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CHAPTER 7

Twist knots and augmented links

In this chapter, we study a class of hyperbolic knots that have some of
the simplest geometry, namely twist knots. This class includes the figure-8
knot, the 52 knot, and the 61 knot that we have encountered so far. We also
generalize to give examples of hyperbolic knots and links whose geometry is
relatively explicit. This will equip us with many examples.

7.1. Twist knots and Dehn fillings

We first define twist knots and show that they have a geometric limit
that is a link complement.

Definition 7.1. A twist region of a diagram of a knot is a maximal
portion of the knot diagram where two strands twist around each other, as
in figure 7.1.

More precisely, recall that we may consider a diagram of a knot as a
4–valent graph with over–under crossing information at each vertex. A twist
region is a string of bigon regions in the diagram graph, arranged end–to–end
at their vertices, that is maximal in the sense that there are no additional
bigon regions meeting the vertices on either end. A single crossing adjacent
to no bigons is also a twist region. We will further restrict so that all twist
regions are alternating; if not there is an obvious simplification of the diagram
removing crossings from the twist region.

Figure 7.1. A twist region of a diagram

The condition that twist regions be maximal ensures that there is only
one way to put together exactly two twist regions in a diagram.

Definition 7.2. The twist knot J(2, n) is the knot with a diagram
consisting of exactly two twist regions, one of which contains two crossings,
and the other contains n ∈ Z crossings. The direction of crossing depends
on the sign of n.

Twist knots J(2, 2), J(2, 3), J(2, 4), and J(2, 5) are shown in figure 7.2.
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106 7. TWIST KNOTS AND AUGMENTED LINKS

Figure 7.2. Twist knots J(2, 2) (the figure–8 knot), J(2, 3)
(the 52 knot), J(2, 4) (the 61 or Stevedore knot), and J(2, 5)

Figure 7.3. Two diagrams of the Whitehead link

Definition 7.3. The Whitehead link is the link shown in figure 7.3. Note
the two links shown are isotopic.

We will show in proposition 7.6 that the complement of the Whitehead
link is hyperbolic.

Proposition 7.4. The complement of the twist knot J(2, n) is obtained
by Dehn filling the hyperbolic manifold isometric to the complement of the
Whitehead link.

Proof. The proof uses topological properties of the sphere S3 and the
solid torus. Recall first that the sphere S3 is the union of two solid tori
whose cores are linked exactly once, but each core alone is unknotted.

The diagram of the Whitehead link on the left of figure 7.3 has a com-
ponent at the bottom that is unknotted and does not cross itself. The
complement of this component in S3 is a solid torus. Note then that the
other component is a knot in a solid torus, as shown on the left of figure 7.4.

Now we apply a homeomorphism to the solid torus, which we view as
S1 ×D2. There is a homeomorphism given by slicing along a disk {x} ×D2

of the solid torus, rotating one full time, then gluing back together. This
homeomorphism is shown in the center of figure 7.4.

The homeomorphism replaces the original link in the solid torus by a link
with two additional crossings. By applying the homeomorphism repeatedly,
we see that the complement of the Whitehead link is homeomorphic to the
complement of the link with any even number of crossings encircled by the
unknotted component. In particular, it is homeomorphic to the complement
of the link J(2, 2k) ∪ U , where U is a single unknotted component. By the
Mostow–Prasad rigidity theorem (theorem 6.1), these link complements have
isometric hyperbolic structures.

To obtain the knot J(2, 2k), attach a solid torus to S3 − (J(2, 2k) ∪ U),
filling in U in a trivial way to give S3 − J(2, 2k). Thus J(2, 2k) is obtained
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Figure 7.4. The Whitehead link complement is homeomor-
phic to a knot in a solid torus, which we cut, twist, and reglue.
The result is homeomorphic to the complement of J(2, 2)∪U

pull ' ∼= ∼=

Figure 7.5. A sequence of homeomorphisms of the White-
head link complement

from a manifold isometric to the complement of the Whitehead link by Dehn
filling.

So far our proof only works for J(2, n) with n even. Now we consider the
case of the knot J(2, 2k + 1), with odd second component. We may isotope
the Whitehead link, starting with the diagram on the left of figure 7.3, to
reverse the two crossings at the top, and insert a crossing encircled by the
unknotted component at the bottom. This is shown in figure 7.5, left.

Following that figure, we may then reflect the diagram in the plane of
projection, reversing all the crossings. This is a homeomorphism of the
knot complement, hence an isometry. Now just as in the even case, we may
insert any even number of crossings into the two strands encircled by the
unknotted component. To obtain J(2, 2k+1), simply Dehn fill the unknotted
component in the obvious way. �

Corollary 7.5. The complement of the Whitehead link is a geometric
limit of S3 − J(2, n).

Proof. Because they are obtained by Dehn filling the complement of
the Whitehead link, all but finitely many link complements S3 − J(2, n) lie
in any given neighborhood of infinity in the Dehn surgery space for a cusp
of the complement of the Whitehead link. Theorem 6.24 implies that the
Whitehead link is therefore a geometric limit of these manifolds. �
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Figure 7.6. Shown is the boundary of an ideal octahedron
(one vertex at infinity). Pairing faces as shown gives the
complement of the Whitehead link

In order to study the geometry of twist knots, we study the geometry of
the geometric limit, the Whitehead link complement.

Proposition 7.6. The complete hyperbolic structure on the complement
of the Whitehead link is obtained by gluing faces of a regular ideal octahedron,
with the face pairings as shown in figure 7.6.

A regular ideal octahedron is the ideal octahedron in H3 with all dihedral
angles equal to π/2.

Proof. The fact that the Whitehead link complement is obtained by
face pairings of an ideal octahedron can be readily seen by applying the
methods of chapter 1 to the diagram of the Whitehead link on the right of
figure 7.3. After collapsing bigons, we obtain two ideal polyhedra with four
triangular faces and one quadrilateral face. Glue the quadrilaterals to obtain
an ideal octahedron. The form is shown in figure 7.6. We leave the details
for exercise 7.2.

In a regular ideal octahedron, all dihedral angles are π/2, so horospheres
intersect a neighborhood of each ideal vertex in a square. We need to check
that the face pairings give a hyperbolic structure in this case. Note first
that every point in the interior of an octahedron and in the interior of a
face of the octahedron has a neighborhood isometric to a ball in H3. We
need to show that each point on an edge also has such a neighborhood, and
then lemma 3.6 will imply that the gluing is a manifold with a (possibly
incomplete) hyperbolic structure.

Note first that each of the edges (there are three) is glued four times. Thus
the total angle around each edge will be 4π/2 = 2π. This is not quite enough
to show that each point on an edge has a neighborhood isometric to a ball in
H3, because composing the gluings around an edge may introduce nontrivial
translation or scale. To show that this does not happen, consider each end of
an ideal edge within a cusp. Any horosphere intersects a neighborhood of an
ideal vertex of the regular ideal octahedron in a Euclidean square. Under the
developing map, squares can only patch together in squares to give a tiling of
the universal cover of each cusp by Euclidean squares. There are four squares
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meeting around a vertex in the cusp corresponding to one of our ideal edges.
Note that the squares cannot be scaled or sheared. It follows that edges glue
up without shearing singularities, and the structure is hyperbolic.

To show that the structure is complete, we use theorem 4.10: the structure
is complete if and only if for each cusp, the induced structure on the boundary
is Euclidean. But as already noted, each cusp is tiled by Euclidean squares
corresponding to intersections of a horosphere with an ideal vertex of the
regular ideal octahedron. Under the developing map, squares can only patch
together to give a Euclidean structure: there will be no rotation or scale.
Thus the hyperbolic structure must be complete. �

In chapter 9, we will obtain a formula to calculate the volume of a regular
hyperbolic ideal octahedron. For now, we state that the volume is a constant
voct = 3.66....

Corollary 7.7. The volume of any hyperbolic twist knot is universally
bounded

vol(J(2, n)) ≤ voct,

and as n→∞, vol(J(2, n))→ voct.

Proof. The Dehn filling bound follows immediately from Jørgensen’s
theorem, theorem 6.25. The convergence follows from theorem 6.24. �

We have not yet discussed which twist knots are hyperbolic. We have
seen that the figure-8 knot is hyperbolic, and similar methods can be used
to show each of the knots in figure 7.2 are hyperbolic. More generally, we
will see in chapter 11 (or by other methods in chapter 10) that all twist
knots J(2, n) with n ≥ 2 or n ≤ −3 are hyperbolic. When n = 1 or −2, the
standard diagram of J(2, n) can be easily reduced to a diagram with only a
single twist region, which is not hyperbolic, and when n = −1 its diagram
can be easily reduced to that of the unknot, which is also not hyperbolic.
All other twist knots are hyperbolic.

7.2. Double twist knots and the Borromean rings

The results of the previous section generalize immediately to knots and
links with exactly two twist regions, but with any number of crossings in
either twist region.

Definition 7.8. The double twist knot or link J(k, `) is the knot or link
with a diagram consisting of exactly two twist regions, one of which contains
k crossings, and the other contains ` crossings, for k, ` ∈ Z. See figure 7.7.
Note that J(k, `) is a knot if and only if at least one of k, ` is even; otherwise
it is a link with two components.

Just as for twist knots, double twist knots are obtained by Dehn filling a
simple link complement.
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k

`

Figure 7.7. A double twist knot or link has two twist regions,
one with k crossings and one with ` crossings

Figure 7.8. Complements of J(k, `) are obtained by Dehn
filling one of these four links. The link on the left is known
as the Borromean rings

Proposition 7.9. The complement of the link J(k, `) is obtained by
Dehn filling the complement of one of the four links shown in figure 7.8,
depending on the parity of k and `.

Proof. The proof is nearly identical to that of proposition 7.4, except
now it is done in two steps, since there are two unknotted components. Apply
a homeomorphism of a solid torus as in figure 7.5 two times. The details are
left to the reader. �

The link on the left of figure 7.8 is equivalent to a link more famously
known as the Borromean rings; its more common diagram is shown in
figure 7.18. We will call the other links of figure 7.8 the Borromean twisted
sisters, and say the links are in the Borromean family . In fact, the middle
two links are equivalent.

Proposition 7.10. The complements of the Borromean rings and the
Borromean twisted sisters all admit complete hyperbolic structures obtained
by gluing two regular ideal octahedra.

Proof. Because the Borromean rings has a diagram that is alternating,
its complement can be split into ideal polyhedra using the methods of
chapter 1. However, we present a new way to decompose links of the
Borromean family that we will generalize below.

View the diagrams of figure 7.8 in three dimensions. The two link
components in each diagram that will be Dehn filled to produce J(k, `)
should be viewed as lying perpendicular to the plane of the paper, which
is the plane of projection S2 ⊂ S3. The other link component(s) should
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Figure 7.9. Shaded 2–punctured disks
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Figure 7.10. Left: slice 2–punctured disks up the middle
(obtain parallel 2–punctured disks, shown here pulled apart).
Middle left: Untwist single crossings. Middle right: Cut along
plane of projection. Right: collapse remnants of the link to
ideal vertices

be viewed as lying in the plane of projection except at crossings; when the
component crosses itself it dips briefly above or below the plane of projection,
then returns to the plane.

The components lying perpendicular to the plane of projection are un-
knotted, and each bounds a 2–punctured disk, shown as shaded in figure 7.9.

As the first step of the decomposition, slice each of these disks up the
middle, replacing a single 2–punctured disk with two parallel copies of the
2–punctured disk. This move is shown on the left of figure 7.10.

Now if a 2–punctured disk is adjacent to a crossing in the plane of
projection, the next step is to rotate that 2–punctured disk 180◦ to unwind
the crossing, as in the middle left of figure 7.10. Note this rotation pulls the
diagram along with it on one side, but the rotation is only performed on the
2–punctured disk adjacent to the crossing, not on the parallel 2–punctured
disk. After this step, all crossings in the plane of projection have been
removed.

Next, cut along the plane of projection, splitting the complement into
two identical pieces as in the middle right of figure 7.10.

Finally, for each piece, collapse remnants of the link to ideal vertices, as
on the right of figure 7.10. We claim the result in that figure is topologically
an octahedron. To see this, note it has two ideal vertices colored white,
coming from crossing circles, and four ideal vertices colored black, coming
from the component of the link on the plane of projection. There are four
shaded faces that all have three edges, hence all shaded faces are triangles.
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There are four white faces, including the one running through the point at
infinity in the plane of projection, and each of these white faces also has three
edges, so each is a triangle. Thus the result is an ideal octahedron. Recall
that there is actually another octahedron coming from our decomposition:
the other octahedron comes from the region below the plane of projection
after slicing along that plane. So the link complements in the Borromean
family all decompose into two ideal octahedra.

Note that the face pairings of the two ideal octahedra that give back the
original link complement will be different for the different links; they can
be found by tracing backwards through the decomposition process above.
To undo the step of cutting along the plane of projection, we glue matching
white faces of the opposite octahedra together in pairs. To undo the step of
slicing along 2–punctured disks, we glue remaining shaded triangles in pairs;
however there are two options depending on whether or not we untwisted a
crossing. If both parallel 2–punctured disks were adjacent to no crossings,
then corresponding shaded triangles on the same ideal octahedron are glued
across an ideal vertex (one of the white vertices of figure 7.10). If there was
an adjacent crossing, then a shaded triangle on one octahedron is glued to
the opposite shaded triangle on the other octahedron across the (white) ideal
vertex.

Finally, to see that these link complements all admit a complete hyperbolic
structure, we give each of the two octahedra the geometry of a hyperbolic
regular ideal octahedron, then argue as in the proof of proposition 7.6. We
check: each edge of the decomposition comes from the intersection of a
2–punctured disk with the plane of projection, and each edge class in the
manifold is obtained by gluing four such edges. Thus the total angle around
each edge will be 4(π/2) = 2π. Again horospheres meet ideal vertices in
Euclidean squares, and so the developing image cannot scale, shear, or rotate
these squares. Thus edges glue without shearing singularities, and cusps are
Euclidean. Hence the result is a complete hyperbolic structure. �

Corollary 7.11. The volume of a double twist knot satisfies

vol(J(k, `)) < 2 voct,

where voct = 3.66 . . . is the volume of a regular ideal octahedron.

7.3. Augmenting and highly twisted knots

The above procedure can be generalized.

Definition 7.12. For any twist region of any knot diagram, a new link
is obtained by adding a single unknotted link component to the diagram,
encircling the two strands of the link component. The link is said to be
augmented. The added link component is called a crossing circle. We will
refer to the original link components as knot strands.

When a crossing circle is added to each twist region of the diagram, the
link is said to be fully augmented.



7.3. AUGMENTING AND HIGHLY TWISTED KNOTS 113

The complement of an augmented link is homeomorphic to the comple-
ment of the link with any even number of crossings added to or removed from
the twist region, by the same argument illustrated in figure 7.4. Thus the
complement of a fully augmented link is homeomorphic to the complement of
the fully augmented link with one or zero crossings adjacent to each crossing
circle. When there is one crossing adjacent to a crossing circle, we say the
crossing circle is adjacent to a half-twist.

The four links of figure 7.8 are all examples of fully augmented links.
The decomposition of proposition 7.10 goes through more generally for all
fully augmented links. This decomposition appears in the appendix to
[Lackenby, 2004] by Agol and D. Thurston. These links have very beau-
tiful geometric properties, explored further in [Futer and Purcell, 2007],
[Purcell, 2007], [Purcell, 2008], and in the survey article [Purcell, 2011].
Some of these results are included below, modeled off the exposition in
[Purcell, 2011].

Theorem 7.13. A fully augmented link decomposes into two identical
ideal polyhedra with the following properties.

(1) Faces of the polyhedra can be checkerboard colored. White faces
correspond to regions of the plane of projection. Shaded faces are
all triangles, and come from 2–punctured disks bounded by crossing
circles, which we call crossing disks.

(2) Ideal vertices are all 4–valent.
(3) Gluing the polyhedra identifies exactly four edges to a single edge

class in the link complement.

Proof. The decomposition is obtained very similarly to that in the
proof of proposition 7.10. First, each crossing circle bounds a 2–punctured
disk, which we shade. Slice along these 2–punctured disks, splitting each
into two parallel 2–punctured disks. Next, apply a 180◦ rotation to those
2–punctured disks adjacent to a crossing, unwinding the crossing. Then slice
along the plane of projection, splitting the complement into two identical
pieces. Finally, shrink remnants of the link to ideal vertices. We check that
each item of the theorem holds.

First, note faces are already checkerboard colored, with shaded faces
coming from 2–punctured disks and white faces coming from the plane of
projection. Note that edges of the decomposition come from intersections of
white and shaded faces. There are exactly three edges bordering each shaded
face, so each shaded face is a triangle.

Ideal vertices of the polyhedra come from remnants of the link. For those
ideal vertices coming from a component of the link in the plane of projection,
the ideal vertex will be adjacent to two edges coming from the 2–punctured
disk on one of its ends, and two edges coming from the 2–punctured disk on
its other end. Thus it is 4–valent. An ideal vertex coming from a crossing
circle is also adjacent to four edges: two from each point where the link
component meets the plane of projection.
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Figure 7.11. Left: a fully augmented link with a diagram
that is not prime. Right: a fully augmented link that is not
reduced. Removing one of the parallel crossing circles will
give a reduced link

Finally, note that each edge class contains four edges: two in each
polyhedron lying on the parallel copies of the 2–punctured disk. �

Just as with the family of Borromean rings, we can show that many of
these links are hyperbolic, but not all. For example, if a fully augmented
link has only one crossing circle, then the polyhedral decomposition of
theorem 7.13 will have white bigon regions, and collapsing these will collapse
the entire polyhedron to a triangle (exercise). Similarly, if there are parallel
crossing circles then there will be white bigon faces. We wish to rule these
out.

Definition 7.14. A fully augmented link is called reduced if the following
hold.

(1) Its diagram is connected.
(2) Its diagram is prime, i.e. any closed curve meeting the diagram

twice bounds a region on one side with no crossings.
(3) None of its crossing circles are parallel. That is, there are no closed

curves in the diagram meeting exactly two crossing circles and
exactly two white faces. See figure 7.11.

Reduced fully augmented links come from adding crossing circles to links
with reduced diagrams as in the sense of the following definition.

Definition 7.15. A diagram is twist-reduced if whenever a simple closed
curve γ meets the diagram exactly twice in two crossings, running from one
side of each crossing to the opposite side, then the curve γ bounds a portion
of the diagram containing a twist region.

We will encounter twist-reduced diagrams again, for example in defini-
tion 11.10. Meanwhile, the following gives a way of building large numbers
of reduced fully augmented links.

Lemma 7.16. Let K be a link with a connected, prime, twist-reduced
diagram. Then the fully augmented link obtained from K by adding crossing
circles to each twist region gives a reduced fully augmented link.

Proof. Adding crossing circles to twist regions of a diagram does not
change whether it is prime or connected. If the resulting fully augmented
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Figure 7.12. Left: A circle packing and its intersection
graph. Right: Gray circles meeting white circles of a circle
packing

link is not reduced, there must be two parallel crossing circles. Thus in
the original K, there are two distinct twist regions in the diagram with the
property that when crossing circles are added around them, the crossing
circles are parallel. Then an isotopy of one of the crossing circles to the other
traces out two arcs on the plane of projection disjoint from K. Straightening
these, and drawing arcs across K over the crossing circle defines a closed
curve in the diagram whose boundary meets the diagram exactly twice, once
in each of the two distinct twist regions. Isotope slightly to give a curve in
K contradicting the definition of a twist-reduced diagram. �

Lemma 7.17. The polyhedra in the decomposition of theorem 7.13 admit
a hyperbolic structure in which all dihedral angles are π/2 provided the fully
augmented link is reduced and contains at least two crossing circles.

The proof of the lemma uses circle packings.

Definition 7.18. A circle packing is a connected collection of circles
with disjoint interiors. The intersection graph of a circle packing is the graph
with a vertex at the center of each circle, and an edge between vertices
whenever the corresponding circles are tangent.

Figure 7.12 shows an example of a circle packing and most of its in-
tersection graph on the left — the vertex of the intersection graph in the
unbounded region has been omitted.

Theorem 7.19 (Circle packing theorem). Let G be a finite planar graph
that is simple, meaning G has no loops and no multiple edges between a pair
of vertices. Then G is (isotopic to) the intersection graph of a circle packing
on S2. If G is a triangulation of S2, then the circle packing is unique up to
Möbius transformation.

Theorem 7.19 is also known as the Koebe–Andreev–Thurston theorem.
It was first proved by Koebe [Koebe, 1936]. We will use it here without
giving its proof, as the proof is somewhat unrelated to the topic at hand.

Proof of lemma 7.17. Consider a polyhedron P coming from theo-
rem 7.13 for a reduced fully augmented link with at least two crossing circles.
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Edges and vertices of the polyhedron form a graph Γ on S2. Form a new
graph G on S2 by taking a vertex for each white face of Γ, and an edge
between vertices of G if two white faces are adjacent across an ideal vertex
of Γ.

If we superimpose G on P , then notice that each region of G will contain
exactly one shaded triangular face of P . Thus G is a triangulation of S2.
We show that G has no loops and no multiple edges.

Suppose first that G has a loop. Then the edge of G forming the loop
can be superimposed on P to run from a white face, through an ideal vertex
of P , then back to the same white face. White faces correspond to regions
of the diagram, and ideal vertices correspond to remnants of the link. Thus
there is a closed curve γ on the link diagram that runs from a region back
to itself crossing over a single component of the link diagram. Because the
link diagram consists of closed curves, this is possible only if the curve γ
runs along a crossing circle from one white region back to the same white
region. Pushing off the crossing circle slightly, this contradicts the fact that
the diagram is prime.

Now suppose that the graph G has a multi-edge. Then there is a pair of
white faces W1 and W2 of P and a pair of ideal vertices v1 and v2 such that
v1 and v2 are both adjacent to W1 and W2. Form a loop in P running from
W1 through v1 to W2, then back through v2 to W1. This loop corresponds
to a loop γ in the diagram meeting the regions on the plane of projection
corresponding to W1 and W2 and meeting two distinct link components
between those regions. If the link components came from components on the
plane of projection, then this contradicts the fact that the diagram is prime.
If the link components came from crossing circles, then it contradicts the
fact that the diagram is reduced. If one link component lies in the plane
of projection and the other is a crossing circle, then we may slide slightly
off the crossing circle to obtain a loop meeting exactly three components in
the plane of projection. This is impossible for a closed curve and closed link
components.

It follows that G is a finite, simple, planar graph that is a triangulation
of S2. The circle packing theorem, theorem 7.19, implies that there is a
unique circle packing of S2 with G as its intersection graph. View S2 as the
boundary at infinity of H3. The circle packing of G is then a circle packing
on ∂H3. Each Euclidean circle on ∂H3 is the boundary of a plane in H3.
Color these planes white.

Because the intersection graph of the circle packing is a triangulation,
regions complementary to the circle packing meet exactly three circles from
the packing. There is a unique Euclidean circle running through the three
points of tangency of the circle packing. Again this defines a geodesic plane
in H3. This plane will intersect the white planes at right angles. Color this
plane gray. See figure 7.12.

For each white plane, remove from H3 the region bounded by that plane
that is disjoint from the other white planes. Similarly for each gray plane.
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The result is a right–angled hyperbolic ideal polyhedron that is isomorphic
to P , proving the lemma. �

Theorem 7.20. The complement of a reduced fully augmented link with
at least two crossing circles admits a complete hyperbolic structure, which
is obtained by putting a right–angled structure on each of the polyhedra of
theorem 7.13.

Proof. By lemma 7.17, there exists a right–angled ideal hyperbolic
polyhedron with the combinatorics of one of the polyhedron of theorem 7.13.
We give each of the polyhedra of theorem 7.13 the hyperbolic structure of this
right–angled hyperbolic polyhedron, and glue by corresponding face–pairing
isometries to obtain the fully augmented link.

To show this admits a complete hyperbolic structure, we need to show
the angle around each edge is 2π, that there is no shearing around edges,
and that the cusps are all Euclidean. Because each edge class contains four
edges, and each edge has dihedral angle π/2, the angle sum around each
edge is 2π.

Now consider cusps. Any horosphere meets an ideal vertex of the right–
angled polyhedron in a rectangle. The developing image of a cusp is obtained
by gluing these rectangles according to the gluing isometries on the faces.
Note that a white face is glued by a reflection to the identical white face
on the opposite polyhedron, so gluing across white sides of a rectangle does
not scale or rotate. But then the gluing across shaded faces cannot scale
or rotate either. Hence the developing image of each cusp is a tiling of the
plane by Euclidean rectangles. Thus around each vertex there cannot be
shearing, and the structure on the cusp must be Euclidean. So this gives the
complete hyperbolic structure on the fully augmented link. �

Corollary 7.21. In a reduced fully augmented link with at least two
crossing circles, each shaded 2–punctured disk bounded by a crossing circle
is a totally geodesic surface embedded in the link complement. The white
surface, obtained by gluing together regions corresponding to regions on the
plane of projection (white faces), is also a totally geodesic surface embedded
in the hyperbolic link complement. Moreover, these shaded 2-punctured disks
and white surfaces meet at right angles whenever they intersect.

Proof. In the polyhedral decomposition, these surfaces become white
and shaded faces, which are straightened to portions of geodesic planes to
obtain the hyperbolic structure. Thus we know that these surfaces are pleated,
i.e. they decompose into ideal polygons, each of which is totally geodesic. In
general pleated surfaces are bent along the edges bounding each polygon, so
they are not necessarily totally geodesic. However, in this case, white faces
meet shaded faces at angle π/2, thus in the gluing, white faces glue to white
faces with angle π, i.e. no bending, and similarly for shaded faces. If follows
that these surfaces are totally geodesic. �
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7.4. Cusps of fully augmented links

For many applications in later chapters, it will be useful to know more
explicit information about the geometry of fully augmented links, particularly
the geometry of their cusps. Recall from theorem 4.10 that each cusp admits
a Euclidean structure. In this section, we will determine properties of that
Euclidean structure for fully augmented links. The exposition is similar to
that in [Futer and Purcell, 2007].

Consider the universal cover of the complement of a hyperbolic fully
augmented link. By corollary 7.21, the universal cover will contain the lift
of embedded totally geodesic white surfaces, which will be a collection of
disjoint totally geodesic planes that we color white in H3. It will also contain
the lifts of embedded totally geodesic shaded 2-punctured disks bounded by
crossing circles. These will also be totally geodesic planes in H3 and we call
them shaded. The white planes and shaded planes meet at right angles in H3.
They cut out all the translates of the two ideal polyhedra of theorem 7.13
under the developing map.

Apply an isometry so that the boundary T̃ of a neighborhood of the
point at infinity in H3 projects under the covering map to a cusp torus
T of the fully augmented link. Because each link component meets both
white and shaded surfaces, in the universal cover we will see vertical planes
corresponding to white and shaded surfaces running into the point at infinity,

meeting T̃ in a rectangular lattice.
If we forget the fact that the edges of the lattice have lengths, but consider

each rectangle on T̃ as a topological object with two opposite shaded sides
and two opposite white sides, then we obtain the following.

Lemma 7.22. Let T be a cusp torus of a fully augmented link, with

universal cover T̃ tiled by rectangles coming from white and shaded surfaces.
Let s denote a step along a shaded surface between two white surfaces, and
let w denote a step along a white surface between two shaded ones. Then a
fundamental domain for T is given as follows.

• If T comes from a crossing circle without a half-twist, then it has
meridian w and longitude 2s.
• If T comes from a crossing circle with a half-twist, it has meridian
w ± s (depending on the direction of the twist) and longitude 2s.
• If T comes from a knot strand, i.e. a component that is not a crossing

circle, then it has meridian 2s and longitude nw + ks, where n is
the number of twist regions met by the strand, with multiplicity, and
k is some integer.

Proof. From the construction of the polyhedral decomposition of S3−L,
each crossing circle gives rise to an ideal vertex of each polyehdron. Thus a
fundamental domain for a crossing circle consists of two rectangles, given by
neighborhoods of the corresponding 4-valent ideal vertices.
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Figure 7.13. A fundamental region for a crossing circle.
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Figure 7.14. A fundamental region for a knot strand with
no half twists.

In the case that there are no half-twists, the shaded faces adjacent to
the ideal vertex are glued to each other. Thus an arc running along a white
face has its endpoints glued into a meridian, and thus the meridian in this
case is w. As for the longitude, a white face on one polyhedron is glued to a
white face on the other. Thus a longitude steps along two shaded sides, one
on one polyhedron and one on the other, before closing up. See figure 7.13.

For a knot strand K meeting no half-twists, there will be one ideal vertex
of one polyhedron, hence one rectangular vertex neighborhood, for each
portion of K between adjacent crossing circles. These rectangles are glued
end to end along shaded faces coming from the crossing disks to complete
a longitude. Thus there will be n such rectangles, and a longitude is given
by n steps along white faces, or nw. There will be n identical rectangles
glued end to end in the other polyhedron. These two blocks of n rectangles
will be glued along their white faces to form a 2× n block, making up the
fundamental domain of K. A meridian is given by two steps along shaded
faces. See figure 7.14.

If there are half-twists, then the gluing changes along shaded faces at
half-twists. A shaded triangle on one polyhedron will be glued to the opposite
shaded triangle on the other polyehdron. This introduces shearing into the
fundamental domain, as in figure 7.15. Since the shearing only occurs as
shaded faces are glued, it does not affect the longitude of a crossing circle or
the meridian of a knot strand: these are both 2s. However, it will adjust a
meridian of a crossing circle by adding ±s, and it will adjust the longitude
of a knot strand by adding ±s for each half-twist. Thus the longitude of a
knot strand becomes nw + ks for some integer k. �
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Figure 7.15. Adding a half twist shifts the gluing along the
shaded faces, shearing the fundamental domain.

m

0 1

Figure 7.16. When an ideal triangle in H2 has vertices at
0, 1, and ∞, one of its midpoints will lie in H2 at height 1.

Lemma 7.22 is purely topological. We now wish to give geometric
information on the rectangles forming the cusps. To do so, we need to find
more explicit embedded cusp neighborhodds of the cusps of a fully augmented
link. An embedded cusp neighborhood lifts to a disjoint collection of horoballs
in the universal cover H3, one for each ideal vertex of each translate of the
ideal polyhedra under the developing map. We will find an embedded cusp
neighborhood by finding a collection of embedded horoballs about ideal
vertices of the polyhedra forming a fully augmented link.

Definition 7.23. Let T ⊂ H3 be an ideal triangle. For each edge e of
T , define the midpoint m of e to be the point such that the geodesic from m
to the opposite ideal vertex is perpendicular to e. Note this point is unique.
See figure 7.16.

For each edge e of the ideal polyhedral decomposition of a fully augmented
link, define its midpoint to be the midpoint of that edge on one of the two
ideal triangles adjacent to the edge. Note that since the two polyhedra are
symmetric by a reflection in the white faces, both triangles adjacent to e
have the same midpoint, so the midpoint of each edge is well-defined.

Lemma 7.24. Let L be a hyperbolic fully augmented link, with decompo-
sition into ideal polyhedra P1 and P2. For each ideal vertex of Pi, there is a
unique horoball meeting the midpoint of each edge through that ideal vertex.
The collection of all such horoballs, intersected with Pi and Pj, glue to give
an embedded cusp neighborhood of all the cusps of S3 − L.
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Proof. Place Pi in H3 so that the ideal vertex of interest lies at infinity,
and so that one of the two shaded faces meeting the ideal vertex has its
ideal vertices at 0, 1, and ∞ in H3. Note that the edges of that shaded face
have midpoints at height 1, as in figure 7.16. Because the polyhedron is
right-angled, the other shaded face will have ideal points at some points ci,
1 + ci, and ∞ for some c ∈ R. Thus again the midpoints of these edges lie at
height 1. Then the horoball of height 1 about infinity meets the midpoint of
each edge through the ideal vertex.

The above discussion applies to any vertex of any polyhedron, and so
this proves the first statement of the lemma. However, to show that these
horoballs glue to give an embedded cusp neighborhood, we need to show that
under the developing map, these horoballs have disjoint embedded interiors
in H3.

Develop in a neighborhood of infinity. Since white faces are glued by
reflection, the developing map takes Pi to a reflected copy of Pi, where the
reflection is through the vertical plane determined by a white face meeting
infinity. Note that the reflection isometry takes points at height 1 to points
at height 1. Similarly, because the polyhedra are right angled, developing
by gluing shaded faces produces shaded faces of the same width, and thus
midpoints are height 1. Thus a horoball of height 1 through infinity will
meet the midpoints of all edges through infinity under the developing image.

We claim that this horoball cannot meet any white faces besides those
that have an ideal vertex at infinity. Consider a white face that does not
meet infinity. It lies in a hemisphere with boundary a circle C on C. Because
the white surface is embedded in the fully augmented link complement, the
lifts of this surface are disjointly embedded in H3. Thus the boundary circles
of all lifts of white faces meet only at points of tangency corresponding to
ideal vertices. Thus the circle C meets the boundaries of the vertical planes
containing white faces meeting ∞ only in points of tangency. The vertical
planes have boundary on C a collection of parallel vertical lines, and these
lines must be exactly distance 1 apart. Then the diameter of C can be at
most 1. It follows that the height of the hemisphere containing a white
face that does not run through infinity must be at most 1/2; therefore the
horoball at height 1/2 cannot meet it.

By an isometry, the previous argument applies to any ideal vertex. Thus
we have proved that the horoballs through the midpoints of ideal vertices
of Pi only meet white faces that run through the center of the horoball at
infinity.

Suppose, by way of contradiction, that under the developing map one of
these horoballs H centered at a point p in C has diameter strictly greater
than 1, so that the collection of interiors of horoballs will not be embedded.
Then p must lie on the boundary of one of the vertical white planes, else H
intersects a vertical white plane in a compact region, giving a contradiction.

So p is an ideal vertex of a polyhedron meeting a white face on a vertical
plane V , and some other white plane W . The boundary ∂W is a circle on
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Figure 9. If the diameter of H is greater than 1, a 90◦ rotation
about the side of the boundary rectangle shows that the midpoint
of e lies inside H .

circles have disjoint interiors, and so the interior of C must be disjoint from the
two vertical planes containing the white sides of the boundary rectangle about the
vertex of Pi at ∞. But because we put a shaded side in standard position, these
vertical planes are of Euclidean distance 1 apart. Thus the diameter of C can be
no more than 1.

Now consider the two shaded faces meeting at the center of the horosphere H .
At most one of these shaded faces can lie in a vertical plane. Let S be one of these
shaded faces that doesn’t lie in a vertical plane. Let e be the edge between S and
the vertical white face V , and let z be the vertex of S opposite e. Note that z is an
endpoint of the edge given by the intersection of S with the white face W . (The
other endpoint is the center of H .) Thus z lies on the circle C.

Consider the midpoint m of e. By Definition 3.6, the geodesic γ from z to m
meets e at a right angle. But γ must lie in S, which by Theorem 2.4 meets the face
V at a right angle, and hence γ is normal to the entire vertical plane containing V .
Thus γ is a Euclidean quarter circle, centered on the line ℓ in C that lies under the
vertical white face V . Then note that a 90◦ rotation about ℓ takes the point z to
m. But this same 90◦ rotation about ℓ will take the circle C to the vertical plane
over ℓ. If the diameter of H is greater than 1, the circle C, of diameter at most 1,
will be contained inside H . Since z is on C, in this case the rotated point m will
be contained inside H . (See Figure 9.) Hence if we do not allow H to contain m,
the diameter of H can be at most 1. �

Theorem 3.8. Expand all the cusps of E(J) as above. Then the midpoint of every
edge of E(J) will lie at the point of tangency of two horospheres.

Proof. First, we would like to show that an expanding horoball about a given cusp
of E(J) will simultaneously meet the midpoints of all the edges into that cusp. To
that end, consider the horoball H∞ about ∞, normalized so that a shaded face S
is in standard position. S forms a side of a boundary rectangle of Euclidean width
1. The opposite side of this rectangle must be another shaded side of Euclidean
width 1. Continuing in the w direction, we see there is an infinite strip consisting

Figure 7.17. If H is centered at a point p on a vertical
white plane, and has diameter greater than 1, then it must
contain the midpoint of an edge through p. Figure from
[Futer and Purcell, 2007].

C of diameter at most 1, as we have seen above. The vertex p also meets
two shaded faces, and at least one of these, call it S, is not a vertical plane.
Then S ∩ V is an ideal edge of a polyhedron, and it must have a midpoint.
The midpoint is obtained by taking a perpendicular from a point on ∂W to
the semicircle S ∩ V on the vertical plane V . The set of all points obtained
by dropping a perpendicular from ∂W to V is a circle of diameter equal to
the diameter of ∂W on the plane V ; see figure 7.17. But H has diameter
greater than 1, so this entire circle lies inside of H. This contradicts the fact
that H does not contain any of the midpoints of edges through p.

Thus when we expand all horoballs to the midpoints of their adjacent
edges, all those centered at points on C have diameter at most 1, while that
at infinity has height exactly 1, so their interiors are embedded. Since the
above discussion applies to any ideal vertex of any polyhedron, we conclude
that under the developing map, interiors of all such horoballs are embedded,
and thus the quotient under the covering map gives an embedded horoball
neighborhood of each cusp of S3 − L. �

Corollary 7.25. Let L be a hyperbolic fully augmented link. There
exists an embedded horoball neighborhood of the cusps of S3 − L such that,
when measured in the induced Euclidean metric on the boundary of each cusp,
the sides of the steps s and w (of lemma 7.22) have lengths `(s) = 1 and
`(w) ≥ 1.

Proof. If we place the ideal vertices of a shaded triangle at 0, 1, and
∞, then the midpoints of the edges from 0 to ∞ and from 1 to ∞ are of
height 1. Thus the horoball neighborhood through these points is at height 1,
and distance along the boundary of this horoball is just Euclidean distance.
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Since the shaded triangle meets this plane in a line segment from 0 to 1, the
length of the step s is `(s) = 1.

To find w, we note that there will be horoballs of diameter 1 centered
at all the corners of the rectangle containing the step w. Two of these will
be centered at 0 and 1, the other two at some ci and 1 + ci in C, for some
c = `(w). Because the four horoballs are disjoint, we must have `(w) ≥ 1. �

The above results lead to consequences on slope lengths of Dehn fillings.

Theorem 7.26. Let L be a hyperbolic fully augmented link, and let
C1, . . . , Ck be crossing circles of L. Let sj be a slope on N(Cj) such that
Dehn filling along sj replaces the crossing circle Cj by a twist region with nj
crossings (with nj even if and only if Cj is not adjacent to a half-twist). Then
there is an embedded horoball neighborhood of all cusps of S3 − L such that

on the boundary of each cusp, the length of sj is at least `(sj) ≥
√
n2
j + 1.

Proof. The slope of the Dehn filling that replaces a crossing circle with
2aj crossings runs over one meridian and aj longitudes.

If nj = 2aj is even, then Cj meets no half-twist. Then lemma 7.22
implies that the slope sj will have the form w + 2ajs or w − 2ajs. Because
w and s run in orthogonal directions, and each has length at least one by

corollary 7.25, the length of w ± 2ajs is at least
√

1 + (2aj)2 =
√

1 + n2
j , as

claimed.
If nj = 2aj +1 is odd, then Cj meets a half-twist, and lemma 7.22 implies

that sj has the form w ± s+ 2ajs or w ± s− 2ajs, with the signs the same:
sj = w ± (2aj + 1)s. Again because w and s are orthogonal, corollary 7.25

implies the length of sj is at least
√

1 + (2aj + 1)2 =
√

1 + n2
j . �

7.5. Exercises

Exercise 7.1. In this exercise, you investigate the two diagrams of the
Whitehead link shown in figure 7.3.

(1) Show by a sequence of diagrams that the two links in that figure
are isotopic.

(2) Use SnapPy [Culler et al., 2016] to show that the two link comple-
ments are isometric. The check using SnapPy is not mathematically
rigorous, but in this case the link has a special property: it is
arithmetic. We will not define an arithmetic link here (we won’t use
the definition elsewhere), but a consequence of arithmeticity is that
the program Snap [Coulson et al., 2000] can be used to give a
mathematically rigorous certification that the two links shown are
isometric.

Exercise 7.2. Use the methods of chapter 1 to prove that the complement
of a Whitehead link can be decomposed into two ideal pyramids with a square
base, which in turn can be glued to an ideal octahedron.
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Figure 7.18. Two different diagrams of the Borromean rings
are shown

Exercise 7.3. Shown on the left of figure 7.18 is the diagram of a link
which we claim is the Borromean rings. Shown on the right is a more familiar
diagram of the Borromean rings. There are several different ways to prove
the complements of these hyperbolic manifolds are isometric.

(1) Show by a sequence of diagram moves that the links are isotopic.
Why does this suffice to show the complements are isometric?

(2) Find a hyperbolic structure on each by hand, and show by hand
that the manifolds are isometric. This will take some work, and
sounds tedious. The exercise here is to think about why this will
be tedious: list the steps involved.

(3) Use computational tools. Use SnapPy [Culler et al., 2016] to
show they are isometric. As in exercise 7.1, these links are arithmetic,
so you can check using Snap [Coulson et al., 2000] that the link
complements are isometric, which gives a mathematically rigorous
certification.

Exercise 7.4. The (p, q, r)–pretzel link. As p, q, r go to infinity, find
geometric limits of pretzel links. Find a universal upper bound on their
volumes.

Exercise 7.5. (Topology of the solid torus) A solid torus V is homeo-
morphic to S1 ×D2, where a specified homeomorphism h : S1 ×D2 → V is
called a framing .

(a) A non-trivial simple closed curve in ∂V is called a meridian if it
bounds a disk in V . Prove that if µ is a meridian, then for some
framing h : S1 ×D2 → V , µ = h({1} × ∂D2).

(b) A non-trivial simple closed curve λ in ∂V is called a longitude if it
represents a generator of π1(V ) ∼= Z. Prove that if λ is a longitude,
then for some framing h : S1 ×D2 → V , λ = h(S1 × {1}).

(c) Prove that there are infinitely many ambient isotopy classes of
longitudes in a solid torus.

Exercise 7.6. For the Whitehead link, find slopes of Dehn filling giving
the twist knot J(2, n) for n even. Write them as pµ+ qλ, for relatively prime
integers p and q, where µ is a meridian and λ is the longitude that bounds a
disk in S3. This is called the standard longitude.

Repeat for n odd, using the isometric link.
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Exercise 7.7. Using the meridian and standard longitude as a basis for
two boundary components of the exterior of the Borromean rings (i.e. take a
longitude on each component that bounds a disk in S3), find the slopes of
the Dehn fillings of the Borromean rings that give J(2k, 2`).

Repeat for J(2k, 2`+ 1) and J(2k + 1, 2`+ 1).

Exercise 7.8. The simplest fully augmented link has a single crossing
circle; it comes from augmenting a knot with only one twist region. Show
that when we apply the decomposition of this chapter to the fully augmented
link with only one crossing circle, the result is not a decomposition into two
ideal polyhedra. What does the decomposition give?

Exercise 7.9. Prove a result analogous to theorem 7.26 for knot strand
cusps. If Ki is a knot strand cusp of a hyperbolic fully augmented link,
and si is a slope on Ki that represents a nontrivial filling (i.e. si is not a
meridian), then the length of si is at least mi, where mi denotes the number
of crossing disks that Ki intersects, counted with multiplicity.

Exercise 7.10. In chapter 10 we will consider a class of links called
two-bridge links which have twist regions arranged in two rows, illustrated in
figure 10.2. Show that the complement of the fully augmented link coming
from a 2-bridge link can be obtained by gluing a collection of regular ideal
octahedra. How many regular ideal octahedra?




