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My research is in low dimensional topology and geometry. I am especially interested in 3–
manifolds, hyperbolic geometry, and knot theory, particularly the overlap of these areas.

Overview

A 3–manifold is often described combinatorially, for example by a knot diagram, or by gluing a
collection of polyhedra, or by attaching handles to a given manifold. Figure 1 shows a few examples.

Just over a decade ago, Perelman posted the outlines of a proof of the Geometrization Theorem
on the ArXiv [56, 57], and with his work and that of others it is now known that all 3–manifolds
decompose into pieces that admit a geometric structure (see, for example [7, 14, 40, 51]). In an
appropriate sense, the most common geometric structure is hyperbolic, i.e. admitting a metric
with constant sectional curvature −1 [67]. For closed or finite volume 3–manifolds, the hyperbolic
structure is unique [53, 58]. Therefore, it is known that a combinatorial description of a hyperbolic
3–manifold uniquely determines the geometry of that manifold.

However, what is still unknown in general is, given a combinatorial description of a hyperbolic
3–manifold, how does one determine geometric information about that 3–manifold? Or given other
invariants of a 3–manifold, including quantum invariants, how are they related to the hyperbolic
structure? Much of my research has focused on these types of questions. In recent years, the inves-
tigation of these problems has been called “Effective Geometrization,” or “WYSIWYG Topology:
What you see is what you get,” indicating that salient properties of the combinatorics of a manifold
seem to have relevance to the geometry as well. These types of problems are of major importance
in the field. While our knowledge of 3–manifold geometry, quantum topology, and combinatorial
3–manifolds has progressed rapidly in recent years, we are still often unable to apply resulting the-
orems to related problems encountered in other settings. What is needed is a dictionary between
the geometry and other invariants.

Organization. In this statement, I highlight some of the major research questions that I have
investigated, with an emphasis on more recent projects, as well as problems that I am currently
investigating. I have grouped the discussion into three main sections, ordered as follows:

(1) Geometry of knots and links
(2) Relations between quantum and topological invariants
(3) Geodesics, Heegaard splittings and infinite volume manifolds

1. Geometry of knots and links

Knots and links are excellent examples of 3–manifolds with simple description, and yet which
often have complicated geometric properties. Their geometry provides a window into the geometry
of an extremely broad range of hyperbolic 3–manifolds, in a very concrete sense. For example,

Figure 1. Examples of combinatorial descriptions of 3–manifolds. Left to right:
A knot diagram determines the knot complement S3 − K. Gluing two tetrahedra
along faces shown, with vertices removed, gives a description of the same manifold.
A Heegaard diagram gives another manifold with torus boundary.
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2 DAVID FUTER – RESEARCH OVERVIEW

1. Link diagrams and geometry

The idea that combinatorics should have an explicit and effective translation into hyperbolic ge-
ometry — often summarized as “what you see is what you get” topology, or “effective geometriza-
tion” — takes a particularly clear and visual form in the study of knots in S3. This is because
knots and links are easy to describe via planar diagrams, and it is natural to look for combinatorial
features of the diagrams that will predict geometric invariants, such as volume or the length of
geodesics.

One diagrammatic invariant that appears closely connected to hyperbolic geometry is called the
twist number. A twist region is a section of a diagram D(K) in which two strands of K wrap around
each other maximally. (See Figure 1, left.) The number of these regions is called the twist number
of D(K), and is denoted tw(D). With this definition, Lackenby showed that the the twist number
of an alternating diagram is approximately equal to the hyperbolic volume of the link complement
[48]. More precisely, volume is bounded above and below by explicit linear functions of tw(D).

In a series of joint papers with Kalfagianni and Purcell, I have extended Lackenby’s result to many
families of non-alternating links. These include Montesinos links [34], Conway sums of alternating
tangles [30], highly twisted links (where every twist region contains at least 7 crossings) [29], and
positive braids with at least 3 crossings per twist region ([34], and see Theorem 8 below). In each of
these cases, the hyperbolic volume of the link complement is bounded above and below by explicit
linear functions of tw(D).

Figure 1. Left: a twist region. Right: a generalized twist region.

We also proved variants of these results that rely on a generalization of the twist number. Define a
generalized twist region to be a region where n ≥ 2 strands of K wrap around each other maximally
(see Figure 1, right) and the generalized twist number twgen(D) to be the number of these regions.
Using this generalized notion, we proved two-sided diagrammatic estimates on the volume of closed
3–braids [31] and so-called double coil knots [32]. Related work appears in [13, 25].

Some of these estimates are quite sharp. For instance, here is a sample theorem.

Theorem 1 ([31]). Let K be a hyperbolic link obtained as the closure of a 3–string braid, and let
D(K) be the diagram corresponding to the Schreier normal form of the braid word. Then

2v3 twgen(D)− 279 < vol(S3rK) < 2v8 twgen(D),

where v3 = 1.0149... is the volume of a regular ideal tetrahedron and v8 = 3.6638... is the volume of
a regular ideal octahedron.

Furthermore, the multiplicative constants in both the upper and lower bounds are sharp.

The additive constant of 279 is presumably far from sharp. Nonetheless, it is striking to see
geometry and combinatorics so closely intertwined, and satisfying to know the sharp constants
that constrain their relationship. In addition, Theorem 1 can also be applied to express hyperbolic
volume in terms of certain coefficients of the Jones and colored Jones polynomials (see Section 4).

The proof of Theorem 1, as well as many of its relatives [29, 30, 32], uses Dehn surgery techniques.
(See Section 2 for more on these techniques.) The main idea is that every link K in braid position
has a braid axis, namely an unknot A ⊂ S3rK, whose complement S3rA ∼= D2 × S1 is foliated
by disks that intersect K a constant number of times. Drilling out the axis produces a manifold
M = S3r(K ∪A) that fibers over S1 with fiber an n–punctured disk, and the geometry of S3rK
can be understood in terms of this fibered manifold M . This works in three steps:
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any closed orientable 3–manifold is obtained by Dehn filling the complement of a link in S3 (see
Definition 1.3), due to work Wallace and Lickorish in the 1960’s [69, 46]. Some significant work I
have done has concerned geometry change under Dehn filling, which I discuss below.

In addition to giving information on closed 3–manifolds, knot and link complements also can
be used to approximate the geometry of very large classes of infinite volume hyperbolic manifolds.
This is due to my work Souto in [65]. Our main theorem is the following.

Theorem 1.1. Let N be a complete hyperbolic 3–manifold with finitely generated fundamental
group and a single topological end. If N is homeomorphic to a submanifold of S3, then N is a
geometric limit of a sequence of hyperbolic knot complements in S3.

The proof of the above theorem uses a great deal of modern hyperbolic geometry. In particular,
it uses the Ending Lamination Theorem [49, 10], the Tameness Theorem [3, 13], and the Density
Theorem [55, 11], all proved since the year 2000.

While this result underlines the importance of the study of the geometry of knots in hyperbolic
geometry, it also leaves many open questions. For example, we did show that certain infinite volume
manifolds cannot be the geometric limit of any sequence of knot complements. However, our proof
extends to show that these manifolds are the geometric limit of a sequence of link complements in
some closed 3–manifold. Can they be the geometric limit of link complements in S3? Also, our
result is not at all constructive. Given any particular example of a hyperbolic 3–manifold as in the
theorem, can one find an explicit sequence of knot complements that approach the manifold? Such
questions are discussed in [65].

1.1. Diagrams and link volume. Classically, knots and links have been described by a diagram:
a 4–valent planar graph with over–under crossing information at each vertex, as in Figure 1. It has
been known since the early 1980’s, due to work of Thurston [68], that all knots except torus and
satellite knots have a complement admitting a hyperbolic structure. By Mostow–Prasad rigidity,
the hyperbolic structure is unique [53, 58]. However, relating geometric properties of the hyperbolic
3–manifold (S3 − K) to the graph theoretic properties of the diagram of K is often difficult. A
significant amount of my research addresses this problem, including ongoing research.

One area of investigation is the volume of links. A hyperbolic structure on a knot or link
complement produces a manifold with finite hyperbolic volume, and volume is a knot invariant.
Lackenby was the first to bound volumes of a class of knots in terms of its diagrams: for alternating
knots, he showed that the volume was bounded above and below by linear functions of the twist
number of the diagram [42].

Definition 1.2. A twist region in a knot diagram is a collection bigons in the diagram arranged
end-to-end; the collection is maximal in the sense that there are no additional adjacent bigons, and
the knot diagram is alternating between them. See Figure 2, left. A single crossing adjacent to no
bigons is also a twist region. The twist number of the diagram is the number of twist regions in a
reduced diagram.

One of my first published papers extends Lackenby’s work on volumes of alternating links to
the class of links called highly twisted links, with high numbers of crossings in each twist region
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[59]. Not long after this result was published, with Futer and Kalfagianni, I improved it [24], and
then extended it to broader classes of diagrams, including those with symmetry [25], those with
generalized twist regions (see Figure 2) [27], and 3–braids [26]. With other collaborators I have
found volume bounds on additional important classes of knots and links, including twisted torus
links [15] and chain links (with undergraduate students) [37].

One tool used to prove many of these results is a geometric result bounding the change in volume
under Dehn filling.

Definition 1.3. Let M be a 3–manifold with torus boundary components T1, T2, . . . , Tn Let
s1, s2, . . . , sn be a collection of slopes, or isotopy classes of simple closed curves si ⊂ Ti. Then
the Dehn filling of M along s1, . . . , sn, denoted M(s1, . . . , sn), is the manifold obtained from M by
attaching a collection of solid tori to the Ti such that the slope si bounds a disk in the solid torus.

When M admits a hyperbolic structure, its interior is homeomorphic to the quotient of hyperbolic
3–space H3 under the action of a discrete, faithful group Γ of isometries of H3, with Γ isometric to
the fundamental group π1(M). The torus boundary components of M will be realized as cusps. A
cusp is homeomorphic to T 2×R, where T 2 is a 2–torus, and isometric to the quotient of a horoball
under a rank–2 parabolic subgroup of Γ. On the boundary of a horoball, a slope can be represented
by a Euclidean geodesic, and thus it inherits a length.

Using analytic tools, Futer, Kalfagianni and I constructed an explicit metric on the Dehn filling
of a hyperbolic 3–manifold, provided each slope s had length at least 2π. The resulting metric
was not hyperbolic, merely negatively curved. However, we were able to use volume bounds for
manifolds with negatively curved metrics to show the following, in [24].

Theorem 1.4. Let M be a complete, finite–volume hyperbolic manifold homeomorphic to the inte-
rior of a manifold with cusps C1, . . . , Ck. Let s1, . . . , sk be slopes on ∂C1, . . . , ∂Ck, each with length
greater than `min > 2π. Then M(s1, . . . , sk) is a hyperbolic manifold with volume

vol(M(s1, . . . , sk)) ≥
(

1−
(

2π

`min

)2
)3/2

vol(M)

The above theorem not only leads to volume bounds on link complements, but also has applica-
tions elsewhere, both geometric and topological. Most notably, it was used by Gabai, Meyerhoff,
and Milley in their proof that the Weeks manifold has smallest volume [33, 48]. We have used the
explicit metric we constructed in other Dehn filling applications, such as [18] and [32].

Volume and other invariants. As we have learned more about the volume of links, and tech-
niques to bound volume, we have found several interesting relationships between volume and other
invariants of a knot. In particular, with Futer and Kalfagianni, we have found that the volume of
a knot is often closely related to coefficients of its Jones polynomials. Indeed, many of the results
above lead to such relations. This is discussed in more detail in Section 2.

In another direction, with Champanerkar and Kofman, I am currently working on a project to
investigate relations between volumes and other invariants, especially ratios of the invariants in a
limit. D. Thurston showed that the volume of a link is bounded by the product of its crossing
number and the constant v8, which is the volume of a regular ideal octahedron. We have been
investigating sequences of knots and links for which the ratio volume per crossing number is as
large as possible. The links we have considered approach the infinite alternating weave W , shown
in Figure 2. One result from our paper [17] is the following.

Theorem 1.5. Suppose Kn is a sequence of links with prime, alternating, twist–reduced diagrams
that contain no bigons and no cycle of tangles, such that

(1) there are subgraphs Gn of the diagram graphs of Kn that form a regular Følner sequence for
the graph of W , and
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(2) limn→∞ |Gn|/c(Kn) = 1.

Then

lim
n→∞

vol(Kn)

c(Kn)
= v8.

Interestingly, very similar conditions on convergence give a similar result for the determinant of
the knot. In particular, if Kn is a sequence of alternating links satisfying (1) and (2) above, then
we also show

lim
n→∞

2π log det(Kn)

c(Kn)
= v8.

These results lead to many interesting open questions concerning asymptotics of knots, their
volumes, their determinants, and other invariants. For full details, see [17].

Ongoing project. The bounds on volumes of knots that we have found so far apply to a wide
variety of classes of knots and links, but not yet to all knots and links. Recall that any knot can be
represented by a closed braid. Futer and I have a plan to bound volumes of closed braids. The first
step in our project is to remove the braid axis, and find a bound on the volume of the resulting
fibered manifold. Then bounding the cusp area, and applying Theorem 1.4 above, we will be able
to bound the volume of the original knot. The missing step is an effective bound on volumes of
fibered manifolds. Work of Brock [8] gives bounds on volume in terms of the monodromy of a
fibered manifold, and Futer and I can show that in the case of braids, monodromy is related to
generalized twist regions, as in Figure 2. However, Brock’s result is not effective.

With Schleimer, Futer and I have been working to make Brock’s result effective. One necessary
ingredient in our work has been the application of cone deformation tools, initially developed by
Hodgson and Kerckhoff [36, 35], which I have used in a significant way in the past, e.g. in [59, 60].
Using cone deformations and new bounds on thin parts of manifolds, Futer, Schleimer, and I have
been able to make effective some portions of the Drilling Theorem of Brock and Bromberg [9]. We
expect that these results will lead to additional interesting consequences.

1.1.1. Hyperbolicity. We note very briefly that the above work concerns hyperbolic knots and links.
By work of Thurston [68], a link complement will be hyperbolic if and only if it contains no em-
bedded essential tori, spheres, or annuli. However, for a generic diagram, it is often difficult to rule
out such surfaces. I have several results, individually and with coauthors, giving diagrammatical
conditions that guarantee that a link complement will be hyperbolic, or not, including [31], [64],
[63], [62], and [23].

1.2. Cusp shapes. To apply the Dehn filling results mentioned above, for example Theorem 1.4,
requires knowing the length of a slope on a cusp of a hyperbolic manifold. Recall that the cusp
of a hyperbolic manifold H3/Γ is the quotient of a standard horoball in H3 by a rank–2 parabolic
subroup of Γ. The boundary of this cusp will inherit a Euclidean metric. The Euclidean similarity
structure is the cusp shape of the manifold. For a knot, the maximum possible area of the boundary
of an embedded cusp is called the cusp area.

Again, it is difficult in general to determine cusp shapes and cusp areas, and there are several
open conjectures concerning them. In light of theorems such as Theorem 1.4, and others (for
example [4, 41, 36]), it would be very useful to be able to determine slope lengths and cusp shapes
more generally.

I have some results along these lines. In the papers [60], [61], and [64], and also in [31] with
Futer, I bound cusp shapes or slope lengths in terms of a diagram for highly twisted links, for
links with high numbers of twists in generalized twist regions, and for a class of links called fully
augmented links.

One interesting class of knots for which cusp shape is not yet known is that of alternating knots.
Computer investigation has led to several open conjectures, including a conjecture of Thistlethwaite
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that crossing arcs in a reduced diagram correspond to short geodesics. If this conjecture is true, it
would imply that the cusp areas of these knots are bounded below in terms of their twist numbers.
With Futer and Kalfaginni, I proved this conjecture for 2–bridge knots [26].

More recently, with Lackenby, we have been able to make considerable progress on this conjecture.
Namely, we have been able to show that the cusp area of an alternating knot is bounded below
by a universal constant times its twist number [43]. We do this by considering special immersed
essential surfaces in the alternating link complement [44], and showing that these surfaces must
contain embedded geodesics of bounded length. All our estimates can be made explicit. The main
result of [43] is the following.

Theorem 1.6. There exists a constant A such that if D is a prime, twist reduced alternating
diagram of a hyperbolic knot K, with twist number tw(D), and if C denotes the maximal cusp of
the hyperbolic 3–manifold S3 −K, then

A (tw(D)− 2) ≤ Area(∂C) < 10
√

3(tw(D)− 1).

Moreover, A is at least 2.436× 10−16.

While we do not believe that our lower bound on A is optimal (or even close to optimal), the fact
that we obtain an explicit lower bound, universal over all alternating knots, is noteworthy. Finding
explicit bounds is often difficult.

2. Relations between quantum and topological invariants

This section describes ongoing work with Futer and Kalfagianni to determine relations between
hyperbolic geometry and quantum invariants, particularly the Jones and colored Jones polynomials.

The Volume Conjecture, formulated by Kashaev [38] and H. Murakami and J. Murakami [54],
states that the volume of a hyperbolic knot is determined by the asymptotics of its n-th colored
Jones polynomials. This conjecture has been difficult to verify, except for a small number of
examples. However, if it is true, it gives a nice relationship between hyperbolic geometry and
quantum topology. If it is true, we would expect there to be relations between volumes of hyperbolic
links and coefficients of the colored Jones polynomials for large n. With Futer and Kalfagianni, I
have found many such relations, which have led us to the following question.

Question 2.1 (Coarse Volume Conjecture). Does there exist a function B(K) of the coefficients of
the colored Jones polynomials of a knot K such that for hyperbolic knots, B(K) is coarsely related
to hyperbolic volume? That is, do there exist universal constans C1 ≥ 1 nd C2 ≥ 0 such that

C−11 B(K)− C2 ≤ vol(S3 −K) ≤ C1B(K) + C2 for all knots K?

Evidence for the Coarse Volume Conjecture includes computational results due to Champanerkar,
Kofman, and Patterson [16], and work of Dasbach and Lin on alternating knots [21]. It also includes
many results of myself with Futer and Kalfagianni, including [24, 25, 26, 27, 22]. Many of these
results are indirect, relating volume to twist number and coefficients of the Jones polynomials to
twist number.

In the research monograph [22], we develop a more direct way of investigating these relationships.
Namely, we decompose the knot complement along incompressible state surfaces, and use these
surfaces to bound volumes by appealing to work of Agol, Storm, and Thurston [5], which gives
volume bounds in terms of the guts of an incompressible surface.

To state our results, we briefly recall some definitions. Any crossing of a knot diagram can
be resolved in one of two ways, and a choice of resolution gives a state. Applying a state to all
crossings, we obtain a collection of disjoint, embedded circles in the plane. We build a state surface
by requiring these circles to bound disks below the projection plane, and attaching twisted bands
to pairs of disks at crossings. See Figure 3.
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B−resolutionA−resolution

Figure 1. Left to right: A crossing and its resolutions. A knot diagram. Result of
taking all A–resolutions. Its state surface SA.

Figure 1 (right). The surface Sσ will have ∂Sσ = K. Two well–known examples of this construction
are checkerboard surfaces (where the corresponding state circles trace the outline of regions of D)
and Seifert surfaces (where the corresponding state σ is determined by an orientation on K).

The surface Sσ has been particularly important in our recent work. This is because it has
significance in both geometric and quantum topology, partly due to its relationship to the state
graph Gσ:

Definition 3.3. The state graph Gσ is defined by taking a vertex for each circle of the state σ, and
an edge for each crossing. The reduced state graph G′

σ is obtained from Gσ by removing redundant
edges. That is, remove all but one edge connecting the same pair of vertices.

Note that Gσ forms a spine for the surface Sσ. Connectivity of Gσ also gives useful information.

Definition 3.4. A diagram is said to be σ–adequate if Gσ contains no 1–edge loops.

Adequacy of knots and links was first investigated by Lickorish and Thistlethwaite [46, 69], in
relation to the Jones polynomial quantum invariant. In particular, when σ is the all–A state, the
condition of A–adequacy and B–adequacy (i.e. adequacy for the all–A and all–B states) ensures
the Jones polynomial is especially well–behaved, and particularly it will be non-trivial.

Additional information on the quantum side has been given by Dasbach and Lin [17] and
Stoimenow [66], who showed that if D is A–adequate, the last three coefficients of the Jones
polynomial can be computed from data about GA (similarly, the first three coefficients from GB).
One specific result we wish to highlight is the following. Let

Jn
K(t) = αnt

mn + βnt
mn−1 + . . .+ β′

nt
rn+1 + α′

nt
rn ,

denote the n-th colored Jones polynomial. For A–adequate diagrams, in [17] it is shown that the
next-to-last coefficient satisfies

(1) β′
n = 1− χ(G′

A).

An alternate proof, using Turaev surfaces, is in [16]. Similar results hold for B–adequate diagrams
and βn.

On the geometric side, we have the following theorem, which is originally due to Ozawa [55], but
has been reproved by the PI and coauthors using different methods [22].

Theorem 3.5. Let D(K) be a diagram of a link K. The state surface SA is incompressible and
boundary–incompressible in S3�K if and only if D(K) is A–adequate.

Here, in the case SA is not orientable, we define incompressible to be π1–injective: the stronger
of the two possible definitions.

Figure 3. Left to right: A crossing and its resolution. A link diagram. Result of
taking all–A resolutions. The corresponding state surface.

Given a state σ, we obtain a state graph Gσ as follows. First, after applying the state to the
diagram, add an edge for each removed crossing to the collection of state circles, as in the panel
second from right in Figure 3. Then collapse each state circle to a vertex. This is the state graph
Gσ. If Gσ contains no edge–loops, then the link is said to be σ–adquate. For the all–A or all–B
state, Lickorish and Thistlethwaite showed that A and B–adequate knots have nontrivial Jones
polynomial [47]. Such links include all alternating links, and many other classes of links.

On the other hand, Kauffman’s formulation of the Jones polynomial gives the polynomial as a
sum over all possible states of the knot diagram [39]. Therefore, it is not too surprising that for
many classes of knots, in particular A and B–adequate ones, the coefficients of the Jones polynomial
are known to have relations to appropriate state surfaces. See, for example [20].

We find relations of the coefficients of the Jones polynomial to the volume. One sample of results
we obtain is the following theorem, from [22].

Theorem 2.2. Suppose K is an A–adequate link with β′n the penultimate coefficient of the colored
Jones coefficient. Suppose that all 2–edge loops in the state graph come from twist regions. Then

vol(S3 −K) ≥ v8(|β′n| − 1).

In [22], we decomposed the state surface complement into polyhedra; a survey of the decompo-
sition is written in [29]. The properties of the polyhedra can be read off of a directed graph related
to the link diagram. This decomposition has allowed us to use techniques such as normal surface
theory and graph theory to obtain related results, including those in [30, 23], and recently in [6],
which is a joint paper I wrote with undergraduate students.

2.1. Jones coefficients and fibers. In [22], we discovered the that for A–adequate links, the
penultimate coefficient of the Jones polynomial detects whether the all–A state surface is a fiber.
When it is not, we showed that the surface is actually quasifuchsian, that is, it has no accidental
parabolics and no finite cover in which it is a fiber [30]. One main result is the following.

Theorem 2.3. Let K be a hyperbolic link with a prime, A–adequate diagram. Then the penultimate
coefficient of the colored Jones polynomial β′n determines the geometric type of the all–A surface
SA, as follows.

(1) If β′n = 0, then SA is a fiber in S3 −K.
(2) If β′n 6= 0, then SA is quasifuchsian.

Ongoing project. In fact, we show more than Theorem 2.3 in [30]. For a class of links called
homogeneously adequate, we show that a particular state surface is quasifuchsian if and only if the
corresponding state graph is a tree, and a fiber otherwise. For these link complements, again we
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GEODESICS AND COMPRESSION BODIES 3

Figure 1. The (1; 2)–compression body. The core tunnel is the thick line
shown, with endpoints on the torus boundary.

Let τ be the union of the core of the 1–handle with two vertical arcs in S× [0, 1] attached
to its endpoints. Thus, τ is a properly embedded arc in C, and C is a regular neighborhood
of ∂−C ∪ τ . We refer to τ as the core tunnel of C. See Figure 1, which first appeared in [10].

The fundamental group of a (1; 2)–compression body C is isomorphic to (Z× Z) ∗ Z. We
will denote the generators of the Z × Z factor by α, β, and we will denote the generator of
the second factor by γ.

2.2. Hyperbolic structures. We are interested in the isotopy class of the arc τ when we
put a complete hyperbolic structure on the interior of the (1; 2)–compression body C. We
obtain such a structure by taking a discrete, faithful representation ρ : π1(C) → PSL(2,C)
and considering the manifold H3/ρ(π1(C)).

Definition 2.1. A discrete subgroup Γ < PSL(2,C) is geometrically finite if H3/Γ admits
a finite–sided, convex fundamental domain. In this case, we will also say that the manifold
H3/Γ is geometrically finite.

The following gives a useful fact about geometrically finite groups in PSL(2,C).

Theorem 2.2 (Bowditch, Proposition 5.7 [6]). If a subgroup Γ < PSL(2,C) is geometrically
finite, then every convex fundamental domain for H3/Γ has finitely many faces.

Definition 2.3. A discrete subgroup Γ < PSL(2,C) is minimally parabolic if it has no rank
one parabolic subgroups.

Thus for a discrete, faithful representation ρ : π1(M) → PSL(2,C), the image ρ(π1(M))
will be minimally parabolic if for all g ∈ π1(C), the element ρ(g) is parabolic if and only if g
is conjugate to an element of the fundamental group of a torus boundary component of M .

Definition 2.4. A discrete, faithful representation ρ : π1(M) → PSL(2,C) is a minimally
parabolic geometrically finite uniformization of M if ρ(π1(M)) is minimally parabolic and
geometrically finite, and H3/ρ(π1(M)) is homeomorphic to the interior of M .

2.3. Isometric spheres and Ford domains. To examine structures on C, we examine
paths of Ford domains. This is similar to the technique of Jørgensen [16], developed and
expanded by Akiyoshi, Sakuma, Wada, and Yamashita [4], to study hyperbolic structures
on punctured torus bundles. Much of the basic material on Ford domains which we review
here can also be found in [4].

Throughout this subsection, let M = H3/Γ be a hyperbolic manifold with a single rank
2 cusp, for example, the (1; 2)–compression body. In the upper half space model for H3,
assume the point at infinity in H3 projects to the cusp. Let H be any horosphere about
infinity. Let Γ∞ < Γ denote the subgroup that fixes H. By assumption, Γ∞ ∼= Z× Z.

Figure 4. Left: a compression body with core tunnel. Right: an unknotting tunnel

have a decomposition into ideal polyhedra, and again techniques from normal surface theory apply.
What is missing in extending Theorem 2.3 to homogeneously adequate links is the connection
between the state graph and the Jones polynomial, in this case.

Similarly, in [28] we proved a conjecture of Garoufalidis for A–adequate links: every cluster
point of the highest and lowest degrees of the n-th colored Jones polynomials, divided by n2, is a
boundary slope of an essential surface [34]. We also expect that this result extends to homogeneously
adequate links, and we expect that the essential state surface will play a role here. This problem
is of particular interest because the class of homogeneously adequate links is very broad; it is still
unknown whether every knot admits a homogeneously adequate diagram. See [30] and [6] for more
details on these links.

3. Geodesics, Heegaard splittings and infinite volume structures

In addition to descriptions by link diagrams, by Dehn filling, and by gluing polyhedra, 3–
manifolds are also commonly presented by the topological/combinatorial description of a Heegaard
splitting, developed in Poul Heegaard’s 1898 thesis. In this section, we describe some of our results
relating to geometry and Heegaard splittings.

A genus g handlebody is a solid genus g surface. That is, start with a ball and attach to it g
1–handles, homeomorphic to neighborhoods of an interval in R3. Any closed orientable 3–manifold
is obtained by gluing two handlebodies of the same genus along their common boundary; this is a
classical theorem following from work of Moise [50]. When a 3–manifold has boundary, rather than
gluing handlebodies, one may obtain the manifold by gluing compression bodies.

Definition 3.1. Let S be a closed, oriented (possibly disconnected) surface. A compression body
C is obtained by taking the product S × [0, 1] and attaching 1–handles to S × {1} such that the
result is connected. The boundary S × {0} is called the interior boundary, denoted ∂−C. The
exterior boundary, denoted ∂+C, is (∂C − ∂−C). We also say that a handlebody is a compression
body, with ∂−C = ∅.

A Heegaard splitting of a 3–manifold M is a decomposition of the manifold into two compression
bodies. We obtain M by gluing the compression bodies along their common exterior boundary.
Every compact orientable 3–manifold admits a Heegaard splitting.

An example of a simple compression body is shown in Figure 4. In this figure, ∂−C is a torus
T 2, and ∂+C is a genus–2 surface. To build this compression body, a 1–handle was attached to
T 2 × [0, 1]. The core of that 1–handle is shown by the thick line. We call this the core tunnel of
the compression body.

Heegaard splittings of knot complements give rise to the notion of unknotting tunnels. When a
knot complement has a Heegaard splitting into a genus 2 handlebody and a compression body of
the form in Figure 4, we say that the core tunnel is an unknotting tunnel for the knot. A knot that
admits a single unknotting tunnel is called tunnel number 1. For example, all 2–bridge knots are
tunnel number 1. One example is shown on the right of Figure 4.

An unknotting tunnel has a topological description. As before, when the manifold is given a
geometric structure, it is interesting to determine how the topology and geometry are related.
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Figure 11. Snapshots along paths. In the figures shown, the core tunnel is
geodesic because I(γ) remains visible.

Lemma 2.26, as follows. Consider the isometric spheres corresponding to the cyclic group
〈γ〉. Ford domains of cyclic groups have been studied by Jørgensen [16] and Drumm and
Poritz [11]. In particular, it is known that 〈γ〉 is geometrically finite, so a finite number
of isometric spheres corresponding to this group will be visible with respect to the other
isometric spheres of the group. Moreover, they will glue to give a manifold, namely a layered
solid torus. Additionally, the Ford domain for 〈γ〉 is connected. Hence it lies entirely within
∂Dt0 , and thus it is disjoint from all its translates under Γ∞. Therefore when we consider
all translates under Γ∞ of visible isometric spheres corresponding to the cyclic group 〈γ〉,
the result is a domain in H3 cut out by isometric spheres, which glue to give a manifold. If
we further take the quotient by Γ∞ then we obtain a manifold homeomorphic to the (1; 2)–
compression body. The fundamental group of this quotient manifold clearly contains Γ∞; it
also contains γ because it contains all of 〈γ〉. Hence the fundamental group of this manifold
is ρt(π1(C)). Lemma 2.26 implies that we have found the entire (equivariant) Ford domain.

Work of Jørgensen [15] and Drumm and Poritz [11] implies that the face I(γ) is visible in
the Ford domain of 〈γ〉. Therefore in our case, I(γ) must remain visible at time t = t0 (this
is contained in [11, Theorem 7.9], see also the two paragraphs before the statement of that
theorem). Then our result follows from Lemma 5.9. �

By Lemma 5.9, in a real analytic path of minimally parabolic geometrically finite uni-
formizations of C which begins with a simple Ford spine, if the isometric spheres corre-
sponding to γ and γ−1 remain visible throughout, then the core tunnel remains visible. We
found no topological obstruction to the isometric sphere of γ being covered. However, in
practice, we were unable to find examples of paths in which this occurred. All such examples
led to indiscrete groups.

Figure 11 shows examples of Ford domains obtained by our computer program which are
not guaranteed to have a geodesic core tunnel by Theorem 5.10. However, each of these can
be shown to have geodesic core tunnel by observation. In particular, the face I(γ) is visible
always for each of these examples. Thus by Lemma 5.9, the core tunnel is geodesic for each
of these structures. Moreover, it is actually dual to a face of the Ford spine.

This leads us to the following strengthening of Conjecture 1.1.

Conjecture 5.11. In any geometrically finite hyperbolic structure on a (1; 2)–compression
body, the core tunnel is isotopic to a geodesic dual to a face of the Ford domain.

The analogue of Conjecture 5.11 is false for finite volume manifolds. Sakuma and Weeks
conjectured in [19] that core tunnels in knot complements were isotopic to edges of the

Figure 5. Ford domains on compression bodies, from a computer program I wrote
to visualize these structures. Figure from [45].

Adams asked in the 1990’s whether all unknotting tunnels are isotopic to geodesics in a hyperbolic
structure [1]. Adams and Reid showed this was the case for 2–bridge knots [2]. I find this problem to
be a very intriguing mix of topology and geometry, and I have worked on it with several coauthors.
By considering the geometry of unknotting tunnels and related problems, we have discovered much
interesting mathematics, in both finite and infinite volume manifolds.

For example, with Cooper and Futer, I showed that unknotting tunnels are geodesic “generically,”
in an appropriate sense [18]. The following is one result of that paper.

Theorem 3.2. Let X be an orientable hyperbolic 3–manifold with two cusps and unknotting tunnel
σ. Choose a generic Dehn filling slope µ on one cusp of X, and let τ ⊂ X(µ) be the tunnel
associated to σ, i.e. τ is obtained by following σ from the unfilled cusp to the filled cusp, traversing
the core of the Dehn filling solid torus, and then following σ in reverse. Then τ is an unknotting
tunnel for M(µ), and τ is isotopic to a geodesic in the hyperboic metric on X(µ).

The proof uses Dehn filling techniques, including the negatively curved metric built to prove
Theorem 1.4. One other tool we needed was explicit information on which Dehn filling slopes leave
the Heegaard genus unchanged, i.e. an explicit version of theorems by Moriah and Rubinstein [52]
and Rieck and Sedgwick [66]. Futer and I found these conditions in [32]. Namely, we give explicit
conditions on Dehn filling slopes that guarantee that a Heegaard surface in the unfilled manifold
remains a Heegaard surface in the filled manifold.

Another question that Adams asked in [1] was whether unknotting tunnels had universally
bounded length. Cooper, Lackenby and I proved that this was not the case, but that for any
L, there exists a hyperbolic 3–manifold with an unknotting tunnel of length greater than L [19].

The investigation of this problem led Lackenby and me to study geometric structures on com-
pression bodies, especially those in Figure 4. Unlike the case of finite–volume manifolds, there
are uncountably many hyperbolic structures on this compression body, parametrized by conformal
structures on the exterior boundary. I wrote a computer program to visualize these structures using
Ford domains. A few screenshots from my program are shown in Figure 5. The algorithm for the
program was developed in joint work with Lackenby [45].

Given computer evidence, as well as additional results using techniques from Kleinian groups,
Lackenby and I conjecture that in a geometrically finite hyperbolic structure on a compression
body, the core tunnel is always isotopic to a geodesic [45].

However, the most obvious generalization of this conjecture is not true. S. Burton and I showed
that there exist hyperbolic structures on compression bodies with tunnel number n ≥ 2, and a
choice of tunnel system, for which the geodesics in the isotopy classes of the tunnels self–intersect
[12]. The tunnels Burton and I found, however, were not as closely related to geometric properties
of the hyperbolic structure as other choices of tunnels. In fact, we did find a tunnel system for
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these manifolds for which all tunnels are isotopic to geodesics. It is an open question as to whether
there is always a choice of a tunnel system for which tunnels are isotopic to geodesics.

There is still much to discover concerning hyperbolic structures even for simple compression
bodies. Because compression bodies are building blocks of all 3–manifolds, I believe that this is a
very important area of investigation.
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