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1. (a) Given v
˜

= 7 i
˜

+ 2j

˜
− 3k

˜
and w

˜
= 2 i

˜
− 3j

˜
+ 5k

˜
compute

(i) v
˜
× w
˜

, (ii) v
˜
· (v
˜
× w
˜

), (iii) (2w
˜
− 3v

˜
) · (w

˜
× v
˜

)

(iv) The vector projection of v
˜

in the direction of w
˜

.

3 marks

(b) Construct a parametric equation for the straight line that passes through the two points
(−2, 1, 4) and (3, 1, 2). Construct a second parametric equation for a second straight line
for the points (−7, 1, 6) and (8, 1, 0).

3 marks
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(c) Show that the two lines defined in part (b) coincide (i.e. that they are one and the same
line).

5 marks

(d) Find the shortest distance between the pair of lines defined by

Line 1 : x(t) = 1 + 7t , y(t) = 2 + 2t , z(t) = 3− 3t

Line 2 : x(s) = 2 + 2s , y(s) = 1− 3s , z(s) = 1 + 5s

5 marks

Page 3 of 26



2. (a) Use Gaussian elimination with back-substitution to find all solutions of the following
system of equations. Be sure to record the details of each row-operation (for example, as
a note on each row of the form 2(2)− 3(1)→ (2′).)

2x − 3y + 2z = 6
x + 4y − z = 0
−x + 2y − z = −2

8 marks
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(b) Evaluate each of the following

(i)

 3 4
1 7
0 1

[ 5 2
2 4

]
, (ii)

 1 3
2 1
3 2

[ 1 2 3
2 0 3

]
, (iii) det

 2 4 1
3 2 3
2 5 6

.

4 marks
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(c) Let

A =

[
2 3
5 1

]
.

Find numbers a and b such that

A2 + aA+ bI =

[
0 0
0 0

]
,

where I is the 2 by 2 identity matrix.
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4 marks

(d) Use the result of the part (c) to compute the inverse of A.

4 marks
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3. (a) Use integration by parts to show that, for n > 0,∫
cosn(x) dx =

1

n
cosn−1(x) sin(x) +

n− 1

n

∫
cosn−2(x) dx

10 marks
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(b) Use the previous result to show that, for n > 0,∫ π/2

0

cos2n(x) dx =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n
π

2

10 marks
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4. Evaluate each of the following integrals

(a)

∫
θ sin θ dθ

5 marks

(b)

∫
x loge(x) dx

5 marks
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(c)

∫
y
√

2 + y dy

5 marks
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5. Determine which of the following improper integrals converge and which diverge.

(a) I =

∫ 1

0

1

1− x
dx

5 marks

(b) I =

∫ ∞
1

sin2(x)e−2x dx

5 marks
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(c) I =

∫ ∞
1

ex√
1 + ex

dx

10 marks
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(d) I =

∫ ∞
1

(
sinx

x

)2

dx.

5 marks
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6. Use a suitable test to find which of the following infinite series are convergent. Be sure to state
which test you used and to show your working.

(a) S =
1

log 2
− 1

log 3
+

1

log 4
− 1

log 5
+ · · ·+ (−1)n

1

log n
+ · · ·

6 marks

(b) S =
∞∑
n=1

cos2(n)

n2 + 1

6 marks

(c) S =
∞∑
n=2

1

n log n
(Hint : first compute d log(log(x))/dx)

8 marks
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(d) S =
∞∑
n=1

n2

3n5 + 5n2 − 4

5 marks

(e) S =
∞∑
n=1

1

n2 + sin2 n

5 marks
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7. (a) Compute the Taylor series for
√
x around the point x = 1.

10 marks
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(b) Without doing any further calculations, write down the Taylor series for
√

1− u2 around
the point u = 0.

5 marks

(c) Use the result of part (b) to obtain an infinite series expansion for the function s(x) defined
by

s(x) =

∫ x

0

√
1− u2 du 0 < x < 1

5 marks
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8. Use l’Hopital’s rule to evaluate each of the following limits.

(a) L = lim
x→−2

x2 − 4

x+ 2

5 marks

(b) L = lim
x→1

log(x)

sin(2πx)

5 marks
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(c) L = lim
x→∞

e−2x log(x+ 3)

5 marks

(d) Prove that for any n > 0
0 = lim

x→∞
x−n log(x)

5 marks
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9. (a) State what is meant by the phrase a separable first order ordinary differential equation.

4 marks

(b) Find all functions y(x) that are solutions of

dy

dx
+ y = sin(2x)

10 marks

(c) Use your result from part (b) to compute all functions u(x) that are solutions of

d2u

dx2
+
du

dx
= sin(2x)

6 marks
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10. Consider the differential equation

d2y

dx2
+ 2

dy

dx
− 15y = 45x− 36 + 8e3x

(a) Write down the homogeneous version of the above differential equation.

1 marks

(b) Find the general solution of the homogeneous differential equation.

5 marks

(c) Find any particular solution of the full differential equation.

6 marks
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(d) Hence write down the full general solution of the differential equation.

1 marks

(e) Find the particular solution such that at x = 0 we have y = 0 and dy/dx = 1.

7 marks
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11. (a) Given the function f(x, y) = (x− y)/(x+ y) evaluate each of the following

(i)
∂f
∂x

, (ii)
∂f
∂y

, (iii)
∂2f
∂y∂x

, (iv)
∂2f
∂x∂y

.

5 marks
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(b) Given the curve

x(s) = 2s+ 3s2, y(s) = 4s2 − 2s, −∞ < s <∞

and the function
f(x, y) = sin(5x+ y)− 2ey

compute df/ds at s = −1.

5 marks
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(c) Compute the tangent plane to the function f(x, y) =
√

4x2 + y2 at (2, 3, 5).

5 marks

(d) Use linear approximation and the result of part(c) to estimate
√

4(1.97)2 + (3.03)2

5 marks
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