
CHAPTER 4

Hyperbolic structures and triangulations

In chapter 3, we learned that hyperbolic structures lead to developing
maps and holonomy, and that the developing map is a covering map if and
only if the hyperbolic stucture is complete.

In this chapter, we wish to compute explicit complete hyperbolic struc-
tures on 3-manifolds, again with our primary examples being knot comple-
ments. One of the most straightforward ways to find a hyperbolic structure
is to first triangulate the manifold, or subdivide it into tetrahedra, and then
to put a hyperbolic structure on each tetrahedron, ensuring the tetrahedra
glue to give a (PSL(2,C),H3)-structure whose developing map is complete.
This method of computing hyperbolic structures has been studied by many,
and in particular was implemented on the computer by J. Weeks as part of
his 1985 PhD thesis [Weeks, 1985]. Here we will describe the conditions
required to obtain a complete hyperbolic structure via triangulations, and as
usual, work through examples.

4.1. Geometric triangulations

In chapter 3, we defined topological and geometric polygonal decom-
positions of 2-manifolds. We can extend these notions to 3-manifolds by
considering decompositions into ideal polyhedra. In chapter 1, we obtained
topological ideal polyhedral decompositions for knot complements. For many
applications, including those later in this chapter, it simplifies matters greatly
to consider decompositions into ideal tetrahedra.

Definition 4.1. Let M be a 3-manifold. A topological ideal triangulation
of M is a combinatorial way of gluing truncated tetrahedra (ideal tetrahedra)
so that the result is homeomorphic to M . Truncated parts will correspond
to the boundary of M . As before, a gluing should take faces to faces, edges
to edges, etc.

Example 4.2. The figure-8 knot has a topological ideal triangulation
consisting of two ideal tetrahedra, as we saw in exercise 1.7 in chapter 1.

For a given knot complement, it is relatively easy to find topological ideal
triangulations. For example, starting with any polyhedral decomposition,
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48 4. HYPERBOLIC STRUCTURES AND TRIANGULATIONS

choose an ideal vertex v and cone to that vertex: i.e. add edges between v
and all other ideal vertices, between any two edges meeting v add an ideal
triangle (adding an additional edge opposite v if necessary), and between
three triangles meeting v add an ideal tetrahedron. Split off the resulting
tetrahedra. This reduces the collection of polyhedra to a collection with at
least one fewer ideal vertex. Hence after repeating a finite number of times,
we are left with a collection of topological tetrahedra.

4.1.1. An extended example: the 61 knot. We work out an example
for the 61 knot carefully. We will see how to decompose the complement into
five tetrahedra. (In fact, the complement of the 61 knot can be decomposed
into four tetrahedra, but we won’t bother simplifying further here.)

We start with a polyhedral decomposition of the 61 knot. We use the
decomposition obtained using the methods of chapter 1. The result is shown
in figure 4.1, with the knot on the left, the top polyhedron in the center, and
the bottom polyhedron on the right. Recall all polyhedra are viewed from
the outside; that is the ball of the polyhedron is behind the projection plane
in each figure. In this example, oriented edges are labeled 1 through 6.
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Figure 4.1. Left to right: The 61 knot, the top polyhedron,
the bottom polyhedron

Collapse all bigons, identifying edges 1 and 2, and 3 through 6. New
edges and orientations are shown in figure 4.2.
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Figure 4.2. Polyhedra for 61 knot with bigons collapsed

We cone the top polyhedron to the vertex in the center. This subdivides
faces C and D into triangles, shown in figure 4.3 in both top and bottom
polyhedra.
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Figure 4.3. A subdivision of faces C and D in the top
polyhedron (left) leads to a subdivision of the bottom (right)

Continuing the subdivision in the top polyhedron, two edges meeting in
the center vertex bound an ideal triangle; three triangles bound a tetrahedron.
Thus edges labeled 1, 7, 9 bound an ideal triangle E1; edges labeled 1, 8,
0 bound an ideal triangle E2. Triangles A, C1, D1, and E1 bound an ideal
tetrahedron, as do triangles B, C3, D3, and E2. When we split off these
tetrahedra a single tetrahedron remains. All tetrahedra making up the top
polyhedron are shown in figure 4.4.
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Figure 4.4. The top polyhedron splits into the three tetra-
hedra shown

Now we split the bottom polyhedron into tetrahedra. However, first,
observe in figure 4.3 that edges labeled 7 and 0 in the bottom polyhedron
run between the same two ideal vertices. Thus these two edges should be
flattened and identified in the bottom polyhedron. While we could do that
now in one step, we believe it is more geometrically clear how to flatten and
identify if we first cut off ideal tetrahedra from the bottom polyhedron.

So first, note there will be an ideal triangle E3 with edges labeled 4,
7, and 1, and this cuts off an ideal tetrahedron with sides A, B, C1, E3.
Similarly there is an ideal triangle E4 with edges 7, 9, and 4, cutting off an
ideal tetrahedron with sides C2, C3, E4, and D1. These two tetrahedra, as
well as the remnant of the bottom polyhedron, are shown in figure 4.5.

Notice that the object on the right of figure 4.5 is not a tetrahedron:
edges labeled 7 and 0 in that polyhedron form a bigon, which collapses to a
single edge which we label 7. When we do the collapse, the faces E4 and D2
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Figure 4.5. Splitting off two tetrahedra in the bottom polyhedron
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Figure 4.6. Five tetrahedra which glue to give the comple-
ment of the 61 knot

collapse to a single triangle, which we will label D2. The faces E3 and D3

also collapse to a single triangle, which we will label D3.
When we have finished, we have five tetrahedra that glue to give the

complement of the 61 knot. All five tetrahedra with their edges and faces
labeled are shown in figure 4.6.

4.1.2. Geometric ideal triangulations.

Definition 4.3. A geometric ideal triangulation of M is a topological
ideal triangulation such that each tetrahedron has a (positively oriented)
hyperbolic structure, and the result of gluing is a smooth manifold with a
complete metric.

As of the writing of this book, it is still an open question as to whether
every hyperbolic 3-manifold actually admits a geometric ideal triangulation.
It is known that every cusped hyperbolic 3-manifold can be decomposed into
convex ideal polyhedra [Epstein and Penner, 1988]: we will go through
this in chapter 14. However, subdividing this decomposition into tetrahedra
may create degenerate tetrahedra — actual topological tetrahedra (as opposed
to the object on the right of figure 4.5), but tetrahedra that are flat in the
hyperbolic structure on M . There are known examples of generalized spaces
with singularities that do not admit geometric triangulations [Choi, 2004].

4.2. Edge gluing equations

In chapter 3, we saw that a gluing of hyperbolic polygons has a hy-
perbolic structure if and only if the angle sum around each finite vertex
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is 2π (lemma 3.7). There are similar conditions for a gluing of hyperbolic
tetrahedra. We now need to consider gluing around an edge.

Let T be an ideal tetrahedron embedded in H3. Any ideal tetrahedron
has six edges. If we select any one, say e, we may choose an isometry of
H3 taking the endpoints of e to 0 and ∞, and sending a third vertex to
1 ∈ C ⊂ ∂∞H3. This choice uniquely determines the isometry. The fourth
vertex of T will be mapped to some z′ ∈ C. We may assume that z′ has
positive imaginary part, for if not, apply an isometry of H3 rotating around
the geodesic from 0 to ∞ and rescaling so that z′ maps to 1. In this case,
the image of 1 under this isometry will be a complex number with positive
imaginary part.

Definition 4.4. For an ideal tetrahedron T embedded in H3, and edge
e of that tetrahedron, define the number z(e) in C to be the complex number
with positive imaginary part obtained by applying the unique isometry of
H3 that takes the vertices of e to 0 and ∞, takes another vertex to 1, and
takes the final vertex of T to z(e). This is called the edge invariant of e.

Remark 4.5. Note that it is possible to map an ideal tetrahedron to
H3 so that three vertices map to 0, ∞, and 1, and the fourth maps to a
point on the real line. In this case, the tetrahedron produced does not have
a hyperbolic structure. If the fourth vertex is not 0 or 1, it is said to be
flat. If the fourth vertex is 0 or 1, it is degenerate. Similarly, a fourth vertex
mapped to infinity is a degenerate tetrahedron. An ideal triangulation of a
hyperbolic 3-manifold with flat or degenerate tetrahedra is not a geometric
ideal triangulation. When looking for geometric triangulations, we must
rule out such tetrahedra. Similarly, for geometric triangulations, all edge
invariants of all tetrahedra must have positive imaginary part. This ensures
the tetrahedra are positively oriented. Finally, the procedure above always
chooses an edge invariant with positive imaginary part. However, when we
glue many tetrahedra together, at times it is impossible to simultaneously
choose all edge invariants to have positive imaginary part; some may have
negative negative imaginary part. Such a tetrahedron is a negatively oriented
tetrahedron.

Edge invariants of an ideal tetrahedron determine each other, in the
following way.

Lemma 4.6. Let T be an ideal tetrahedron with edge e1, mapped so that
vertices of T lie at ∞, 0, 1, and z(e1) (so endpoints of e1 lie at 0 and ∞).
Then T has the following additional edge invariants.

• The edge e′1 opposite e1, with vertices 1 and z(e1), has edge invariant
z(e′1) = z(e1).
• The edge e2 with vertices ∞ and 1 has edge invariant

z(e2) =
1

1− z(e1)
.
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Figure 4.7. Edge invariants

• The edge e3 with vertices ∞ and z(e1) has edge invariant

z(e3) =
z(e1)− 1

z(e1)
.

Thus we have the following relationships for these edge invariants.

z(e1)z(e2)z(e3) = −1, and 1− z(e1) + z(e1)z(e3) = 0

Proof. The proof is obtained by considering isometries of H3 that move
the different edges of T onto the geodesic from 0 to ∞. For ease of notation,
we set z = z(e1).

For the first part, we label one more edge. Let e′3 be the edge of T
opposite e3. So e′3 has endpoints 0 and 1. Note there is a geodesic γ in H3

that meets the edges e3 and e′3 orthogonally. An elliptic isometry rotating
about γ by angle π maps 0 to 1 and 1 to 0, and maps ∞ to z and z to ∞,
thus it preserves T . It takes the edge e′1 with endpoints 1 and z to an edge
with endpoints 0 and ∞. Hence z(e′1) = z.

To determine z(e2), we apply a Möbius transformation fixing ∞, taking
1 to 0, and taking z to 1. This transformation is given by

w 7→ w − 1

z − 1
.

It sends 0 to −1/(z − 1). Thus z(e2) = 1/(1− z).
As for the edge e3 running from z to ∞, to determine its edge invariant

we apply a Möbius transformation fixing ∞, sending z to 0, and sending 0
to 1. This is given by

w 7→ w − z
−z .

It sends 1 to (1− z)/(−z). Thus z(e3) = (z − 1)/z. �

The three edge invariants of a tetrahedron are shown in figure 4.7.
Now consider a gluing of ideal tetrahedra. Fix an edge e of the gluing,

and let T1 be a tetrahedron which has edge e1 glued to e. Put T1 in H3

with the edge e1 running from 0 to ∞, with a third vertex at 1, and the
fourth vertex at z(e1), where z(e1) has positive imaginary part. The gluing
identifies each face of T1 with another face. Let F1 denote the face of T1
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Figure 4.8. Vertices of attached triangles.

with vertices 0, z(e1), and ∞. This is glued to a face F ′1 in some tetrahedron
T2, where the edge e2 in T2 glues to e.

Now, we could put T2 in H3 with vertices at 0, ∞, 1, and z(e2), but
since we’re gluing to T1, we want the face F ′1 to have vertices 0, ∞, and
z(e1) rather than vertices 0, ∞, and 1. Thus to do the gluing, we apply an
isometry of H3 fixing 0 and ∞, mapping 1 to z(e1). This takes the fourth
vertex of T2 to z(e1)z(e2).

Continue attaching tetrahedra counterclockwise around e. The next tetra-
hedron attached will have vertices 0, ∞, z(e1)z(e2), and z(e1)z(e2)z(e3) ∈ C.
See figure 4.8. Eventually one of the tetrahedra will be glued to T1 again.
The fourth vertex of the final tetrahedron will be at z(e1)z(e2) · · · z(en).

Theorem 4.7 (Edge gluing equations). Let M3 admit a topological ideal
triangulation such that each ideal tetrahedron has a hyperbolic structure. The
hyperbolic structures on the ideal tetrahedra induce a hyperbolic structure on
the gluing, M , if and only if for each edge e,∏

z(ei) = 1 and
∑

arg(z(ei)) = 2π,

where the product and sum are over all edges that glue to e.

Proof. The hyperbolic structure on the tetrahedra induces a hyperbolic
structure on M if and only if every point in M has a neighborhood isometric
to a ball in H3, by lemma 3.6. Consider a point on an edge. If it has a
neighborhood isometric to a ball in H3 then the sum of the dihedral angles
around the edge must be 2π. See figure 4.9. This sum of dihedral angles is∑

arg(z(ei)). Moreover there must be no nontrivial translation as we move
around the edge. Since the last face of the last triangle glues to the triangle
with vertices 0, 1, and ∞, this condition requires that

∏
z(ei) = 1.

Conversely, if we have
∏
z(ei) = 1 and

∑
arg(z(ei)) = 2π, then any

point on the edge under the gluing has a ball neighborhood isometric to a
ball in H3. �

The equations
∏
z(ei) = 1 (and restrictions

∑
arg(z(ei)) = 2π) are called

the edge gluing equations. We have one for each edge. However, since the
three edge invariants of a tetrahedron are all determined by a single edge
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Figure 4.9. Left: Angle sum must be 2π. Right: An example
of why this condition is important.
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Figure 4.10. The ideal tetrahedra of the figure-8 knot complement.

invariant, lemma 4.6, one ideal tetrahedron contributes at most one unknown
to the gluing equations.

Example 4.8 (Edge gluing equations for the figure-8 knot). The figure-8
knot decomposes into two ideal tetrahedra. Choose the two tetrahedra to
be regular. That is, all dihedral angles are π/3. We claim that this gives a
hyperbolic structure on the figure-8 knot complement.

We wish to find all such structures.
Thurston worked through this example in detail in his notes; we recall

his work here [Thurston, 1979, pages 50–52].
Figure 4.10 shows the two tetrahedra in the decomposition of the figure-8

knot complement, which we obtained in chapter 1. These tetrahedra come
from the two ideal polyhedra that glue to give the figure-8 knot complement
that we discussed in detail in chapter 1; see figure 1.8 and figure 1.11. The
tetrahedra differ from those in chapter 1 in the following ways. First, we have
collapsed the bigons. This gives two remaining edge classes, which we label
with one tick mark and with two tick marks. Second, in figure 1.8, we viewed
the top ideal polyhedron from the inside; that is, the ball of the polyhedron
lay above the plane of projection. To be more consistent in viewing both
top and bottom polyhedron, we have rotated our perspective such that now
both tetrahedra are viewed from the outside.

For each tetrahedron, we label each edge with a complex number zi
or wi, to denote the edge invariant associated with that edge. Note that
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Figure 4.11. Solutions to edge gluing equations for the
figure-8 knot complement are parametrized by the above
region.

opposite edges in a tetrahedron have the same edge invariant. We also have
relationships between z1, z2, and z3 as in lemma 4.6, and similarly for w1,
w2, and w3.

There are two edge classes in the tetrahedra in figure 4.10, labeled with
one or two tick marks on the edge. We obtain the edge gluing equations by
taking the product of edge invariants for all edges identified with each edge
class.

For the edge with one tick mark, we obtain the edge gluing equation

z2
1 z3w

2
1 w3 = 1.

For the edge with two tick marks,

z2
2 z3w

2
2 w3 = 1.

We set z1 = z and w1 = w. From lemma 4.6, the first edge gluing
equation gives

z2

(
z − 1

z

)
w2

(
w − 1

w

)
= 1,

or

(4.1) z (z − 1)w (w − 1) = 1.

Solving for z in terms of w:

z =
1±

√
1 + 4/(w(w − 1))

2
.

We need the imaginary parts of z and w to be strictly greater than 0. For
each value of w, there is at most one solution for z with positive imaginary
part. The solution exists provided that the discriminant 1 + 4/(w(w − 1)) is
not positive real. Thus solutions are parameterized by the region of C shown
in figure 4.11 (see also exercise 4.6).

Notice that

z = w = 3
√
−1 =

1

2
+

√
3

2
i



56 4. HYPERBOLIC STRUCTURES AND TRIANGULATIONS

is one solution to the equations. We will see that this gives a complete
hyperbolic structure on the complement of the figure-8 knot.

4.3. Completeness equations

Suppose now that M is a 3-manifold with torus boundary. In much of
this section, we will assume that M admits a topological ideal triangulation,
and moreover we have a solution to the edge gluing equations for this
triangulation, thus M admits a hyperbolic structure. We need to consider
cusps of the manifold to determine whether this is a complete structure or
not.

Definition 4.9. Let M be a 3-manifold with torus boundary. Define a
cusp, or cusp neighborhood of M to be a neighborhood of ∂M homeomorphic
to the product of a torus and an interval, T 2 × I. Define a cusp torus to be
a torus component of ∂M , or the boundary of a cusp.

A hyperbolic structure on M induces an affine structure on the boundary
of any cusp of M .

Theorem 4.10. Let M be a 3-manifold with torus boundary and hyper-
bolic structure, i.e. with (Isom(H3),H3)-structure. Then the structure on M
is complete if and only if for each cusp of M , the induced structure on the
boundary of the cusp is a Euclidean structure on the torus.

Proof. Exercise 4.7. Hint: the proof is very similar to that of the
analogous result in two dimensions, proposition 3.15. �

Definition 4.11. Let M have a topological ideal triangulation. If we
truncate the vertices of each ideal tetrahedron, we obtain a collection of
triangles, each of which lies on the boundary of a cusp. Edges of each triangle
inherit a gluing from the gluing of faces of the ideal tetrahedra. This gives a
triangulation of each boundary torus, which we call a cusp triangulation.

An example for the figure-8 knot is shown in figure 4.12. The truncated
ideal vertices give eight triangles, with labels a through h. These glue
together on the boundary of the cusp to give a triangulation of the torus
as shown. Note that the corner of each triangle is labeled with the edge
invariant of the tetrahedron corresponding to the edge meeting that corner.

Figure 4.12 shows a fundamental region of the cusp triangulation. By
tracing through gluings of cusp triangles, we may obtain the full developing
image of the cusp torus. Theorem 4.10 states that the original manifold is
complete if and only if the cusp tori are Euclidean, which will hold if and
only if the holonomy maps for each element of π1(T ) on each cusp torus T
are pure Euclidean translations, without rotation or scale.

We can determine if holonomy maps are Euclidean translations directly
from the cusp triangulation. Start with a triangle ∆ whose vertices we
may assume lie at 0, 1, and z(e1) in the complex plane C. Let α ∈ π1(T ).
Then the holonomy ρ(α) takes ∆ to a new triangle, which appears in the
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Figure 4.12. Finding the cusp triangulation of the figure-8
knot complement

developing image. The holonomy ρ(α) will be a Euclidean translation if and
only if the triangle side from 0 to 1 of ∆ is mapped to the side of a triangle
of length 1 pointing in the same direction, without rotation (or scale). To
determine whether this holds, we may follow the side of the triangle in the
developing image, and obtain exactly its rotation and scale by considering
the edge invariants that adjust its length and direction as it is adjusted in
the cusp triangulation, as in figure 4.8. This can be described efficiently in
the following way.

Definition 4.12. Suppose M has a topological ideal triangulation, and
let T be the boundary torus of a cusp of M . Let [α] ∈ π1(T ), so α is a loop
on T in the homotopy class of [α]. We associate a complex number H(α) to
α as follows.

First, orient the loop α on T . The loop α can be homotoped to run
through any triangle of the cusp triangulation of T monotonically, i.e. in
such a way that it cuts off a single corner of each triangle it enters. Denote
the edge invariants of the corners cut off by α by z1, z2, . . . , zn. Further
associate to each corner a value εi = ±1: if the i-th corner cut off by α lies
to the left of α, set εi = +1. If the corner lies to the right of α, set εi = −1.
Finally, set the value of H(α) to be

(4.2) H([α]) =

n∏
i=1

zεii
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Figure 4.13. Example for determining H([α])

Example 4.13. An example cusp is shown in figure 4.13. For this
example, the value of H(α) is given by

H(α) = z1 z
−1
2 z3 z4 z

−1
5 z−1

6 z7 z
−1
8 .

We will see that H is independent of homotopy class of α (exercise 4.11).
For this reason, we sometimes denote the complex number by H([α]), or
evaluate it on a homotopy class rather than a curve.

Example 4.14. For the figure-8 knot, there is a closed curve on the
cusp torus running from the left side of the triangle labeled a on the left of
figure 4.12 to the left side of the triangle labeled a on the right of that figure.
Call this curve α. Then we can compute:

H(α) = z3w
−1
2 z2w

−1
3 z3w

−1
2 z2w

−1
3 =

(
z2 z3

w2w3

)2

Another closed curve runs from the base of the triangle labeled a on the
left of figure 4.12 to the top of the triangle labeled h, also on the left of that
figure. Call this curve β. Then we have:

H(β) = z−1
2 w1 =

w1

z2
.

Proposition 4.15 (Completeness equations). Let T be the torus bound-
ary of a cusp neighborhood of M , where M admits a topological ideal tri-
angulation, and the ideal tetrahedra admit hyperbolic structures that satisfy
the edge gluing equations (theorem 4.7). Let α and β generate π1(T ). If
H(α) = H(β) = 1, then the ideal triangulation is a geometric ideal triangu-
lation, i.e. the hyperbolic structure on M induced by the hyperbolic structure
on the tetrahedra will be a complete structure.

The equations H(α) = 1 and H(β) = 1 are called the completeness
equations.

Proof of proposition 4.15. By theorem 4.10, it suffices to show that
the induced structure on T is Euclidean. To do so, it suffices to show that
the holonomy elements ρ(α) and ρ(β) are pure translations, with no rotation
and scale. Thus we will show ρ(α) and ρ(β) do not rotate or scale.
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Figure 4.14. A path of vectors in the proof of proposition 4.15

To show this, let ∆ be a triangle met by the curve α used in defining
the complex number H(α), and suppose α meets a side e1 of ∆. Let v be
a vector with length equal to the length of e1, pointing in the direction of
e1 such that the oriented curve α and the vector e1 are oriented according
to the right hand rule. This is true of the vector v shown on the far left of
figure 4.14.

The holonomy ρ(α) is Euclidean if and only if the image of v under ρ(α)
still has length v, and points in the same direction as v. We determine the
effect of holonomy by considering what happens to v in each triangle of the
cusp triangulation.

We may rotate v around a vertex of the triangle ∆ meeting e1, and scale,
so that the result lines up with a second edge e2 of the triangle, having
the same length and direction as e2. We know exactly how the rotation
and scale is determined when the vertex of the triangle is labeled with edge
invariant z1: if we rotate in a counterclockwise direction, v is adjusted by
multiplication by z1, as in figure 4.8. If we rotate in a clockwise direction, v
is adjusted by multiplication by 1/z1.

Now, our path α cuts off exactly one corner of each triangle it meets.
This defines a path of edges of triangles, namely, starting with v, at each
step we have a vector lying on the side of a triangle where α enters that
triangle. In this triangle, rotate through the corner cut off by α to produce
a new vector pointing in the direction of the side where α exits. An example
path of such vectors is shown in figure 4.14. When α returns to the initial
triangle ∆, the final vector of this path will be parallel to the image of ∆
under ρ(α). Then ρ(α) will be a Euclidean transformation if and only if the
final vector in the path has length and direction identical to that of v.

On the other hand, the final length and direction of the vector ρ(α)v is
given by the product of edge invariants at the corners of each triangle in the
path of edges, with edge invariant either multiplied or divided depending
on whether the rotation is in the counterclockwise or clockwise direction,
respectively. This is exactly the complex number H(α). Thus ρ(α) is
Euclidean if and only if H(α) = 1.
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The same argument applies to H(β) and ρ(β). Since the holonomy group
of the cusp is generated by ρ(α) and ρ(β), the cusp will be Euclidean if and
only if H(α) = H(β) = 1. �

Example 4.16. Returning to the example of the figure-8 knot, in exam-
ple 4.14, we found that completeness equations are given by

H(α) =

(
z2 z3

w2w3

)2

and H(β) =
w1

z2
.

Lemma 4.6 implies that these can be rewritten in terms of variables z and w
alone, as

H(α) =

(
1

1− z ·
z − 1

z
· 1− w

1
· w

w − 1

)2

=
(w
z

)2

and

(4.3) H(β) = w (1− z)
If the hyperbolic structure is complete, then by proposition 4.15, H(α) =

H(β) = 1, so z = w.
From equation (4.1), (z(z−1))2 = 1. From equation (4.3), z(z−1) = −1.

Hence the only possibility is z = w = 1
2 + i

√
3

2 .

4.4. Computing hyperbolic structures

Given a triangulation of a 3-manifold M with torus boundary, we may
determine a complete hyperbolic structure on M by solving the edge gluing
and completeness equations. However, note this amounts to solving a com-
plicated system of nonlinear equations. Consequently, it is difficult to use
these to find exact hyperbolic structures on infinite families of manifolds.

However in practice, topological triangulations, edge gluing equations,
and completeness equations can be found very efficiently by computer for
specific, finite examples. Resulting nonlinear system of equations can then be
solved numerically. The first software to find hyperbolic structures on knots
and 3-manifolds was the program SnapPea, written by Weeks [Weeks, 1985]
(see also [Weeks, 2005]). This program has allowed researchers to run ex-
periments on large classes of hyperbolic 3-manifolds, making observations
and testing conjectures, and has been influential in a great deal of results on
hyperbolic structures on knots and 3-manifolds. The SnapPea kernel is now
part of a program maintained by Culler, Dunfield, Goerner, and others, rein-
carnated as SnapPy, and available for free download [Culler et al., 2016].
This new program includes much additional functionality, and still remains
an excellent tool for research in hyperbolic knot theory.

One issue in the past with finding a hyperbolic structure via SnapPea
(SnapPy) is that it would only give a numerical approximation to a hyperbolic
structure, and there was no guarantee that the manifold would be actually
provably hyperbolic. This has been addressed in a few ways. The program
Snap [Coulson et al., 2000] deduces exact solutions from the numerical
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approximations, which can be used to prove hyperbolicity. In another
direction, Moser used analytic techniques to prove that a solution to edge
gluing and completeness equations exists in a small neighborhood of an
approximate solution [Moser, 2009]. In [Hoffman et al., 2016], interval
arithmetic is used to prove hyperbolic structures exist when a structure is
computed numerically. Thus using these tools, we can often prove that if
SnapPy computes a hyperbolic structure on a knot complement, then the
knot is indeed hyperbolic.

4.5. Exercises

Exercise 4.1. Write down the edge gluing equations (not completeness
equations) for the 61 knot, using the ideal tetrahedra of example 4.1.1.
Make appropriate substitutions such that your equations contain exactly one
variable per tetrahedron.

Exercise 4.2. Notice that for both the figure-8 knot complement and
for the 61 knot, we had exactly the same number of edges as tetrahedra in
the ideal triangulation.

(a) Prove that this will always be true. That is, prove that if M is any
3-manifold with (possibly empty) boundary consisting of tori, then
for any topological ideal triangulation of M , the number of edges
of the triangulation will always equal the number of tetrahedra.

(b) Since we have one unknown per ideal tetrahedra, part (a) implies
that the number of gluing equations will equal the number of un-
knowns. However, in fact the gluing equations are always redundant.
Prove this fact.

Exercise 4.3. In chapter 1, we found a polyhedral decomposition of
the 52 knot complement (without bigons). Split this into a topological ideal
triangulation of the knot complement.

Exercise 4.4. Using the ideal tetrahedra of exercise 4.3, or otherwise,
write down all edge invariants and all edge gluing equations, one variable
per tetrahedron.

Exercise 4.5. Find a topological ideal triangulation of the 63 knot, edge
invariants, and edge gluing equations.

Exercise 4.6. Check that figure 4.11 does indeed parametrize the space
of hyperbolic structures on the figure-8 knot complement. What is the
equation of the vertical ray shown in that picture?

Exercise 4.7. Prove theorem 4.10: the hyperbolic structure on M is
complete if and only if for each cusp of M , the induced structure on the
boundary of the cusp is a Euclidean structure on the torus.

Exercise 4.8. For the topological triangulation of the 52 knot of exer-
cise 4.3:
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(a) Find the triangulation of the cusp. Label a fundamental domain,
and meridian and longitude.

(b) Write down completeness equations.

Exercise 4.9. Find the cusp triangulation for the complement of the 61

knot from example 4.1.1.

Exercise 4.10. Find completeness equations for the 61 or 63 knot.

Exercise 4.11. Suppose M admits an ideal triangulation that satisfies
the edge gluing equations.

(a) In definition 4.12, we claimed that for any closed curve α in a torus
boundary component of ∂M , we could homotope α in such a way
that it cuts off a single corner of each triangle that it meets. Prove
this.

(b) Show that H([α]) is independent of the choice of α in the homotopy
class of [α]. In particular, if α is homotoped to run through different
triangles, the value of H([α]) is unchanged.

a

z1
z2

b c d a
efgh

w2

z1 z1 z1 z1z2z3 z3

w2w3 w3

a b c d

h g f e 0 1

Figure 4.15. Path of vectors going from e1, the oriented
edge from 0 to 1, to ρ(−α)(e1)

Exercise 4.12. In Thurston’s 1979 notes [Thurston, 1979], he com-
puted completeness equations for the figure-8 knot using a method similar
to our proof of proposition 4.15. Namely, he found a path of vectors from
an edge on a triangle ∆ to the same edge on ρ(−α)(∆) and ρ(β)(∆). His
path of vectors for ρ(β) agrees with ours. His path of vectors for ρ(−α) is
different from our path for ρ(α), and is shown in figure 4.15.

(a) Prove that the completeness equation obtained from Thurston’s
path of vectors is equivalent to our completeness equation.

(b) More generally, prove that if we replace our path of vectors used to
construct the complex number H([α]) by any other path of vectors
obtained by rotating around vertices of the cusp triangulation, with
same starting and ending vectors, then the equation we obtain from
multiplying (and dividing) by edge invariants corresponding to the
path of vectors gives a completeness equation that is equivalent to
H([α]) = 1.
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Exercise 4.13. What breaks down when you try to find triangulations
and edge gluing equations for non-hyperbolic knots and links, such as the
trefoil or the (2, 4)-torus link?

Exercise 4.14. Use the computer program SnapPy to determine which
of the knots with seven or fewer crossings admit a hyperbolic structure
[Culler et al., 2016]. For those that do admit a hyperbolic structure, use
SnapPy to find the cusp triangulation of the knot. Obtain a screen shot of
this information, which should include cusp triangles as well as a fundamental
parallelogram for the cusp.


