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Abstract The rapid expansion of agent-based simulation modeling has left the the-
ory of model validation behind its practice. Much of the literature emphasizes the
use of empirical data for both calibrating and validating agent-based models. But a
great deal of the practical effort in developing models goes into making sense of ex-
pert opinions about a modeling domain. Here we present a unifying view which in-
corporates both expert opinion and data in validating models, drawing upon Bayes-
ian philosophy of science. We illustrate this in reference to a demographic model.

1 Introduction

Agent-based models (ABMs) are computer simulations of numerous, heterogeneous
“agents”. The models’ microbehavior is determined by explicitly programmed rules,
while their macrobehavior is not, instead emerging from the collective behavior of
the population of agents, usually in very complex ways. This kind of simulation has
grown from early efforts in ecology and artificial life into one of the most widely
applied computer methods across the sciences today. Nevertheless, skepticism about
the interpretation and epistemological standing of these models remains widespread
and will do so until at least the fundamentals of ABM validation are agreed upon.
Here we present and defend a Bayesian approach to ABM validation.

As many have remarked, the theory of how to validate ABMs is vastly under-
developed compared to its practice (e.g., Klein and Herskovitz, 2005, Kleindorfer
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et al., 1998). This is unsurprising given how rapidly ABMs have grown from a
niche computer application in the 1980s to a leading research technology for ecol-
ogy (Grimm and Railsback, 2005), economics (Tesfatsion and Judd, 2006), epi-
demiology (Auchincloss and Diez Roux, 2008) and dozens of other sciences (see
http://jasss.soc.surrey.ac.uk/JASSS.html for a full range of examples).

In this paper we take some of the principles of Bayesian theories of scientific
method and develop them into an account of validation practice for simulation sci-
ence. The Bayesian approach to philosophy of science explicitly recognizes the dis-
tinction between the current understanding of the behavior of a system (prior belief)
and the data (likelihood), which provides us with a framework for integrating both
qualitative and quantitative approaches to validation. In essence, our prior belief
about the model is updated in the light of experimental data gathered from our sim-
ulations.

Bayesian inference tends to accord well with an Ockham-like favoritism for sim-
plicity (e.g., Wallace, 2005). By contrast, both the systems under study and the
ABMs themselves tend to be complex, nonlinear and high dimensional. This com-
plexity raises some special epistemological questions about Ockham’s Razor, which
we address in §3.

After developing a Bayesian approach to validation in the abstract, we illustrate
it in reference to the demographic submodel of an epidemiological ABM.

2 Bayesian Philosophy of Science

Klein and Herskovitz (2005) have presented a case that Karl Popper’s falsification-
ism (Popper, 1959) be made the basis for the epistemology of simulation. Popper’s
account of methodology has many virtues, which have made his name prominent
throughout the sciences and perhaps even seem synonymous with philosophy of
science. For example, Popper’s emphasis on “severely testing” theories — pitting
them experimentally against an alternative, such that one or the other must become
falsified — is very agreeable to the empirical spirit. Likewise his emphasis on the
fallibility of scientific method agrees with both the history of science and traditions
in scientific education. Regardless, there are many difficulties standing in the way
of a Popperian theory of method. Kuhn (1962), Lakatos (1970) and Feyerabend
(1975) all demonstrated with numerous historical examples how in a great many
cases unexpected results were rationally held to be anomalous, rather than falsi-
fying, demanding, not rejection of the theory under test, but instead the discovery
and elaboration of new auxiliary hypotheses which could explain the discrepancies
between theory and observed reality.

In view of the importance they place on accounting for the accumulation of sci-
entific knowledge, more troubling for Klein and Herskovitz (2005) will be the fact
that Popper never gave any reasonable account of the growth of knowledge. His re-
liance strictly upon falsification left any account of support, confirmation or growth
of things known at best open. To be sure, Popper talked much of “corroboration”,
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even developing a measure of degrees of corroboration. That is, theories that have
survived more severe tests are meant to have higher degrees of corroboration than
theories that have survived less severe tests. This was supposed to fill the vacuum
left by an epistemology exclusively reliant upon refutations, but a vacuum filled with
a fictional aether is still just a vacuum. Popper insisted not just that all such corrob-
orated theories were lacking any empirical support, but also that they were, in point
of fact, false. On Popper’s repeated account, all synthetic universal hypotheses are
false (e.g., Popper, 1959, Appendix *vii) and simply waiting for their refutations to
be found!1

2.1 Bayesian Confirmation Theory

Bayesian philosophy of method has grown from the ashes of Popperianism. Bayes-
ianism has been propelled by numerous factors: in artificial intelligence and statis-
tics by the development of new methods for exact inference (in Bayesian networks;
e.g., Pearl, 1988, Korb and Nicholson, 2010) and approximate inference (in MCMC
simulation; e.g., Friedman and Koller, 2003); in cognitive neuroscience (Glimcher,
2004); and generally across many sciences through the explosive growth of the ac-
cessible computational power needed for these kinds of analyses.

In philosophy a driving force for Bayesianism has been a string of successful
Bayesian re-analyses of Popperian insights into method, combined with an approach
that supplies what Popper could not: a theory of theory confirmation.

All of this originates in Bayes’ theorem (Bayes, 1763), which simply describes
the posterior probability of a hypothesis (conclusion) and in terms of its prior prob-
ability and likelihood. In particular,

P(h|e) =
P(h)×P(e|h)

P(e)
(1)

This is an analytic theorem. Bayesian confirmation theory goes well beyond it: it
asserts that the proper way to assess confirmation is to adopt the probabilities con-
ditional upon the available evidence — as supplied by Bayes’ theorem — as our
new posterior probabilities. This move to a posterior distribution is called Bayesian
conditionalization.

Given this view, the simplest way of understanding the concept of the con-
firmation or support offered by some evidence is as the difference between the
prior and posterior probabilities of a hypothesis; that is, e supports h just in case
S(h|e) = P(h|e)−P(h) > 0 (cf. Howson and Urbach, 1993, p. 117). A second mea-
sure of support, the ratio of likelihoods e given h over e given not-h, is equally
defensible (Good, 1983):

1 This was Popper’s extreme skeptical “solution” to Hume’s problem of induction: stop inducing!
And never mind that his statement itself is a synthetic universal. Popper was no more bound by the
petty hobgoblin Consistency than any inductivist!
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λ (e|h) =
P(e|h)

P(e|¬h)
.

It is a simple theorem that the likelihood ratio is greater than one if and only if
S(h|e) is greater than zero. λ (e|h) (or, simply, λ ) can be understood as a degree of
support most directly by observing its role in the odds-likelihood version of Bayes’
theorem:

O(h|e) = λO(h).

This asserts that the conditional odds on h given e should equal the prior odds
adjusted by the likelihood ratio. Since odds and probabilities are interconvertible
(O(h) = P(h)/P(¬h)), support defined in terms of changes in normative odds mea-
sures changes in normative probabilities just as well as S(h|e). λ has a significant
advantage over S(h|e) however: it is easier to calculate. Since hypotheses often de-
scribe how a system functions given initial conditions, finding the probability of the
evidence assuming h is often straightforward. What a likelihood ratio reports is the
normative impact of the evidence on the posterior probability, rather than the poste-
rior probability itself (which would require also the prior probability of h). However,
confirmation theory is concerned with accounting just for rational changes of belief,
and so λ turns out to be the best tool for understanding confirmation, as we show
now with two examples.

(1) Likelihood ratios make clear why Karl Popper’s (1959) insistence that scien-
tific hypotheses be subjected to severe tests makes sense. Intuitively, a severe test is
one in which the hypothesis, if false, is unlikely to pass; that is, whereas the hypoth-
esis predicts some outcome e, its competitors do not. Since the hypothesis predicts
e, P(e|h) must be high; since its competitors do not, P(e|¬h) must be low. Together
these imply that the likelihood ratio is very high. So, a severe test will be highly
confirmatory if passed and highly disconfirmatory otherwise — providing the most
efficient approach to testing a hypothesis, as Popper pointed out.

(2) Another example is the preference which experimental scientists exhibit ce-
teris paribus, when confronted by two possible tests of a theory, for that test which
is most different from one previously passed. For example, Eddington had two al-
ternatives to testing Einstein’s general theory of relativity (GTR) in 1919: either
repeating Einstein’s analysis of the precession of Mercury’s perihelion or checking
the predictions which GTR made of a “bending” of starlight by the mass of the sun,
observable during a total eclipse. Despite the fact that astronomical observations of
the motion of Mercury are cheaper and simpler, Eddington famously chose to ob-
serve the starlight during the eclipse over the Atlantic. Intuitively, we can say that
this was because a new result, as opposed to a repeated experiment, offers a more
severe test of the theory. For formal Bayesian analyses of this case, see Franklin
(1986) and Korb (2004).

More comprehensive accounts of Bayesian method can be found in Howson and
Urbach (1993) and Korb (1992). For our purposes here, it suffices to point out that λ

provides a tool for understanding the direction and degree of confirmation or discon-
firmation, allowing guidance for validation techniques even when a full probabilistic
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account is unavailable. We now proceed to a qualitative account of Bayesian ABM
validation.

2.2 Bayesian Validation

The goal of empirical validation of computer simulation — its central epistemolog-
ical question — is to determine whether the simulation is telling us the truth about
some target process in the world — whether the theory which it instantiates is true
or false.

Some researchers take an unnecessarily narrow view of this process. For ex-
ample, Windrum et al. (2007) suggest that in order for a validation process to be
empirical it must directly involve data, which may become an excuse to downplay
expert opinions and intertheoretic relations between the theory behind the simu-
lation and related science. But, while empirical knowledge ultimately rests upon
sensory experience, it does not have to directly rest upon it. We see empirical val-
idation as encompassing both statistical tests using data and expert opinion, which
itself (hopefully) derives largely from experience. Bayes’ Theorem, in fact, provides
a natural form in which to combine these: expert opinions are readily interpreted as
providing prior probabilities of a model being correct, while statistics can be used to
measure the fit of the model to the data — i.e., its likelihood. This division does not
perfectly divide model validation activities, but it does work roughly and, more im-
portantly, serves to reinforce the importance of combining expert- with data-oriented
validation methods.

ABM simulation is widely understood to involve a tripartite relation:

verification

testing

va
lid

ati
on

SIMULATION 
MODEL THEORY

TARGET
PROCESS

The central epistemological question can be answered once we know the status of
any two of these relations (Mascaro et al., 2010, Chap 3).
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Verification.

As the goal of validation is to determine the representational accuracy of a model,
the process logically begins with the construction of the model. Assuming that a
simulation strictly reflects some underlying scientific theory, then whatever proba-
bility that theory has must be shared with its simulation. So, activities which con-
tribute to the confirmation of theories, together with activities which verify that a
simulation is true to some theory, also are properly considered an aspect of valida-
tion and are most naturally accommodated as contributing to an assessment of the
model’s prior probability.

Calibration.

In a similar vein, calibrating a model contributes to its probability of being true.
This may be an uncommon observation, which is a natural consequence of the cali-
bration of some models being trivial. For example, calibrating a binomial model to
fit the observed tosses of a coin is trivial, and it also doesn’t obviously contribute
to the binomial model being true, since whatever the bias of the coin, the bino-
mial model could have been appropriately calibrated. Falsificationism suggests that
a model which can accommodate any data cannot even be tested, let alone be re-
garded as a true (or good) scientific theory. However, this suggestion is misleading.
For one thing, if there were ever any models which could not have been calibrated
to fit the data, then successful calibration rules them out. Whatever probability those
models started with must be redistributed, raising the probability of a successfully
calibrated model being true. Also, it is worth keeping in mind that models may be
either parameterized (fitted), partially parameterized or unparameterized. What can
be calibrated to fit any frequency of heads is the unfitted binomial model, and it can-
not be disproved (or proved) by any frequency of heads. A fitted, or partially fitted
(e.g., with an interval specified for its parameter), binomial model, however, will be
more or less probable given some frequency data, and so confirmed or disconfirmed
by those data.

We may distinguish between calibration and testing, but that is not to say cal-
ibration has nothing to do with the probability of truth. It is, as with verification,
properly accommodated in a prior probability.

Emergence.

The emergent (bottom-up) character of ABMs has important epistemological con-
sequences. In general, the most interesting behaviors an ABM might show are mac-
robehaviors which have not been explicitly programmed, but emerge from lower
level rules which have been explicitly programmed. Normally, the higher level be-
havior could be realized (at least qualitatively) in multiple distinct ways at the lower
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level. In philosophical terms this relation is supervenience: higher-level behavior
supervenes on one or more lower-level supervenience bases.2

As the higher level, emergent behavior is often the target of interest, the behavior
we should like to predict or explain, it is also the behavior we should like to validate
our model against. So, wherever possible, it makes sense to preferentially calibrate
with lower level data and validate or test with higher level data.

3 Simplicity or Complexity?

The complexity of ABM models raises the question of the status of Ockham’s Razor.
Edmonds and Moss (2005) have argued influentially that ABM modeling, contrary
to the usual methodological advice, should start out complex and devolve towards
simplicity. Ockham’s Razor, of course, suggests the opposite: that we should add
complexity only in the face of some evidential setback — specifically, that where
two theories do equally well with the data, the simpler is to be preferred (Keep It
Simple, Stupid). Edmonds and Moss claim that this rule has little or no merit in
ABMs and, more specifically, that simplicity confers no epistemological virtue to
a model. ABMs are aimed at understanding complex phenomena, and, according
to them, should aim to represent them in the “most straightforward way possible”,
meaning as descriptively detailed as possible (and so their “Keep It Descriptive,
Stupid”).

Striking just the right balance between simplicity and fit to the data — what
Grimm et al. (2005) call finding the “Medawar zone” — is always going to be
difficult. And it may well be that many overemphasize simplicity to their own dis-
advantage. But we disagree that simplicity confers no epistemological advantages.

Undoubtedly, Edmonds and Moss’s starting point, the presence of so much com-
plexity in the systems being modeled, can seduce people into over-specifying their
models, but that’s a danger, not an essence nor a virtue of ABMs. Methodological
simplicity, on the other hand, has a number of real, if modest, virtues:

1. The KISS approach is at least a possible inductive strategy. Adding complex-
ity where required by evidence is a possible path to the truth, as Reichenbach’s
(1949) vindication of induction argument suggests. The inverse approach in most
domains, where complexity is unbounded, doesn’t even begin to make sense,
since there is no beginning. And choosing one model from the multitude having
complexity comparable to some target system can hardly be justified at the start
of a research program.

2. Starting out with a complex model implies having a large parameter space. This is
not only operationally inconvenient, it is hugely methodologically suspect, since
over-specified models fit noise and fail to generalize.

2 This is often, and wrongly, characterized as micro-reduction. On supervenience, see McLaughlin
and Bennett (2011).



8 Kevin B. Korb, Nicholas Geard and Alan Dorin

3. As a simple model with features added only as needed, a KISS model is far more
promising as a vehicle for the consilience of induction, i.e., we can try to adapt
it to new and related domains. For example, a KISS measles model might well
be usable in a pertussis problem with minimal (and motivated) changes. A KIDS
measles model will always only be a measles model.

Perhaps the main virtue that has been put forward for Ockham’s Razor, and the
one Edmonds and Moss (2005) contest most vigorously, is that simplicity ceteris
paribus corresponds to higher probability. While widely regarded as true, by both
Bayesians and their opponents, this would be exceedingly hard to prove — or to
disprove. We don’t have any convenient, unbiased collection of examples for testing
it. As the probability of simplicity is an exceedingly complex matter, and the advan-
tages of simplicity above are independent, we pass over it (but see Wallace, 2005,
for a Bayesian defence of simplicity).

Modeling is not much different from theorizing, as its epistemology shows. It’s
simply cognitively impossible to start out with a theory that is as complex as the
phenomenon. One starts out with a central idea or two, which then get enhanced.
Furthermore, the goal is to end up with a theory that is at least somewhat simpler
than the phenomenon at issue, that can explain it, rather than simply reproduce it.
Ockham’s Razor is methodologically inevitable.

4 ABM Validation Methods

Here we present a number of recognized types of validity for ABMs, characterizing
them in terms of both prior and posterior considerations. We suggest that, as in the
case of Bayesian analyses of scientific methods mentioned above, Bayesian analyses
of these validation methods can be made and may well improve their usage.

We don’t propose that each kind of validity considered here needs to be adopted
in every ABM study, however these varieties will generally be worth considering.
Here we consider them in the abstract; in §5 we consider some of them relative to
our own simulation.

1. Expert opinion (prior). This is the usual starting point for constructing and
refining computational models. We suggest that this covers most kinds of valida-
tion which do not directly involve data, corresponding to what Pitchforth and
Mengersen (2012) call nomological validity: establishing that the model fits
within its wider scientific context. Some of the terminology comes from psy-
chology, by way of Pitchforth and Mengersen (2012). That study focuses upon
Bayesian network simulations, however the concerns of simulation epistemology
are strikingly similar across ABMs and Bayesian networks.

a. Face validity: Does the model look right to an expert? While face validity
is a weak kind of test of a model, it is nevertheless central to most modeling
endeavors. Models that look wrong are often abandoned without further ado,
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something which often causes headaches with machine learned models, since
learning algorithms rarely incorporate any kind of aesthetic sense. Face va-
lidity should be examined throughout the modeling process, analogously with
agile software development processes, where end users provide continuing
feedback on the adequacy of software.
Aside from a holistic assessment of a model, all the other forms of validation
under expert opinion are similarly subjective assessments. Frequent reviews
from different experts provide an opportunity for those with varying assump-
tions about both the model and the domain to provide feedback. Such reviews
are also an opportunity to negotiate validity criteria, perhaps including exemp-
tions, when unrealistic aspects of model structure or behavior are deemed less
relevant for validation.

b. Content validity considers whether the most important factors and relation-
ships between variables noted in the literature are present in the model. Expert
opinion will be the primary guide here, but focused reviews of the literature
will also be useful.

c. Case analysis takes specific instances and examines how the model deals
with them. This shares conceptually again with software engineering, where
“use cases” are often applied to review software usability, etc. The specific
instances may (should) include both normal and extreme cases. They also
may be constructed from setting specific initial conditions (as in a historical
case study) or from setting parameters that govern relations between individ-
ual roles within the simulation (e.g., reproductive or immigration rates) or, of
course, from both.
A thorough validation might take further inspiration from software engineer-
ing and do an equivalence partitioning of initial conditions to generate a suite
of cases that looks at all (or many) varieties of normal and abnormal con-
ditions. Since the results need to be judged by an expert, the value of this
depends also upon the patience of the experts available.

d. Internal validity examines whether variation in the model’s variables is rea-
sonable (Sargent, 2010). This could specifically consider covariation between
sets of variables, to determine whether changes in some variable either cause
or are codependent with changes in others, in ways which are judged sensible
by experts; this is generally called sensitivity analysis. The inverse process of
robustness analysis aims to identify features of the model that are resistant
to varying initial conditions (Grimm and Railsback, 2005, Sec 9.7).

2. Data (likelihood).

a. Predictive validity is the primary way of validating in many discussions. If
we were to take “prediction” literally, then even the use of historical data not
employed in calibrating the model would be (improperly) excluded (what has
been called “retrodiction”).
Measuring the fit to data of a model — i.e., predictive accuracy — is again
often the only way considered of assessing predictive adequacy. However,
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predictive accuracy has limitations; see, e.g., Korb and Nicholson (2010, Sec
7.5) for a discussion.
Regardless of the measure used, testing picks up wherever the calibration left
off. Reusing data used to calibrate a model to “test” it is generally just an er-
ror, since what is then being tested is only the ability of a model (with tuned
parameters) to remember what was used to train it. A possible approach to
getting the most out of a finite pool of data would be to adapt cross validation
methods from machine learning, e.g., using randomly selected splits of the
data to repeatedly calibrate with one split and test with the other. The difficul-
ties of calibrating ABMs may limit the utility of this approach, however.
For any measure, some account must be made of the degree of accuracy re-
quired of the model. It may be that the model is intended to fit data to some
precisely specifiable degree of tolerance. Perhaps more common is a require-
ment that some qualitative aspects of the data be matched, what in economics
are called stylized facts (Kaldor, 1961, p. 178) and Grimm et al. (2005)
call patterns. An example from economics would be the positive depen-
dency between support for public education and GDP per capita (e.g., Barro,
2002). This is well established for industrial societies, so a model of modern
economies allowing for exceptions would be reasonable, but a model showing
no such tendencies would not.

3. Other. Not every technique cleanly falls into data or expert opinion, but has
aspects of both.

a. Convergent validity: how similar are the model structure, discretization and
parameterization to other models that are intended to describe a similar sys-
tem? Where divergence between models in their assumptions or methods sug-
gests a divergence in results, then we have discriminant validity.
The judgment of the similarity (and relevance) of other models and their fea-
tures will have to be made by experts, but may well be made in part on the
basis of statistical features of data generated by those models.

b. Visualization; traces; animation. Different ways of visualizing the results of
simulations may support expert judgments of convergent validity, sensitivity
analyses, etc.

c. Fruitfulness. As with the assessment of scientific theories themselves, the
fruitfulness of a simulation, its successful adoption by other researchers in ap-
plication to related problems, is an indirect measure of its validity. In partic-
ular, a model which is widely and successfully (re)applied in related problem
areas cannot be an entirely wrong-headed model across these domains.

5 Validating a model of household demography

We now briefly illustrate how the validation techniques discussed above might apply
in a real ABM, using as a case study a model of household demographics, developed
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as a component of a larger epidemiological simulation. This model is relatively
simple, exhibiting emergence of household and population-level dynamic patterns
from individual-level demographic processes.

Households are an important focus of disease transmission with a special rel-
evance for childhood diseases, with the probability of transmission known to be
affected by family size and composition (Viboud et al., 2004). Existing models typ-
ically assume a static household distribution. However, this is inappropriate when
dealing with long-term patterns of disease and immunity for endemic diseases like
measles or pertussis (Glass et al., 2011), during which dramatic shifts in underly-
ing demographic rates may occur. However, accounting for the variety of household
types and the transitions between them in a mathematical model would be extremely
difficult; hence our ABM.

The primary requirements of our model were that it capture the composition and
dynamics of households containing children in a plausible fashion over extended pe-
riods of demographic change, and that it be amenable to calibration using data from
a variety of different developed and developing countries, allowing for international
comparison.

Our model represents a population of individuals, defined by their ages, sexes and
the households to which they belong. At each time step, depending on their current
attributes, individuals can experience one or more of the following demographic
events: death, birth of a child, leaving their family home, forming or breaking a
couple with another individual.

For some parameters of our model, such as mortality and fertility, age and sex
specific rates were directly available (Australian Bureau of Statistics, 2010a,b).
However, for other parameters, such as the probability of leaving home, and the
formation and separation of couples, data were not readily available. We adopted
relatively simple rules for estimating the probabilities of these events occurring,
which we subsequently adjusted by calibrating simulation performance against the
data that was available. For example, to determine parameters for couple formation
we tested our model’s output against survey data on the percentage of people at par-
ticular ages who had never been in a couple (de Vaus, 2004). This process involved
adjusting the age at which an individual becomes eligible for forming a couple with
another individual as well as the probability of an eligible individual forming a cou-
ple. A similar procedure was used to calibrate parameters corresponding to couple
dissolution.

Having calibrated our model using statistics concerning individual-level events,
our validation exercise focused primarily on population structure and household
dynamics. The quantity of data against which we could validate varied according
to country and year, so a broader approach than just data comparison was required.
Space precludes a complete description of our validation methods and results (a
paper on this is in preparation); instead we describe how each of the categories in
Section 4 could be applied to our model. Note that some of the validation processes
were more straightforward than others, and, in general, any one validation process
may be more or less relevant depending on the particular model.
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1. Expert opinion (prior).

a. Face validity. To some extent we are all familiar with the varied dynamics
of population and households and our own intuitions provided a first point of
contact for face validity. The field of demography (via both expert researchers
and literature) provided more specialized perspectives on what constitutes a
model that looks ‘right’. One important point is that experts from different
disciplines may judge the same model differently. This validation process
therefore provided an opportunity to negotiate an appropriate set of criteria
for further validation, as well as to identify ‘exemptions’ — aspects of model
behavior that may be unrealistic, but are deemed unimportant in the context
of the research question. For example, our model does not currently allow for
the existence of ‘group households’ (e.g., student share households); however,
as these types of household typically do not contain young children (the focus
of our research question), this was considered an acceptable omission. In the
context of a different research question (e.g., the epidemiology of sexually
transmitted diseases), this design choice may render the model invalid.

b. Content validity. As mentioned above, engagement with domain experts and
literature provided the check on the completeness (or reasoned omission) of
factors and relationships in our model. Particularly helpful were documents
such as the Australian Institute of Families report (de Vaus, 2004), which
aggregated and contextualized census and survey data on households un-
der chapter headings that matched the types of individual life transitions we
wanted to capture in our model (e.g., chapter titles include “Marriage and re-
marriage”, “Transition of young people to adulthood” and “Lone parent fam-
ilies”).

c. Case analysis. During the development and verification of our model we used
Australian data collected in the last decade. Despite keeping our calibration
(individual level) and validation (household level) data sets separate, we were
aware of the possibility that we could consciously or unconsciously be ‘de-
signing’ our model to reproduce a very specific pattern of behavior. To guard
against this, subsequent to final development, we validated model behavior
against two new cases, using previously unused data sets: historical Australian
data from 1921 and Zambian data from 2000. Both of these populations dif-
fered from the modern Australian population data along several dimensions.
For example, the average household size in Australia in 1921 was 4.3 indi-
viduals, as compared with 2.6 in 2000. The success of our model in passing
validation tests on this data, without requiring new adjustments to the under-
lying mechanics, strengthened our confidence in the general model.

d. Internal validity. We took two approaches to assessing the internal validity of
our model. First, we re-collected output data on distributions of the individual
events whose probabilities we had calibrated. As calibration was performed
on individual model components, comparing these output distributions against
the calibration data provided a straightforward way of checking that interac-
tions between components were not producing any unexpected side-effects in
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the combined model. Our second approach was to conduct a sensitivity anal-
ysis on the input parameters governing household formation and dissolution
(i.e., leaving home and the formation and separation of couples). Compared
with the easily available mortality and fertility rates, these parameters required
more indirect estimation from available data. Therefore, assessing the sensi-
tivity of our model output to these parameters provided an indication of how
critical these values are and how successful our estimation had been.

2. Data (likelihood).

a. Predictive validity. The general principle we adopted in separating calibra-
tion and validation data was to calibrate the probabilities of individual events
(birth, death, couple formation, etc.) and validate against higher-level proper-
ties of households. Data available for validation included the distribution of
household sizes, distributions of household types occupied by individuals of
given ages (couple households with/without children, lone person households,
etc.), and household transition matrices, mapping the proportion of individu-
als in a household of type X who had been in a household of type Y at some
point in the past (Wilkins et al., 2011). Each of these constituted a set of data
that was clearly distinct from our calibration data, against which model output
could be compared in a quantitative fashion.

6 Conclusion

Our data-directed and expert validation efforts have shown that the demographic
model is doing a reasonable job of recreating long-term demographic patterns in
our target population (currently Australia), supporting our planned use of it as a
platform for developing epidemiological simulations.

The simple Bayesian message we would like to finish with is that a validation
process that concentrates on expert consensus to the exclusion of collecting statis-
tics from data, or, equally, one which tests against data but ignores expert opinion,
is incomplete. It is only by combining prior probabilities with likelihoods that we
obtain a balanced picture of the empirical merits of a model.
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