line:

. . . LL|RR . . . .

By lemma 10.25, a vertical line can only appear at a hinge: L|R or R|L; at
least two letters lie between consecutive vertical lines; and patterns L|RR|L
and R|LL|R cannot occur. The remaining cases are LR|LR and RL|RL,
which we deal with simultaneously; RR|LR and LL|RL and their reversals
RL|RR and LR|LL; and RR|LL and LL|RR.

In all cases, we find a path γ(t) through A(T ) with γ(0) a point on the
boundary with the flat tetrahedron specified in the given case.

Case LR|LR and RL|RL: Begin with the LR|LR case. Let ∆i denote
the flat tetrahedron, with (xi, yi, zi) = (0, 0, π). We take a path γ(t) to
satisfy (xi(t), yi(t), zi(t)) = (t, t, π − 2t), i.e. λ = 0 in lemma 10.26, and
we will keep as many other angles constant as possible. The formulas in
table 10.1 imply that angles of tetrahedra ∆i−1 and ∆i+1 must also vary,
as in the following table. In the table, we let zi−1 = zi+1 = w (required by
lemma 10.25(4)), and we let u = zi−2, v = zi+2.
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Angle ∆i−1 ∆i ∆i+1

x 1
2(2π − u− w − 2t) t 1

2(2t− w + v)
y 1

2(u− w + 2t) t 1
2(2π − 2t− w − v)

z w π − 2t w

Thus the derivative vector to the path at time t = 0 is

γ′(t) = (0, . . . , 0,−1, 1, 0,︸ ︷︷ ︸
∆i−1

1, 1,−2,︸ ︷︷ ︸
∆i

1,−1, 0,︸ ︷︷ ︸
∆i+1

0, . . . , 0).

Hence the derivative of the volume functional in the direction of the path
is given by

dV
dt

∣∣∣∣
t=0

= log sin

(
1

2
(2π − u− w)

)
− log sin

(
1

2
(u− w)

)
+ log 4

− log sin

(
1

2
(v − w)

)
+ log sin

(
1

2
(2π − v − w)

)
= log

(
4 sin(u/2− w/2) sin(v/2− w/2)

sin(u/2 + w/2) sin(v/2 + w/2)

)
> 0.

Note this is strictly positive, hence the volume functional cannot have a
maximum at this boundary point. The calculation is similar for RL|RL.

Remaining cases: We will first take care of cases RR|LR and RR|LL.
As in the previous case, we will take a path such that the flat tetrahedron

∆i changes. This time, we will find a fixed λ such that angles of ∆i satisfy
(xi, yi, zi) = ((1− λ)t, (1 + λ)t, π − 2t) for t ∈ [0, ε], for some ε > 0. At time
t = 0, we require zi−1 = zi+1 = w, a constant. Set zi−2 = u and zi+2 = v,
also constant. Additionally, adjust zi−1 so that at time t, zi−1 = w−2λt. In
the argument below, we will assume that i−2 6= 1, so there is a tetrahedron
∆i−2. We also need to consider the case i − 2 = 1; we will do this at the
very end of the proof. Assuming i− 2 6= 1, the angles that are modified are
shown in the tables below for the cases RR|LR and RR|LL.

R R | L R
Angle ∆i−2 ∆i−1 ∆i ∆i+1

x A+ 1
2w − λt xi−1(t, λ) (1 + λ)t xi+1(t, λ)

y A′ − 1
2w + λt 1

2(π − 2t) (1− λ)t 1
2(2t− w + v)

z u w − 2λt π − 2t w

R R | L L
Angle ∆i−2 ∆i−1 ∆i ∆i+1

x A+ 1
2w − λt xi−1(t, λ) (1 + λ)t 1

2(π + 2t− v)
y A′ − 1

2w + λt 1
2(π − 2t) (1− λ)t y′i+1(t, λ)

z u w − 2λt π − 2t w
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Here A and A′ are constants, xi−1(t, λ) = 1
2(u − 2w + 4λt + π − 2t),

xi+1(t, λ) = 1
2(2π − 2t− w − v), and y′i+1(t, λ) = 1

2(π − 2t− 2w + v).
If i > 3, we may use the table to compute the derivative in the direction

of the path, and find in the case RR|LR, dV/dt|t=0 equals:
(10.2)

dV
dt

∣∣∣∣
t=0

= log

(
4

1− λ2

sin(v2 + w
2 )

sin(v2 −
w
2 )

sinxi−1

sin yi−1

(
1− λ
1 + λ

· sinxi−2

sin yi−2

sin2 zi−1

sin2 xi−1

)λ)
.

And in the case RR|LL, dV/dt|t=0 equals:
(10.3)

dV
dt

∣∣∣∣
t=0

= log

(
4

1− λ2

sinxi−1

sin yi−1

sin yi+1

sinxi+1

(
1− λ
1 + λ

· sinxi−2

sin yi−2

sin2 zi−1

sin2 xi−1

)λ)
.

Lemma 10.27. Let X, Y be positive constants, and let

f(λ) = log

(
4

1− λ2
X

(
1− λ
1 + λ

Y

)λ)
.

Then f has a critical point at λ = (Y − 1)/(Y + 1), and f takes the value
log(X(Y + 1)2/Y ) at this point.

Proof. Calculus. �

Now apply lemma 10.27 to equation (10.2) and equation (10.3), choosing
λ to be the value given by that lemma at time t = 0. For this value of λ,
we obtain the following:

The derivative dV/dt|t=0 in the case RR|LR equals:

log

(
sin(v2 + w

2 )

sin(v2 −
w
2 )

sinxi−1

sin yi−1

(
1 +

sinxi−2

sin yi−2

sin2 zi−1

sin2 xi−1

)2
sin yi−2

sinxi−2

sin2 xi−1

sin2 zi−1

)

≥ log

(
sinxi−1

sin yi−1

(
1 +

sinxi−2

sin yi−2

sin2 zi−1

sin2 xi−1

)2
sin yi−2

sinxi−2

sin2 xi−1

sin2 zi−1

)
.

(10.4)

The derivative dV/dt|t=0 in the case RR|LL equals:
(10.5)

log

(
sinxi−1

sin yi−1

sin yi+1

sinxi+1

(
1 +

sinxi−2

sin yi−2

sin2 zi−1

sin2 xi−1

)2
sin yi−2

sinxi−2

sin2 xi−1

sin2 zi−1

)
.

The remaining quantities sin a/ sin b are geometric: by the law of sines,
they give a ratio of lengths of triangles, and the triangles are those from our
cusp triangulation, as in figure 10.14.

Lemma 10.28. In the case RR|L, let P , Q, T be the lengths of segments
on the middle zigzag R, with P opposite the angle xi−1, Q opposite the angle
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R

L

zi−1

yi−1 xi−1
R

zi−1

yi−1
xi−1

P

T

Q

π0

0
0 π

0

xi−2

yi−2

Q′P ′
T ′

P ′

Figure 10.19. Segments of length P , Q, and T shown on
the zigzag corresponding to the first R after a flat hinge tetra-
hedron. For the RR|LL case, segments of length P ′, Q′ and
T ′ also shown on the first L zigzag after the flat hinge tetra-
hedron.

yi−1 and T opposite the angle zi−1, as in figure 10.19. Then the following
hold:

sinxi−2

sin yi−2

sin2 zi−1

sin2 xi−1
=
T

P
,

sinxi−1

sin yi−1
=
P

Q
.

Proof. The equations follow from the law of sines. �

Lemma 10.29. Suppose there is a subword L|RkL with k ≥ 2. Let Q,
P , and T be lengths of segments of the zigzag corresponding to the first R,
with P and T adjacent to the angle labeled z = π on the hinge tetrahedron
L|R. Then P + T > Q.

Similarly, if there is a subword R|LkR with k ≥ 2, and Q′, P ′, and T ′

denote the lengths of the segments of the zigzag corresponding to the first L,
with P ′ and T ′ adjacent to the angle z = π on the hinge tetrahedron R|L,
then P ′ + T ′ > Q′.

The labels P , Q, and T are illustrated in figure 10.19. In the case there
are at least two L’s at the top of the figure, P ′, Q′ and T ′ will be labeled as
shown there as well.

Proof. [Guéritaud, 2006, Lemma 8.2]. �

Now we can show in the RR|LR case the derivative dV/dt|t=0 is positive.
From equation (10.4), we obtain

dV
dt

∣∣∣∣
t=0

≥ log

(
P

Q

(
1 +

T

P

)2 P

T

)
= log

(
P + T

T
· P + T

Q

)
> log(1) = 0.

A similar calculation holds in the LL|RL case. By swapping the indices
i−1, i+1, and i−2, i+2, the same argument shows the derivative is strictly
positive in the RL|RR and LR|LL cases, provided i+ 2 is not the index of
a hairpin turn.
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We now finish the RR|LL case.

Lemma 10.30. In the RR|LL case, with P ′, Q′, and T ′ as in figure 10.19,
P ′/T ′ = T/P , and sin(yi+1)/ sin(xi+1) = P ′/Q′.

Proof. By lemma 10.25, item (5), there is no flat tetrahedron either
directly before or directly after the sequence RR|LL, so the angles of ∆i−2,
∆i−1, ∆i+1, and ∆i+2 are all positive. Thus the parameter w can vary
freely in an open interval when t = 0. Since the volume is maximized, the
derivative with respect to w satisfies

dV
dw

∣∣∣∣
t=0

= log

(√
sinxi−2

sin yi−2
· sin zi−1

sinxi−1
· sin zi+1

sin yi+1
·

√
sin yi+2

sinxi+2

)
= 0.

Thus
sin yi−2 sin2 xi−1

sinxi−2 sin2 zi−1
· sin2 yi+1 sinxi+2

sin2 zi+1 sin yi+2
= 1.

Using an expanded version of figure 10.19, one can check (exercise) that

sin yi−2 sin2 xi−1

sinxi−2 sin2 zi−1
=
P

T
, and

sin2 yi+1 sinxi+2

sin2 zi+1 sin yi+2
=
P ′

T ′
.

This shows P ′/T ′ = T/P .
Similarly using figure 10.19, one can check that sin(yi+1)/ sin(xi+1) =

P ′/Q′. �

By lemma 10.30 and equation (10.5), we find that in the RR|LL case,

dV
dt

∣∣∣∣
t=0

= log

(
P

Q

P ′

Q′

(
1 +

T

P

)2 P

T

)

= log

(
P

Q

(
1 +

T

P

)
P ′

Q′

(
1 +

P ′

T ′

)
T ′

P ′

)
= log

(
P + T

Q
· P
′ + T ′

Q′

)
> log(1) = 0.

A similar calculation takes care of the LL|RR case.
So far, we have argued only for i > 3. It remains to consider what

happens when i = 3. In this case, i − 2 = 1 is the index of a hair-
pin turn, and the terms sin y1/ sinx1 disappear from the computations of
dV/dt in equation (10.2) and equation (10.3). We have a result similar to
lemma 10.29: RaL is a tessellated Euclidean triangle, and lengths still be-
have as in lemma 10.29 to give the same result; see [Guéritaud, 2006,
Lemma 1.5].

This concludes the proof of proposition 10.22. �

We now assemble the pieces to obtain the stronger result of theorem 10.17.
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Proof of theorem 10.17. Let K be a knot or link complement with
a reduced alternating diagram with at least two twist regions. Let T be
the triangulation of S3−K described in this chapter. By proposition 10.18,
the space of angle structures A(T ) is nonempty. By proposition 10.22, the
volume functional V : A(T )→ R cannot have a maximum on the boundary
of the space of angle structures. It follows that the maximum of V is on
the interior of the space of angle structures. Let A ∈ A(T ) denote this
critical point. Thus by theorem 9.13 (volume and angle structures), the
ideal hyperbolic tetrahedra obtained from the angle structure A give S3−K
a complete hyperbolic structure. Note since A lies in the interior, the ideal
hyperbolic tetrahedra it determines are all positively oriented, as claimed.

�

10.5. Exercises

Exercise 10.1. Sketch rational tangles and diagrams of 2-bridge links
associated to the following continued fractions: [3, 2], [0, 3, 2], [1, 3, 2].

Exercise 10.2. Continued fractions. Show every rational number has
a continued fraction expansion p/q = [an, an−1, . . . , a1] such that if i < n,
then ai 6= 0, and such that if p/q > 0, then each ai ≥ 0, while if p/q < 0,
then each ai ≤ 0.

Exercise 10.3. Prove lemma 10.9. That is, show that if K[an−1, . . . , a1]
is a 2-bridge knot or link, then we may assume that |an−1| ≥ 2 and |a1| ≥ 2.

Exercise 10.4. Work through the identification of tetrahedra at the
innermost crossing. Prove that faces of the innermost tetrahedra are glued
in pairs, two triangles of one tetrahedron glued to triangles of the opposite
tetrahedron. Why is there no need to consider both horizontal and vertical
crossings for the innermost crossing?

Exercise 10.5. In proposition 10.13, we require at least two twist re-
gions. Show that this requirement is necessary by showing that the con-
struction fails to give a triangulation of a knot or link with just one twist
region. What breaks down?

Exercise 10.6. This exercise asks you to consider hairpin turns.

(1) Prove if |an−1| ≥ 3, there is a 3-valent vertex of the cusp triangu-
lation.

(2) Prove all vertices aside from possibly a single vertex in a hairpin
turn must have valence at least four.

(3) If |an−1| = 2, prove the vertex corresponding to the outside hairpin
turn may have arbitrarily high valence.

Exercise 10.7. Use the methods of this chapter to find the form of the
cusp triangulation for the twist knot J(2, n). How many tetrahedra are in
its decomposition?
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Exercise 10.8. Find the form of the cusp triangulation for J(k, `),
where one of k, ` is even. How many tetrahedra are in its decomposition?

Exercise 10.9. Find the form of the cusp triangulation of a 2-bridge
knot with exactly three twist regions.

Exercise 10.10. Prove lemma 10.19: that pleating angles as in fig-
ure 10.16 satisfy α1 + α2 − α3 = 0 when the cusp is Euclidean.

Exercise 10.11. Determine the labels of the hairpin turns of the form
RR, LR, RL, similar to figure 10.18.

Exercise 10.12. In the cases RR|LR and RR|LL, compute the deriv-
ative dV/dt|t=0 and check that it agrees with the formulas given in equa-
tion (10.2) or equation (10.3).

Exercise 10.13. Give the proof of lemma 10.29.

Exercise 10.14. Work through the geometric details of lemma 10.30:
Sketch the zigzag labeled L at the top of figure 10.19, along with angles at
its corners, and show that:

sin yi−2 sin2 xi−1

sinxi−2 sin2 zi−1
=
P

T
, and

sin2 yi+1 sinxi+2

sin2 zi+1 sin yi+2
=
P ′

T ′
.

Also show sin(yi+1)/ sin(xi+1) = P ′/Q′.

Exercise 10.15. Go carefully through the proof of cases RR|LR and
RR|LL when the index of the flat tetrahedron is i = 3.




