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Abstract. Frequently, knots are enumerated by their crossing number. However,
the number of knots with crossing number c grows exponentially with c, and to date
computer-assisted proofs can only classify diagrams up to around twenty crossings.
Instead, we consider diagrams enumerated by bridge number, following the lead of
Schubert who classified 2-bridge knots in the 1950s. We prove a uniqueness result
for this enumeration. Using recent developments in geometric topology, including
distances in the curve complex and techniques with incompressible surfaces, we show
that infinitely many knot and link diagrams have a unique simple m-bridge diagram.
Precisely, if m is at least three, if each twist region of the diagram has at least three
crossings, and if the length n of the diagram is sufficiently long, i.e., n > 4m(m− 2),
then such a diagram is unique up to obvious rotations. This projection gives a
canonical form for such knots and links, and thus provides a classification of these
knots or links.

1. introduction

One way of studying knots in S3 is via their regular projections on 2-spheres in S3.
Such projections are called knot diagrams. Deciding when two diagrams correspond to
the same knot is a difficult problem, going all the way back to work of Tait in the 1870s.
In 1926, K. Reidemeister proved that any two regular projections are equivalent by a
sequence of Reidemeister moves ; see [22]. However, determining when two diagrams
are equivalent by Reidemeister moves is also a very difficult problem, and remains an
area of active research, for example see [17, 5].

The earliest attempts to classify knots began in the 1870’s by Tait, using the crossing
number of a knot as the classifying parameter. Today, some one hundred and thirty
years later, only knots with less than 17 crossings have been completely classified.1 For
prime knots with 16 crossings, there are 1,701,936 different knots (where knots and
their mirror image are not distinguished); see [14]. Thus distinguishing diagrams using
crossing number is currently possible only for knots with a small number of crossings.

Another way around the problem of deciding when diagrams are equivalent would
be to obtain “canonical” projections for knots. One attempt to do so was to use the
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fact that all knots have 2m-plat projections for some m ∈ N, which are very closely
related to m-bridge diagrams. This was used successfully on the class of 4-plats, more
commonly known as 2-bridge knots and links. In 1956, H. Schubert gave a complete
classification of 2-bridge knots and links. He showed in [23] that these knots are
classified by a rational number, and that any two continued fraction expansions of this
number correspond to a 4-plat projection. For a discussion of this see [3].

In a somewhat different flavor W. Menasco and M. Thistlethwaite proved in 1993 that
any two alternating projections of a knot K ⊂ S3 are equivalent by flype moves [19].
Flypes involve the existence of essential 4-punctured spheres in the diagram, and they
can be detected in a finite number of steps. However, the sequence of such steps can
be arbitrarily long.

In this paper, we prove a uniqueness of diagrams statement for an infinite class of
plats of arbitrary large width and length. In a sense that can be made precise, these
plats are a generic collection in the set of all plats. We show that such plats have a
canonical form that is unique, and can be read off the diagram immediately, without
any need to consider equivalence relations such as Reidemeister moves or flypes.

For a precise definition of a plat and some facts about them see Section 2 and
references [4] and [15]. The main theorem of this paper is:

Theorem 1.1 (Uniqueness of Diagrams). Let K ⊂ S3 be a knot or link with a 2m′-
plat projection K ′, where m′ ≥ 3 and n′, the length of K ′, satisfies n′ > 4m′(m′ − 2).
Suppose also that each twist region of K ′ contains at least three crossings. Finally,
suppose that K is another plat or even plat projection of K of width m. Then m ≥ m′,
and if m = m′ and each twist region of K has at least one crossing, then K = K ′ up
to rotation in a horizontal or vertical axis.

1.1. The preferred notion of generic. Making mathematical sense of the term
“generic” is particularly problematic when considering subsets of countable sets X. In
the classic setting, a set A ⊂ X would be called generic if and only if the complement
X r A is finite. This definition is very restrictive and, in practice, there are many
cases where intuitively one would like to call a set generic, yet it does not satisfy this
criterion. A common method to deal with this situation is the following: One considers
a family of finite subsets Xn ⊂ X that exhaust X (typically given by enumerating
X = {x1, x2, . . .}, and by defining Xn = {x1, x2, . . . , xn}). One then computes the the

ratio ρn = #(Xn∩A)
#Xn

, and defines A to be generic if ρn tends to 1.

Of course, the obtained limit ratio depends heavily on the particular chosen enumer-
ation of X.

Another difficulty with statements about “genericity” is that of double counting. A
typical example here is to count group presentations instead of groups, so that the
same group may well be counted several times, or even infinitely often. The problem
arises when in the given mathematical context it is impossible to count the objects in
question directly, so that double counting becomes unavoidable.

With these difficulties in mind we would like to advocate for the idea of enumerating
knot by plats.
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Assume Theorem 1.1. Choose X = Z with the obvious enumeration. Further choose
XM = [−M,M ] ∩ Z for some large interval [−M,M ] ⊂ R and M ∈ N+. Choose
at random a set A ⊂ XM consisting of one integer for each twist region in a 2m-
plat diagram of length n > 4m(m − 2) (approximately m · n integers). Compute the
probability ρM that A does not contain elements from {−2,−1, 0, 1, 2} ⊂ XM . It is
clear that ρM → 1 as M →∞. In fact, even better, any such chosen set A determines a
very large number of knots as the integers in A can be distributed in the twist regions,
of the 2m-plat, in approximately (n ·m)! > (4m2(m− 2))! different ways.

As the diagram is unique (and the knots are enumerated by their diagrams) this
enumeration also takes care of the issue of double counting discussed above. Any
diagram will be counted exactly once.

Hence the question of which notions of “genericness” one should adopt here is not
merely a set theoretic issue, but it should depend on the topological consequence of
the enumeration. Furthermore, in the case of the 2m-plat, the canonical form has a
large number of other nice features:

The canonical form gives information about incompressible surfaces in S3 rN (K);
see [7], [6] and [26]. In many cases, it gives information about π1(S

3 r N (K)) and
its rank, i.e. minimal number of generators [18]. It also gives information about the
bridge number for K and Heegaard splittings of S3 r N (K) and about manifolds
obtained by Dehn surgery on K; see [18] and [26]. By combining work of Johnson and
Moriah [15] and Bachman and Schleimer [1, Corollary 6.2], it follows that such plats
are hyperbolic.A subclass was shown to have a property called semi-adequacy, with no
2-edge loops in an associated graph [13]. For this subclass, we obtain another proof of
hyperbolicity [11], a bound on the volume [9], and the existence of essential spanning
surfaces that do not have accidental parabolics [10].

In addition, a knot or link K ⊂ S3 with at least C crossings in each twist region, for
appropriate C, is known to satisfy several nice geometric properties, whether or not
it has the plat projection required by Theorem 1.1. For example, if C = 6, then K
and all Dehn fillings of K are hyperbolic [12]. Additionally, closed embedded essential
surfaces are known to be high genus [2]. If C = 7, there are known explicit upper and
lower bounds on the hyperbolic volume of K [8]. And if C = 116, then the shape of
the cusp of K is bounded [20]. It is conjectured that knots and links with at least 3
crossings per twist region are always hyperbolic.

From a hyperbolic geometry point of view, we argue further that the knots of Theo-
rem 1.1 are generic in the same sense that hyperbolic Dehn filling is generic, following
Thurston [24]. In his celebrated hyperbolic Dehn surgery theorem, Thurston showed
that Dehn fillings of hyperbolic 3-manifolds yield hyperbolic 3-manifolds “generically”,
in the sense that only finitely many Dehn filling slopes need to be excluded per bound-
ary component, and the result is hyperbolic [24]. The links of Theorem 1.1 can also
be seen as obtained by Dehn filling. Encircle each twist region by a simple unknot,
called a crossing circle. The result is called a fully augmented plat. When one performs
(1, ti,j) Dehn filling on the {i, j}-th crossing circle of a fully augmented plat diagram
for each pair {i, j}, one obtains a regular plat diagram. Details of fully augmented



4 YOAV MORIAH AND JESSICA S. PURCELL

links and their Dehn fillings can be found in [21]. Links of Theorem 1.1 are obtained
when we exclude Dehn fillings with |ti,j| < 2.

Thus the links of Theorem 1.1 all lie in a Dehn filling neighborhood of a fully aug-
mented plat. Note this is a very large, explicitly defined neighborhood: The bound of
three crossings per twist region excludes far fewer knots than the best current bounds
for hyperbolic Dehn filling (e.g. [12] requires six). Moreover, each such knot or link lies
in a Dehn filling neighborhood of one of all possible Dehn filling parents of sufficiently
long plat diagrams.

For the reasons above, we argue that enumeration of knots by bridge number makes
more sense topologically and geometrically than enumeration by crossing number, and
that the knots satisfying the conditions of Theorem 1.1 can be viewed as “generic”.

1.2. Even plats. Note that the statement of Theorem 1.1 includes knots and links
with an “even plat” projection, which we now describe. Consider a braid with an even
number of rows of twist regions on an even number of strings. At the top of the braid,
we connect pairs of adjacent strings by bridges, just as in the usual case of a plat. At
the bottom of the braid, we connect the second string to the third, the fourth to the
fifth, and so on. At the end we connect the 2m string to the first one. We obtain a
knot or link L depending on the parity of ai,j. We will call a projection as above an
even plat. Technically, L is not a plat in this case but Theorem 1.2 of [15] applies, so
that we can compute the bridge distance. As in the case of a plat we can require that
the number of crossings in each twist region be | ai,l | ≥ 3 and that the number of rows
of twist regions plus one satisfies n > 4m(m − 2), so we have a unique bridge sphere
by [25]. We conjecture:

Conjecture 1.2. Theorem 1.1 holds when K ′ is an even plat.

Going back to the question of crossing number, we conjecture that these plat pro-
jections also have minimal crossing number, as follows.

Conjecture 1.3. Knot and link diagrams satisfying the conditions of Theorem 1.1
realize the crossing number of the associated links.

Theorem 1.1 raises two questions:

Question 1.4. Suppose K ⊂ S3 is a knot that has a 2m-plat projection satisfying the
conditions of Theorem 1.1. Suppose that K ⊂ S3 is given by some knot diagram D(K).
Is there an “efficient ” algorithm to isotope D(K) to its canonical 2m-plat projection?

Question 1.5. Given a knot K ⊂ S3 can one decide if K has a 2m-plat projection
satisfying the conditions of Theorem 1.1?

Remark 1.6. Highly twisted plats are defined carefully in Section 2 in terms of a
specific family of words in the braid group. It follows from Theorem 1.1 that the
corresponding braids are uniquely determined in the braid group by such a braid word.



DIAGRAM UNIQUENESS FOR HIGHLY TWISTED PLATS 5

1.3. Idea of the proof. Let K, K ′, and K be as in the statement of the theorem,
as well as other notation. Recall that plat diagrams determine collections of bridge-
spheres (see Definition 2.1) and vertical S2-spheres (see Definition 2.9). The main idea
is to see how these two collections behave with respect to each other under an ambient
isotopy of the knot from K ′ to K.

The condition that n′ > 4m′(m′ − 2) implies that the distance of the bridge sphere
is greater than 2m′. Results of Tomova [25], Johnson-Tomova [16], and Johnson-
Moriah [15] imply m has to be minimal; thus m ≥ m′.

Suppose m = m′. Consider the ambient isotopy ϕ : (S3, K ′) → (S3, K). We show
first in Lemma 3.2 that we may take the ambient isotopy to preserve the foliation of
(S3, K ′) by bridge spheres. Using this, we show in Proposition 3.7 that the image of a
vertical 2-sphere (see Definition 2.9) is mapped to a sphere which does not meet any
twist region. As a consequence we show in Lemma 3.11 that the image of a vertical
2-sphere can intersect K at most once in each level, and that allows us to obtain
Proposition 4.4 which states that the length of the two plats must be the same.

It remains to show that the coefficients in each of the twist regions are the same and
that they occur in the same order up to reflection in horizontal and vertical axes.

After showing that vertical 2-spheres are mapped to vertical 2-spheres, we construct
for each twist region t′i,j an isolating sphere Ω′. These spheres are composed of two
disks, each one in a vertical 2-sphere, and each disk intersecting K ′ in two points. The
bounded component of S3 r Ω′ is a 2-tangle of type 1/a′i,j. We then show that such
tangles must be mapped by ϕ to tangles of type 1/ai,j in K, where ai,j = a′i,j. Since
tangles ti,j are connected to adjacent tangles, the order of the twist regions is preserved
up to reflection in horizontal and vertical axes.

Acknowledgements. The authors would like to thank D. Futer and M. Tomova for
various conversations, and a referee of a previous version for suggestions.

2. Preliminaries

For any knot or link K ⊂ S3 there is an m ∈ N so that K has a 2m-plat projection,
as indicated in Figure 1. This follows from the classical fact that any knot or link can
be presented as a closed braid, and then strands of the braid closure can be pulled
across the braid diagram; for example see [4, p. 24].

In Figure 1 a box labeled ai,j indicates a twist region with ai,j crossings, where
ai,j can be positive, negative, or zero. Note that crossings in a twist region must be
alternating. That is, some number of negative crossings cannot be followed by some
number of positive crossings, else the diagram could be reduced within the twist regions
by cancelling crossings. Thus ai,j indicates the number of crossings of the same sign in
the reduced twist region. For the example in the figure, a1,1 = a2,2 = −3, and all other
ai,j = −4. The twist region associated with the box labeled ai,j will be denoted by ti,j.
We can think of the ti,j twist region as a projection to P , the plane of projection, of a
1/ai,j-tangle considering the segments of K as strands contained in the 3-ball (box×I).

Notice that a 2m plat projection K of K corresponds to an element B2m in the braid
group on 2m − 1 generators {σ1, . . . , σ2m−1}. This implies that a plat can be given a
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a1,1 a1,2

a2,1 a2,2 a2,3

a3,1 a3,2

a4,1 a4,2 a4,3

a5,1 a5,2

Figure 1. A 6-plat projection of a 3-bridge knot.

“standard” form by requiring that the element corresponding to B2m be written as a
concatenation of sub-words B2m = b1 ·b2 ·....·bn−1, where bi has the following properties:

(1) When i is odd, bi is a product of all σj with j even. Namely:

bi = σ
ai,1
2 · σai,2

4 · · · · · σai,m−1

2m−2

(2) When i is even, bi is a product of all σj with j odd. Namely:

bi = σ
ai,1
1 · σai,2

3 · · · · · σai,m
2m−1

We say m is the width of the plat and n, which is even, is the length of the plat.
In Figure 1, there are five rows, so the length is n = 6. A 2m-plat projection with

properties (1) and (2) that also minimizes the width m will be called standard.
A 2m-plat will be called c-highly twisted if | ai,j | ≥ c for some constant c, for all i, j.

Similarly, a knot or link that admits a c-highly twisted plat projection will be called a
c-highly twisted knot or link.

Definition 2.1. An m-bridge sphere of a knot or link K ⊂ S3 is a 2-sphere which
meets K in 2m points and cuts (S3,K) into two 2m-string trivial tangles (B1, T1) and
(B2, T2). An m-string trivial tangle is a pair (B3, T ) of 3-ball B3 and a collection T of
m arcs properly embedded in B3 that are simultaneously isotopic into ∂B3 fixing ∂B3.
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Definition 2.2. Two bridge spheres Σ1 and Σ2 for a knot or link K ⊂ S3 are said
to be isotopic if there is a homeomorphism of pairs ψ : (S3,K) → (S3,K) so that
ψ(Σ1) = ψ(Σ2) and ψ is isotopic to the identity on S3.

Definition 2.3 (Schubert [23] 1956). The bridge number b(K) of a knot or link K ⊂ S3

is the minimal number of over-crossing arcs over all regular projections of K. Equiv-
alently, the bridge number is the minimal value of m such that K has an m-bridge
sphere; see [4, p. 23].

Note that every 2m-plat projection defines an m-bridge knot or link with m ≥ b(K)
and every m-bridge knot or link has a 2m-plat projection (see [4, p. 24]). One can
also determine a bridge sphere Σ from a 2m-plat projection as follows. Arrange the
maximum and minimum points of the plat projection to lie on horizontal lines at the
top and bottom of the diagram, as in Figure 1. Consider a horizontal line in the
projection plane P to lie just below the maximum points, meeting K in exactly 2m
points. Connect endpoints of the line by a simple arc on the projection plane that does
not meet K, forming a closed curve. Then cap this curve by two disks, one above and
one below the plane P , to obtain the bridge sphere Σ.

With the diagram arranged in this manner, there is an “obvious” height function
on a 2m-plat K, where the maximum point on the top bridges corresponds to height
t = 1 and the minimum point on the bottom bridges corresponds to height t = 0.
Note the bridge sphere Σ defined above corresponds to some height, t = 1 − ε. More
generally, a horizontal bridge sphere Σt can be constructed for any height t ∈ (0, 1) in
the same manner. Note that all bridge spheres Σt for 0 < t < 1 are isotopic. We can
further define horizontal spheres at height t = 0 and t = 1, but these do not meet K
transversely, and meet it in only m points.

Definition 2.4. Let Σg,p be a surface of genus g with p punctures. A simple closed
curve γ ⊂ Σg,p is inessential in Σg,p if it bounds either a disk or a once punctured disk
in Σg,p. A simple closed curve in Σg,p is essential if it is not inessential. The curve
complex C(Σ) is a simplicial complex defined as follows.

Let [γ] denote the isotopy class of an essential simple closed curve γ ⊂ Σ.

(1) The set of vertices of C(Σ) is V (Σ) = {[γ] | γ ⊂ Σ is essential}.
(2) An n-simplex is an (n + 1)-tuple {[γ0], . . . , [γn]} of vertices that have pairwise

disjoint curve representatives.

Define a metric d on the 1-skeleton C1(Σ) of C(Σ) by setting the length of each 1-simplex
to be 1, and taking minimal path length.

Definition 2.5. Given a bridge surface Σ for K, define ΣK = Σ r K, VK = B1 r T1
and WK = B2 r T2. Let D(VK) (resp. D(WK)) be the set of all essential simple closed
curves in ΣK that bound disks in VK (resp. WK). Define the (bridge) distance of Σ to
be d(ΣK) = d(D(VK),D(WK)) measured in C(ΣK).
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We now refer to two theorems that provide the basis for this paper. The first is a
special case of the main theorem of Tomova for knots [25], extended to links by Johnson
and Tomova [16, Theorem 4.4].

Theorem 2.6 (Tomova [25] and Johnson-Tomova [16] ). Let K ⊂ S3 be a knot or
link with two bridge spheres Σ1 and Σ2 meeting K in 2m1 and 2m2 points, respectively,
where m1 and m2 are at least 3. Then either Σ2 is isotopic rel K to Σ1 or d(Σ1) ≤ 2m2

(or d(Σ2) ≤ 2m1).

Theorem 2.7 (Johnson-Moriah [15]). Let K ⊂ S3 be a 3-highly twisted link with a
2m-plat projection K, with m ≥ 3 and n − 1 rows of twist boxes. Then the distance
d(Σ) of the induced bridge surface Σ is exactly

d(Σ) = dn/(2(m− 2))e,
where dxe is the smallest integer greater than or equal to x.

Combining these two, we obtain:

Corollary 2.8. If the 3-highly twisted 2m-plat K corresponding to the knot or link
K ⊂ S3 has length n, where m ≥ 3 and n > 4m(m−2), then the knot K is an m-bridge
knot or link, and it has a unique m-bridge sphere, up to isotopy.

Proof. As n > 4m(m − 2), Theorem 2.7 implies d(Σ) > 2m. Hence if m were not
minimal, say K is an m1-bridge knot or link with m1 < m, then by Theorem 2.6, we
have d(Σ) < 2m1 < 2m, which is a contradiction. Further, any other bridge sphere Σ1

meeting K in 2m points must be isotopic to Σ. �
Finally we define the following surfaces first defined in [6]; see also [26].

Definition 2.9. Let K be a 2m-plat projection of a knot or link K ⊂ S3, with pro-
jection plane P . Assume K has length n. Let α = α(c1, . . . , cn−1) be an arc running
monotonically from the top of the plat to the bottom so that α is disjoint from all
twist regions and there are ci twist regions to the left of the arc at the i-th row. We
further require that there is at least one twist region on each side of α at each level,
and that α intersects K in precisely n points. Now connect the endpoints of α by a
simple arc β ⊂ P that is disjoint from K, and cap the simple closed curve γ = α ∪ β
by two disks, one above P and the other below P . Thus, we have obtained a 2-sphere
S = S(c1, . . . , cn−1) called a vertical 2-sphere; see Figure 2.

Theorem 2.10 (Finkelstein–Moriah [7] and Wu [26]). Let K ⊂ S3 be a 3-highly twisted
link with a 2m plat projection K, with m ≥ 3 and length n ≥ 5, and let S be a vertical
2-sphere for K. Then S is incompressible and boundary incompressible.

Remark 2.11. A vertical 2-sphere separates a knot or link K in a plat projection into
two n/2 string tangles (B1, T1), (B2, T2). These tangles are non-trivial by Theorem 2.10.
We always assume that the projection plane and vertical spheres intersect transversally.
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Figure 2. A template for a 4-plat with n = 6 and an α arc.

Vertical 2-spheres are required to have a twist region on either side on each row
of twist regions. We also will need to work with similar 2-spheres that relax this
restriction, in the following way.

Definition 2.12. Let S = S(c1, . . . , cn−1) and α be as in Definition 2.9. If there is at
least one twist region on each side of α at each level except possibly level i, for i odd
and 3 ≤ i ≤ n− 3, then we say S is an odd almost vertical 2-sphere. If there is at least
one twist region on each side of α at each level except possibly levels i and i+ 2, where
i is odd and 3 ≤ i ≤ n − 5, then we say S is a doubly odd almost vertical 2-sphere.
If there is at least one twist region on each side of α at each level except possibly at
levels i− 1, i, and i+ 1, where i is even and 2 < i < n− 2, we say S is an even almost
vertical 2-sphere. In all three cases, we say S is an almost vertical 2-sphere. Note that
the set of almost vertical 2-spheres contains the set of vertical 2-spheres.

3. Isotopies

If a knot or link K ⊂ S3 has two plat projections K and K ′ with respect to pro-
jection planes P and P ′ respectively, we can think of K and K ′ as embedded in an ε
neighborhood of P and P ′ respectively. Because they are projections of the same link,



10 YOAV MORIAH AND JESSICA S. PURCELL

there is an ambient isotopy ϕ : (S3, K ′)→ (S3, K) taking K ′ to K, and taking vertical
2-spheres S ′ ⊂ (S3, K ′) to spheres S = ϕ(S ′) ⊂ (S3, K).

Remark 3.1. Note that throughout the paper, objects and parameters, such as sur-
faces and twist coefficients relevant to the the pair (S3, K ′) of the K ′ plat will be
denoted by a ‘ ′ ’ e.g. S ′ ⊂ (S3, K ′). Those relevant to (S3, K) will have no extra mark,
e.g. S ⊂ (S3, K).

Lemma 3.2. Let K ′, K be two 2m-plat projections of the same knot or link K ⊂ S3,
where m ≥ 3 and n, the length of K ′, is greater than 4m(m − 2). Assume that K ′ is
3-highly twisted. Let ϕ : (S3, K ′)→ (S3, K) be an isotopy. Let S ′ be an almost vertical
2-sphere for K ′, and let S = ϕ(S ′) be its image. Then there exists an isotopy of pairs
ψ : (S3, K)→ (S3, K) with the following properties.

(a) The image ψ(S) is a 2-sphere meeting each horizontal bridge sphere of K in a
single essential curve, so that any such curve meets K at most once.

(b) For each horizontal bridge sphere Σ′t for K ′, the image (ψ◦ϕ)(Σ′t) is a horizontal
bridge sphere for K.

Proof. The lemma follows from Corollary 2.8, which states that the bridge sphere is
unique up to isotopy, as follows:

The link space (S3, K ′) is foliated by horizontal bridge spheres. That is, the link K ′

is contained in a region S2 × [0, 1] ⊂ S3 in which each S2 × {t} is a bridge sphere Σ′t,
with the exception of t = 0 and t = 1, where the spheres meet the diagram in m points.
By the definition of an almost vertical 2-sphere, each horizontal sphere Σ′t intersects S ′

in a single essential curve, and no such curve meets K ′ more than once.
Now the isotopy ϕ : (S3, K ′)→ (S3, K) takes this foliation of K ′ to a foliation of K

by bridge spheres. Note that images ϕ(S ′) intersect images ϕ(Σ′t) in a single essential
curve. Because the bridge sphere is unique up to isotopy, each level ϕ(Σ′t) is isotopic to
a horizontal bridge sphere for K, under an isotopy fixing K. The images of ϕ(S ′) and
ϕ(Σ′t) will still meet in single curves under this isotopy. Thus we need to ensure that
the bridge spheres ϕ(Σ′t) can be simultaneously isotoped to the horizontal foliation of
K. We do this by an open-closed argument:

Let I ⊂ (0, 1) be the sub-interval containing 1/2 for which we may simultaneously
isotope Σ′t to Σt for any t ∈ I. Then I is nonempty by Corollary 2.8: we may isotope
Σ′1/2 to Σ1/2.

The interval I is open, because if t ∈ I, then for small enough ε > 0, the image
ϕ(Σ′ × (t − ε, t + ε)) is contained in some Σ × (t − δ, t + δ), taking Σ′t to Σt. There
is an isotopy of the ball with boundary Σt keeping Σt fixed and taking the small
neighborhood ϕ(Σ′× [t, t+ ε)) of Σt to a small fibered neighborhood. By stretching or
contracting, we may assume ϕ(Σ′×{s}) goes to ϕ(Σ×{s}). Similarly for Σ′×(t−ε, t].
So I is open.

Moreover, I is closed, for if tn is a sequence in I with limit t, then ϕ(Σ′tn) is contained
in Σtn ; by continuity ϕ(Σ′t) lies on Σt. So I = (0, 1).
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Thus, ϕ(S2 × (0, 1)) can be isotoped to be horizontal under an isotopy of pairs
ψ : (S3, K) → (S3, K). Now consider the images of ϕ(S2 × {0}) and ϕ(S2 × {1})
under this isotopy. They each meet K in m points. Moreover, K is contained in the
image (ψ ◦ ϕ)(S2 × [0, 1]). Thus (ψ ◦ ϕ)(S2 × {0}) and (ψ ◦ ϕ)(S2 × {1}) must also be
horizontal. Under this isotopy, the image of S ′ is taken to S, satisfying the conclusions
of the lemma. �

Let Si,j denote a 4-punctured sphere embedded in S3 r K that encloses the twist
region ti,j. Each Si,j is chosen so that the collection of all such 4-punctured spheres
over all pairs (i, j) is disjoint. Let Bi,j denote the bounded closed ball in S3 whose
boundary contains Si,j. Thus, Bi,j ⊂ S3 contains the 1/ai,j tangle determined by the
ti,j twist region of K.

Lemma 3.3. With the same hypotheses on K ′ and K from Lemma 3.2, there exists
an isotopy ψ2 : (S3, K)→ (S3, K) that preserves properties (a) and (b) of that lemma,
and in addition does the following.

(c) It takes S to a surface either disjoint from Bi,j or meeting Bi,j in disjoint disks,
each separating the two strands of K within Bi,j, and each disjoint from K.
Note this implies all points of S ∩K lie outside of twist regions.

The proof of the lemma uses incompressibility and boundary incompressibility to
slide surfaces past each other. However, the argument is not quite standard, because
we need to take care to ensure that isotopies preserve horizontal bridge spheres at
every level. Additionally, while we know that vertical 2-spheres are incompressible and
boundary incompressible by Theorem 2.10, this is not true for 2-spheres which are
almost vertical . In order to prove the lemma in the case of almost vertical 2-spheres,
we will need the following definition and lemmas.

Definition 3.4. A vertical boundary compression disk for an almost vertical 2-sphere
S ′ ⊂ S3rN (K ′) is a boundary compression disk arranged so that its intersection with
any horizontal bridge sphere is either empty, or a simple arc from K ′ to S ′, or a single
point on N (K ′) ∩ S ′.

Lemma 3.5. Suppose that a portion of the surface S ′ forms a vertical annulus between
two heights, bounding regions of K ′ as shown in the left or right parts of Figure 3. That
is, either the annulus bounds three strands, one parallel to the annulus and the other
two forming twist region ti,j, or the annulus bounds four strands, one pair forming
twist region ti,j and the other forming twist region ti,k. Then the region bounded by
the annulus does not contain a vertical boundary compression disk that meets each
horizontal level in an arc with one endpoint on a segment of K ′ in a twist region.

Proof. The region bounded by the vertical annulus in S3 is a solid cylinder. In either
case, the solid cylinder, together with the strands of K ′ intersecting it, form either a
3 or 4-tangle. There is a separating compressing disk E for the tangle, separating a
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ti,j ti,j ti,k
S ′ S ′

Figure 3. Two ways that S ′ can enclose strands of K ′

twist region on one side and either a twist region or a strand of K ′ on the other. We
view E as a rectangle in the solid cylinder with top and bottom on the disks bounding
the solid cylinder and sides on the vertical annulus. Note E separates the 3 or 4-tangle
into a 2-tangle and either a 1 or 2-tangle.

Now suppose by way of contradiction that D is a vertical boundary compression
disk meeting K ′ in a twist region. Then D meets K ′ in a 2-tangle separated off by
E; denote this 2-tangle by (B1, T1) and denote the other tangle separated by E by
(B2, T2). Because D meets K ′ in the tangle (B1, T1), its boundary spirals around the
twist region, and hence it meets the boundary of the tangle in a spiral. Therefore, D
will intersect E in a series of (at least three) arcs running from one side of E on the
annulus to the opposite side of E on the annulus, and we may ensure that each arc of
E ∩D meets any horizontal level in a single point on E.

Consider an arc of intersection E ∩D. This arc splits D into two disks: one lying in
(B1, T1) and the other, call it D′, in (B2, T2). The disk D′ must meet each horizontal
level in an arc with an endpoint on E and an endpoint on S ′. The union of all horizontal
levels meeting this component of E ∩ D is then D′. Thus D′ is a disk embedded in
the tangle (B2, T2) with boundary that does not meet the top or bottom of the tangle.
This is impossible: such a disk would intersect one of the strands of K ′ running from
the top to bottom of (B2, T2). �

Lemma 3.6. There is no vertical boundary compression disk for an almost vertical
2-sphere S ′ in S3 rN (K ′).

Proof. We may assume S ′ is not a vertical 2-sphere, because those are known to be
boundary incompressible by Theorem 2.10.

Suppose there is a vertical boundary compressing disk D′. Every almost vertical
2-sphere has two sides, one containing several twist regions in each row, and the other
side containing no twist regions in one or more rows. Call the latter the small side.
Without loss of generality, we will assume that the small side is to the left of S ′. First
we claim that D′ lies in the small side. If it lies in the large side, then by changing
the plat diagram by adding twist regions to the small side, increasing its width, the
almost vertical 2-sphere becomes a vertical 2-sphere. The disk D′ becomes a boundary
compressing disk for the vertical 2-sphere, which contradicts Theorem 2.10.

We first treat the cases that the vertical 2 sphere S ′ is odd or doubly odd. Assume
first that S ′ = S ′(c1, . . . , 1, 0, 1, . . . , cn−1) is an odd almost vertical 2-sphere, hence
ci = 0 for some i odd, 3 ≤ i ≤ n − 3. Then there is another vertical 2-sphere
S ′′ = S ′′(c1, . . . , 1, 1, 1 . . . , cn−1) such that S ′ r S ′′ is a single disk ∆′ in the i-th level
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i

∂D′

S ′

i

i− 1

i− 2

∂D′

∂D′

S ′

∂D′

S ′

Figure 4. Left: In the i-th row, ∂D′ ∩ K ′ lies on the strand of K ′

disjoint S ′. Middle: In the (i − 2)-th row, ∂D′ ∩ K ′ must lie on the
leftmost strand of K ′. Right: ∂D′∩K ′ will not meet S ′ at the top of the
diagram if it lies on the leftmost strand of K ′ in this row.

with two punctures on K ′. The boundary of D′ must run through this disk ∆′, else it
would be a boundary compressing disk for S ′′, which is a contradiction.

Similarly, in the case that S ′ = S ′(c1, . . . , 1, 0, 1, 0, 1, . . . , cn−1) is doubly odd, there
is a vertical 2-sphere S ′′ = S ′′(c1, . . . , 1, 1, 1, 1, 1, . . . , cn−1) such that S ′ r S ′′ consists
of two disks ∆′i and ∆′i+2. Again the boundary of D′ must meet at least one of these.
If it meets ∆′i, set ∆′ = ∆′i. If it does not meet ∆′i, then rotate the diagram through
a horizontal axis to obtain a plat projection with S ′ doubly odd, so that ∆′i+2 goes to
row j with j odd, j ≥ 3, and ∆′i goes to row j + 2. Now set ∆′ = ∆′j.

In any case, odd or doubly odd, we obtain an almost vertical 2-sphere S ′ that bounds
no twist regions on its small side in some row that we will denote by i, where i odd
and i ≥ 3, and that agrees with a vertical 2-sphere S ′′ for all rows ` with 1 ≤ ` < i.

Moreover, the boundary of D′ meets ∆′ in the i-th row. We will analyze how the
disk D′ meets the diagram in rows i, i− 1, i− 2, etc.

In row i, note there is only one segment of K ′ on the small side of S ′. Hence, since
∂D′ meets ∆′, ∂D′ must have a sub-arc on this segment of K ′ by definition of vertical
boundary compression disk. There must also be a component of ∂D′ ∩ S ′ on ∆′. The
sub-arc of ∂D′ on S ′ and the one on K ′ must eventually meet, as they form ∂D′.
However, notice they cannot meet in the i-th row or just above it, since the strand of
K ′ meeting ∂D′ is disjoint from S ′ in this row; see Figure 4, left.

Now consider the intersection of D′ with the (i− 1)-st row of twist regions. Between
the top and bottom of the (i− 1)-st row of twist region, S ′ forms a cylinder bounding
a single twist region on the small side. Since ∂D′ has an arc on K ′ within this twist
region, by continuity, it must have an arc on the outside on the cylinder, and the disk
D′ in this region must spin around the knot, following the twist region. Note again that
arcs of ∂D′∩K ′ and ∂D′∩S ′ cannot meet in the (i−1)-st row or just above it, because
S ′ does not meet either of the strands of K ′ in that twist region at the horizontal levels
within the row. And going up, the arc α(c1, . . . , cn−1) defining S ′ turns right on the
(i− 2) level, still avoiding those two strands of K ′. See Figure 4, middle.

In the (i−2)-nd level, the small side of S ′ forms a cylinder bounding a twist region of
K ′ and an unknotted vertical segment of K ′, as on the left of Figure 3. By Lemma 3.5,
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∂D′ cannot have an arc on one of the segments of K ′ in the twist region. Hence its
boundary runs along the vertical segment of K ′, shown in Figure 4. There are now
two cases:

If i = 3, then this is the top of the diagram. One boundary component of ∂D′ lies on
the segment of K ′ to the far left, on the left-most bridge. But the surface S ′ meets the
second bridge to the left. These segments do not agree, so arcs of ∂D′ cannot meet up,
and therefore the vertical compressing disk D′ cannot exist in this case. See Figure 4.

If i > 3, since S ′ does not meet the vertical segment of K ′ in level (i− 2), D′ must
continue to a still higher level. In this (i− 3)-rd level, S ′ could go one of two ways. Its
small side could either bound two full twist regions on the same level, or a single twist
region. By Lemma 3.5, the former cannot happen, since the vertical compression disk
cannot lie in a cylinder bounding two twist regions. So S ′ bounds a cylinder containing
a single twist region, just as in level i− 1.

We now repeat the argument and find that in odd levels, D′ runs along the outermost
segment of K ′, and in even levels, S ′ has exactly one twist region on its small side.
Eventually we must reach the top of the diagram. At the top, D′ has an arc on the
outermost segment of K ′, which meets the outermost bridge. However, S ′ must meet
the next bridge over. This is a contradiction. We conclude that there cannot be a
vertical boundary compressing disk for an odd or doubly odd almost vertical 2-sphere.

Now consider an even almost vertical 2-sphere S ′ = S ′(c1, . . . , 0, 0, 0, . . . , cn−1), where
the zeros are in rows i − 1, i, and i + 1 for i even, 4 ≤ i ≤ n − 4. Suppose there is a
boundary compressing disk D′. Again D′ lies on the small side of S ′, and if D′ meets
a horizontal level, then it meets K ′ in that level. Note that in the i-th level, the small
side contains no segments of K ′. So D′ either lies entirely above or entirely below the
i-th row. Then D′ is a vertical boundary compressing disk for the doubly odd almost
vertical 2-sphere S ′(c1, . . . , 0, 1, 0, . . . , cn−1). This is a contradiction. �

Proof of Lemma 3.3. Assume we have already isotoped (S3, K) as in Lemma 3.2, and
denote the composition of isotopies from (S3, K ′) to (S3, K) to (S3, K) by ϕ.

Recall that Si,j = ∂Bi,j. Consider the intersection of spheres S ∩ Si,j. The com-
ponents are disjoint simple closed curves embedded both in S and in Si,j. Each Si,j

meets K four times. By a general position argument, we may assume each component
of S ∩ Si,j is disjoint from K. Then on Si,j, such a component bounds disks on either
side.

Step 1. Suppose a component of S ∩ Si,j bounds a disk on Si,j that is disjoint from
K. Then an innermost such component bounds an embedded disk E ⊂ Si,j disjoint
from S and K. Because S is incompressible, ∂E must also bound an embedded disk in
S; call it D. The union of E and D is a sphere in S3 disjoint from K, hence it bounds
a ball B. We will use the ball to isotope S through Si,j, removing the intersection;
however we must take some care to preserve the conclusion of Lemma 3.2.

If ∂E lies on a single horizontal level, i.e. ∂E ⊂ Σt for some t, then the curve ∂E
must be exactly the curve S∩Σt, since S meets any level in a single simple closed curve
by Lemma 3.2. Then the disk D ⊂ S must also meet each level in a single simple closed
curve or a single point. We may isotope D by pushing vertically to E, removing all
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intersections with levels above (or below) Σt, and then finally pushing off E to remove
the intersection S ∩ Si,j, preserving the conclusions of Lemma 3.2.

So suppose ∂E does not lie in a single level, but lies in a minimal range Σ × [a, b].
Then for t ∈ (a, b), S ∩ Σt is a single simple closed curve meeting ∂E in two points.
These points separate S ∩ Σt into an arc lying in D and an arc lying outside of D.
The arc lying in D along with the arc E ∩Σt together bound a disk: a slice of the ball
B bounded by D ∪ E. Consider levels Σa and Σb. Note E ∩ Σa is a single point. By
continuity, either D ∩Σa is also a single point, or it is a simple closed curve bounding
a disk in B. In the latter case, an argument similar to that of the previous paragraph
implies we may isotope S, preserving conclusions of Lemma 3.2, to be disjoint from
levels below Σa. Similarly, we may isotope S so that D is disjoint from levels above Σb.
Thus we may assume that D lies in the range Σ× [a, b]. But then the ball B also lies
in this range, and we may isotope S horizontally through the ball, preserving levels,
to remove the intersection S ∩ Si,j while preserving the conclusions of Lemma 3.2.
Repeating this a finite number of times, we remove all intersections S∩Si,j that bound
a disk in Si,j disjoint from K.

Step 2. Suppose now a component of intersection of S ∩ Si,j bounds a disk in Si,j

that meets K exactly once. Again we will argue that we can isotope the intersection
away, preserving the conclusions of Lemma 3.2. For this argument, we need to use
the fact that a vertical 2-sphere is meridionally incompressible. That is, if a disk E
is embedded in S3 with ∂E ⊂ S and E meets K in a single meridional curve on K,
then ∂E bounds a disk on S with the same property: it meets K exactly once in a
meridional curve. This result cannot be found in the literature, however its proof is
nearly identical to Wu’s proof that vertical 2-spheres are essential [26]. We include it
in the appendix, Section 5.

Assuming this fact, the proof in this step proceeds as above. If E ⊂ Si,j is a disk
meeting K in a single puncture, then the fact that S is meridionally incompressible
implies that ∂E also is the boundary of a disk D ⊂ S meeting K in a single puncture.
Then D ∪E bounds a ball in S3. Consider the intersection of the ball with horizontal
levels. An argument similar to the previous step implies that we may isotope through
horizontal levels, preserving the conclusions of Lemma 3.2.

Step 3. At this stage, we may assume that all intersections in S ∩Si,j are curves on
Si,j bounding disks with exactly two punctures on either side. Because S is embedded,
if there are multiple components of S ∩ Si,j then all such intersection curves must be
parallel on Si,j. It follows that S ∩Bi,j is either empty, all of S, or a collection of disks
and annuli in S.

First note S ∩Bi,j 6= S, for in this case, S is a punctured 2-sphere contained entirely
in the tangle Bi,j. There is a disk embedded vertically in the tangle that separates
the two strands of K; denote this disk by D. If we cut along D, we obtain two trivial
tangles, each containing a single strand of K, which we will denote by B1 and B2.
The disk D must intersect S in simple closed curves. An innermost component of
intersection bounds a disk on D, hence it bounds a disk on S. Thus it can be isotoped
away in a level-preserving manner as above; we conclude that S is disjoint from D.
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But then S is an essential sphere with n punctures embedded in a trivial tangle Bi

with a single knot strand. This is impossible.
Now we show that we can rule out annulus components of S ∩ Bi,j. For suppose

A is an annulus of S ∩ Bi,j. Then ∂A bounds an annulus A′ on Si,j, and together A
and A′ bound a solid torus V in S3. If V is disjoint from K, then we may isotope A
through V in a level-preserving manner (as above), to A′ and slightly past, removing
two components of intersection S ∩ Si,j. So K must meet A.

Now consider intersections of the disk D and tangles B1 and B2 with the annuli and
solid torus. If D is disjoint from A and A′, then A∪A′ and the solid torus V lie entirely
in a single trivial tangle, say B1. We are assuming A meets K. Then it must meet K
at least twice in B1. But K is unknotted in B1, so between some two points of entry
and exit of K, we have a vertical boundary compressing disk for A, hence S. Pulling
back via ϕ−1 to K ′ gives a vertical boundary compressing disk for S ′, contradicting
Lemma 3.6.

If A′ is disjoint from D, but A meets D, then ∂A′ must be parallel to ∂D, hence
A meets D only in simple closed curves. An innermost curve on D bounds a disk in
D. By incompressibility of S, it bounds a disk in S as well, and as in Step 1 we may
isotope it away.

So suppose A′ meets D. Then ∂D intersects A′ nontrivially. A component of inter-
section of ∂D ∩ A′ cannot be an arc from one boundary component of A′ to another,
because such an arc bounds a disk in A′; we may isotope away an innermost such arc in
a level-preserving manner. A component of ∂D∩A′ could be an essential simple closed
curve in A′. Then, after isotopy, we may assume D meets A in an essential simple
closed curve. But an innermost such curve bounds a disk on D, and as above we may
isotope it away. So a component of ∂D ∩ A′ must be an essential arc from one side of
∂A′ to the other. Then D cuts A′ into disks, and after level-preserving isotopy, cuts
the solid torus into balls, each embedded in a trivial one-tangle. Again intersections
with K give boundary compression disks for S ′, a contradiction.

Step 4. So the only remaining case is that S ∩ Bi,j consists of disk components,
each with boundary encircling two punctures on K on Si,j.

Let E be a disk component of S∩Bi,j. If E is disjoint from K, then it must separate
the two strands of K and we are done. So suppose E is not disjoint from K. Then
consider its intersections with the disk D that divides Bi,j into one-tangles B1 and B2.
If E is disjoint from D, then E lies entirely in one of the tangles B1 or B2, say B1.
Because ∂E encircles two punctures of K on Si,j, it must run parallel to ∂D. Then if K
intersects E, it must do so in two points in B1. Then we may form a vertical boundary
compressing disk for S by connecting adjacent points of intersection. Pulling back
via ϕ−1 to K ′ gives a vertical boundary compressing disk for S ′, and this contradicts
Lemma 3.6. So E cannot be disjoint from D.

Now D ∩ E consists of arcs and closed curves of intersection. Suppose first there is
a closed curve of intersection D ∩E. Then there is one which is innermost in D. This
curve bounds a disk D′ ⊂ D, and hence by incompressibility of S bounds a disk in S.
Again as in Step 1 we may isotope away this intersection in a level-preserving manner.
So we may assume there are no closed curves of intersection, and thus D ∩ E consists
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only of arcs with both endpoints on Si,j. Then intersections of S with B1 and B2 are
disks whose boundary consist of arcs of D ∩E and arcs on Si,j. The disks cut B1 and
B2 into balls. Any such ball must contain an arc of K, else we can use it to form an
isotopy removing an intersection of S ∩D, and as above we may ensure the isotopy is
horizontal with respect to bridge spheres, i.e. preserves the conclusions of Lemma 3.2.

Again, no disk of E ∩ B1 meets K more than once, or as before we can obtain
a vertical compression disk for S ′, contradicting Lemma 3.6. Similarly for E ∩ B2.
Thus, for each ` = 1, 2, each disk of intersection of E ∩B` meets K exactly once, with
boundary consisting of an arc on D and an arc on Si,j. It follows that E is a disk
meeting K exactly twice, meeting D in a single arc, and Si,j ∩ E separates the four
punctures of Si,j into pairs.

As before, we will slide intersections of S with Bi,j up or down, reducing the number
of such intersections. However, we need to take some care to ensure this can be done
while preserving the conclusions of Lemma 3.2. Assume the row of twist regions runs
from height a to b, i.e. the horizontal bridge sphere Σa lies just below the twist regions,
and the horizontal bridge sphere Σb lies just above.

Let t ∈ [a, b] be the minimal value such that Σt ∩ S ∩ Si,j 6= ∅. If t 6= a, then by
stretching and compressing vertically, there is an isotopy of (S3, K) taking the sub-
manifold Σ × (a, t) to the sub-manifold Σ × (a − ε, a), keeping Σb fixed. The isotopy
preserves the conclusions of Lemma 3.2, while taking the lowest intersection point
S ∩ Si,j to a point at the very bottom of some ball Bi,j. Then S ∩Bi,j contains a disk
E ′ with boundary an arc on Si,j and an arc on D, meeting Σa. The arc on D bounds
a disk D′ with boundary on Si,j and on D meeting Σa. The union D′ ∪ E ′ is a disk
with boundary on Si,j; it bounds a disk F on Si,j meeting a single puncture of Si,j.
Then F ∪D′ ∪ E ′ is a sphere, bounding a ball B in S3 with the property that B ∩ Σt

is either empty, or is a disk whose boundary contains a single arc α on S, and an arc
β on Si,j and D. Use this ball to isotope S horizontally to D, and then slightly past,
removing an arc of intersection with D. Now we are in previous Step 2, and the result
follows. �

We now use the previous lemmas to show that ϕ(S ′) does not meet twist regions.

Proposition 3.7. Let K ′ and K be two 2m-plat projections of the same knot or link
K ⊂ S3, where m ≥ 3 and the length of K ′ is greater than 4m(m − 2). Assume K ′

is 3-highly twisted. Then there exists an isotopy ψ : (S3, K)→ (S3, K) so that if S ′ is
any almost vertical 2-sphere for K ′ its image S = (ψ ◦ ϕ)(S ′) does not meet any twist
region.

Proof. Let ϕ : (S3, K ′) → (S3, K) be an isotopy satisfying the conclusions of Lem-
mas 3.2 and 3.3. Then S = ϕ(S ′) meets each horizontal level Σt in K in a single simple
closed curve, S intersects K outside of twist regions, and if S does intersect a twist
region, it runs between the two strands of the twist region.

Suppose that S runs through a twist region. Let Σc and Σd be horizontal bridge
spheres just below and above the twist region, respectively. The region between Σc

and Σd is homeomorphic to Σ× [c, d], where Σ is a 2m-punctured disk. Because S does
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not meet K in twist regions, we can choose c and d so that S does not meet K in the
region Σ × [c, d]. There is an isotopy ζ from Σc to Σd given by sweeping through the
horizontal bridge spheres. The isotopy can be arranged to be the identity away from
disks bounding points of K in a twist region. It is a nontrivial Dehn twist, twisting an
amount equal to the number of crossings in the twist region, inside a disk bounding
points of K in a twist region. In particular, the isotopy ζ takes the simple closed curve
γ = S ∩ Σc in Σ× {c} to a distinct curve τ(ζ) in Σ× {d}, given by a Dehn twist.

Now consider the effect of ϕ−1 on Σ × [c, d]. The isotopy takes this to a region
Σ′× [a, b], with Σ′a the image of Σc, and Σ′b the image of Σd. The portion of the surface
S between levels c and d is taken to a portion of the surface S ′ between levels a and b.
Note that the surface S ′ does not meet any twist regions, and moreover, since S avoids
K in this region, S ′ must avoid K ′ in this region.

But again, there is an isotopy ζ ′ from Σ′a to Σ′b given by sweeping through horizontal
bridge spheres, and again this isotopy can be taken to be the identity away from twist
regions. Because S ′ does not meet any twist regions, it must take the curve γ′ = S ′∩Σ′a
on Σ′ × {a} to the same curve ζ ′(γ′) = γ′ on Σ′ × {b}.

On the other hand, we know

τ(γ) = ϕ ◦ ζ ′ ◦ ϕ−1(γ) = ϕ ◦ ζ ′(γ′) = ϕ(γ′) = γ.

But this implies that the Dehn twist τ is trivial. This contradicts the fact that K is
1-highly twisted. �

Remark 3.8. Note that the argument in the previous lemma uses in a crucial way
the fact that the diagram of K ′ is fixed, and the twist regions of the diagram are all
reduced. In general, an isotopy between bridge surfaces in an arbitrary diagram could
first spin around a twist region, then spin in the opposite direction, undoing the twists
in that twist region. However, this would result in a twist region that is not reduced.
The map ζ ′ above is completely determined by the reduced diagram, and cannot create
crossings that can be removed in a different level.

Remark 3.9. In the previous lemmas, we have obtained isotopies giving nice properties
for K and S. From now on, we will compose our initial isotopy ϕ : (S3, K ′)→ (S3, K)
with these isotopies, and denote the composition by ϕ. Thus we assume that ϕ satisfies
the conclusions of previous lemmas.

Corollary 3.10. If S ′ is a vertical sphere, and S = ϕ(S ′), then the intersection of
S with the projection plane P contains precisely one simple closed curve δ so that
δ ∩K 6= ∅ and contains all n points of intersection with K.

Proof. We can assume that the knot or link K is contained in an ε/2 neighborhood of
P , i.e. K ⊂ P × [−ε/2, ε/2], and that S intersects P transversally. If there is more
than one simple closed curve in the intersection S ∩ P which meets K then consider
the annuli S ∩ (P × [−ε, ε]). These annuli can be capped off by disks at the P × −ε
and P × ε level which do not meet K. This fact is preserved by the inverse isotopy
ϕ−1 which sends the disks to disks in S3rN (K ′). One of these disks must be essential
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since it separates intersection points with K. Thus it is a compressing disk for S ′, in
contradiction to Theorem 2.10. �

Lemma 3.11. Let K ′, K be two 2m-plat projections of the same knot or link K ⊂ S3,
where m > 3 and the length n of K ′ is greater than 4m(m − 2). Moreover, assume
that K ′ is 3-highly twisted and K is 1-highly twisted. Let ϕ : (S3, K ′)→ (S3, K) be an
isotopy (satisfying conclusions of isotopies above). Let S ′ be an almost vertical 2-sphere
for K ′, and let S = ϕ(S ′) be its image. Then S meets the diagonal segments of K in
any level between twist regions at most once. In particular, S cannot meet a segment
of K in a point on the outside of an odd level when it has an additional intersection
point on either of the two levels that the outside arc spans.

Proof. First, by Lemma 3.2, we may assume that each horizontal bridge sphere for K
meets S in a single essential curve, and each such curve meets K at most once. Also
by that lemma, we may assume that the isotopy ϕ takes horizontal bridge spheres for
K ′ to horizontal bridge spheres for K.

Consider now the diagonal segments of K between the i-th and (i+1)-st row of twist
regions, and assume in contradiction that S intersects K more than once in this region.
Let p1 and p2 be two points of intersection. Then p1 lies on a horizontal bridge sphere
Σu, and p2 lies on a horizontal bridge sphere Σw. We may assume u > w, and without
loss of generality, we may assume that the difference |u− w | is minimal among all
such points and bridge spheres. That is, assume there are no points of intersection of
S ∩K between Σu and Σw.

Now consider the preimage of the region between Σu and Σw under the map ϕ.
Both Σu and Σw are mapped to horizontal bridge spheres under ϕ−1, and the region
Σ × [u,w] between them is mapped to a region ϕ−1(Σ × [u,w]) foliated by horizontal
bridge spheres. Since ϕ−1(Σu) and ϕ−1(Σw) meet S ′ ∩ K ′, they must lie on different
levels, separated by twist regions. Then the isotopy given by the horizontal foliation
of ϕ−1(Σ × [u,w]), coming from the fixed, reduced diagram of K ′, gives a nontrivial
homeomorphism from ϕ−1(Σu) to ϕ−1(Σw); it is nontrivial because moving through
the twist regions performs Dehn twists on the bridge sphere. Also note that sweeping
above or below the interval [u, v] does not cancel these Dehn twists, as the diagram of
K ′ is reduced.

On the other hand, the isotopy given by the horizontal foliation of Σ× [u,w] in K,
coming from the diagram of K, just gives the identity homeomorphism between Σu

and Σw, since p1 and p2 lie in the same region, so there are no twist regions between
Σu and Σw. But this is a contradiction: the homeomorphism must be the same in both
S3 −K and S3 −K ′.

Finally, note that if S meets a segment of K on the outside of an odd level, then we
may isotope S vertically, preserving the conclusions of Lemmas 3.2 and 3.3, to meet
either the diagonal segment above the odd row or the one below, so the above argument
again gives a contradiction if S meets either of these levels elsewhere. �
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4. Images of plats

4.1. Images of vertical 2-spheres. In this subsection prove the following theorem,
which allows us to control the images of vertical 2-spheres.

Theorem 4.1. Let K ′, K be 2m-plat projections of the same knot or link K. Assume
m ≥ 3, the length n′ of K ′ satisfies n′ > 4m(m − 2), and K ′ is 3-highly twisted, then
the isotopy map ϕ : (S3, K ′) → (S3, K) takes all vertical 2-spheres S ′ ⊂ (S3, K ′) to
vertical 2-spheres S ⊂ (S3, K) simultaneously.

In order to prove the theorem, we will be discussing different regions of the plat
diagram, and how arcs meet these regions. For ease of reference, we give regions of the
diagram the following labels.

Definition 4.2. Let K ⊂ S3 be a knot or link with a 2m-plat projection. Enclose
every twist region in a box which we also denote by ti,j = (twist region)× [−ε, ε]. Then
P r (K ∪ (∪

i,j
ti,j)) is a collection of regions, as in Figure 2.

The regions of the graph come in four different types up to symmetry:

(1) A unique unbounded region, denoted by U .

(2) Regions with four edges that are segments of K. Such a region will be called a
generic region, denoted by Q.

(3) Regions with three edges that are segments of K. They appear on the top or
bottom or on the left-most or right-most sides of the plat, but not in a corner.
These regions will be called triangular and denoted by T t, T b, T r, and T l

respectively.

(4) Four bigon regions which appear in the corners and are denoted Bt,l, Bt,r, Bb,l

and Bb,r.

Let ∆ be the portion of the projection plane P outside the unbounded region. That
is, ∆ = P r U .

Lemma 4.3. The image S of a vertical 2-sphere S ′ must intersect each row of twist
regions so that it has at least one twist region on each side in that row.

Proof. By Lemma 3.2, S intersects horizontal bridge spheres in each row of twist re-
gions. By Proposition 3.7, it avoids all twist regions. By Corollary 3.10, S meets P in
a single simple closed curve which, by Lemma 3.11, meets diagonals on each level no
more than once. Note this implies that S consists of exactly one arc in U and one arc
in ∆, for otherwise S would exit ∆ by crossing an arc of the diagram on the outside
of an odd level, as well as one of the two diagonal levels spanned by that outside arc,
contradicting Lemma 3.11.

Assume that the image S does not have one twist region on both sides of the vertical
arc α = S∩∆ on some level. Without loss of generality we can assume that there is no
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twist region to the right side of the arc α on that level. If the level is even, then there
is a disk with boundary on S contained in the unbounded face. If such a disk exists,
then its image under ϕ−1 is a disk on a horizontal bridge sphere Σ′t for some t ∈ [0, 1],
and boundary on S ′. But for all t ∈ [0, 1], S ′ ∩ Σ′t bounds points of K ′ on both sides.
So this cannot happen.

It remains to consider an odd level such that the arc α has no twist regions on the
right side in this level. The only way this can happen is if the arc α passes through
some region T r, or one of the four B’s, as in Definition 4.2. Suppose first that α
meets B. Then α must meet the segment of K forming a bridge, and the segment
of K between twist regions. But we may isotope S along the bridge, preserving the
conclusions of Lemmas 3.2 and 3.3 and Proposition 3.7, moving the intersection on the
bridge to lie on the level between the first and second rows of twist regions. Then we
obtain a contradiction to Lemma 3.11. So α meets a region T r.

Let β ⊂ K denote the rightmost arc in T r. Let Tr denote the tangle in the component
of S3 r S which contains β. The tangle Tr contains a cutting point c: a point c on
the sub-arc β so that there is a disk D, meeting c, embedded in Tr that meets K in a
single point. Moreover, we can choose the disk D to lie in a horizontal bridge sphere
for K, so that the boundary of D is the intersection of that horizontal bridge sphere
with S.

Now consider the preimage S ′ of the sphere S. Since horizontal bridge spheres go to
horizontal bridge spheres, the preimage D′ of D is a disk on a horizontal bridge sphere
for K ′ with ∂D′ on S ′. There is no such disk which intersects K ′ in a single point. �

Proposition 4.4. Let K ′ and K be two 2m-plat projections of the same knot or link
K ⊂ S3 such that m ≥ 3 and K ′ is 3-highly twisted, and K is 1-highly twisted. If n, n′

are the respective lengths of the plats K and K ′, with n′ satisfying n′ > 4m(m − 2),
then n = n′.

Proof. Let ϕ : (S3, K ′)→ (S3, K) be an isotopy between K ′ and K. Let S ′ ⊂ K ′ be a
vertical 2-sphere for K ′. Let S = ϕ(S ′) be its image under ϕ. Note that S intersects
K in n′ points.

If n < n′ then by the pigeonhole principal, there is some level where S must intersect
K more than once. This contradicts Lemma 3.11. So n ≥ n′.

On the other hand, if n > n′, consider a vertical 2-sphere S ′ in K ′. By Lemma 4.3,
its image S has at least one twist region on both sides on each level. However, n > n′

means there are levels it cannot reach. Thus n = n′. �

Proof of Theorem 4.1. Denote the collection of vertical spheres inK ′ by {S ′}. It follows
from Corollary 3.10 that for each vertical sphere S ′u ⊂ S ′ the intersection ϕ(S ′u) with
the projection plane P is a single simple closed curve. Proposition 3.7 shows that the n
points of intersection of ϕ(S ′u) and K are contained only in the arcs of K r ( ∪

i,j
{ ti,j }).

Lemma 4.3 shows that there is at least one twist region on each side of ϕ(S ′u) at each
row. Hence {ϕ(S ′)} is a collection of vertical 2-spheres in (S3, K). �
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a′i,ci+1S ′1 S ′2

Figure 5. An isolating 2-sphere Ω′

4.2. Preserving the order. As in Section 3, let S ′1, S
′
2 ⊂ (S3, K ′) be two vertical

spheres which differ by one twist region on the i-th row. Namely, without loss of
generality S ′1 = S ′1(c1, . . . , ci, . . . , cn−1) and S ′2 = S ′2(c1, . . . , ci+1, . . . , cn−1). We assume
that 1 < ci < m when i is even and 1 < ci < m−1 when i is odd so that the spheres are
well defined. Thus the bounded component B′ of S3 r (S ′1 ∪ S ′2) is a rational 2-tangle
as in Figure 5 containing the t′i, ci+1 twist region only.

We first start with notation. Let S ′1 and S ′2 be as above. Then S ′1 ∩ S ′2 is a disk ∆′,
and S ′1 r ∆′ is a disk ∆′1 meeting K ′ in two points. Similarly, S ′2 r ∆′ is a disk ∆′2,
and the union ∆′1 ∪∆′2 is a 2-sphere Ω′ meeting K ′ four times as in Figure 5. We call
Ω′ an isolating 2-sphere.

Definition 4.5. Twist regions that can be isolated by Ω′ = ∆′1∪∆′2 for ∆′1, ∆′2 coming
from vertical 2-spheres will be called allowable twist regions. Such twist regions are
inside the diagram, not on the far left or far right. Twist regions on the far left or far
right but not in one of the corners will be called almost allowable twist regions. That
is, almost allowable twist regions are those t′i,j ∈ K ′ such that either i is odd with
3 ≤ i ≤ n− 3 and j ∈ {1,m− 1} or i is even with 4 ≤ i ≤ n− 4 and j ∈ {1,m}.

The only twist regions which are not allowable or almost allowable are the extreme
right and left twist regions in rows 1, 2, n− 2 and n− 3. These twist regions are called
extreme twist regions.

We first treat allowable twist regions.

Lemma 4.6. Let t′i,j ∈ K ′ be an allowable twist region and let S ′1 and S ′2 be its corre-

sponding vertical 2-spheres. The bounded component of S3r (ϕ(S ′1)∪ϕ(S ′2)) in (S3, K)
is a rational 2-tangle as in Figure 5 containing a single twist region tr, s.

Proof. By Theorem 4.1 the images S1 = ϕ(S ′1) and S2 = ϕ(S ′2) are vertical 2-spheres,
and by Corollary 3.10 each meets the projection plane P in a single simple closed
curve component δ`, for ` = 1, 2 respectively. Since S ′1 and S ′2 are identical except in a
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neighborhood of the i-th row, it follows that S2 is identical to S1 everywhere except in
a neighborhood of some r-th row.

Let ∆ be the disk in S1 and S2 on which S1 and S2 agree. Let ∆1 be S1 r ∆, and
let ∆2 be S2 r ∆. Then ∆1 ∪ ∆2 is a 2-sphere Ω. Note that the union of the arcs
δ1r (δ1∩ δ2) and δ2r (δ1∩ δ2) is the curve Ω∩P . Thus the intersection Ω∩P contains
a single curve which intersects K in exactly 4 points, with the top of Ω∩P just above
the r-th row and the bottom just below the r-th row. The only 2-sphere Ω with this
property is as in Figure 5. That is, Ω bounds a twist region in K. So

S2(c1, . . . , cr, . . . , cn−1) = S1(c1, . . . , cr ± 1, . . . , cn−1).

Thus S1 = ϕ(S ′1) and S2 = ϕ(S ′2) are vertical 2-spheres which differ by the image
under ϕ of the 2-tangle corresponding to the twist region. �

Lemma 4.7. If t′i,j is an allowable twist region in (S3, K ′) that is mapped to tr,s in

(S3, K) then the number of crossings in the twist regions agree: ar,s = a′i,j.

Proof. Since ϕ is an isotopy, it will map a rational tangle 1/a′i,j corresponding to t′i,j
to a rational tangle 1/ar,s corresponding to tr,s. The the only way that the two tangles
might disagree is if the two strings of the tangle are twisted about each other during the
isotopy. However such a twisting will induce a homeomorphism of the four punctured
sphere Ω′ that fixes the punctures. Such a homeomorphism will force the images ϕ(∆′1)
and ϕ(∆′2) to intersect P in more than in one component, and thus S1 and S2 will not
be vertical spheres, in contradiction to Theorem 4.1. �

Lemma 4.8. Let t′i,j be an allowable twist region in K ′. Then the allowable twist
regions adjacent to t′i,j in K ′ are mapped to twist regions adjacent to ϕ(t′i,j) = tr,s in

(S3, K), in the same order, up to rotation along a vertical or horizontal axis through
the tr,s twist region.

Proof. By the definition of an allowable twist region, there are two vertical 2-spheres
which isolate the twist region t′i,j, as in Lemma 4.6. We know by Lemma 4.7 that the
twist region tr,s in K has the same number of crossings as t′i,j, and is isolated by images
of the two vertical 2-spheres. Given t′i,j ∈ K ′, each allowable adjacent twist region (at
most four in the general case) shares a segment of K ′. This segment intersects only
one of the vertical 2-spheres used in the isolation of t′i,j.

This 2-sphere is shared by the twist region adjacent to t′i,j, so it must be mapped

to the 2-sphere separating the images of these adjacent twist regions in (S3, K). Thus
adjacent allowable twist regions are mapped to adjacent allowable twist regions. Since
twist regions are symmetric with respect to reflections in the vertical and horizontal
axis, so is the relative position of the corresponding twist regions in K; see Figure 6. �

4.3. Almost allowable twist regions. Consider now almost allowable twist regions
in row i. In this case at least one of the spheres that will be used to define the isolating
sphere for the twist region will not be a vertical 2-sphere. However, the spheres will be
almost vertical. Since we know that almost vertical 2-spheres do not go through twist
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ai,j

S

Figure 6. Two adjacent twist regions with a shared vertical 2-sphere S

regions by Proposition 3.7, the argument is similar to that of allowable twist regions,
although there is a difference between the cases when i is odd or even.

For ease of notation, we will consider almost allowable twist regions on the left side
of the diagram in this subsection. By symmetry, the results also hold on the right.

When i is odd and 3 ≤ i ≤ n− 3, consider a vertical 2-sphere

S ′` = S ′(1, . . . , 1, 1, 1, . . . , 1),

and an almost vertical 2-sphere W ′
i defined exactly as the vertical sphere, but with

coefficients (1, 0, 1) in the (i− 1)-st, i-th, and (i+ 1)-st locations. That is, write

W ′
i = S ′(1, . . . , 1, 0, 1, . . . , 1),

where the coefficients of W ′
i and S ′` are identical aside from the i-th coefficient. Note

that W ′
i is an odd almost vertical 2-sphere as in Definition 2.9.

As before the intersection S ′`∩W ′
i is a disk ∆′ and the union of disks ∆′1 = S ′`rint(∆′)

and ∆′2 = W ′
i r int(∆′) is a 2-sphere Ω′i = ∆′1 ∪∆′2 that intersects K ′ in four points;

see Figure 7. This is an isolating 2-sphere for the twist region t′i,1. As ∂∆′ ∩ K = ∅,
the image

ϕ(Ω′i) = ϕ(∆′1 ∪∆′2) = ϕ(∆′1) ∪ ϕ(∆′2) := Ωi

is a 2-sphere which intersects K in four points and bounds a 2-tangle in S3 rN (K).
Choose Ωi to minimize intersections with the projection plane up to isotopy rel K.

When i is even and 4 ≤ i ≤ n− 4, consider the doubly odd almost vertical 2-sphere

W ′1
i = S ′(1, . . . , 1, 0, 1, 0, 1, . . . , 1),

and the even almost vertical 2-sphere

W ′2
i = S ′(1, . . . , 1, 0, 0, 0, 1 . . . , 1).

Thus the coefficients of W ′1
i and W ′2

i are identical except in the i-th position.
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ai,jW ′
i S ′`

Figure 7. An almost allowable twist region with S ′`

The intersection W ′1
i ∩W ′2

i is a disk ∆′ and the union of the disks ∆′1 = W ′1
i r int(∆′)

and ∆′2 = W ′2
i r int(∆′) is a 2-sphere Ω′i = ∆′1 ∪∆′2 that intersects K ′ in four points.

This is an isolating 2-sphere for the twist region t′i,1. Let Ωi denote the image ϕ(Ω′i); it
is a 2-sphere which intersects K in four points. Choose Ωi to minimize the intersection
with the projection plane in its isotopy class rel K.

We have thus defined an isolating 2-sphere Ω′i in K ′, and its image Ωi in K for i
even and odd, for 3 ≤ i ≤ n− 3. In both cases, we want to show that Ωi is an isolating
2-sphere for the twist region tr,1.

Lemma 4.9. Let Ω′i ⊂ (S3, K ′) be an isolating sphere for an almost allowable twist
region on the left, t′i,1 ⊂ K ′. Then the bounded component of S3 r Ωi ⊂ (S3, K)
is a rational 2-tangle, as in Figure 5, containing only the twist region tr,1 so that
ar,1 = a′i,1. A similar statement holds for almost allowable twist regions on the right.
Moreover, adjacent twist regions in K ′, both allowable and almost allowable, are mapped
to adjacent twist regions in K.

Proof. Recall from Lemmas 3.2, 3.3, Proposition 3.7, and Lemma 3.11 that W ′
i , W

′1
i ,

and W ′2
i meet each horizontal bridge sphere in a simple closed curve, avoid all twist

regions of K, and meet each level between twist regions at most once.
The proof is separated into two cases depending on whether i is odd or even.

Case (1): i is odd. Since S ′` is a vertical 2-sphere its image ϕ(S ′`) is also a vertical

2-sphere. Hence the image of ∆′1 is a disk ∆1, and the intersection of ∆1 with the
projection plane P is an arc η that contains the two points of intersection of ∆1 with
K on P .
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Furthermore, as ∂ϕ(∆′1) = ∂ϕ(∆′2), the image of the disk ∆′2 is a disk ∆2 such that
∂∆2 = ∂∆1, and ∆2 meets K twice. Since we know that ∆2 avoids twist regions, as
above we can conclude that Ω is an isolating 2–sphere for the twist region tr,1 in K.

The same arguments as in Lemmas 4.7 and 4.8 show that ai,1 = a′i,1 and that odd
almost allowable twist regions in K appear in the same order relative to the rest of the
plat as those of K ′. Then it follows that for i odd with 3 ≤ i ≤ n−3, the image ϕ(W ′

i )
is isotopic to S(1, . . . , 1, ci = 0, 1, . . . , 1) in K.

Case (2): i is even. For even i with 4 ≤ i ≤ n− 4, we know that ϕ(W ′
i−1) is isotopic to

S(1, . . . , 1, ci−1 = 0, 1, . . . , 1) and ϕ(W ′
i+1) is isotopic to S(1, . . . , 1, ci+1 = 0, 1, . . . , 1).

Notice that this implies that the image of

W ′1
i = S ′(1, . . . , 1, ci−1 = 0, 1, ci+1 = 0, 1 . . . , 1)

is isotopic to

W 1
i = S(1, . . . , 1, ci−1 = 0, 1, ci+1 = 0, 1 . . . , 1).

Again we determine the image of the spheres W ′2
i = S ′(1, . . . , 1, 0, ci = 0, 0, 1 . . . , 1).

We know the disk ∆′ = W ′1
i ∩ W ′2

i is mapped to a disk ∆ that agrees with W 1
i

everywhere except on the disk ϕ(∆′2) = ∆2 that meets K twice, but as before ∂∆2 lies
on W 1

i . Also, ∆ contains all the other n − 2 intersection points of ϕ(W ′2
i ) with K in

consecutive order, aside from skipping two intersections at the levels of ϕ(∆′1) (where
recall ∆′1 = W ′1

i r ∆′).
Because ∆2 meets no twist regions, the isolating sphere Ω′i has image an isolating

sphere Ωi, isolating the twist region ti,1 for i even and 4 ≤ i ≤ n − 4. The same
arguments as in Lemma 4.7 and Lemma 4.8 show that ai,1 = a′i,1 and that almost
allowable twist regions in K appear in the same order relative to the rest of the plat
as those of K ′. �

4.4. Extreme twist regions. We still need to show that the extreme twist regions
are fixed as well. We will define an isolating sphere for an extreme twist region on the
top left corner of the K ′ plat and the others are defined by symmetry. Consider the
intersection of S ′(1, 1, . . . , 1)∩P ′ with the second top external region, i.e. the left-most
region T t, and the generic region Q on the second row counted from the left, where
recall definitions of regions are in Definition 4.2. A sub-arc of this arc of intersection can
be completed to a simple closed curve γ′ circling both the t′1,1 and t′2,1 twist regions.
The curve γ′ is indicated in Figure 8. Cap γ′ by disks above and below to obtain
a 2-sphere S ′`1 bounding the rational 2-tangle corresponding to the 1/(a′1,1 + 1/a′2,1)
continued fraction expansion.

Lemma 4.10. The 2-sphere ϕ(S ′`1 ) bounds a rational 2-tangle corresponding to the
1/(a1,1 + 1/a2,1) continued fraction expansion. Thus, up to rotation, a1,1 = a′1,1 and
a2,1 = a′2,1, and similarly for the other three corners.

Proof. Since a sub-arc of γ′ is also a sub-arc of S ′(1, . . . , 1), the image ϕ(S ′`1 ) shares a
sub-disk with ϕ(S ′(1, . . . , 1)), which by Lemma 4.8 is equal to S(1, . . . , 1).
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a1,1

a2,1

a1,2

a2,2

γ

Figure 8. The γ curve for an isolating sphere for the extreme twist regions

It now follows from the same argument as in Lemma 4.6 that ϕ(S ′`1 )∩ P is a single
simple closed curve γ and ϕ(S ′`1 ) = S`

1. By Lemma 4.8 and the proof of Lemma 4.9
the points K ∩ ϕ(S ′`1 ) are fixed. Thus a1,1 = a′1,1 and a2,1 = a′2,1, and similarly for the
extreme twist regions in the other corners of the plat. �

4.5. Proof of Theorem 1.1. We are now ready to prove the main theorem.

Proof of Theorem 1.1. Let K ⊂ S3 be a knot or link with a 2m′-plat projection K ′ that
is 3-highly twisted, and length n′ > 4m′(m′ − 2). Assume K has a 2m-plat projection
or even plat projection K as well. Then Corollary 2.8 implies m ≥ m′. If m′ = m, and
K is 1-highly twisted, then Proposition 4.4 implies that the length n of K equals the
length n′. (So in fact, K is not an even plat projection.)

It then follows from Lemmas 4.6 through 4.10 that the twist regions in both plats are
equal, namely ti,j = t′i,j up to reflection by a vertical or a horizontal axis, and ti,j and
t′i,j contain the same number of (signed) crossings, i.e. ai,j = a′i,j. Thus up to reflection
by a vertical or a horizontal axis, K = K ′ and the plat is unique. �

5. Appendix

In this section, we prove that vertical 2-spheres are meridionally incompressible. The
proof follows very closely the proof of Wu that vertical 2-spheres are essential [26].

Lemma 5.1. Suppose (B, T ) is a rational tangle consisting of a single twist region with
q crossings (i.e. a 1/q tangle). Let C be a circle on ∂B of slope ∞, X = B rN (T ),
and P a component of (∂B ∩X) r C. If q ≥ 3 then P is meridionally incompressible
in X.

Proof. Suppose D is a meridionally compressing disk for P in X. There exists a disk
E embedded in X with boundary on ∂B, separating B into two trivial one-tangles.
Consider intersections of D and E. Suppose there is a closed curve component of



28 YOAV MORIAH AND JESSICA S. PURCELL

4 YING-QING WU

Lemma 4. Let F be an essential surface in a compact orientable 3-manifold M .
If M ′ = M − IntN(F ) is irreducible, and no compressing disk of ∂M ′ is disjoint
from the two copies of F on ∂M ′, then M is irreducible and ∂-irreducible.

We now proceed to prove Theorem 1. In the following, we will assume that L is
a link as in Theorem 1. By the remark above, we may assume m ≥ 3.

Lemma 5. The manifold X = X(1, . . . , 1) is irreducible and ∂-irreducible.

Proof. Consider the tangle (B, T ) on the left of S. By an isotopy of (B, T ) we
can untwist the boxes in T which lie on the even rows of the projection of L,
so the tangle (B, T ) is equivalent to the one shown in Figure 2, where each box
corresponds to the first box on an odd row of the projection of L; hence there
are k = (m + 1)/2 ≥ 2 boxes, (k = 3 in Figure 2.) Let D1, . . . , Dk be the disks
represented by the dotted lines in Figure 2, which cuts (B, T ) into k+1 subtangles
(B0, T0), . . . , (Bk, Tk), where (B0, T0) is the one in the middle, which intersects all
the Di. Let Pi = Di ∩ X be the twice punctured disk in X corresponding to Di.
They cut X into X0, . . . , Xk, with Xi = Bi− IntN(Ti) the tangle space of (Bi, Ti).

We want to show that ∪Pi is essential in X . Since each (Bi, Ti), i ≥ 1, is a twist
tangle with at least 3 twists, by Lemma 3, the surface Pi is essential in Xi. Now
consider X0. Put Q = ∂B0 − ∪Di. If D is a compressing disk of Q in X0, then
it is a disk in B0 disjoint from T0 ∪ (∪Di); but since T0 ∪ (∪Di) is connected, this
would imply that one side of D is disjoint from all Di, hence ∂D is a trivial curve
on Q, which is a contradiction. Therefore Q is incompressible in X0. Assume there
is a disk D in X0 such that ∂D ∩ (∪Pi) has only one component. Since each string
of T0 has ends on different Di, we see that ∂D ∩ ∂N(T0) = ∅, so ∂D ∩ (∪Pi) is
either a proper arc in some Di which separates the two points of T0 on Di, or it
is a circle bounding a disk on Di containing exactly one point of T0, or ∂D can
be isotoped into Q. The first two cases are impossible because then D would be a
disk in B0 disjoint from T0 and yet each component of ∂B0 − ∂D contains an odd
number of endpoints of T0. The third case contradicts the incompressibility of Q.
This completes the proof that ∪Pi is an essential surface in X .

Notice that all Xi are handlebodies, and hence irreducible. Since Q is incom-
pressible in X0, and by Lemma 3, the surfaces ∂Xi − Pi ⊂ ∂Xi − ∂Di are in-
compressible in Xi for i ≥ 1, it follows from Lemma 4 that X is irreducible and
∂-irreducible. �

B

D1

D2

D3
0

Figure 2Figure 9. Tangle to the left of S(1, . . . , 1) is equivalent to this tangle
when k = 3; figure from [26].

D ∩E. Then there is an innermost such component γ on D, bounding a disk D′ ⊂ D.
Note that γ also bounds a disk E ′ on E thus D′ ∪ E ′ is a sphere in B which bounds
a 3-ball B′. If B′ is disjoint from the tangle T , we may isotope D through B′ to
remove the component of intersection γ. If T is not disjoint from B′, then T must
meet ∂B′ = D′ ∪ E ′. But E is disjoint from T , and D′ can meet T only in a single
meridional puncture. But then T can puncture the 2-sphere ∂B′ at most once. This
is a contradiction. So after a finite number of isotopies, we may assume there are no
closed curve components of E ∩D.

Now suppose E ∩D consists of arc components. An outermost arc α on D bounds
a disk D′ ⊂ D. It also bounds a disk E ′ ⊂ E. Then consider ∂D′ r α and ∂E ′ r α.
These are arcs on ∂B disjoint from T whose endpoints agree; thus they bound a disk
F ′ ⊂ ∂B, and the union D′ ∪ E ′ ∪ F ′ is a 2-sphere in B bounding a 3-ball B′. Again
if B′ is disjoint from T , we may isotope E ′ through B′, with an arc of its boundary
remaining in F ′, until we isotope away the arc of intersection. So suppose B′ does meet
T . Since E is disjoint from T , and D′ meets T at most once in a meridional puncture,
it follows that T must meet F ′ exactly once. Because B′ lies in a trivial one-tangle, T
must run through B′ in an unknotted arc from F ′ to D′. But then D′ can be isotoped
through B′, with an arc of its boundary remaining in E ′, to be parallel to F ′, removing
the intersection component α. Repeat this procedure until all other arcs of intersection
are removed. It follows that D is parallel to a disk on ∂B which meets exactly one
puncture of T ; hence P is meridionally incompressible. �

Lemma 5.2 (See Lemma 5 of [26]). The vertical 2-sphere S(1, . . . , 1) is meridionally
incompressible.

Proof. Consider the tangle (B, T ) to the left of S(1, . . . , 1), and let X denote BrN (T ).
By an isotopy of (B, T ), we can untwist the twist regions of T which lie in the even
rows, so the tangle (B, T ) is equivalent to the one shown in Figure 9, where each twist
box corresponds to the first box on an odd row of the diagram. There are k such boxes,
where k = n/2 and n denotes the height of the plat. (Recall that n is even.)

Let D1, . . . , Dk be disks represented by the dotted lines in Figure 9, which cut (B, T )
into k+ 1 sub-tangles (B0, T0), . . . , (Bk, Tk), where (B0, T0) is the tangle in the middle,
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which intersects all the Di. Let Pi = Di∩X be the twice punctured disk corresponding
to Di.

Now suppose D is a meridional compressing disk for S(1, . . . , 1); we may assume
the meridian meeting D lies completely in some Bi. Consider components Pi ∩D, and
first suppose i ≥ 1. Any innermost curve or outermost arc of D ∩ Pi in D bounds a
disk D′ in D. If D′ is disjoint from the tangle, then because Pi is incompressible and
boundary incompressible in Bi − N (Ti) (by [26, Lemma 3]) and in B0 − N (T0) (by
[26, Lemma 5]), such a curve of intersection can be slid off. Repeat a finite number
of times to remove all such intersections. Any remaining innermost disk or outermost
arc of intersection with Pi must bound a meridional disk in D. But Lemma 5.1 implies
Pi is meridionally incompressible in Xi, hence the portion of D in Bi can be isotoped
through Bi to the boundary, and we may remove this intersection.

It follows that D must have its boundary completely contained in ∂B0 − ∪Di = Q.
But since D meets T0 in a single meridian, ∂D must encircle one component of T0 on
one side and 2k+n−1 components, an odd number, on the other side. Since the disks
Di meet endpoints of T0 in pairs, this is impossible. �

Lemma 5.3 (See Lemma 6 of [26]). Any vertical 2-sphere S(c1, . . . , cn−1) is meridion-
ally incompressible.

Proof. There is a sequence of vertical spheres S1, S2, . . . , Sr+1 so that S1 = S(1, . . . , 1),
Sr+1 = S(c1, . . . , cn−1), and Si and Si+1 differ by a single twist region in the diagram.
That is, Si∪Si+1− int(Si∩Si+1) = ∂Bi for some tangle (Bi, Ti) bounding a single twist
region with a 6= 0 twists. By Lemma 5.2, we know S1 is meridionally incompressible.
The proof will be by induction on the length of the sequence. Assume, therefore, that
Sr is meridionally incompressible.

Now suppose that D is a meridian compressing disk for Sr+1. The disk D must
meet the tangle (Br, Tr), else it would be a meridionally compressing disk for Sr, which
is impossible. Let Pr = ∂Br ∩ Sr; this is a twice punctured disk on ∂Bk. Consider
curves and arcs of intersection of D and Pr. Innermost curves and outermost arcs
bounding disks in D can be isotoped away, using the incompressibility and boundary
incompressibility of Pr in Br, and incompressibility of Sr.

Any innermost curve or arc of intersection therefore bounds a disk of D meeting
the meridian of the link. But Pr is meridionally incompressible by Lemma 5.1, hence
this intersection can be isotoped outside of Pr. it follows that D is disjoint from Pr,
but meets the tangle (Br, Tr). This is impossible unless D is completely contained in
(Br, Tr). But in that case, D is a meridional compressing disk for Pr+1 = ∂Br r Pr,
contradicting Lemma 5.1. �
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