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Abstract. This paper employs knot invariants and results from hyperbolic geometry to develop a
practical procedure for checking the cosmetic surgery conjecture on any given one-cusped manifold.
This procedure has been used to establish the following computational results. First, we verify that
all knots up to 19 crossings, and all one-cusped 3-manifolds in the SnapPy census, do not admit
any purely cosmetic surgeries. Second, we check that a hyperbolic knot with at most 15 crossings
only admits chirally cosmetic surgeries when the knot itself is amphicheiral. Third, we enumerate
all knots up to 13 crossings that share a common Dehn filling with the figure–8 knot. The code
that verifies these results is publicly available on GitHub.

1. Introduction

This paper is concerned with the question of whether two distinct Dehn fillings of a given 3-manifold
can ever produce the same result. Consider a compact orientable 3-manifold N whose boundary is
a single torus, and a slope s, or isotopy class of simple closed curves on ∂N . The Dehn filling of
N along s, denoted N(s), is the 3-manifold obtained by attaching a solid torus D2 × S1 to N by a
homeomorphism of boundaries that sends a meridian curve ∂D2 × {∗} to s ⊂ ∂N . We use the terms
Dehn filling and Dehn surgery interchangeably.

Definition 1.1. Let N be a compact oriented 3-manifold whose boundary is a single torus. Let
s, s′ be distinct slopes on ∂N . We call (s, s′) a cosmetic surgery pair if there is a homeomorphism
ϕ : N(s) → N(s′). The pair is called chirally cosmetic if ϕ is orientation-reversing, and purely
cosmetic if ϕ is orientation-preserving.

There are many examples of chirally cosmetic surgeries where N is Seifert fibered. See Bleiler–
Hodgson–Weeks [3] for a survey, and Ni–Wu [38] for more examples. Ichihara and Jong have
constructed one example of a chirally cosmetic surgery pair where the parent manifold N and the
filled manifolds N(s), N(s′) are all hyperbolic [26]. By contrast, no purely cosmetic surgeries are
known apart from the case where N is a solid torus. This has led Gordon [17] to propose

Conjecture 1.2 (Cosmetic surgery conjecture). Let N be a compact, oriented 3-manifold such that
∂N is an incompressible torus. Then N has no purely cosmetic surgeries.

See Conjecture 1.3 for a version with multiple boundary tori, and Conjecture 1.6 for a version
that seeks to exclude chirally cosmetic surgeries on knots in S3. This paper provides extensive
experimental evidence for all three conjectures.

1.1. Purely cosmetic surgeries on knots in S3. Conjecture 1.2 has received the most attention
in the setting where N is the exterior of a knot K ⊂ S3. In this setting, certain knot invariants can
severely limit the slopes s, s′ involved in a purely cosmetic surgery pair. Invariants with this property
include the Alexander polynomial (thanks to the work of Boyer and Lines [4]), knot Floer homology
(thanks to the work of Ni–Wu [38] and Hanselman [18]), and the Jones polynomial (thanks to the
work of Ichihara–Wu [28] and Detcherry [10]). We refer to Section 2 for a detailed survey of these
results, formulated as algorithmic tests that can be performed on a knot K.
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Sometimes, these knot invariants can obstruct obstruct cosmetic surgeries on N = S3 − K
altogether. Notably, obstructions coming from knot Floer homology, combined with other invariants,
have been used to prove Conjecture 1.2 for several infinite families of knots. These families include
knots of genus 1 (Wang [46]), torus knots (Ni and Wu [38]), two-bridge knots (Ichihara, Jong,
Mattman, and Saito [27]), pretzel knots (Stipsicz and Szabo [39]), alternating knots with at least 7
twist regions (Ichihara and Jong [25]), connected sums (Tao [42]), and nontrivial cables (Tao [41]).

Knot invariants have also been used to verify Conjecture 1.2 on large data sets. The method
is to first apply a test (such as one of the tests described in Section 2) to reduce the search to a
small subset of knots, and to a finite and explicitly given set of slopes on these knots. Then, direct
computation (often using hyperbolic invariants) can distinguish the Dehn fillings along the remaining
slopes. In this vein, Hanselman used knot Floer homology (see Tests 2.7–2.9) to verify Conjecture 1.2
for all knots up to 16 crossings [18]. Detcherry used Jones polynomials (see Tests 2.5–2.6), with an
assist from knot Floer homology, to verify Conjecture 1.2 for all knots up to 17 crossings [10].

In this paper, we extend the verification of Conjecture 1.2 to 19 crossings:
Theorem 2.10. The cosmetic surgery Conjecture 1.2 holds for all nontrivial knots up to 19 crossings.

The method of proof is still to compute obstructions coming from knot invariants, reducing the
sample dramatically. One innovation, compared to prior work, is that direct computation of knot
Floer homology is never needed for the knots in the set. Instead, we rely heavily on the Alexander
polynomial and the Turaev genus (see Test 2.4), to capture most of the obstructive information
contained in knot Floer homology. This speeds up computations dramatically, making it feasible to
check the 352,152,252 prime knots up to 19 crossings.

A second innovation is that our work is encapsulated in user-friendly code that can be used to
check Conjecture 1.2 for any knot in S3, or for any hyperbolic manifold with a single cusp. See
Section 1.5 for more details.

1.2. Cosmetic surgery conjecture for general 3-manifolds. Moving beyond knots in S3, let
N be a compact 3-manifold with boundary consisting of tori, and let N be its interior. Since most of
our tools come from hyperbolic geometry, we restrict to the setting where N is hyperbolic. In this
setting, Conjecture 1.2 has the following analogue.
Conjecture 1.3 (Hyperbolic cosmetic surgery conjecture). Let N be a finite-volume hyperbolic
3-manifold with one or more cusps. Let s and s′ be tuples of slopes on the cusps of N . If there is an
orientation-preserving homeomorphism ϕ : N(s) → N(s′), and this manifold is hyperbolic, then ϕ
restricts (after an isotopy) to a homeomorphism N → N sending s to s′.

Compare Kirby [33, Problem 1.81(B)] and Jeon [31, Section 1.1 and Theorem 1.6] for related
statements. We remark that restricting to purely cosmetic surgeries is necessary, even when N has
a single cusp. For instance, Dunfield has observed to us that the census manifold N = o9_39009,
the slopes (−1, 3) and (−3, 2) are chirally cosmetic, with the further property that the core curves
of Dehn filling solid tori are isotopic to geodesics. Ichihara and Jong [26] have also constructed a
one-cusped hyperbolic manifold admitting chirally cosmetic surgeries.

For a one-cusped hyperbolic manifold, Conjectures 1.2 and 1.3 are nearly equivalent. In one
direction, observe that the conclusion of Conjecture 1.2 is stronger, hence Conjecture 1.2 implies
Conjecture 1.3. In the other direction, when N is hyperbolic, we recall that every one-cusped
manifold N has a homological longitude: a unique slope λhom on the cusp that is trivial in H1(N,Q).
See Definition 3.3 for more details. Thus any orientation-preserving homeomorphism ϕ : N → N
must send λhom to itself, hence must act trivially on the set of slopes on the cusp. Consequently,
Conjecture 1.3 implies Conjecture 1.2 for all but the handful (no more than 10) of exceptional
surgeries on N .

In this paper, we verify Conjectures 1.2 and 1.3 for all one-cusped manifolds in the SnapPy census.
Theorem 4.4. Conjectures 1.2 and 1.3 hold for the 59,107 one-cusped manifolds in the SnapPy
census, provided that SnapPy’s systole calculation is correct to within 1%.
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The proof of Theorem 4.4 makes heavy use of hyperbolic geometry. For each manifold N , we wish
to restrict attention to a small, explicit list of slopes. Thus we begin by proving Conjecture 1.3 for
all sufficiently long (tuples of) slopes, where “long” is explicitly quantified. For these long slopes, the
only purely or chirally cosmetic surgeries come from symmetries of N itself. An ineffective version
of this sort of statement appears in Bleiler–Hodgson–Weeks [3], and an effective version (with an
explicit quantification) appears in our previous paper [15, Theorem 7.29].

Our effective statement requires the definition of normalized length.
Definition 1.4. Let s be a slope on a horospherical torus T ⊂ N . The normalized length of s is
L(s) = len(s)/

√
area(T ). Observe that L(s) is unchanged when the metric on T is scaled, hence

does not depend on the choice of cusp cross-section.
When N has more than one cusp, let s = (s1, . . . , sn) be a tuple of slopes, with one slope per cusp.

The normalized length of s is the quantity L(s) satisfying 1/L(s)2 =
∑n
i=1 1/L(si)2.

We prove the following.
Theorem 3.19. Let N be a cusped hyperbolic 3-manifold. Suppose that s, s′ are distinct tuples of
slopes on the cusps of N , whose normalized lengths satisfy

(1.5) L(s), L(s′) ≥ max
{

9.97,

√
2π

sys(N) + 56
}
.

Then any homeomorphism ϕ : N(s) → N(s′) restricts (after an isotopy) to a self-homeomorphism
of N sending s to s′. In particular, if sys(N) ≥ 0.145, then the above conclusion holds for all pairs
(s, s′) of normalized length at least 9.97.

Theorem 3.19 is a slight strengthening of [15, Theorem 7.29]. Compared to that statement, both
the constant term and the variable term in the maximum of (1.5) have become slightly smaller. This
makes Theorem 3.19 easier to apply in practice.

In Section 4, we explain how Theorem 3.19 leads to a practical procedure to check the Cosmetic
surgery conjecture on one-cusped manifolds. Here is an outline. When N has one cusp, there are
only finitely many slopes s whose normalized length is shorter than the bound in (1.5). Supposing for
concreteness that sys(N) ≥ 0.145, the length bound becomes 9.97. By a lemma of Agol [1, Lemma
8.2], there are at most 102 slopes on the cusp of N of normalized length at most 10, hence s must be
one of these 102 slopes. If N(s) ∼= N(s′) and this manifold is hyperbolic, then volume considerations
imply that L(s′) is also bounded above; see Theorem 3.24. This leads to an explicit finite list of slope
pairs (s, s′) to check, and every pair of filled manifolds N(s), N(s′) can be compared by computer.
The finite list of pairs of exceptional surgeries on N can also be compared by computer.

We have implemented this procedure in Sage, and the program is publicly available on GitHub
[14]. For any given one-cusped manifold N , the program forms the finite set of pairs of slopes that
need to be checked, and then proceeds to compare them. Section 4 describes the procedure in detail.
All of the comparisons between manifolds are done using rigorously verified hyperbolic invariants, or
else using algebraic invariants such as the homology of covers. However, the computation of sys(N) is
a crucial input for building the set of slopes to check, and this computation is not currently rigorously
verified in SnapPy. This is why Theorem 4.4 contains the proviso that SnapPy’s systole calculation
is correct to within 1%. See Remark 4.3 for more discussion.

1.3. Chirally cosmetic surgeries. There are no known counterexamples to Conjecture 1.2, that
is, no known examples of purely cosmetic surgeries on a 3-manifold N with incompressible boundary
However, as stated above, there exist known examples of chirally cosmetic surgeries. Recently
Ichihara, Ito, and Saito proposed the following conjecture [23, Conjecture 1], which states that
chirally cosmetic surgeries on knots in the 3-sphere only occur in very restricted ways.
Conjecture 1.6 (Chirally cosmetic surgery conjecture for knots in S3). Let K be a knot in S3 that
is not a (2, r) torus knot, and let N = S3 −K. If (s, s′) is a chirally cosmetic pair of slopes on ∂N ,
then K has an orientation-reversing symmetry and s′ = −s.
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See [23, Conjecture 1] for a slightly stronger formulation: chirally cosmetic surgeries on knots in
S3 either satisfy Conjecture 1.6 or are particular pairs of slopes on (2, r) torus knots. We restrict
attention to non-torus knots because our methods are primarily hyperbolic.

The statement of Conjecture 1.6 and of [23, Conjecture 1] is carefully designed to get around known
counterexamples. For instance, (2, r) torus knots are known to admit chirally cosmetic surgeries;
see [24, Corollary A.2]. There are also known examples of one-cusped hyperbolic manifolds that do
not embed in S3 and admit chirally cosmetic surgeries, such as N = o9_39009 and the example of
Ichihara and Jong [26].

Conjecture 1.6 is known to hold for several families of knots. These include genus one alternating
knots [23], alternating odd pretzels [45, 44], positive two-bridge knots [29], and special alternating
knots with sufficiently many twist regions [30]. All of these families are alternating.

As with purely cosmetic surgeries, Theorem 3.19 provides a useful practical tool for ruling out
chirally cosmetic surgeries on a hyperbolic knot complement N = S3 −K. Provided that K is chiral
(meaning, it does not admit any orientation-reversing symmetries), Theorem 3.19 constrains the
slopes involved in chirally cosmetic surgeries to an explicit finite list. The procedure for checking this
finite list, described in Section 4.1, is nearly identical to the one for purely cosmetic surgeries. Using
this procedure, we have verified Conjecture 1.6 for hyperbolic knots up to 15 crossings.

Theorem 4.7. Conjecture 1.6, the chirally cosmetic surgery conjecture for knots in S3, holds for
the 313,209 hyperbolic knots up to 15 crossings, provided that SnapPy’s systole calculation is correct
to within 1%.

In prior work, Ichihara, Ito, and Saito have verified Conjecture 1.6 for approximately 75% of the
245 non-(2, r)-torus knots up to 10 crossings [23, Table 2]. Theorem 4.7 expands this verification to
a larger data set, contingent on the accuracy of the systole calculation. The proviso about systoles
occurs for the same reason as in Theorem 4.4.

1.4. Common fillings of distinct cusped manifolds. The same theoretical results and compu-
tational tools that can be used to detect common Dehn fillings of the same 3-manifold, as would
occur in any counterexample to the cosmetic surgery conjecture, can also be used to detect common
Dehn fillings of distinct 3-manifolds.

In Section 5, we walk through the adaptations needed to consider distinct parent 3-manifolds. We
apply this in two results. In Theorem 5.1, we find all knots with at most 13 crossings that share a
common Dehn surgery with the figure-8 knot. In Theorem 5.2, we find all knot complements that
can be triangulated with fewer than 10 tetrahedra that share a common Dehn filling with the figure-8
knot complement. These results have been used by Kalfagianni and Melby [32] to construct many
new q-hyperbolic knots in S3.

1.5. Code on GitHub. All of the code that was used to prove the computational theorems in this
paper is publicly available on GitHub [14]. We have endeavored to make the code user-friendly,
extensively documented, and widely applicable. Code that uses knot invariants is designed for
arbitrary knots, and code for hyperbolic manifolds is designed for arbitrary one-cusped manifolds.
Consequently, our programs should be able to handle examples outside the given data sets.

At the same time, we have not implemented a complete solution to the homeomorphism problem for
3-manifolds. Accordingly, our programs are not guaranteed to distinguish every non-homeomorphic
pair of Dehn fillings of N . We have entered a number of invariants — hyperbolic volume, the
homology of covers, Seifert invariants — but we have necessarily had to stop somewhere. The proof
of Theorem 4.4 contains several examples of toroidal fillings that had to be handled “by hand.” We
emphasize that, apart from systole calculations, all of the tests used by our programs are rigorous.

We point the reader to Remarks 2.13, 4.5, 4.8, and 5.3 for a description of the top-level routines
that check the conjectures, as well as for some notes about running time.
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2. Obstructions and tests from knot invariants

In this section, we describe a suite of knot-theoretic tests that take a diagram D(K) as input,
compute one or more knot invariants, and (for certain “generic” values of the invariants) allow one
to conclude that S3 −K has no purely cosmetic surgeries. These tests are convenient to perform
in SnapPy, but do not use any hyperbolic geometry. We compare the effectiveness of these tests in
subsection 2.1. Then, in Theorem 2.10, we apply these tests to verify Conjecture 1.2 for all knots up
to 19 crossings.

When discussing knots in S3, we follow the convention of denoting slopes on the boundary torus
of S3 −K as rational numbers. That is, given the canonical meridian µ and homological longitude λ,
we denote the slope (p, q) = pµ+ qλ as the fraction p/q ∈ Q ∪ {∞}.

Several of the tests below rely on a recent theorem of Hanselman [18, Theorem 2]. In the following
theorem, g(K) is the Seifert genus of a knot K. Meanwhile, th(K) is an invariant derived from
the knot Floer homology ĤFK(K). Recall that ĤFK(K) is a bigraded, finitely generated abelian
group, whose nontrivial entries lie on finitely many slope–1 lines with respect to the bigrading. The
thickness th(K) is the largest difference between the y–intercepts of these lines.

Theorem 2.1 (Hanselman). Let K ⊂ S3 be a nontrivial knot, with Seifert genus g(K). Suppose
that s1 and s2 are a purely cosmetic pair of slopes for K. Then one of the following holds:
(1) {s1, s2} = {±2} and g(K) = 2, or

(2) {s1, s2} = {± 1
q}, where 1 ≤ q ≤ th(K) + 2g(K)

2g(K)(g(K)− 1) .

In particular, if th(K) < 2g(K)(g(K)− 2), then K cannot have purely cosmetic surgeries.

Theorem 2.1 is a powerful result that inspired a considerable amount of subsequent work. Using
it directly, as we do in Test 2.9, is a costly computation because the number of generators in the
chain complex for ĤFK(K) is factorial in the crossing number c(K). Fortunately, both the thickness
th(K) and the genus g(K) can be estimated using simpler invariants.

Definition 2.2. Given a knot diagram D = D(K), the diagram Turaev genus gT (D) is an invariant
of D that can be computed from a single Kauffman state of D. See [6, Section 1.1] for the exact
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definition. The Turaev genus of K, denoted gT (K), is a knot invariant defined by minimizing gT (D)
over all diagrams of K. A knot K is alternating if and only if gT (K) = 0 [9, Corollary 4.6].

The important facts for our purposes are that gT (D) is quick to compute and that it satisfies
th(K) ≤ gT (K) ≤ gT (D).

Here, the first inequality is a theorem of Lowrance [35] and the second inequality holds by the
definition of gT (K).

The following tests are ordered roughly according to computational difficulty. The first two tests
use the Alexander polynomial ∆K(t).
Test 2.3 (Casson invariant test). Given a 3-manifold N = Y −K, where Y is an integer homology
sphere, compute the (symmetrized) Alexander polynomial ∆N = ∆K and the Casson invariant
1
2 ∆′′K(1). If ∆′′K(1) 6= 0, then a theorem of Boyer and Lines [4, Proposition 5.1] implies that N cannot
have purely cosmetic surgeries.

We remark that Test 2.3 is the only test described in this section that works outside the realm of
knot complements in S3.
Test 2.4 (Quick genus–thickness test). Given a knot K ⊂ S3 with diagram D = D(K), compute the
diagram Turaev genus gT (D). Next, compute the Alexander polynomial ∆K , which provides a lower
bound on the Seifert genus:

1
2 span(∆K) ≤ g(K).

If gT (D) < span ∆K( 1
2 span ∆K−2), then Lowrance’s theorem [35] implies th(K) < 2g(K)(g(K)−2),

hence Hanselman’s Theorem 2.1 implies K cannot have purely cosmetic surgeries.
If gT (D) = 0, then K is alternating [9, Corollary 4.6]. If, in addition, span ∆K = 2, then g(K) = 1,

hence Wang’s theorem [46] implies K cannot have purely cosmetic surgeries.
The next two tests use the Jones polynomial VK(t).

Test 2.5 (Jones derivative test). Given a knot K ⊂ S3, compute the Jones polynomial VK(t) and the
third derivative V ′′′K . If V ′′′K (1) 6= 0, then a theorem of Ichihara and Wu [28] implies that K cannot
have purely cosmetic surgeries.
Test 2.6 (TQFT test). Given a knot K ⊂ S3, with diagram D = D(K), compute the diagram
Turaev genus gT (D). Next, compute the Jones polynomial VK(t) and its evaluation VK(e2πi/5). If
gT (D) ≤ 15 and VK(e2πi/5) 6= 1, then Detcherry’s theorem [10] implies that K cannot have purely
cosmetic surgeries.

We remark that Detcherry’s theorem [10] relies on Theorem 2.1. In addition, note that gT (D) ≤
1
2c(D) for the crossing number c(D), so gT (D) ≤ 15 for all diagrams up to 31 crossings. This makes
Test 2.6 quite powerful in practice.

The final triple of tests uses invariants derived from the knot Floer homology ĤFK(K).

Test 2.7 (Genus 1 test). Given a knot K ⊂ S3, compute the Seifert genus g(K) using ĤFK(K). If
g(K) = 1, then Wang’s theorem [46] implies that K cannot have purely cosmetic surgeries.

In the special case where K is alternating, we have g(K) = 1
2 span ∆K , so this test can be applied

without computing ĤFK(K).

Test 2.8 (τ invariant test). Given a knot K ⊂ S3, compute the invariant τ(K) using ĤFK(K). If
τ(K) 6= 0, then a theorem of Ni and Wu [38] implies that K cannot have purely cosmetic surgeries.

Test 2.9 (Hanselman HFK test). Given a knot K ⊂ S3, compute th(K) and g(K) using ĤFK(K).
If th(K) < 2g(K)(g(K)− 2), then Hanselman’s Theorem 2.1 implies K cannot have purely cosmetic
surgeries.

In the special case where K is alternating, this test combined with Test 2.7 provides exactly the
same information as Test 2.4.
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2.1. Effectiveness of the tests. To assess the comparative effectiveness of the above tests, we ran
each of them on the 1,701,935 prime knots up to 16 crossings. Here is how they performed:

Test Knots eliminated Knots remaining Percent remaining
Test 2.3: Casson invariant 1,513,776 188,159 11.1%

Test 2.4: Quick genus-thickness 1,676,441 25,494 1.5%
Test 2.5: Jones derivative 1,623,086 78,849 4.6%

Test 2.6: TQFT 1,701,883 52 0.003%
Test 2.7: Seifert genus 1 72 1,701,863 99.996%
Test 2.8: τ invariant 1,252,518 449,417 26.4%

Test 2.9: Hanselman HFK 1,694,443 7,492 0.44%

One immediate conclusion is that Test 2.6 (TQFT) is very effective. Indeed, its effectiveness seems
to grow as the crossing number increases: there are over 8,000,000 knots with 17 crossings, and
Detcherry has computed that only 45 of these knots have the property that VK(e2πi/5) = 1, which
makes the test inconclusive [10]. Test 2.9 (Hanselman HFK) is also quite powerful. The combination
of Tests 2.4, 2.5, and 2.6 is very quick to run, and serves to rule out the vast majority of knots.

The following table describes the level of dependence between the various tests. Given events A
and B, let P (A|B) denote the conditional probability of A, given B. The ratio P (A|B)

P (A) is called the
normalized likelihood of A given B. Bayes’ Theorem says that normalized likelihood is a symmetric
quantity:

P (A|B)
P (A) = P (B|A)

P (B) .

In the following table, Bn represents the event “a random prime knot of up to 16 crossings survives
after applying test n.” Then, the (i, j) entry of the table is the normalized likelihood P (Bi|Bj)

P (Bi) . Thus
values less than 1 suggest that tests i and j are negatively correlated, while values greater than 1
suggest that they are positively correlated. Diagonal entries represent the inverse probability 1

P (Bi)
that a knot survives after test i; as expected, the diagonal entries for Test 2.6 and Test 2.9 are
particularly large because those tests are particularly effective.

None of the entries in the table is substantially below 1, meaning that any negative correlations are
very slight. On the other hand, there are some notable positive correlations. For instance, Test 2.4
(quick genus–thickness) is strongly positively correlated with Test 2.9 (Hanselman HFK); indeed,
apart from the 72 knots of genus 1, any knot that survives Test 2.9 must also survive Test 2.4.
The strong positive correlation between Test 2.6 (TQFT) and Test 2.9 (Hanselman HFK) is more
surprising, and merits further study.

Test 2.3 Test 2.4 Test 2.5 Test 2.6 Test 2.8 Test 2.9
Test 2.3 9.045 1.227 4.063 1.217 1.406 0.946
Test 2.4 66.75 1.396 12.83 1.815 66.41
Test 2.5 21.58 0.830 1.596 0.939
Test 2.6 32729 0.728 69.89
Test 2.8 3.786 1.697
Test 2.9 227.1

2.2. Results. Using the above tests, we can prove the following.

Theorem 2.10. The cosmetic surgery Conjecture 1.2 holds for all nontrivial knots up to 19 crossings.

Proof. Tao proved that Conjecture 1.2 holds for all composite knots [42]. Thus it suffices to check
prime knots.

Burton has compiled an enumeration of all 352,152,252 prime nontrivial knots up to 19 crossings [5].
We ran Tests 2.3–2.6 on this list of knots. These tests rule out purely cosmetic surgeries on all
but two of the knots: the knots K1 and K2 that are shown in Figure 1. Both exceptional knots
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DT:rarpjonmlkrqbafedcigh

K1

DT:rarmlkjipNqedcbaOGRhF

K2

Figure 1. The two prime knots up to 19 crossings that were not ruled out by
Tests 2.3–2.9. Both exceptional knots have 18 crossings.

satisfy th(Ki) = 0, g(Ki) = 2, and τ(Ki) = 0, so the ĤFK–based Tests 2.7–2.9 do not provide any
information.

At the same time, Theorem 2.1 says that the only potential purely cosmetic pairs of surgery slopes
on Ki are {±1} and {±2}. In each case, the filled manifolds are hyperbolic and are distinguished
using verified hyperbolic volume. �

Remark 2.11. There are good theoretical reasons why the above tests fail on K1 and K2. Since K1
and K2 are thin (meaning th(Ki) = 0) and have Alexander polynomials of the form appearing in
[18, Theorem 5], Heegaard Floer invariants cannot distinguish the {±1} and {±2} Dehn surgeries on
these knots. The Alexander polynomial is similarly powerless.

In addition, performing ±1/5 surgery on a crossing circle about the large twist region of Ki has
the effect of replacing 9 half-twists by −1 half-twist, or 10 half-twists by 0. This surgery transforms
each Ki into the unknot, while leaving the value JK(e2πi/5) unchanged. Compare [10, Lemma 4.2].
Thus Test 2.6 cannot provide any information about Ki.

Finally, the alternating knot K1 belongs to one of the families excluded by Ichihara and Jong’s
result [25, Theorem 1.1].

Remark 2.12. Running Tests 2.3–2.6 on a database of 352 million knots took approximately 5
months of wall time.

If one restricts to the hyperbolic and homological tools of Section 3 only, the search becomes
far slower. Using Theorem 3.24, we were able to check Conjecture 1.2 on the far smaller sample of
313,230 prime knots up to 15 crossings in approximately two weeks. This was part of the computation
that yielded Theorem 4.7.

Remark 2.13. Theorem 2.10 was proved by running two python programs, available on GitHub [14].
The first program, prune_using_invariants, performs the tests described above, allowing the user
to turn specific tests on or off. To prove Theorem 2.10, the program stepped through Burton’s census
and found that all knots except the two shown in Figure 1 were excluded.

The python program check_knots uses mostly hyperbolic methods (Theorem 3.24, combined
with slope restrictions proved by Ni and Wu [38]) to identify a finite number of slopes to check and
then compare those slopes. This program was used on the remaining two knots. One notable feature
of check_knots is that it works with a knot complement without needing access to a knot diagram.
For example, it can quickly verify Conjecture 1.2 on the 1267 knot complements in the SnapPy
census [8], even though some of these knots have diagrams with hundreds of crossings.

3. Beyond the 3-sphere using hyperbolic tools

In this section, we discuss tools to test the cosmetic surgery conjecture, Conjecture 1.2, on an
arbitrary hyperbolic 3-manifold with one cusp. These tools have been written into a computer
program, described in Section 4. The tools are also used to test the chirally cosmetic surgery
conjecture, Conjecture 1.6, and to find common fillings of different surgery parents in Section 5.
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The main philosophy behind our programs is to use geometry as much as possible. In particular,
we compare closed hyperbolic manifolds using hyperbolic invariants such as the (complex) volume
and the (complex) length spectrum. Rigorous bounds on which Dehn fillings should be compared
require certain sharpened and simplified versions of theorems by Hodgson–Kerckhoff [22] and of a
theorem from our previous work [15]. These results are described in Sections 3.2–3.3.

Non-hyperbolic manifolds are still handled from the perspective of geometrization. We compare
closed, non-hyperbolic 3-manifolds by decomposing them along spheres and tori, as needed, into
hyperbolic and Seifert fibered pieces. Hyperbolic pieces are compared as above, while Seifert fibered
pieces are compared using their Seifert invariants.

3.1. Invariants based on homology. In addition to geometric tools, our program employs tools
from algebraic topology to speed up computations and distinguish difficult cases.

Since the first homology H1(M) of a 3-manifold M is fast to compute, we sort the Dehn fillings
of a cusped manifold N into buckets that have the same first homology, and only compare pairs of
manifolds within the same bucket. (See Lemma 3.4 and §4.1.4.) In addition to H1(M), we consider
the first homology groups of small-degree covers.

Definition 3.1. Let M be a closed 3-manifold and n a natural number. The cover homology
invariant up to index n is the set

C(M,n) = {
(
[π1M : H], Hab

)
| [π1M : H] ≤ n}.

In words, the invariant C(M,n) packages together all of the homology groups of covers of M up to
degree n, while recalling the degree of the cover for each entry.

The recent versions of SnapPy (version 3.1 and later) can compute covers of M extremely fast by
employing multiple processor cores at the same time. This makes it feasible to compute C(M,n) for
n ≤ 7, even on medium-sized examples. In Section 4, we use this invariant for both hyperbolic and
non-hyperbolic manifolds. See Remark 4.8 for more computational notes.

A slightly more sophisticated invariant is a package of homology groups of both small-index
subgroups and their normal cores.

Definition 3.2. Given a closed 3-manifold M , consider a finite-index subgroup H < π1M . The
normal core K = Core(H) is the intersection of all conjugates of H. Consider the 4–tuple

D(H) =
(
[π1M : H], [π1M : K], Hab, Kab

)
Then, for a natural number n, the core homology invariant up to index n is the set

D(M,n) = {D(H) | [π1M : H] ≤ n}.

In practice, computing the normal core of a subgroup H requires working in Gap, which is slower
than the cover enumeration in SnapPy. However, this computation is practical and the invariant
D(M,n) seems to be powerful. In prior work, Dunfield successfully used this invariant (with n = 6)
to distinguish roughly 300,000 closed hyperbolic 3-manifolds [11, Proof of Theorem 1.4].

Next, we consider the arrangement of homology groups of fillings in the Dehn surgery plane.

Definition 3.3. Let N be a compact oriented 3-manifold with torus boundary. The homological
longitude of N is a primitive homology class in H1(∂N,Z) that is trivial in H1(N,Q). By the “half
lives, half dies” lemma [20, Lemma 3.5], the homological longitude always exists and is unique up to
sign.

Lemma 3.4. Let N be a compact oriented 3-manifold with torus boundary. Let λhom be its homological
longitude, and let µhom any curve on ∂N whose intersection number with λhom is 1. Then there is
an integer k = k(N) such that the following hold for every relatively prime pair (p, q), giving slope
s = pµhom + qλhom.
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• The first Betti number of the Dehn filling N(s), filled along the slope s = pµhom + qλhom,
satisfies

b1(N(s)) =
{
b1(N) p = 0
b1(N)− 1 p 6= 0.

• For all p 6= 0, the torsion of the first homology group of N(s) satisfies |TorH1(N(s))| = k|p|.

Proof. Let i : ∂N → N be the inclusion map, and let i∗ : H1(∂M) → H1(M) be the induced
homomorphism. By the “half lives, half dies” lemma [20, Lemma 3.5] and the definitions of λhom
and µhom, we have that i∗(λhom) is finite order and i∗(µhom) is infinite order in H1(N). Let F be a
maximal finite subgroup of H1(N) containing i∗(λhom). Let C = 〈ν〉 be a maximal cyclic subgroup
of H1(N) containing i∗(µhom), so that i∗(µhom) = mν. By the maximality of C and F , we have a
splitting

H1(N) ∼= B ⊕ C ⊕ F,

where B ∼= Zb1(N)−1 consists of non-peripheral homology classes, and C,F are as above.
Now, let s = pµhom + qλhom be a Dehn filling slope. To compute the homology groups of N(s), we

first attach a 2–handle D2 along the slope s, and then attach the remaining 3-handle. The 3-handle
has no effect on H1(N(s)). The relevant portion of the Mayer–Vietoris sequence in reduced homology
is

. . .→ H1(S1) α−→ H1(N)⊕H1(D2) β−→ H1(N ∪D2) ∂−→ H̃0(S1)→ . . .

Since H̃0(S1) = 0, we know that β is onto. The kernel of β is the image of α, generated by
i∗(s) = i∗(pµhom + qλhom).

If p = 0, then ker(β) = 〈i∗(qλhom)〉 ⊂ F . Recall that F is finite. Thus b1(N(s)) = b1(N ∪D2) =
b1(N), as claimed.

If p 6= 0, then ker(β) = 〈i∗(pµhom + qλhom)〉, an infinite cyclic subgroup of C ⊕ F . Thus
b1(N(s)) = b1(N ∪D2) = b1(N)− 1, as claimed. Recall that i∗(pµhom) = pmν. Furthermore,

H1(N(s)) ∼= H1(N)
/

ker(β)
∼= B ⊕ C ⊕ F

/
〈i∗(pµhom + qλhom)〉

∼= B ⊕
[
〈ν〉 ⊕ F

/
pmν = −qi∗(λhom)

]
In particular, the free part of H1(N(s)) is isomorphic to B ∼= Zb1(N)−1. The torsion part of H1(N(s))
is the group in square brackets, whose order is |pm| · |F |. In particular, the number k in the statement
of the lemma is m|F |. �

Corollary 3.5. The homological longitude λhom can never be part of a cosmetic surgery pair. �

Corollary 3.6. If the homology groups H1(N(pµhom + qλhom)) and H1(N(p′µhom + q′λhom)) are
isomorphic, then p = ±p′. �

Remark 3.7. The converse of Corollary 3.6 can be false. Indeed, there exist cusped manifolds
N and Dehn fillings (p, q) and (p, q′) such that H1(N(pµhom + qλhom)) � H1(N(pµhom + q′λhom)).
For instance, the SnapPy census manifold N = m172, equipped with the geometric framing, has
homological longitude λhom = (1, 0). We can select µhom = (0, 1). Then, taking p = 1, we get

H1(N(µhom + qλhom)) ∼=

{
Z/7⊕ Z/7, q ≡ 3 mod 7
Z/49, q 6≡ 3 mod 7.



EXCLUDING COSMETIC SURGERIES 11

3.2. Linearized Hodgson–Kerckhoff bounds. The next two subsections are fairly technical. The
main mathematical upshot is to establish certain estimates that constrain the set of slopes that need
to be analyzed for excluding cosmetic surgeries. One of the key results, Theorem 3.14, constrains
the set of Dehn fillings that satisfy an upper bound on volume. A second key result, Theorem 3.19,
provides an improvement on [15, Theorem 7.29]. These results are combined in Theorem 3.24, which
constrains the set of pairs of slopes to check to a finite and explicitly computable set.

The results below are definitely useful; even small improvements on previous estimates provide
valuable algorithmic speedups that matter a great deal when dealing with hundreds of thousands of
examples. However, both the results and their proofs are technical in nature. Accordingly, the casual
reader who is mainly interested in the procedural and algorithmic aspects of this work is warmly
invited to jump ahead to Section 4.

In this subsection, we recall a theorem of Hodgson and Kerckhoff that bounds the change in volume
under Dehn filling, as well as the length of the core geodesic. See Theorem 3.10. The estimates
produced by this result are rather sharp, but are not easy to apply because they involve inverting a
function f(z) that is defined via an integral; see Definition 3.9. To address this practical shortcoming,
we use secant line approximations to derive Theorem 3.14, a consequence of Theorem 3.10 that is
slightly weaker but easier to apply.

Definition 3.8. Fix constants K = 3.3957 and z0 =
√√

5− 2 = 0.4858 . . .. For z ∈ [z0, 1], define a
function

haze(z) = K
z(1− z2)

1 + z2 .

By a derivative computation, haze(z) is decreasing and invertible in this domain. Using Cardano’s
Formula, the inverse function haze−1 can be expressed as follows:

haze−1(Kx) = 2
√
x2 + 3
3 cos

(
π

3 + 1
3 tan−1

(
−3
√
−3x4 − 33x2 + 3
x3 + 18x

))
− x

3 .

Note that haze−1(h) is defined and monotonically decreasing on [0, 1.0196]. See [15, Remark 4.23].

Definition 3.9. As above, let K = 3.3957 and z0 =
√
−2 +

√
5. On the interval [z0, 1], define

u(z) = K
z2(z4 + 4z2 − 1)

2 (z2 + 1)3 and v(z) = K

4

(
−2z5 + z4 − z3 + 2z2 − z + 1

(z2 + 1)2 + arctan(z)− π

4

)
.

It is straightforward to check that
∫ 1
z
u(x) dx = v(z), hence v′(z) = −u(z). Furthermore, u(z) > 0

on (z0, 1), hence v(z) is strictly decreasing and satisfies limz→1 v(z) = 0. Next, define

f(z) = K(1− z) exp
(∫ 1

z

−(x4 + 6x2 + 4x+ 1)
(x+ 1)(x2 + 1)2 dx

)
.

The function f(z) is strictly decreasing (hence invertible) on its domain [2, Lemma 5.4].

Recall that the normalized length L(s) of a tuple of slopes s is defined in Definition 1.4.

Theorem 3.10 (Hodgson–Kerckhoff [22]). Let N be a cusped hyperbolic 3-manifold. Let s be a tuple
of slopes on the cusps of N , whose total normalized length satisfies L = L(s) ≥ 7.5832. Then the
Dehn filling M = N(s) is hyperbolic, and the cores of the filling solid tori form a geodesic link Σ ⊂ N .
Furthermore, setting ẑ = ẑ(s) = f−1

(( 2π
L(s)

)2
)
, we have

vol(N)− vol(M) ≤ v(ẑ) =
∫ 1

ẑ

u(z) dz and len(Σ) ≤ haze(ẑ)
2π .

Proof. The conclusion that M = N(s) is hyperbolic and Σ consists of geodesics is [22, Theorem 1.1].
The estimates on vol(M) and len(Σ) are a partial restatement of [22, Theorem 5.12], with simplified
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notation. Hodgson and Kerckhoff formulated their theorem in terms of functions

H(z) = 1
haze(z) , G(z) = H(z)

2
1− z2

z2

that are defined on [22, page 1079]. The integrand in their upper bound on vol(N) − vol(M)
simplifies to our function u(z). We remark that [22, Theorem 5.12] also includes lower bounds on
vol(N)− vol(M) and len(Σ), which we will not need. �

We wish to formulate a simpler version of Theorem 3.10, which replaces the hard-to-evaluate
quantity ẑ = ẑ(s) = f−1

(( 2π
L(s)

)2
)
by a linear function of y = 1/L(s)2. Toward that goal, we have

the following lemma.

Lemma 3.11. Let f(z) be the function of Definition 3.9. Then f(0.85) = 0.40104 . . . and f(1) = 0.
Furthermore,

(3.12) f(z) ≥
{
flin(z) = z−1

−0.374 if z ∈ [0.85, 1]
fpl(z) = f(0.9) + z−0.9

−0.452 if z ∈ [0.85, 0.9].

Consequently, for y ∈ [0, f(0.85)], we have

(3.13) f−1(y) ≥
{
flin
−1(y) = 1− 0.374y,

fpl
−1(y) = min{1.031− 0.452y, 0.9}.

The subscript in fpl
−1 stands for “piecewise linear.”

Proof. The function f(z) is decreasing on its domain by [2, Lemma 5.4], and concave down on [0.83, 1]
by [2, Lemma 5.9]. Consequently, for any sub-interval [a, b] ⊂ [0.83, 1], the graph of f lies above the
secant line segment connecting the points (a, f(a)) and (b, f(b)). Since f is decreasing, the graph of
f also lies to the right of this secant line.

Direct computation shows that slope of the secant line from (0.85, f(0.85)) to (1, 0) is lower (that
is, more negative) than −1/0.374, hence the secant line between those points lies above the function
flin(z), and the graph of f(z) lies higher still. Similarly, direct computation shows thatslope of the
secant line from (0.85, f(0.85)) to (0.9, f(0.9) is lower (that is, more negative) than −1/0.452, hence
f(z) lies above fpl(z) on the sub-interval [0.85, 0.9].

Solving the linear equation flin(z) = y for z produces the linear function flin
−1(y) = 1− 0.374y.

Since f lies above and to the right of flin, it follows that f−1(y) ≥ flin
−1(y) whenever y ∈ [0, f(0.85)].

Similarly, we solve the linear equation fpl(z) = y and find that f−1(y) ≥ 1.031 − 0.452y for
y ∈ [f(0.9), f(0.85)]. Meanwhile, for y ∈ [0, f(0.9)], we have f−1(y) ≥ 0.9 because f is decreasing.
Thus, we learn that f−1(y) ≥ fpl

−1(y) = min{1.031− 0.452y, 0.9}, for all y ∈ [0, f(0.85)]. �

Combining Theorem 3.10 and Lemma 3.11 with an estimate from [15] yields the following theorem.

Theorem 3.14. Let N be a cusped hyperbolic 3-manifold. Let s be a tuple of slopes on the cusps
of N , whose total normalized length satisfies L = L(s) ≥ 9.93. Then the Dehn filling M = N(s) is
hyperbolic, and the cores of the filling solid tori form a geodesic link Σ ⊂ N . Furthermore,

vol(N)− vol(N(s)) < v

(
1− 14.77

L(s)2

)
.

where v(z) is as in Definition 3.9. The length of Σ satisfies

(3.15) len(Σ) ≤ `new(L) = min

haze
(

min
{

1.031− 17.85
L(s)2 , 0.9

})
2π ,

2π
L2 − 14.41

 .
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Proof. The statement that M = N(s) is hyperbolic and Σ consists of geodesics is already included in
Theorem 3.10.

Define ẑ = ẑ(s) = f−1
(( 2π

L(s)
)2
)
. The hypothesis L(s) ≥ 9.93 implies

( 2π
L(s)

)2
< 0.401 < f(0.85),

where the second inequality is by Lemma 3.11. Now, Lemma 3.11 applies to give

1− 14.77
L(s)2 < 1− 0.374

(
2π
L(s)

)2
≤ f−1

(( 2π
L(s)

)2
)

= ẑ(s).

Consequently, Theorem 3.10 gives

vol(N)− vol(N(s)) ≤ v(ẑ(s)) < v

(
1− 14.77

L(s)2

)
.

Here, the second inequality uses the fact that v(z) is strictly decreasing (recall Definition 3.9).
In a similar fashion, the inequality f−1(y) ≥ fpl

−1(y) in Lemma 3.11 gives

min
{

1.031− 17.85
L(s)2 , 0.9

}
< min

{
1.031− 0.452

(
2π
L(s)

)2
, 0.9

}
≤ f−1

(( 2π
L(s)

)2
)

= ẑ(s).

Consequently, Theorem 3.10 gives

len(Σ) ≤ haze(ẑ)
2π ≤

haze
(

min
{

1.031− 17.85
L(s)2 , 0.9

})
2π .

Here, the first inequality uses Theorem 3.10. The second inequality uses the lower bound on ẑ in
previous displayed equation, combined with the fact that haze is decreasing. This proves half of the
upper bound in (3.15).

To complete the proof, it remains to show len(Σ) ≤ 2π
L(s)2−14.41 . We consider two cases. When

9.93 ≤ L(s) ≤ 11.7, we claim that

(3.16) len(Σ) ≤
haze

(
min

{
1.031− 17.85

L(s)2 , 0.9
})

2π <
2π

L(s)2 − 14.41 .

Here, the first inequality is the previous displayed equation. The second inequality is verified
using interval arithmetic in Sage; see the ancillary files [13] for full details. Meanwhile, when
L = L(s) ≥ 11.7, we have L2 ≥ 136.89. Under this hypothesis, the estimate len(Σ) ≤ 2π

L(s)2−14.41
is a consequence of [15, Lemma 6.10]; see the two displayed equations in the proof of [15, Lemma
8.4]. �

Remark 3.17. The idea of using secant-line approximations to simplify the statement of Theo-
rem 3.10 is not new. It was previously used by Atkinson and Futer [2] to compare the volumes of
different Dehn fillings of a cusped manifold, and by Haraway [19] to develop a Dehn parental test.

The proof of the volume estimate in Theorem 3.14 also applies to give the following simple length
bound:

(3.18) len(Σ) ≤ 1
2πhaze

(
1− 14.77

L(s)2

)
.

While the length bound in (3.15) is more complicated to state than the one in (3.18), it is somewhat
sharper, while remaining straightforward to evaluate by computer for any given L. We will use this
sharper estimate in the proof of Theorem 3.19.

3.3. Improved bound on cosmetic slopes. Next, we prove strengthened versions of two results
from [15]. In Theorem 3.19, we give an effective upper bound on the normalized length of a tuple of
slopes involved in a cosmetic surgery. In Theorem 3.24, we restrict attention to one-cusped manifolds
and prove an effective upper bound on the length of both slopes in a cosmetic pair.
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Theorem 3.19. Let N be a cusped hyperbolic 3-manifold. Suppose that s, s′ are distinct tuples of
slopes on the cusps of N , whose normalized lengths satisfy

L(s), L(s′) ≥ max
{

9.97,

√
2π

sys(N) + 56
}
.

Then any homeomorphism ϕ : N(s) → N(s′) restricts (after an isotopy) to a self-homeomorphism
of N sending s to s′. In particular, if sys(N) ≥ 0.145, then the above conclusions hold for all pairs
(s, s′) of normalized length at least 9.97.

Theorem 3.19 should be compared to [15, Theorem 7.29]. The statement of that previous result
is nearly the same, except that the lower bound on length is max

{
10.1,

√
2π

sys(N) + 58
}
. Thus,

in Theorem 3.19, both the constant term and the variable term have become slightly smaller. In
particular, when sys(N) ≥ 0.145, ruling out cosmetic surgeries on N involves checking all slopes
shorter than 9.97 rather than 10.1. The 1.3% reduction in the normalized length of a slope leads to
about a 2.6% reduction in the number of slopes to check. Since the procedure of Section 4 compares
each slope shorter than 9.97 to some number of alternate slopes that may yield a manifold of the same
volume, this results in a roughly 4% reduction in the number of pairs of slopes to check. Accordingly,
this strengthening is useful in applications.

The proof of Theorem 3.19 closely parallels the proof of [15, Theorem 7.29]. We encourage the
reader to go through the arguments of [15, Section 7.3]. While the arguments in that subsection rely
on the cone deformation results developed earlier in [15], those results are only used as a black box.
Because the argument is so similar, we will mainly point out the few places that have to be modified.

We begin with the following definition.

Definition 3.20. For z ∈ (0, 1) and ` ∈ (0, 0.5085), define a function

F (z, `) = (1 + z2)
z3(3− z2) ·

`

10.667− 20.977` .

Note that F is positive everywhere on its domain, decreasing in z, and increasing in `. Now, for any
L ≥ 9.97, define

sysminnew(L) = `new(L) exp(4π2F (haze−1(4π `new(L) + 2π 10−5), `new(L))),

where haze−1 is defined in Definition 3.8 and `new(L) is the function defined in (3.15).

Lemma 3.21. The function sysminnew(L) is decreasing in L. Furthermore, for L ≥ 9.97, we have

sysminnew(L) < 2π
L2 − 56 .

Proof. Recall from Definition 3.8 and [15, Remark 4.23] that haze and haze−1 are both decreasing
functions. It follows that `new = `new(L) is a decreasing function of L, because haze

(
1.031− 17.85

L2

)
and 2π

L(s)2−14.41 are both decreasing functions of L. By a derivative computation, the function

F (z, `new)
`new

= (1 + z2)
z3(3− z2) ·

1
10.667− 20.977`new

is decreasing in z and increasing in `new. Thus F (haze−1(4π`new + 2π10−5), `new) is increasing in
`new. Since `new = `new(L) is decreasing in L, we conclude that sysmin(L) is also decreasing.

Next, we prove the inequality sysminnew(L) < 2π
L2−56 . For L ∈ [9.97, 12], we verify this inequality

using interval arithmetic in Sage [13]. For L ≥ 12, direct computation shows that
haze

(
1.031− 17.85

L2

)
2π <

haze(0.9)
2π and 2π

L2 − 14.1 <
haze(0.9)

2π ,

hence we actually have `new(L) = 2π
L2−14.41 in Definition 3.20.
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From here, the proof is extremely similar to the proof of [15, Lemma 7.26]. As in the proof of that
proposition, we substitute `new(L) = 2π

L2−14.41 and apply some algebraic manipulation to show that
the desired inequality sysminnew(L) < 2π

L2−56 is equivalent to

(3.22) 4π2 F (haze−1(4π`new + 2π10−5), `new)
`new

< log
(
L2 − 14.41
L2 − 56

)
· L

2 − 14.41
2π .

Compare [15, Equation (7.27)]. We have already checked that the left-hand side of (3.22) is decreasing
in L; meanwhile, the right-hand side is decreasing by a derivative calculation. As in the proof of [15,
Lemma 7.26], we show that as L→∞, the right-hand side limits to 56−14.41

2π = 6.619 . . .. Thus the
right-hand side is greater than 6.6 for all L. On the other hand, the left-hand side of (3.22) equals
5.614 . . . when L = 12, hence is lower than 5.7 for all L ≥ 12. �

Theorem 3.23. For a real number L0 ≥ 9.97, let sysminnew(L0) be the function of Definition 3.20.
Let N be a cusped hyperbolic 3-manifold whose systole is at least sysmin(L0). Let s be a tuple of
surgery slopes on the cusps of N , whose normalized length is L = L(s) ≥ L0.

Then the Dehn filled manifold M = N(s) is hyperbolic. The core Σ of the Dehn filling solid tori is
isotopic to a geodesic link with an embedded tubular neighborhood of radius greater than 1. Finally,
the only geodesics in M of length at most ` = len(Σ) are the components of Σ itself.

Proof. This follows exactly the same argument as the proof of [15, Theorem 7.28]. That proof uses a
function

`max(L) = 2π
L2 − 16.03 ,

and a function sysmin(L) that is defined exactly as in Definition 3.20, except using `max(L) in place
of `new(L). The salient facts in the proof are:

• In the filled manifold M = N(s), the total length of Σ satisfies len(Σ) ≤ `max(L). By
Theorem 3.14, we also have len(Σ) ≤ `new(L).
• In order to apply [15, Theorem 7.19] in the proof, one needs to check that len(Σ) ≤ 0.0735.

Since L ≥ L0 ≥ 9.97, Theorem 3.14 gives the estimate len(Σ) ≤ 0.07339, which suffices.
• The function sysmin(L) is decreasing in L. Similarly, sysminnew(L) is decreasing in L by
Lemma 3.21.

The upshot is that once we substitute `new(L) in place of `max(L), the same three bullets are satisfied,
and the rest of the argument goes through verbatim. �

Proof of Theorem 3.19. This is a corollary of Theorem 3.23, combined with Mostow rigidity and
Gabai’s topological rigidity theorem [16]. See the proof of [15, Theorem 7.29] for full details. �

We also prove the following strengthened version of [15, Corollary 1.13]:

Theorem 3.24. Let N be a one-cusped hyperbolic manifold. Suppose that slopes s, t are a cosmetic
surgery pair for N . If the pair is chirally cosmetic, assume furthermore thatthere does not exist a
symmetry ϕ of N with ϕ(s) = t. Then, up to reordering s and t, the following hold:

(1) L(s) < max
{

9.97,
√

2π
sys(N) + 56

}
.

(2) Either L(t) < 9.97 or v
(

1− 14.77
L(t)2

)
> vol(N)− vol(N(s)).

Here, v(z) is the decreasing function of Definition 3.9, and we are using the convention that the
volume of a non-hyperbolic manifold is 0.

We remark that an orientation–preserving symmetry ϕ : N → N must preserve the homological
longitude of N (compare Definition 3.3), hence cannot send a slope s to a distinct slope t. This is
why the theorem statement is only concerned with symmetries of N in the chirally cosmetic setting.
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Proof of Theorem 3.24. Suppose without loss of generality that L(s) ≤ L(t). Since s and t form a
cosmetic surgery pair, and there does not exist a symmetry of N with ϕ(s) = t, Theorem 3.19 says
the shorter slope s must satisfy (1).

Now, consider slope t. If L(t) < 9.97, then conclusion (2) holds. Alternately, if L(t) ≥ 9.97, then
Theorem 3.14 implies N(t) is hyperbolic, hence N(s) is hyperbolic as well. Theorem 3.14 also implies
that

vol(N)− vol(N(s)) = vol(N)− vol(N(t)) < v

(
1− 14.77

L(t)2

)
,

hence conclusion (2) holds. �

Theorem 3.24 says a cosmetic surgery pair on a one-cusped manifold must come from an explicit,
finite list. Indeed, there are only finitely many slopes s satisfying (1). There are also finitely many
slopes t satisfying L(t) < 9.97. For each s, a theorem of Gromov and Thurston [43, Theorem 6.5.6]
says that vol(N)− vol(N(s)) > 0. Thus v

(
1− 14.77

L(t)2

)
is bounded below by a strictly positive quantity.

Since v(z) decreases toward 0 as z → 1 (compare Definition 3.9), it follows that 14.77
L(t)2 is bounded

below, hence L(t) is bounded above. Thus only finitely many slopes t can satisfy (2).
If N is a multi-cusped hyperbolic manifold, then the statement of Theorem 3.24 still holds with

slopes s, t replaced by tuples of slopes s, s′, as in Theorem 3.19. However, there can be infinitely
many tuples satisfying the given upper bounds on L(s) and L(s′).

We also have a version of Theorem 3.24 for Dehn fillings of distinct manifolds.

Theorem 3.25. Let N1,N2 be one-cusped hyperbolic manifolds. Suppose that s1, s2 are slopes on
N1, N2 respectively such that N1(s1) is homeomorphic to N2(s2). Suppose further that there is no
homeomorphism of pairs (N1, s1)→ (N2, s2). Then the following holds for the set {i, j} = {1, 2}:

(1) L(si) < max
{

9.97,
√

2π
sys(Ni) + 56

}
.

(2) Either L(sj) < 9.97 or v
(

1− 14.77
L(sj)2

)
> vol(Nj)− vol(Ni(si)).

Here, v(z) is the decreasing function of Definition 3.9, and we are using the convention that the
volume of a non-hyperbolic manifold is 0.

Proof. Let M be the manifold homeomorphic to both N1(s1) and N2(s2). Suppose that neither s1
nor s2 satisfy (1). Then Theorem 3.23 says that M is hyperbolic and both Dehn filling cores are
isotopic to the unique shortest geodesic. Thus by Mostow rigidity, there is an isometry taking the
Dehn filling core of N1(s1) to the Dehn filling core of N2(s2), and taking meridian to meridian. This
contradicts our assumption that there is no homeomorphism of pairs (N1, s1) → (N2, s2). Up to
relabeling, we may assume that conclusion (1) holds for i = 1.

Now, consider sj = s2. If L(s2) < 9.97, then conclusion (2) holds. Alternately, if L(s2) ≥ 9.97,
then Theorem 3.14 implies M ∼= N2(s2) is hyperbolic. Theorem 3.14 also implies that

vol(N2)− vol(M) < v

(
1− 14.77

L(s2)2

)
,

hence conclusion (2) holds for j = 2. �

4. Procedure and results using hyperbolic tools

This section describes a procedure that tests Conjectures 1.2 and 1.6 on a given hyperbolic
manifold. This procedure has been implemented in a Sage program [14]. We use this program to
prove Theorem 4.4, which verifies the cosmetic surgery conjecture, Conjecture 1.2, on the SnapPy
census up to 9 tetrahedra. We also use this procedure to prove Theorem 4.7, which verifies the
chirally cosmetic surgery conjecture, Conjecture 1.6, on the set of hyperbolic knots up to 15 crossings.
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4.1. The procedure. Here, we describe a computer program that tests a one-cusped hyperbolic
manifold for cosmetic surgeries. As input, the program accepts a triangulation of a one-cusped
hyperbolic 3-manifold N , or the SnapPy name of such a manifold. An optional flag specifies whether
we wish to test for all cosmetic surgeries or just purely cosmetic ones. As output, the program
produces a list of pairs slopes that could not be rigorously distinguished.

The procedure implemented in our program is not an algorithm, in the sense that the program is
not guaranteed to succeed. Nonetheless, any answer produced by the program is trustworthy. All
SnapPy and Regina routines used in the program are rigorous, with the exception of length spectra
(which are addressed in Step 4 and Remark 4.3).

4.1.1. Step 1. Gather basic information about N . We begin by fixing a maximal horospherical
neighborhood of the cusp, denoted C. Then, install a geometric framing 〈µ, λ〉 for H1(C). That is,
let µ be a shortest curve on ∂C, and let λ be a shortest curve among those that have intersection
number 1 with µ. Compute the cusp invariants: len(µ), len(λ), and area(∂C). These computations
can be rigorously certified.

Next, compute the homological longitude on ∂C: that is, a primitive curve λhom with [λhom] =
0 ∈ H1(N,Q). As mentioned in Definition 3.3, this curve is unique up to sign.

Next, decide whether N is amphicheiral. This computation can be rigorously certified using a
positively oriented ideal triangulation. If N has an orientation-reversing symmetry, then slopes s
and −s (in the geometric framing) will always be chirally cosmetic. In this case, we test for purely
cosmetic surgeries only.

Finally, if H1(N,Z) ∼= Z, apply Test 2.3 (Casson invariant) to N . In particular, if H1(N,Z) ∼= Z
and ∆′′N (1) 6= 0, then N cannot admit any purely cosmetic surgeries.

4.1.2. Step 2. Find the exceptional fillings of N . By the 6–theorem of Agol and Lackenby [1, 34],
any Dehn filling slope s satisfying `(s) > 6 must produce a hyperbolic manifold N(s). Consequently,
all exceptional fillings must come from slopes with `(s) ≤ 6. Using interval arithmetic, SnapPy can
compute a set of slopes guaranteed to contain all those of length at most 6. For each such slope s,
we attempt to verify that N(s) is hyperbolic by finding a rigorously certified solution to the gluing
equations. Failing that, we attempt to rigorously certify that N(s) is exceptional (non-hyperbolic),
in one of three ways: by finding obstructions to hyperbolicity in the fundamental group; by finding
an incompressible sphere or torus using normal surface theory; or by identifying N(s) as a known
Seifert fibered space using Regina.

At the end of this step, the procedure produces a set E = E(N) containing certified exceptional
slopes and a set U = U(N) containing unidentified slopes (whose hyperbolicity could not be settled).
The set U is reported but is not analyzed any further. However, in every instance where we ran our
program, we have obtained U = ∅. This extends Dunfield’s identification of E(N) for every N in the
SnapPy census [12, Theorem 1.2], with the byproduct that U(N) = ∅. Indeed, our code incorporates
and extends Dunfield’s code.

4.1.3. Step 3. Compare non-hyperbolic slopes. For every s ∈ E , we begin by trying to identify the
closed manifold N(s) using the combination of SnapPy and Regina. This means performing the
sphere and torus decompositions using Regina, identifying each hyperbolic piece using SnapPy, and
identifying each Seifert piece using Regina’s database of closed manifolds. This identification also
uses Dunfield’s code [12]. As a result, each non-hyperbolic N(s) is assigned a Regina name that
describes the pieces. To save computation time, all of this information is computed just once for
each s ∈ E .

Next, given s ∈ E and t ∈ E − {s}, we try to distinguish N(s) from N(t). As a first test, we
compare the homology groups H1N(s) and H1N(t). Next, we use Regina names and the geometric
decomposition. If only one of {N(s), N(t)} is reducible, or only one is toroidal, then they are
automatically distinguished. If both are irreducible and atoroidal, they must be Seifert fibered,
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and we compare their Seifert invariants. Otherwise, we compare the Seifert fibered pieces of the
decomposition using Seifert invariants and hyperbolic pieces using hyperbolic invariants.

Our tests only analyze the pieces of the decomposition, but not the gluing data. Thus the above
tests will fail when the pieces are identical. In addition, the tests can fail if we are unable to identify
the Regina name of N(s) or N(t). (This has not occurred in our search, but is certainly possible on
large examples.)

As a final useful test, the program computes the homology of finite-index covers of N(s) and N(t),
as well as of the corresponding normal cores. In practice, we compute the invariants C(N(s), n) up to
degree n = 7 and D(N(s), n) up to degree n = 6, and similarly for N(t). See Definitions 3.1 and 3.2.
These comparisons of finite-index covers appear to distinguish toroidal manifolds particularly well.

4.1.4. Step 4. Compute a set of systole–short slopes. Now, we return to hyperbolic geometry. We
begin by computing sys(N). This is the only non-verified hyperbolic geometry invariant that we
use in a crucial way. To account for potential numerical error, we subtract 1% from the computed
systole. (Compare Remark 4.3.)

Next, we compute the set S of all slopes that are shorter than the bound of Theorem 3.19:

(4.1) S =
{
s a slope

∣∣∣∣ L(s) < max
(

9.97,
√

2π
sys(N) + 56

)}
.

Next, we break S into subsets (called buckets) by homological data. For each number p ∈ N ∪ {0},
let Sp be the set

Sp = {s ∈ S : i(s, λhom) = ±p},
where i(·, ·) denotes algebraic intersection number. By Lemma 3.4, if s ∈ Sp is part of a cosmetic
surgery pair with an arbitrary slope s′, then i(s′, λhom) = ±p as well. Thus it makes sense to filter S
by intersection numbers with λhom.

By Corollary 3.5, S0 is either empty or the singleton {λhom}. Thus we may remove S0 from
consideration, and only consider Sp for p > 0. For each p ∈ N, we define

Hp = Sp r (E ∪ U).
Recall that all non-hyperbolic slopes for N must lie in E ∪U , hence Hp consists of certified hyperbolic
fillings.

4.1.5. Step 5. Build comparison set of hyperbolic slopes. For each p > 0 such that Hp 6= ∅, define
V p = max{vol(N(s)) : s ∈ Hp}. Let v(z) be the function of Definition 3.9. Then, compute the
following set of slopes:
(4.2)

T p =
{
t a slope

∣∣∣∣ i(t, λhom) = ±p, t /∈ E ,
[
L(t) < 9.97 or v

(
1− 14.77

L(t)2

)
> vol(N)− V p

]}
.

In words, a slope t ∈ T p must satisfy three conditions. First, i(t, λhom) = ±p, hence t is a potential
cosmetic surgery partner for some s ∈ Hp. Second, t /∈ E , hence we expect N(t) to be hyperbolic.
Third, L(t) satisfies an upper bound on length calculated using the function v(z) of Definition 3.9.

By Theorem 3.24, if s, t are a cosmetic surgery pair and s ∈ Hp, then we must have t ∈ T p. Thus
it suffices to compare hyperbolic pairs (s, t) ∈ Hp × T p.

4.1.6. Step 6. Compare hyperbolic slopes. For every p > 0 such that Hp 6= ∅, and every pair
(s, t) ∈ Hp × T p such that s 6= t, we try to distinguish N(s) from N(t) using (mostly hyperbolic
invariants). We proceed as follows. First, try to distinguish N(s) and N(t) using their volumes,
which have been rigorously computed using interval arithmetic. Second, try to distinguish N(s)
and N(t) using the Chern–Simons invariant, which can also be computed using interval arithmetic
modulo π2/2. (The Chern–Simons invariant is sensitive to orientation, so this can be particularly
useful in the setting where N(s) and N(t) are known to be a chirally cosmetic pair and we are
looking for purely cosmetic surgeries.) Third, compare the core homology invariants D(N(s), n) and
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D(N(t), n) for degree n ≤ 7. If any of the above tests succeeds, we have rigorously distinguished
N(s) from N(t).

If the above tests fail, the program tries to distinguish N(s) from N(t) using their complex
length spectra up to some cutoff. Unlike the above-mentioned hyperbolic invariants, this is currently
nonrigorous, but it still provides suggestive information.

4.1.7. Step 7. Report any failures. At the end of this process, the program reports any points of
failure. First, report the set U of unidentified slopes (where we could not determine hyperbolicity).
Second, report any unequal pairs (s, t) ∈ E × E that we have failed to distinguish. Third, report any
unequal pairs (s, t) ∈ Hp × T p that we have failed to distinguish, and any pairs that have only been
distinguished nonrigorously.

Remark 4.3. All of the steps in the above procedure are rigorous, apart from the computation of
systoles and length spectra. The computation of the systole sys(N) for the cusped parent N is a
crucial and unavoidable input for all of the subsequent steps. By contrast, the length spectrum of a
filled manifold N(s) is used very sparingly, and noted each time it is used.

As described in Step 4, we subtract 1% from the computed value of sys(N) for the cusped parent
N . While this does not make the computation rigorous, it is extremely conservative. Even when
working with standard-precision floats, SnapPy’s calculations are typically correct to more than 14
decimal places.

Our understanding is that a procedure for rigorously verifying the length spectrum of a cusped
manifold N is currently in development. Once such a procedure becomes available, the results below
will become unconditional.

4.2. Results. The following theorems describe our computational results for both purely and chirally
cosmetic surgeries.

Theorem 4.4. The cosmetic surgery conjecture, Conjecture 1.2, holds for the 59,107 one-cusped
manifolds in the SnapPy census, provided that SnapPy’s systole calculation is correct to within 1%.

Proof. For each manifold N in the census, the procedure runs to completion. Each time, the set of
unidentified slopes is U(N) = ∅. (This is a consequence of Dunfield’s prior work [12, Theorem 1.2].)
The procedure successfully distinguishes all exceptional pairs in E × E and all hyperbolic pairs in
Hp × T p, apart from exactly 7 slope pairs that are described in detail below. In each case, the two
fillings of N produce oppositely oriented copies of the same closed 3-manifold M , where M is chiral.
Thus these fillings do not contradict Conjecture 1.2, which concerns purely cosmetic fillings.

The procedure starts by comparing non-hyperbolic manifolds. There were five non-hyperbolic
slope pairs that the program could not distinguish. The first one is:

• N = m172, with s = (0, 1) and t = (1, 1). This is a well-known example, discovered by Bleiler,
Hodgson, and Weeks [3]. As described in detail in [3, Section 3], the two fillings N(s) and
N(t) are oppositely oriented copies of the lens space L(49, 18). This lens space is chiral,
because 49 does not divide 182 + 1.

For the next four slope pairs, the manifold N is amphicheiral, with a symmetry interchanging
slopes s and t. Thus N(s) has an orientation-reversing homeomorphism to N(t). To check that the
slopes s, t satisfy Conjecture 1.2, it suffices to show that N(s) is a chiral manifold.

• N = m207 with s = (0, 1) and t = (1, 0). Here, N(s) and N(t) are oppositely oriented copies
of L(3, 1)#L(3, 1). We check using Regina that each connected summand is L(3, 1) rather
than the mirror image L(3, 1). Since L(3, 1) is chiral, so is L(3, 1)#L(3, 1).

• N = t12043 with s = (1,−1) and t = (1, 1). Here, N(s) and N(t) are graph manifolds with
two Seifert fibered pieces. The first piece, SFS [D: (2,1) (2,1)], is Seifert fibered over a
disk with two singular fibers of slope 1/2. The second piece, SFS [M/n2: (2,1)], is Seifert
fibered over a Möbius band with one singular fiber of slope 1/2. Both of the Seifert pieces
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here are amphicheiral. However, the gluing matrix m = [ 0 1
1 0 ] does not respect the symmetries

of the pieces, so the resulting graph manifold is chiral.
• N = t12045 with s = (1,−1) and t = (1, 1). Here, N(s) and N(t) are graph mani-
folds with three Seifert fibered pieces: SFS [D: (2,1) (2,1)] and SFS [A: (2,1)] and
SFS [D: (2,1) (2,1)]. The middle piece is Seifert fibered over the annulus, with one
singular fiber of slope 1/2. As in the previous bullet, the Seifert pieces are amphicheiral, but
the gluing matrices m =

[ 1 −2
0 −1

]
and n = [ 1 2

1 1 ] do not respect the symmetries of the pieces.
• N = t12050 with s = (1,−1) and t = (1, 1). Here, N(s) and N(t) are graph manifolds with
two Seifert fibered pieces: SFS [D: (2,1) (2,1)] and SFS [D: (4,1) (4,1)]. As in the
previous bullet, the Seifert pieces are amphicheiral, but the gluing matrix m = [ 0 1

1 0 ] does not
respect the symmetries of the pieces.

Finally, there were exactly two hyperbolic slope pairs that the program could not distinguish. In
both cases, N is amphicheiral with a symmetry interchanging s and t. Thus M = N(s) and N(t) are
isometric by an orientation-preserving isometry, and we need to show that M is chiral.

• N = m135 with s = (1, 3) and t = (3, 1). Here, SnapPy was unable to compute veri-
fied hyperbolic invariants of N(s), because it could not find any positively oriented spun
triangulation.

This verification problem is addressed by taking covers. The double covers of N(s) and N(t)
do admit positively oriented triangulations. By a theorem of Hilden, Lozano, and Montesinos
[21, Theorem 2.2], the Chern–Simons invariant CS(M) is multiplicative under covers, modulo
π2/2. The manifold M = N(s) has six distinct double covers up to isomorphism. Each
double cover M̂ satisfies CS(M̂) = −0.8224... mod π2/2, which is verifiably distinct from
0. Thus CS(M) = −0.4112... mod π2/4, which is again verifiably distinct from 0. Since
CS(N(s)) 6= 0, we know that N(s) is chiral, hence cannot admit an orientation-preserving
isometry to N(t).

• N = t12051 with s = (1, 1) and t = (2,−1). Here, SnapPy successfully computed a verified
hyperbolic structure on M = N(s) from a positively oriented spun triangulation. The
Chern–Simons invariant CS(M) is indistinguishable from 0, and does not prove that M is
chiral.

Using this verified hyperbolic structure, SnapPy computed that the isometry group of M
is the dihedral group D8. Every element of this group is orientation-preserving. Thus M is
chiral, hence N(s) cannot admit an orientation-preserving isometry to N(t).

Since each of the above slope pairs produce distinct oriented 3-manifolds, we conclude that
Conjecture 1.2 holds for every N in the census. Recall from Remark 4.3 that this verification relies
on the correctness of systole computations, up to a numerical error of less than 1%. �

Remark 4.5. Theorem 4.4 was proved by running the python program check_mfds on the 59,107
one-cusped manifolds in the SnapPy census. A typical manifold in the census satisfies sys(N) > 0.145,
hence the bounds of Theorem 3.24 yield a set S = S(N) containing at most 102 short slopes. After
filtering by homology, as in Steps 4 and 5 of the procedure, each short slope s ∈ Hp needs to be
compared to every slope t ∈ T p, where |T p| ≤ 5 in a typical scenario. Thus Step 6 of our procedure
needs to check no more than 500 slope pairs. For a typical manifold N as above, the total runtime is
several seconds.

When sys(N) is very short, the program has to work much harder, for two reasons. First, the
Dirichlet domain of such a manifold is very elongated due to the presence of a deep Margulis tube,
making the domain (and hence the systole) hard to compute. Second, the set of short slopes S(N)
computed in (4.1) has size approximately 2π · sys(N)−1. After filtering the hyperbolic slopes by
homology, as in Steps 4 and 5, the number of slope pairs to check can be on the order of sys(N)−3/2.
The example below shows that the first issue dwarfs the second.

The shortest systole that our program needed to compute was achieved by N = o9_00637, with
sys(N) ≈ 0.001643. For this manifold N , the set S(N) contained 3741 hyperbolic slopes, which
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were sorted into 125 homology buckets. Altogether, the program had to compare and distinguish
68,108 hyperbolic slope pairs on N . The computation of sys(N) took 17 hours of CPU time, and the
comparison of the slope pairs took 65 seconds of CPU time.

Moving beyond this extreme example, the program encountered 294 one-cusped manifolds whose
systole is shorter than 0.004. Each of those systoles took over an hour to compute.

Remark 4.6. The shortest systole in the SnapPy census appears to be achieved by N = o9_00639,
with sys(N) ≈ 0.001502. This manifold has nonzero Casson invariant, so Test 2.3 rules out purely
cosmetic surgeries without using hyperbolic methods.

Theorem 4.7. The chirally cosmetic surgery conjecture for knots in S3, Conjecture 1.6, holds on
the set of all hyperbolic knots up to 15 crossings, provided that SnapPy’s systole calculation is correct
to within 1%.

Proof. We ran the procedure of Section 4.1 on the set of 313,230 prime knots up to 15 crossings.
Torus knots and satellite knots were identified and excluded, leaving 313,209 hyperbolic knots.
Amphicheiral hyperbolic knots were excluded next. For each hyperbolic knot complement N , we
found that U(N), the set of unidentified slopes, is empty. Thus every slope was rigorously identified
as hyperbolic or exceptional. The code ran to completion, successfully distinguishing all exceptional
pairs in E × E and all hyperbolic pairs in Hp × T p (see Steps 3 and 6 of the procedure). �

Remark 4.8. Theorem 4.7 was proved by running the python program check_mfds_chiral on the
set of 313,209 hyperbolic knots up to 15 crossings. For most of these knots, the program takes only
a few seconds to run to completion. However, there is a small list of 14–crossing knots, for which
chirally cosmetic surgeries are particularly hard to distinguish:
hard_knots = ["14a506", "14a680", "14a12813", "14a12858", "14a13107", "14a13262",
"14a14042", "14a17268", "14a17533", "14n1309", "14n1641", "14n1644", "14n2164"]
These 13 knots were previously identified by Stoimenow [40] as being almost amphicheiral: that is,
each K in the list is a mutant of its mirror image. Thus, for N = S3 −K, the Dehn filling N(p, q) is
a genus–2 mutant of the mirror image of N(p,−q). Since complex hyperbolic volume is preserved
under mutation [37, Theorem 1.1 and Corollary 1.2], it cannot distinguish N(p, q) from N(p,−q). In
practice, we distinguished these fillings using the cover homology invariant C(N(s), 7) described in
Definition 3.1, using covers up to degree 7.

The hardest knot to handle computationally turned out to be 14a12813. The computation of
enough cover homology groups to distinguish its Dehn fillings took over 6 days of wall time making
full use of 8 cores, for a total of 48 days and 9 hours of CPU time.

5. Common fillings of different parent manifolds

In this section, we describe how the procedure of Section 4 can be adapted to determine common
Dehn fillings of two distinct manifolds. The results of this section were motivated by a question from
Kalfagianni and Melby. In their joint work [32], they use our results (specifically Theorem 5.2) to
find many new q–hyperbolic knots in S3.

5.1. The procedure. Here, we describe a computer program that tests whether a pair of cusped
hyperbolic manifolds N1 and N2 has any common Dehn fillings. The program takes N1 and N2
(or their names) as input, and produces as output a list of pairs of slopes s1 on N1 and s2 on N2.
For each pair, the manifolds N1(s1) and N2(s2) are either certified as isometric, or are reported
as undistinguished (hence, potentially homeomorphic). As with Section 4.1, our program is not
guaranteed to succeed. However, as with that section, all computations apart from length spectra
are rigorous. Thus any answer produced by the program is trustworthy provided that systoles are
computed correctly to within 1%.

As the procedure described here is quite similar to that of Section 4.1, the description is somewhat
more terse apart from Step 5, where new ideas are needed.
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5.1.1. Step 1. Gather basic information about N1 and N2. This step is analogous to Step 1 in §4.1.1,
applied to both N1 and N2. We compute the homological longitude for both N1 and N2. Next, we
check that N1 and N2 are hyperbolic, but not isometric. If N1 and N2 are isometric, the program
terminates because all Dehn fillings will be shared.

5.1.2. Step 2. Find exceptional Dehn fillings of N1 and N2. This is analogous to Step 2 in §4.1.2.
For all slopes of length `(s) ≤ 6, certified by interval arithmetic, we check whether the Dehn filling is
hyperbolic or not. For each parent manifold Ni, we obtain a set E(Ni) containing certified exceptional
slopes, and a set U(Ni) containing unidentified slopes, meaning those for which the hyperbolicity
could not be determined by the computer. In practice, U(Ni) was empty for all manifolds we ran
through the procedure. However, if U is not empty, all slopes in U(N1) and all slopes in U(N2) will
be reported, since the procedure could not check them for homeomorphisms.

5.1.3. Step 3. Compare non-hyperbolic Dehn fillings of N1 and N2. For each slope s1 ∈ E(N1), and
each slope s2 ∈ E(N2), compare N1(s1) to N2(s2). As in Step 3 in §4.1.3, we attempt to identify
closed manifolds N1(s1) and N2(s2) using tools from SnapPy and Regina, as well as Dunfield’s
code. To distinguish them, we consider first homology groups, then Regina names and geometric
decompositions, and then the cover homology invariants up to degree n = 7. If the manifolds are not
distinguished, we report these slopes.

5.1.4. Step 4. Compute a set of systole–short slopes for N1 and N2. This is closely analogous to
Step 4 in §4.1.4. For each Ni, we compute the set of systole-short slopes S(Ni), exactly as in (4.1). We
remove the exceptional and unidentified slopes, obtaining a list H(Ni) containing certified hyperbolic
slopes. We filter H(Ni) by homology, but we no longer remove the homological longitude λhom
because it could potentially be a common filling. In addition, since Lemma 3.4 and its corollaries
are not very useful for comparing Dehn fillings of two surgery parents, we keep track of the actual
homology group of Ni(si).

5.1.5. Step 5. Compare each systole-short slope s1 ∈ H(N1) to an appropriate set of volume–short
fillings of N2. This single step replaces Steps 5 and 6 in Section 4.1, with some important differences.
For each short slope s1 ∈ H(N1), we begin by comparing vol(N1(s1)) to the volume of the cusped
manifold N2 using interval arithmetic in SnapPy. We define V1 = vol(N1(s1)) and consider three
cases:

V1 > vol(N2), V1 ∼ vol(N2), V1 < vol(N2).
In the first case, SnapPy can certify that vol(N1(s1)) > vol(N2). Then we already know that no
fillings of N2 can be homeomorphic to N1(s1), and we proceed to the next slope.

In the second case, SnapPy is unable to rigorously distinguish V1 = vol(N1(s1)) from vol(N2).
If we had a rigorous proof that vol(N1(s1)) = vol(N2), then as in the first case we would conclude
that no fillings of N2 can be homeomorphic to N1(s1). (Volume coincidences of this form often arise
in the setting of arithmetic manifolds. See Proposition 6.2 or a specific instance, and compare [36,
Theorem 11.2.3] for a more general statement.) Without a positive lower bound for vol(N2)− V1, we
cannot use Theorem 3.25 to compute a set of comparison slopes. All we can do in this case is report
the approximate equality vol(N1(s1)) ∼ vol(N2), and proceed to the next slope.

In the third case, SnapPy can certify that V1 < vol(N2). Then we build a comparison set of slopes
on N2 whose volumes might potentially be equal to V1 = vol(N1(s1)). Let V(V1, N2) be the set of
slopes short enough to satisfy the upper bound expressed in Theorem 3.25(2):

V(V1, N2) =
{
s2 a slope on N2

∣∣∣∣ L(s2) < 9.97 or v
(

1− 14.77
L(s2)2

)
> vol(N2)− V1

}
.

Then, in parallel with (4.2), let

T (s1) =
{
s2 a slope on N2

∣∣∣∣H1(N2(s2)) ∼= H1(N1(s1)), s2 /∈ E , s2 ∈ V(V1, N2)
}
.
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In words, a slope s2 ∈ T (s1) must satisfy three conditions. First, N2(s2) must have appropriate first
homology. (By Lemma 3.4, all such slopes lie on a line in the Dehn surgery space of N2.) Second, s2
cannot be a known exceptional slope. Third, the normalized length L(s2) must satisfy the upper
bound of Theorem 3.25(2). By Theorem 3.25, any hyperbolic filling of N2 that is homeomorphic to
N1(s1) must satisfy these constraints.

Continuing with the third case, we attempt to distinguish N1(s1) from each manifold N2(s2), as s2
ranges over the set T (s1). This proceeds exactly as in §4.1.6. We first compare hyperbolic volumes
and Chern–Simons invariants, and then the homology groups of covers.

If the program cannot distinguish N1(s1) from N2(s2), then it attempts to prove they are isometric
using SnapPy’s (rigorous) isometry checker. In practice, for every s2 ∈ T (s1), we have succeeded in
either distinguishing the fillings or proving they are isometric.

5.1.6. Step 6. Repeat Step 5, with the roles of N1 and N2 interchanged. Observe that the manifolds
N1 and N2 play very different roles in Step 5. Thus, to find all common hyperbolic fillings, we need
to compare each systole-short slope s2 ∈ H(N2) to the appropriate comparison set of volume-short
slopes on N1.

It may well happen that there is a common filling M = N1(s1) = N2(s2) where the slopes
s1 ∈ H(N1) and s2 ∈ H(N2) are both systole-short on their respective manifolds. In this case, we will
have found the pair (s1, s2) twice. Thus, at the end of this step, we compare results to the output of
Step 5 in order to remove duplicates.

5.1.7. Step 7. Report the findings. We report the sets U(Ni) of unidentified slopes on the two
manifolds. We report any slopes si ∈ H(Ni) where the volume of Ni(si) could not be distinguished
from the volume of the other cusped manifold Nj . Finally, we report all slope pairs (s1, s2) where the
fillings were confirmed to be isometric and all slope pairs where the fillings could not be distinguished.

5.2. Results. We obtained the following computational results on common fillings of knot comple-
ments.

Theorem 5.1. Among the 12,955 hyperbolic knots with at most 13 crossings, the following 23 knots
share a common hyperbolic filling with the figure-8 knot:
common_fill = ["5_2", "6_1", "6_2", "7_2", "7_3", "8_1", "8_2", "8_20", "9_2",
"9_3", "10_1", "10_2", "10_128", "10_132", "11a247", "11a364", "11n38", "11n57",
"12a722", "12a803", "12n243", "13a3143", "13a4874"]

Provided that SnapPy’s systole calculations are correct to within 1%, the above is a complete list
of knots from the set that are distinct from the figure-8 knot and share a common (nontrivial) Dehn
surgery with the figure-8 knot.

Proof. We ran the procedure of Section 5.1 on the set of 12,955 hyperbolic knots with at most 13
crossings. For each K in the set, there were no unidentified slopes and no common exceptional
fillings between the figure-8 knot and K (apart from the trivial filling that produces S3). This leaves
hyperbolic fillings. For each hyperbolic filling of each K, apart from two examples (Q = 5_2(8,1)
and R = 12n242(56,3)), our program was able to rigorously decide whether or not the resulting
manifold also occurred as a filling of the figure–8 knot.

For the remaining two fillings, namely Q = 5_2(8,1) and R = 12n242(56,3), SnapPy could
not distinguish their volumes from the that of the figure-8 knot complement N = 4_1. Indeed, the
volumes could not be distinguished because they are equal. By Proposition 6.2, we have an equality
of volumes

vol(Q) = vol(R) = 2V3 = vol(N).
Since every hyperbolic Dehn filling of N has volume strictly less than 2V3, it follows that Q and R
do not arise as fillings of the figure-8 knot. �
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Theorem 5.2. Consider the 1267 hyperbolic knot complements that can be triangulated with fewer
than 10 tetrahedra. Assuming that SnapPy computes their systoles to within 1% accuracy, the
following hold. There are exactly 61 knots in the set that are distinct from the figure-8 knot and
share a common nontrivial Dehn surgery with the figure-8 knot complement. Exactly one of these
knots (namely, the 52 knot) shares more than one nontrivial Dehn surgery with the figure-8 knot.

Proof. This is identical to the proof of Theorem 5.1. The program successfully handles all fillings of
every K in the set, apart from the closed manifolds Q and R whose volume is identical to that of the
figure–8 knot complement. As above, Proposition 6.2 shows that these manifolds cannot arise as
Dehn fillings of the figure–8 knot complement. �

Tables of all the common Dehn surgeries can be found in Kalfagianni and Melby [32]. They are
also reproduced in the ancillary files [13].

Remark 5.3. Theorems 5.1 and 5.2 are proved by running the program find_common_fillings
on the data sets in the two theorems. For the average knot complement N in the two data sets,
the search for common fillings between N and the figure–8 knot complement takes approximately 5
seconds.

6. Volumes of arithmetic manifolds

This section uses several deep but standard results about arithmetic hyperbolic 3-manifolds to
establish Proposition 6.2. This proposition is used in the proof of Theorems 5.1 and 5.2. Below, we
give a brief summary of the definitions necessary to formulate results about volume. We refer the
reader to Maclachlan and Reid [36] for a very thorough treatment of this material. A quick and
accessible survey of arithmetic notions appears in Coulson, Goodman, Hodgson, and Neumann [7,
Section 4].

6.1. Arithmetic definitions. A number field, denoted k, is a finite extension of Q. The ring of
integers of a number field k is denoted Rk. A quaternion algebra over k is a 4–dimensional k–vector
space with basis 1, i, j, ij, with multiplication defined so that i2 = a ∈ k and j2 = b ∈ k and ij = −ji.

A place of a number field k is an equivalence class of valuations v : k → R. A place is called real if
it arises from the absolute value | · | in an embedding k ↪→ R, meaning v(x) = |x|. A place is called
complex if it arises from the absolute value | · | in a non-real embedding k ↪→ C. A place v is called
finite or non-Archimedean if it satisfies v(x+ y) ≤ max(v(x), v(y)) for all x, y ∈ k. Every place is
real, complex, or finite, and finite places correspond to prime ideals P ⊂ Rk [36, Theorem 0.6.6].

A quaternion algebra A over k is ramified at finitely many places of k [36, Definitions 2.7.1]. In
fact, A is determined by the set of places over which it is ramified [36, Theorem 2.7.5]. The finite
ramification locus Ramf (A) is the set prime ideals P ⊂ Rk corresponding to the finite places where
A is ramified.

Now, let Γ be a Kleinian group of finite covolume. Let Γ(2) be the finite-index subgroup of Γ
generated by all the squares of elements in Γ. The commensurability class C(Γ) is the set of Kleinian
groups Γ′ such that Γ and Γ′ share a finite-index subgroup.

The invariant trace field of Γ is k(Γ) = Q(tr Γ(2)). This is always a number field [36, Theorem
3.1.2]. In addition, k(Γ) is an invariant of C(Γ) [36, Theorem 3.3.4].

Let g, h ∈ Γ(2) be any pair of non-commuting loxodromic elements. We lift g, h ∈ PSL(2,C) to
matrices in SL(2,C). The invariant quaternion algebra A(Γ) is the 4–dimensional algebra over k(Γ)
with basis I, g, h, gh:

A(Γ) = k(Γ)[I, g, h, gh].
That this is a quaternion algebra is established in [36, Corollary 3.2.3]. While the choice of basis
elements g, h is highly non-unique, the algebra A(Γ) is also an invariant of the commensurability
class C(Γ) [36, Corollary 3.3.5]. When Γ is arithmetic (see definition below), the pair k(Γ) and A(Γ)
form a complete invariant of the commensurability class C(Γ).

A finite-covolume Kleinian group Γ is called arithmetic if the following three conditions hold:
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(1) The invariant trace field k(Γ) has exactly one complex place.
(2) The invariant quaternion algebra A(Γ) is ramified at all real places of k(Γ).
(3) Γ has integer traces: that is, tr(γ) is an algebraic integer for every γ ∈ Γ.

The equivalence between arithmeticity and these conditions is [36, Theorem 8.3.2].
It is also possible to produce a Kleinian group directly from a number field k and a quaternion

algebra A over k satisfying conditions (1)–(2). An order in A is a ring of integers O ⊂ A that
contains Rk and satisfies kO = A. An order is maximal if it is maximal with respect to inclusion.
The set of units in a maximal order O is denoted O1. Orders in a quaternion algebra play a similar
role to rings of integers in a field. Now, the single non-real embedding k ↪→ C induces an embedding
ρ : A → Mat(2,C) into the set of 2 × 2 matrices over C. The image ρ(A) is typically indiscrete,
but restricting the domain to O1 produces a discrete, faithful representation ρ : O1 → SL(2,C).
Projecting down to PSL(2,C) produces a Kleinian group derived from a quaternion algebra. This
group, denoted ΓO1 = Pρ(O1), has integer traces and is therefore arithmetic.

6.2. Volumes. The following is a special case of a foundational theorem due to Borel [36, Theorem
11.1.3].

Theorem 6.1. Let k = Q(eπi/3), let A be a quaternion algebra over k, and let O be a maximal order
in A. Then the Kleinian group ΓO1 = Pρ(O1) derived from A satisfies

vol(H3/ΓO1) = V3

6
∏

P∈Ramf (A)

(N(P)− 1),

where V3 is the volume of a regular ideal tetrahedron. The product is taken over the prime ideals
corresponding to finite places where A is ramified. For each prime ideal P, the norm N(P) is the
order of the finite field Rk/P.

Proof. Since k = Q(eπi/3) = Q(
√
−3) is a quadratic imaginary extension of Q, it has no real places

and exactly one complex place. Any quaternion algebra A over k is ramified at the empty set of real
places, so k and A satisfy conditions (1)–(2).

To compute vol(H3/ΓO1) using Borel’s volume formula, we need the following information. The
field k has discriminant ∆k = −3 by [36, Example 0.2.7]. The degree of the extension is [k : Q] = 2.
The Dedekind zeta function ζk(2) was computed by Zagier [47, page 291] in terms of the Lobachevsky
function Λ:

ζk(2) = 2π2

33/2 Λ
(π

3

)
= 4π2

33/2 ·
V3

6 .

With this information, Borel’s volume formula [36, Theorem 11.1.3] gives

vol(H3/ΓO1) = |∆k|3/2ζk(2)
(4π2)[k:Q]−1

∏
P∈Ramf (A)

(N(P)− 1) = 33/2

4π2 ·
4π2

33/2 ·
V3

6
∏

P∈Ramf (A)

(N(P)− 1),

as claimed. �

We can now prove a result that is needed in Theorems 5.1 and 5.2.

Proposition 6.2. Let Q be the closed 3-manifold produced by (8, 1) filling on the 52 knot. Let R be
the closed 3-manifold produced by (56, 3) Dehn filling on the (−2, 3, 7) pretzel knot. Then both Q and
R are hyperbolic and arithmetic. Furthermore,

vol(Q) = vol(R) = 2V3.

We note that the 52 knot appears in the SnapPy census as m015. The (−2, 3, 7) pretzel appears in
the knot tables as 12n242 and in the SnapPy census as m016.

Proof. Using SnapPy inside Sage, we verify that Q and R are hyperbolic and estimate their volumes
to within rigorously bounded error.
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sage: Q = snappy.Manifold("5_2(8,1)")
sage: Qvol = Q.volume(verified=True) # verified volume interval
sage: Qvol.lower(), Qvol.upper() # endpoints of interval
(2.02988321281918, 2.02988321281944)

sage: R = snappy.Manifold("12n242(56,3)")
sage: Rvol = R.volume(verified=True) # verified volume interval
sage: Rvol.lower(), Rvol.upper() # endpoints of interval
(2.02988321281924, 2.02988321281937)

Note that both volume intervals have diameter less than 10−12 and contain 2V3.
Next, let Γ = ΓQ be the Kleinian group such that Q = H3/Γ. We use Snap to compute the

invariant trace field k(Γ) and the invariant quaternion algebra A(Γ):

5_2(8,1):
Field minimum poly (root): x^2 - x + 1 (1)
Real ramification: []
Finite ramification: [[3, [1, 1]~, 2, 1, [1, 1]~], [13, [-4, 1]~, 1, 1, [3, 1]~]]
Integer traces/Arithmetic: 1/1

Thus k(Γ) = Q(α) where α = eπi/3 is a root of x2 − x+ 1. This field has exactly one complex place
(because the two roots are complex conjugates) and no real places. Thus conditions (1)–(2) above
are satisfied. Snap also checks that Γ has integer traces, so (3) is satisfied and Γ is arithmetic.

Snap checks that the quaternion algebra A(Γ) is ramified at two finite places, corresponding to
prime ideals P1 = (1 + α) and P2 = (−4 + α). Their norms are N(P1) = 3 and N(P2) = 13. Thus,
taking a maximal order O ⊂ A(Γ) and the group of units O1 ⊂ O, Theorem 6.1 tells us that the
Kleinian group ΓO1 = Pρ(O1) derived from the quaternion algebra A = A(Γ) satisfies

(6.3) vol(H3/ΓO1) = V3

6 (3− 1)(13− 1) = 4V3.

Note that ΓO1 belongs to the commensurability class C(Γ) = C(A) because they have the same
invariant trace field and quaternion algebra.

Next, we estimate the smallest covolume of any lattice in C(Γ). By [36, Theorem 11.5.2], the
smallest covolume is realized by a unique (up to conjugation) Kleinian group ΓO = Γ∅,O.

By [36, Theorem 11.6.3], we learn ΓO1 is a normal subgroup of ΓO, with quotient an abelian
2–group. Since the ring of integers of k(Γ), namely Z[eπi/3], is a principal ideal domain, k(Γ) has
class number 1, hence [36, Theorem 11.6.5 and Corollary 11.6.4] give

[ΓO : ΓO1 ] = 2n where n ≤ 1 + |Ramf (A)| = 3.
Combining this fact with (6.3) gives

(6.4) vol(H3/ΓO) = 4V3

2n ∈ N ·
V3

2 .

Finally, observe that the only prime in k(Γ) that divides 2 is (2) itself, and this prime ideal is not
ramified in A(Γ). Thus [36, Theorem 11.5.2] says that every Kleinian group Γ commensurable to
ΓO1 must have volume an integer multiple of 1

2 vol(H3/ΓO). Combining this with (6.4) gives

vol(Q) = vol(H3/Γ) ∈ N · vol(H3/ΓO)
2 ⊂ N · V3

4 .

Since we know vol(Q) differs from 2V3 by far less than V3/8, it follows that vol(Q) = 2V3.
Next, let Γ = ΓR be the Kleinian group whose quotient is R. Snap computes:

12n242(56,3)
Field minimum poly (root): x^2 - x + 1 (1)
Real ramification: []
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Finite ramification: [[3, [1, 1]~, 2, 1, [1, 1]~], [13, [3, 1]~, 1, 1, [-4, 1]~]]
Integer traces/Arithmetic: 1/1

Thus R also has the same invariant trace field k(Γ) = Q(α) where α = eπi/3, and is again arithmetic.
The quaternion algebra has changed: A(Γ) is ramified at two finite places, corresponding to prime
ideals P1 = (1 + α) and P2 = (3 + α). The norms of these prime ideals are N(P1) = 3 and
N(P2) = 13, exactly the same as for Q. Since the number of ramified finite places and the norms of
the corresponding ideals have not changed, the rest of the calculation – including equations (6.3)
and (6.4) – goes through verbatim. We conclude that vol(R) ∈ N · V3/4, hence vol(R) = 2V3. �

Remark 6.5. There is an alternate way to establish the equality

vol(Q) = vol(R) = 2V3.

using geometric triangulations. Each of the two knot complements before the Dehn filling can
be triangulated with three ideal tetrahedra. After Dehn filling, Q = 5_2(8,1) has a spun ideal
triangulation consisting of the same three tetrahedra, with the tips of the tetrahedra spinning about
the core of the surgery solid torus. The same statement is true of R = 12n242(56,3).

James Clift has written code that can perform a sequence of 2–3 moves, 3–2 moves, and 2–0 moves
(cancellations), to verify that the three-tetrahedron spun triangulation of Q is scissors congruent to
the two-tetrahedron triangulation of the figure–8 knot complement. His code uses Snap to follow
exact solutions to the gluing equations through the retriangulation moves, with shapes given in the
number field k(Γ) = Q(eπi/3). The same argument works for R. Since the manifolds are scissors
congruent, they have equal volumes. The output of Clift’s code is reproduced in the ancillary files
[13].

7. Additional questions

We close this paper with some open questions prompted by this work. We begin by noting that
Conjectures 1.2, 1.3, and 1.6, stated in the introduction, all remain open. The results of this paper
provide evidence for each of these conjectures.

There are also a few further questions that arise directly from the work in this paper.
First, we were able to prove Conjectures 1.2 and 1.3 for the one-cusped manifolds in the SnapPy

census by reducing the problem to checking finitely many pairs of slopes for each manifold. Unfortu-
nately, our methods do not extend to manifolds with more than one cusp. This is because in the
one-cusped case, a fixed hyperbolic 3-manifold N has at most finitely many pairs of slopes (s, s′)
satisfying the constraints of Theorem 3.24. If N has multiple cusps, Theorem 3.24 still constrains the
slope tuples (s, s′), but it is no longer the case that only finitely many tuples satisfy these bounds.

Question 7.1. Is there a finiteness result for tuples of slopes on multi-cusped hyperbolic manifolds?

Second, observe that Theorem 3.24 gives a bound on the lengths of slopes that have to be compared
for the purpose of excluding cosmetic surgeries. A key ingredient in the proof of Theorem 3.24 is
Theorem 3.23, which guarantees that the core σ of the Dehn filling solid torus is the unique shortest
geodesic in the filled manifold N(s). We wonder:

Question 7.2. How sharp is Theorem 3.23? Might its conclusion possibly hold for far shorter slopes?

Third, observe that the procedure of Section 4 – which we applied to study Conjecture 1.3 outside
the realm of knot complements in S3 as well as Conjecture 1.6 for knots in S3 – is confined to the
setting of cusped hyperbolic manifolds. It may well be feasible and practical to extend this procedure
to manifolds N with torus boundary that contain an essential torus T . One case that deserves
particular study is when the JSJ decomposition of N is of the form N = N0 ∪T N1, where N0 meets
∂N and happens to be hyperbolic. In this case, all Dehn fillings of N will be of the form

N(s) = N0(s) ∪T N1,
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where N0(s) is hyperbolic for almost all slopes s. Thus, for almost all slopes s, the torus T remains
incompressible, and the JSJ decomposition of N(s) is exactly N0(s) ∪T N1. So, to distinguish N(s)
from N(t), it suffices to distinguish N0(s) from N0(t). Here, the multi-cusped hyperbolic manifold N0
is being filled along a single slope on a single cusp, so the finiteness issues discussed in Question 7.1 do
not arise. Thus our techniques should readily adapt to this situation. However, this is not currently
implemented.

Question 7.3. Can the techniques of Section 4 be extended to 3-manifolds with an embedded
essential torus? More ambitiously, can the techniques of Section 5 be extended to this setting as well?

Finally, we observe that in Theorem 5.1, the number of n–crossing knots that share a common
filling with the figure–8 knot does not seem to increase with n. By contrast, the total number of
n–crossing knots grows exponentially. Hence, we wonder:

Question 7.4. For n ≥ 4, let Kn be the set of hyperbolic knots of n crossings that share a common
filling with the figure–8 knot. By [32, Theorem 1.2], every Kn contains at least one double twist knot,
so it is nonempty. Is the cardinality |Kn| universally bounded as n grows? The same question also
makes sense if the figure–8 knot is replaced by any fixed K.
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