Monash University

SAMPLE EXAM

FACULTY OF SCIENCE

EXAM CODE

TITLE OF PAPER
EXAM DURATION
READING TIME

ENG1091
Mathematics for Engineering
THREE hours writing time TEN minutes

THIS PAPER IS FOR STUDENTS STUDYING AT

INSTRUCTIONS TO CANDIDATES

During an exam, you must not have in your possession, a book, notes, paper, calculator, pencil case, mobile phone or other material/item which has not been authorised for the exam or specifically permitted as noted below. Any material or item on your desk, chair or person will be deemed to be in your possession. You are reminded that possession of unauthorised materials in an exam is a discipline offence under Monash Statute 4.1.
Students should ONLY enter their ID number and desk number on the examination script book, NOT their name. Please take care to ensure that the ID number and desk number are correct and are written legibly.
No examination papers are to be removed from the room.

1. All questions may be attempted.
2. Marks for each question are given on the paper.
3. Calculators are not allowed. Leave all answers in exact form.
4. Answer all questions in the spaces provided.
5. Formulae sheets are provided in a separate booklet.

AUTHORISED MATERIALS

CALCULATORS NO
OPEN BOOK NO
SPECIFICALLY PERMITTED ITEMS NO

Exam questions begin on the following page.

1. (a) Given $\underset{\sim}{v}=7 \underset{\sim}{i}+2 \underset{\sim}{j}-3 \underset{\sim}{k}$ and $\underset{\sim}{w}=2 \underset{\sim}{i}-3 \underset{\sim}{j}+5 \underset{\sim}{k}$ compute
(i) $\underset{\sim}{v} \times \underset{\sim}{w}$,
(ii) $\underset{\sim}{v} \cdot(\underset{\sim}{v} \times \underset{\sim}{w})$,
(iii) $(2 \underset{\sim}{w}-3 \underset{\sim}{v}) \cdot(\underset{\sim}{w} \times \underset{\sim}{v})$
(iv) The vector projection of $\underset{\sim}{v}$ in the direction of $\underset{\sim}{w}$.

$$
\begin{aligned}
& \text { i) } \sim \times \omega \sim \sim\left|\begin{array}{ccc}
i & j & k \\
7 & 2 & -3 \\
2 & -3 & 5
\end{array}\right|=\underset{\sim}{i}-41 j-25 k \\
& \text { ii) } \underset{\sim}{v} \cdot(\underset{\sim}{v} \times \underset{\sim}{v})=0 \quad \text { (iii) }(\underset{\sim}{\omega}-3 \underset{\sim}{v}) \cdot(\underset{\sim}{v} \times \underset{\sim}{v})=0 \\
& \text { iv) vc. projection }=\hat{\omega}(\underset{\sim}{v} \cdot \hat{\omega})=\hat{\omega}\left(\frac{\underset{\sim}{v} \cdot \omega}{\tilde{\sim} \cdot \omega}\right) \\
& \underset{\sim}{v} \cdot \underset{\sim}{\omega}=14-6-15=-7 \quad \underset{\sim}{\omega} \cdot \underset{\sim}{\omega}=4+9+25=38 \\
& \Rightarrow \text { vc. projection }=-\frac{7}{38}(2 \underset{\sim}{i}-3 j+5 \underset{\sim}{k})
\end{aligned}
$$

(b) Construct a parametric equation for the straight line that passes through the two points $(-2,1,4)$ and $(3,1,2)$. Construct a second parametric equation for a second straight line for the points $(-7,1,6)$ and $(8,1,0)$.

| $1^{\delta t}$ wine :$r_{1}(t)$ $=(-2,1,4)+t((3,1,2)-(-2,1,4))$
 $=(-2,1,4)+t(5,0,-2)$
 $2^{\text {nd }}$ wine : $r_{2}(S)$ $=(-7,1,6)+S((8,1,0)-(-7,1,6))$
 $=(-7,1,6)+S(15,0,-6)$ |
| ---: | :--- |

(c) Show that the two lines defined in part (b) coincide (i.e. that they are one and the same line).

If the lines coincide then we must have

$$
\begin{aligned}
& {\underset{\sim}{r}}_{1}(t)={\underset{\sim}{r}}_{2}(s) \\
& \Rightarrow(-2,1,4)+t(5,0,-2)=(-7,1,6)+S(15,0,-6) \\
& x: \quad-2+5 t=-7+15 s \Rightarrow t=-1+3 s \\
& y: \quad 1=1 \\
& z: \quad 4-2 t=6-6 s \Rightarrow t=-1+3 S
\end{aligned}
$$

ie. no constraints on t or s
(d) Find the shortest distance between the pair of lines defined by

Line 1:

$$
x(t)=1+7 t, \quad y(t)=2+2 t, \quad z(t)=3-3 t
$$

Line 2: $\quad x(s)=2+2 s, \quad y(s)=1-3 s, \quad z(s)=1+5 s$

$$
\begin{aligned}
& L=\text { scalar projection of } \\
& \underset{\sim}{\sim} \text { in } \underset{\sim}{N} \\
& =\underset{\sim}{v} \cdot \frac{N}{|N|} \quad \underset{\sim}{v}=(2,1,1)-(1,2,3) \\
& =(1,-1,-2) \\
& N=(1,-4,25) \text { from part (a). } \\
& \Rightarrow L=(1,-1,-2) \cdot \frac{(1,-41,-25)}{|(1,-41,25)|}=\frac{92}{\left(1+41^{2}+25^{2}\right)^{\frac{1}{2}}}=\frac{92}{\sqrt{2307}}
\end{aligned}
$$

2. (a) Use Gaussian elimination with back-substitution to find all solutions of the following system of equations. Be sure to record the details of each row-operation (for example, as a note on each row of the form $2(2)-3(1) \rightarrow\left(2^{\prime}\right)$.)

$$
\begin{aligned}
2 x-3 y+2 z & =6 \\
x+4 y-z & =0 \\
-x+2 y-z & =-2
\end{aligned}
$$

$$
\begin{aligned}
2 x-3 y+2 z & =6 \\
x+4 y-z & =0 \\
-x+2 y-z & =-2
\end{aligned}
$$

$$
\begin{aligned}
2 x-3 y+2 z & =6 \\
11 y-4 z & =-6 \quad \Rightarrow x=-1 \\
y & =2 \Rightarrow z=7 \\
y & \Rightarrow y=2
\end{aligned}
$$

$$
x=-1, \quad y=2, \quad z=7
$$

(b) Evaluate each of the following
(i) $\left[\begin{array}{ll}3 & 4 \\ 1 & 7 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}5 & 2 \\ 2 & 4\end{array}\right]$,
(ii) $\left[\begin{array}{ll}1 & 3 \\ 2 & 1 \\ 3 & 2\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 3\end{array}\right]$,
(iii) $\operatorname{det}\left[\begin{array}{lll}2 & 4 & 1 \\ 3 & 2 & 3 \\ 2 & 5 & 6\end{array}\right]$.
i) $\left[\begin{array}{ll}3 & 4 \\ 1 & 7 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}5 & 2 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}15+8 & 6+16 \\ 5+14 & 2+28 \\ 2 & 4\end{array}\right]=\left[\begin{array}{cc}23 & 22 \\ 19 & 30 \\ 2 & 4\end{array}\right]$
ii) $\left[\begin{array}{ll}1 & 3 \\ 2 & 1 \\ 3 & 2\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 0 & 3\end{array}\right]=\left[\begin{array}{lll}1+6 & 2+0 & 3+9 \\ 2+2 & 4+0 & 6+3 \\ 3+4 & 6+0 & 9+6\end{array}\right]$

$$
=\left[\begin{array}{ccc}
7 & 2 & 12 \\
4 & 4 & 9 \\
7 & 6 & 15
\end{array}\right]
$$

$$
\begin{aligned}
& i 11 \\
& \text { ind }=2\left|\begin{array}{cc}
2 & 3 \\
5 & 6
\end{array}\right|-4\left|\begin{array}{cc}
3 & 3 \\
2 & 6
\end{array}\right|+1\left|\begin{array}{ll}
3 & 2 \\
2 & 5
\end{array}\right| \\
&=2(-3)-4(12)+(15-4) \\
&=-6-48+11 \\
&=-43
\end{aligned}
$$

(c) Let

$$
A=\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]
$$

Find numbers a and b such that

$$
A^{2}+a A+b I=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

where I is the 2 by 2 identity matrix.

$$
\begin{align*}
& A^{2}=\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]=\left[\begin{array}{cc}
4+15 & 6+3 \\
10+5 & 15+1
\end{array}\right]=\left[\begin{array}{cc}
19 & 9 \\
15 & 16
\end{array}\right] \\
& A^{2}+a A+G I=0 \\
& \Rightarrow\left[\begin{array}{ll}
19 & 9 \\
15 & 16
\end{array}\right]+a\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]+G\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& \Rightarrow \quad 19+2 a+6=0 \tag{1}\\
& 9+3 a=0 \\
& 15+5 a=0 \\
& 16+a+b=0 \\
& \text { (2) }\} \Rightarrow a=-3 \\
& \text { (4) } \Rightarrow G=-13
\end{align*}
$$

check (1): $19+2(-3)+(-13)=0$

So $a=-3$ and $G=-13$
\square
(d) Use the result of the part (c) to compute the inverse of A.

$$
\begin{aligned}
& A^{2}-3 A-13 I=0 \\
& \Rightarrow \quad A-3 I-13 A^{-1}=0 \\
& \Rightarrow \quad A^{-1}=\frac{1}{13}(A-3 I)=\frac{1}{13}\left[\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right]-\frac{1}{13}\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] \\
& \Rightarrow \quad A^{-1}=\frac{1}{13}\left[\begin{array}{cc}
-1 & 3 \\
5 & -2
\end{array}\right] \\
& \hline 4 \text { marks }
\end{aligned}
$$

3. (a) Use integration by parts to show that, for $n>0$,

$$
\int \cos ^{n}(x) d x=\frac{1}{n} \cos ^{n-1}(x) \sin (x)+\frac{n-1}{n} \int \cos ^{n-2}(x) d x
$$

$$
\begin{aligned}
I_{n} & =\int \cos ^{n} x d x=\int \cos x \cdot \cos ^{n-1} x d x \\
& =\sin x \cos ^{n-1} x+(n-1) \int \sin ^{2} x \cos ^{n-2} x d x \\
& =\sin x \cos ^{n-1} x+(n-1) \int\left(1-\cos ^{2} x\right) \cos ^{n-2} x d x \\
\Rightarrow I_{n} & =\sin x \cos ^{n-1} x+(n-1)\left(I_{n-2}-I_{n}\right) \\
\Rightarrow I_{n} & =\frac{1}{n} \sin x \cos ^{n-1} x+\frac{n-1}{n} I_{n-2} \quad n \neq 0 .
\end{aligned}
$$

(b) Use the previous result to show that, for $n>0$,

$$
\int_{0}^{\pi / 2} \cos ^{2 n}(x) d x=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots 2 n} \frac{\pi}{2}
$$

From part a we have

$$
\begin{aligned}
\int_{0}^{\frac{\pi}{2}} \cos ^{2 n} x d x= & {\left[\sin x \cos ^{2 n-1} x\right]_{0}^{\frac{\pi}{2}} } \\
& =\frac{\Delta}{2 n} \int_{0}^{\frac{\pi}{2}} \cos ^{2 n-2} x d x
\end{aligned}
$$

for $n>0$

$$
\begin{aligned}
\Rightarrow \int_{0}^{\frac{\pi}{2}} \cos ^{2 n} x d x & =\frac{2 n-1}{2 n} \int_{0}^{\frac{\pi}{2}} \cos ^{2 n-2} x d x \\
& =\left(\frac{2 n-1}{2 n}\right)\left(\frac{2 n-3}{2 n-2}\right) \cdots\left(\frac{1}{2}\right) \int_{0}^{\frac{\pi}{2}} \cos ^{0} x d x \\
& =\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2 n-1}{2 n} \cdot \frac{\pi}{2}
\end{aligned}
$$

4. Evaluate each of the following integrals
(a) $\int \theta \sin \theta d \theta$

$$
\begin{aligned}
I & =\int \theta \sin \theta d \theta \quad \text { coy parts. } \\
& =-\theta \cos \theta+\int \cos \theta d \theta \\
& =-\theta \cos \theta+\sin \theta+C
\end{aligned}
$$

(b) $\int x \log _{e}(x) d x$

$$
\begin{aligned}
I & =\int x \log x d x \text { or parts } \\
& =\frac{1}{2} x^{2} \log x-\int \frac{1}{2} x^{2} \frac{1}{x} d x \\
& =\frac{1}{2} x^{2} \log x-\frac{1}{4} x^{2}+C
\end{aligned}
$$

(c) $\int y \sqrt{2+y} d y$

$$
\begin{aligned}
I & =\int y(2+y)^{1 / 2} d y \quad \text { by parts } \\
& =\frac{2}{3} y(2+y)^{3 / 2}-\frac{2}{3} \int(2+y)^{3 / 2} d y \\
& =\frac{2}{3} y(2+y)^{3 / 2}-\frac{4}{15}(2+y)^{5 / 2}+C
\end{aligned}
$$

or Put $u=2+y \Rightarrow d u=d y$

$$
\begin{aligned}
\Rightarrow I & =\int(u-2) \sqrt{u} d u \\
& =\int u^{3 / 2}-2 u^{1 / 2} d u \\
& =\frac{2}{5} u^{5 / 2}-\frac{4}{3} u^{3 / 2}+C \\
& =\frac{2}{5}(2+y)^{5 / 2}-\frac{4}{3}(2+y)^{3 / 2}+C
\end{aligned}
$$

5. Determine which of the following improper integrals converge and which diverge.
(a) $I=\int_{0}^{1} \frac{1}{1-x} d x$

$$
\begin{aligned}
& \text { Put } \\
& \quad I(\varepsilon)=\int_{0}^{\varepsilon} \frac{1}{1-x} d x \text { with } \varepsilon<1 \\
& \Rightarrow \quad I(\varepsilon)=-[\log (1-x)]_{0}^{\varepsilon}=-\log (1-\varepsilon) \\
& \Rightarrow \quad \lim _{\varepsilon \rightarrow 1} I(\varepsilon)=-\lim _{\varepsilon \rightarrow 1} \log (1-\varepsilon)=-\infty
\end{aligned}
$$

Thus the integral is a divergent improper integral.
(b) $I=\int_{1}^{\infty} \sin ^{2}(x) e^{-2 x} d x$

Note that

$$
\begin{aligned}
& 0<\sin ^{2}(x) e^{-2 x}<e^{-2 x} \text { for } 1<x<\infty \\
& \Rightarrow 0<\operatorname{Lim}_{\varepsilon \rightarrow \infty} \int_{1}^{\varepsilon} \sin ^{2} x e^{-2 x}<\underbrace{\lim _{\varepsilon \rightarrow \infty} \int_{1}^{\varepsilon} e^{-2 x} d x}_{=\frac{1}{2} e^{-2}} \\
& \Rightarrow \quad 0<\underbrace{\int_{1}^{\infty} \sin ^{2} x e^{-2 x} d x}_{\text {convergent }}<\frac{1}{2} e^{-2}
\end{aligned}
$$

(c) $I=\int_{1}^{\infty} \frac{e^{x}}{\sqrt{1+e^{x}}} d x$

Note that

$$
\begin{aligned}
& 0<\frac{e^{x}}{\sqrt{e^{x}+e^{x}}}<\frac{e^{x}}{\sqrt{1+e^{x}}} \text { for } 1<x \\
& \Rightarrow 0<\underbrace{\lim _{\varepsilon \rightarrow \infty} \int_{1}^{\varepsilon} \frac{1}{\sqrt{2}} e^{x / 2} d x<\lim _{\varepsilon \rightarrow \infty} \int_{1}^{\varepsilon} \frac{e^{x}}{\sqrt{1+e^{x}}} d x} \\
&=\infty
\end{aligned}
$$

∂R
Since $\lim _{x \rightarrow \infty} \frac{e^{x}}{\sqrt{1+e^{x}}}=1 \neq 0$
the integral must diverge.
(d) $I=\int_{1}^{\infty}\left(\frac{\sin x}{x}\right)^{2} \mathrm{~d} x$.

$$
I=\int_{1}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x
$$

Put

$$
I_{\varepsilon}=\int_{1}^{\varepsilon}\left(\frac{\sin x}{x}\right)^{2} d x, \quad \varepsilon>1
$$

Note that

$$
\begin{aligned}
0<\left(\frac{\sin x}{x}\right)^{2} & <\frac{1}{x^{2}} \text { for } x>1 \\
\Rightarrow 0<\int_{1}^{\varepsilon}\left(\frac{\sin x}{x}\right)^{2} d x & <\int_{1}^{\varepsilon} \frac{1}{x^{2}} d x \\
& =\left[-\frac{1}{x}\right]_{1}^{\varepsilon}=1-\frac{1}{\varepsilon}
\end{aligned}
$$

Now take limits as $\varepsilon \rightarrow \infty$.

$$
\Rightarrow \quad 0<\lim _{\varepsilon \rightarrow \infty} \int_{1}^{\varepsilon}\left(\frac{\sin x}{x}\right)^{2} d x<1
$$

Thus we conclude that the given integral I converges.
6. Use a suitable test to find which of the following infinite series are convergent. Be sure to state which test you used and to show your working.
(a) $S=\frac{1}{\log 2}-\frac{1}{\log 3}+\frac{1}{\log 4}-\frac{1}{\log 5}+\cdots+(-1)^{n} \frac{1}{\log n}+\cdots$

Alternating series.

$$
a_{n}=\frac{1}{\log n} \quad \text { clearly }
$$

i) $\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$
ii) $\frac{1}{\log n+1}<\frac{1}{\log n} n>1$
\Rightarrow Series converges by the $A l t$. series text. 6 marks
(b) $S=\sum_{n=1}^{\infty} \frac{\cos ^{2}(n)}{n^{2}+1}$
$0<\frac{\cos ^{2} n}{n^{2}+1}<\frac{1}{n^{2}+1}<\frac{1}{n^{2}}$ and $\int_{1}^{\infty} \frac{d x}{x^{2}}$ is finite.
\Rightarrow the series converges of comparison with $\sum \frac{1}{n^{2}}$.
(c) $S=\sum_{n=2}^{\infty} \frac{1}{n \log n} \quad$ (Hint: first compute $\left.d \log (\log (x)) / d x\right)$

$$
\begin{aligned}
& \frac{d}{d x}(\log (\log (x)))=\frac{1}{x} \cdot \frac{1}{\log x} \\
\Rightarrow & \int_{2}^{\infty} \frac{1}{x \log x}=[\log (\log (x))]_{2}^{\infty}=\infty
\end{aligned}
$$

thus the series diverges by the integral test.
(d) $S=\sum_{n=1}^{\infty} \frac{n^{2}}{3 n^{5}+5 n^{2}-4}$

Note that when $n \geqslant 1$ we have

$$
\begin{aligned}
& 5 n^{2}-4>0 \\
\Rightarrow & 3 n^{5}+5 n^{2}-4>3 n^{5} \text { for } n \geqslant 1 \\
\Rightarrow & 0<\frac{n^{2}}{3 n^{5}+5 n^{2}-4}<\frac{n^{2}}{3 n^{5}}=\frac{1}{3 n^{3}} n \geqslant 1
\end{aligned}
$$

Thus the given series converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
(e) $S=\sum_{n=1}^{\infty} \frac{1}{n^{2}+\sin ^{2} n}$

Note that $0<\frac{1}{n^{2}+\sin ^{2} n}<\frac{1}{n^{2}}$

$$
\Rightarrow \quad 0<\sum_{n=1}^{\infty} \frac{1}{n^{2}+\sin ^{2} n}<\underbrace{\sum_{n=1}^{\infty} \frac{1}{n^{2}}}_{\text {convergent. }}
$$

Thus the infinite series converges.
7. (a) Compute the Taylor series for \sqrt{x} around the point $x=1$.

$$
\begin{aligned}
& f, f^{\prime} f^{\prime \prime} \cdots \quad x=1 \quad n!a_{n} \\
& x^{\frac{1}{2}} \\
& =0!a_{\text {. }} \\
& \frac{1}{2} x^{-\frac{1}{2}} \\
& \frac{1}{2}\left(-\frac{1}{2}\right) x^{-\frac{3}{2}} \\
& \frac{1}{2}\left(-\frac{1}{2}\right) \\
& =2!a_{2} \\
& \frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) x^{-\frac{5}{2}} \\
& \frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \\
& =3!a_{3} \\
& \frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) x^{-\frac{7}{2}} \quad \frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)=4!a_{4} \\
& a_{n}=(-1)^{n+1} \frac{1}{2^{n}} \frac{1}{n!}(1 \cdot 3 \cdot 5 \cdots 2 n-3) \\
& n \geq 2 \\
& a_{3}=1 \quad a_{1}=\frac{1}{2} \\
& \sqrt{x}=1+\frac{1}{2}(x-1)-\frac{1}{2^{2}} \frac{1}{2!}(x-1)^{2}+\cdots+a_{n}(x-1)^{n} \\
& +\cdots
\end{aligned}
$$

(b) Without doing any further calculations, write down the Taylor series for $\sqrt{1-u^{2}}$ around the point $u=0$.

Put $x=1-u^{2} \Rightarrow x-1=u^{2}$

$$
\begin{gathered}
\Rightarrow \sqrt{1-u^{2}}=1-\frac{1}{2} u^{2}-\frac{1}{2^{2}} \frac{1}{2!} u^{4}+\cdots+G_{n} u^{2 n} \\
+\cdots \\
\text { with } G_{n}=-\frac{1}{2^{n}} n!(1 \cdot 3 \cdot 5 \cdots 2 n-3) \\
n \geqslant 2
\end{gathered}
$$

(c) Use the result of part (b) to obtain an infinite series expansion for the function $s(x)$ defined by

$$
s(x)=\int_{0}^{x} \sqrt{1-u^{2}} d u \quad 0<x<1
$$

$$
\begin{aligned}
& S(x)=\int_{0}^{x}\left(1-\frac{1}{2} u^{2}-\frac{1}{2^{2}} \frac{1}{2!} u^{4}+\cdots+G_{n} u^{2 n} \cdots\right) d u \\
&=x-\frac{1}{2} \frac{x^{3}}{3}-\frac{1}{2^{2}} \frac{1}{2!} \frac{x^{5}}{5}+\cdots+G_{n} \frac{x^{2 n+1}}{2 n+1}+\cdots \\
& G_{n}=-\frac{1}{2^{n}} \frac{1}{n!}(1 \cdot 3 \cdot 5 \cdots 2 n-3) \\
& n \geqslant 2
\end{aligned}
$$

8. Use l'Hopital's rule to evaluate each of the following limits.
(a) $L=\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2}$

$$
\begin{aligned}
L & =\lim _{x \rightarrow-2} \frac{x^{2}-4}{x+2} \\
& =\lim _{x \rightarrow-2} \frac{2 x}{1}=-4
\end{aligned}
$$

(b) $L=\lim _{x \rightarrow 1} \frac{\log (x)}{\sin (2 \pi x)}$

$$
\begin{aligned}
L & =\lim _{x \rightarrow 1} \frac{\operatorname{cog}(x)}{\sin (2 \pi x)} \\
& =\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{2 \pi \cos (2 \pi x)} \\
& =\frac{1}{2 \pi}
\end{aligned}
$$

(c) $L=\lim _{x \rightarrow \infty} e^{-2 x} \log (x+3)$

$$
\begin{aligned}
L & =\lim _{x \rightarrow \infty} e^{-2 x} \log (x+3) \\
& =\lim _{x \rightarrow \infty} \frac{\log (x+3)}{e^{2 x}} \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x+3}}{2 e^{2 x}}=0
\end{aligned}
$$

(d) Prove that for any $n>0$

$$
0=\lim _{x \rightarrow \infty} x^{-n} \log (x)
$$

$$
\begin{aligned}
L & =\lim _{x \rightarrow \infty} x^{-n} \log (x) \\
& =\lim _{x \rightarrow \infty} \frac{\log (x)}{x^{n}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{n x^{n-1}} \\
& =\frac{1}{n} \lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0 \quad \sin c e n>0
\end{aligned}
$$

9. (a) State what is meant by the phrase a separable first order ordinary differential equation.

The ODE is such that it may be re-written as

$$
\frac{d y}{f(y)}=\frac{d x}{g(x)}
$$

(b) Find all functions $y(x)$ that are solutions of

$$
\frac{d y}{d x}+y=\sin (2 x)
$$

i) nomogenous equation: $\frac{d y}{d x}+y=0 \Rightarrow y_{h}(x)=A e^{-x}$
ii) particular solution: try $y_{p}(x)=B \sin 2 x$

$$
\begin{array}{ll}
\Rightarrow & y^{\prime}=2 B \cos 2 x+(-2) c \sin 2 x \\
& y^{\prime}+y=(c+2 B) \cos 2 x+(B-2 c) \sin 2 x \\
\Rightarrow & c+2 B=0 \text { and } B-2 c=1 \\
\Rightarrow & c=-2 B \Rightarrow B=1 / 5 \text { and } c=-2 / 5 \\
\text { Full solution }: y(x)=A e^{-x}+\frac{1}{5} \sin 2 x-\frac{2}{5} \cos 2 x
\end{array}
$$

(c) Use your result from part (b) to compute all functions $u(x)$ that are solutions of

$$
\frac{d^{2} u}{d x^{2}}+\frac{d u}{d x}=\sin (2 x)
$$

$$
\begin{aligned}
& \text { Note: } y=\frac{d u}{d x} \Rightarrow \frac{d u}{d x}=A e^{-x}+\frac{1}{5} \sin 2 x-\frac{2}{5} \cos 2 x \\
& \Rightarrow u(x)=C-A e^{-x}-\frac{1}{10} \cos 2 x-\frac{1}{5} \sin 2 x
\end{aligned}
$$

10. Consider the differential equation

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-15 y=45 x-36+8 e^{3 x}
$$

(a) Write down the homogeneous version of the above differential equation.

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-15 y=0
$$

(b) Find the general solution of the homogeneous differential equation.

$$
\begin{aligned}
& \lambda^{2}+2 \lambda-15=0 . \quad \Rightarrow \lambda_{1}=3, \lambda_{2}=-5 \\
\Rightarrow & y_{h}(x)=A e^{3 x}+B e^{-5 x}
\end{aligned}
$$

(c) Find any particular solution of the full differential equation.

Guess

$$
y_{p}(x)=A x+B+C x e^{3 x}
$$

$$
\Rightarrow \quad y_{p}^{\prime}=A+C e^{3 x}+3 C x e^{3 x}
$$

$$
\Rightarrow \quad y_{p}^{\prime \prime}=6 c e^{3 x}+9 c x e^{3 x}
$$

$$
\Rightarrow \quad y_{p}^{\prime \prime}+2 y_{p}^{\prime}-15 y_{p}=6 c e^{3 x}+2 A+2 c e^{3 x}-15 A x
$$

$$
\Rightarrow \quad-15 A=45, \quad 2 A-15 B=-36, \quad 8 C=8
$$

$$
\Rightarrow \quad A=-3, \quad B=2, \quad C=1
$$

$$
\text { so } y_{p}(x)=-3 x+2+x e^{3 x}
$$

(d) Hence write down the full general solution of the differential equation.

$$
\begin{aligned}
y(x) & =y_{p}(x)+y_{h}(x) \\
& =-3 x+2+x e^{3 x}+A e^{3 x}+B e^{-5 x}
\end{aligned}
$$

(e) Find the particular solution such that at $x=0$ we have $y=0$ and $d y / d x=1$.

$$
\begin{array}{ll}
y(0)=0 & \Rightarrow \\
y^{\prime}(0)=1 & \Rightarrow 1=2+A+B \\
& \Rightarrow 3+1+3 A-5 B
\end{array}
$$

So

$$
\begin{aligned}
A+B & =-2 \\
3 A-5 B & =3
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \quad 8 A & =-8=-\frac{7}{8} \text { and } \begin{aligned}
B & =-2+\frac{7}{8} \\
& =-7 \\
& =-\frac{9}{8}
\end{aligned}, \begin{aligned}
\Rightarrow A
\end{aligned}
\end{aligned}
$$

So the particular solution is

$$
y(x)=-3 x+2+x e^{3 x}-\frac{7}{8} e^{3 x}-\frac{9}{8} e^{-5 x}
$$

11. (a) Given the function $f(x, y)=(x-y) /(x+y)$ evaluate each of the following
(i) $\frac{\partial f}{\partial x}$,
(ii) $\frac{\partial f}{\partial y}$,
(iii) $\frac{\partial^{2} f}{\partial y \partial x}$,
(iv) $\frac{\partial^{2} f}{\partial x \partial y}$.

$$
f(x, y)=\frac{x-y}{x+y}
$$

i) $\frac{\partial f}{\partial x}=\frac{1}{x+y}-\frac{x-y}{(x+y)^{2}}=\frac{2 y}{(x+y)^{2}}$
ii) $\frac{\partial f}{\partial y}=\frac{-1}{x+y}-\frac{x-y}{(x+y)^{2}}=\frac{-2 x}{(x+y)^{2}}$
iii) $\frac{\partial^{2} f}{\partial y \partial x}=-\frac{1}{(x+y)^{2}}+\frac{1}{(x+y)^{2}}+\frac{2(x-y)}{(x+y)^{3}}$

$$
=\frac{2(x-y)}{(x+y)^{3}}
$$

iv) $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{2(x-y)}{(x+y)^{3}}$
(b) Given the curve

$$
x(s)=2 s+3 s^{2}, \quad y(s)=4 s^{2}-2 s, \quad-\infty<s<\infty
$$

and the function

$$
f(x, y)=\sin (5 x+y)-2 e^{y}
$$

compute $d f / d s$ at $s=-1$.

$$
\begin{aligned}
& \frac{d x}{d s}=2+6 s=2-6=-4 \quad \text { at } \quad S=-1 \\
& \frac{d y}{d s}=8 s-2=-8-2=-10 \quad \text { at } s=-1 \\
& x(-1)=-2+3=1 \quad y(-1)=4+2=6 \\
& \frac{\partial f}{\partial x}=5 \cos (5 x+y)=5 \cos 11 \text { at } s=-1 \\
& \frac{\partial f}{\partial y}=\cos (5 x+y)-2 e^{y}=\cos 11-2 e^{6} \text { at } s=-1 \\
& \Rightarrow\left(\frac{d f}{d s}\right)_{S=-1}=\left(\frac{\partial f}{\partial x} \frac{d x}{d s}+\frac{\partial f}{\partial y} \frac{d y}{d s}\right) S=-1 \\
&=(5 \cos 11)(-4)+\left(\cos 11-2 e^{6}\right)(-10) \\
&=-30 \cos 11+20 e^{6}
\end{aligned}
$$

(c) Compute the tangent plane to the function $f(x, y)=\sqrt{4 x^{2}+y^{2}}$ at $(2,3,5)$.

$$
\begin{aligned}
& z(x, y)=f(2,3)+\left.(x-2) \frac{\partial f}{\partial x}\right|_{(2,3)}+\left.(y-3) \frac{\partial f}{\partial y}\right|_{(2,3)} \\
& f(2,3)=5 \frac{\partial f}{\partial x}=\frac{1}{2}\left(4 x^{2}+y^{2}\right)^{-\frac{1}{2}}(8 x)=\frac{8}{5} \\
& \frac{\partial f}{\partial y}=\frac{1}{2}\left(4 x^{2}+y^{2}\right)^{-\frac{1}{2}}(2 y)=\frac{3}{5} \\
& \Rightarrow z(x, y)= \frac{8}{5}(x-2)+\frac{3}{5}(y-3)
\end{aligned}
$$

(d) Use linear approximation and the result of part(c) to estimate $\sqrt{4(1.97)^{2}+(3.03)^{2}}$

$$
\begin{aligned}
& z(1.97,3.03)=5+\frac{8}{5}(-0.03)+\frac{3}{5}(0.03) \\
&=4.97 \\
& \Rightarrow f(1.97,3.03) \simeq 4.97
\end{aligned}
$$

