
Adding Search to Zinc

Reza Rafeh1, Kim Marriott1, Maria Garcia de la Banda1,
Nicholas Nethercote2, and Mark Wallace1

1 Clayton School of IT, Monash University, Australia
2 NICTA Victoria Research Laboratory, University of Melbourne, Australia

Abstract. We describe a small, non-intrusive extension to the declar-
ative modelling language Zinc that allows users to define model-specific
search. This is achieved by providing a number of generic search pat-
terns that take Zinc user-defined functions as parameters. We show the
generality of the approach by using it to implement three very different
kinds of search: backtracking search, branch-and-bound search, and local
search. Our approach is competitive with hand-coded search strategies.

1 Introduction

Recent approaches to solving combinatorial problems divide the task into two
steps: developing a conceptual model of the problem that gives a declarative
specification without consideration as to how to actually solve it, and solving the
problem by mapping the conceptual model into an executable program called
the design model.

The declarative modelling language Zinc [7,5] is a first-order functional lan-
guage designed to support experimentation with different solving techniques.
In its current implementation, conceptual models in Zinc can be automati-
cally mapped into design models that use one of the following three solving
approaches: standard constraint programming (CP); a Mixed Integer Program-
ming (MIP) solver; and incomplete search using local search methods.

While the default search used by the automatically mapped design models
usually performs well for MIP, this is not the case for CP and local search whose
efficiency often depends on the modeller providing an effective, model-specific
search strategy. However, allowing users to define their search routines requires
the integration of a conceptual model and a search strategy, something that is
difficult to achieve cleanly since while the former is best expressed declaratively,
the latter is inherently procedural.

Here we describe an extension to Zinc to support model-specific search. The
extension consists of three high-level search patterns for backtracking search,
branch and bound, and local search, respectively, that take complex expres-
sions, functions and predicates as parameters. This combined with user-defined
functions give Zinc modellers a degree of flexibility to tailor the search only found
previously in procedural search languages. While the actual mechanism of search
must still be understood procedurally, the Zinc specification is declarative and
requires no additional language features.

P.J. Stuckey (Ed.): CP 2008, LNCS 5202, pp. 624–629, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Adding Search to Zinc 625

2 Using Search in Zinc

We illustrate the use of our search patterns with a simple example, the N-queens
problem, which tries to place n queens on an n × n chess board in such a way
that no two queens can take each other. A Zinc model for this problem is:

int: n;

type Domain = 1..n;

array[Domain] of var Domain :q;

predicate noattack(Domain: i,j, var Domain: qi,qj) =

qi != qj /\ qi + i != qj + j /\ qi - i != qj - j;

constraint forall(i,j in Domain where i<j)

noattack(i,j,q[i],q[j]);

solve satisfy;

The model defines the integer variable n to be a parameter, Domain to be a
new type for the range 1..n, and q to be an array of n finite domain decision
variables (indicated by the keyword var) over that range. For our purposes, the
most interesting feature of Zinc is that it allows the user to define new predicates
and functions. In the example, the modeller has defined the noattack predicate,
which succeeds if queens qi and qj of rows i and j respectively, cannot attack
each other (/\ denotes conjunction). The constraint uses the forall expression
to make sure the noattack predicate holds for each pair of queens. The last line
declares the model to be a satisfaction problem. Since the solve item has no
annotation for search, Zinc uses the default search to solve the model.

Backtracking search
Modellers can use Zinc’s depth-first search pattern backtrack(init,expand)
for solving satisfaction problems with backtracking search using a propagation
solver. The first argument, init, is the state of the root node in the search tree.
This is often the list of variables to label, but can be anything the modeller needs
to create choice points, and can include extra information such as a counter
to implement iterative deepening. Its second argument, expand, is a (possibly
user-defined) function that takes the state for the current node and returns its
children as a list of pairs of the form (ns, c), where ns is the child’s state, and c
the constraint that should be posted right before this child becomes the current
node. Note that expand has implicit access to the solver state and, thus, can
call standard propagation solver reflection functions such as domain(V), which
returns the current domain of variable V.

As an example, we can use a standard labeling search for the N-queens model
by annotating the solve item as follows:

solve satisfy::backtrack(q,std_label);

where the initial local state is the list of variables q and function std label is
the expand function. It is defined by:

626 R. Rafeh et al.

function list of tuple(list of $T, var bool): std_label(list of $T:Vs) =

if Vs = [] then []

else [(tail(Vs), head(Vs) == d) | d in domain(head(Vs))]

endif;

which takes a list of variables Vs (with polymorphic type list of $T) and (by
using a list comprehension) for each variable V in Vs returns a list of tuples in
which the first element is the remaining variables (and will be the state of the
children nodes) and the second element is an equality constraint between the
variable and a value from its domain. The head and tail functions are provided
in the Zinc library and return the head and tail of the input list, respectively.
Since the output of domain is a set and Zinc’s sets are ordered, the domain
values are considered from smallest to largest. To instantiate each variable, the
backtracking search tries the constraints returned by std label in order.

Branch-and-bound
For optimization problems, Zinc provides a variant of the backtracking pattern
extended with branch and bound: backtrack(init,expand,bound,flag). This
is used as an annotation to the solve item which is either in the form solve
maximize expr or solve minimize expr for maximization and minimization
problems, respectively.

The first two arguments of the pattern are as before. The two extra arguments
are a function, bound, for computing the new bound from the previous and
current bounds, and a flag to indicate the kind of branch-and-bound search
performed. The flags are similar to those provided in ECLiPSe [1], and include
restart (to restart the search from the root of the search tree), continue (to
continue the search from the current node in the search tree), and dichotomic
(to do dichotomic search).

Local search
A common class of techniques for solving combinatorial optimization problems
are so-called local search methods (such as hill-climbing or simulated annealing)
which iteratively improve a single valuation by moving to a neighbour. Zinc
provides the pattern local search(init valn, init state, move, finish), which
takes as arguments the initial valuation (list of variable/value pairs), the initial
state information, a function move that takes the current state and returns the
new valuation to move to (this needs only to give the values for variables that
have been changed in the move) along with the new state, and a function finish
that takes the state and indicates whether the search should finish.

These functions can use the following Zinc’s local search solver reflection func-
tions similar to those provided in Comet [8]: val(V) gives the value of variable
V in the valuation, var penalty(V) the degree of violation associated with vari-
able V , penalty(C) the violation of constraint C, current penalty the total
penalty for the current valuation, and new penalty(V al) the total penalty that
will result if the changes in valuation V al are applied to the current valuation.

Adding Search to Zinc 627

The modeller can then specify, for example, a simple hill-climbing search routine
by annotating the solve item as:

solve satisfy::local_search([(q[i],i)|i in Domain],1000,move,finish);

where initially the ith queen is placed on row i and the initial state is simply the
maximum permitted number of moves. The move function is:

function valuation: swap($T: v1, $T: v2) = [(v1,val(v2)),(v2,val(v1))];

function tuple(int, valuation): move(int: nmovesleft) =

let {int: i=maximizes(q,var_penalty),

int: j=minimizes([swap(q[i],q[k])|k in Domain], new_penalty)

} in

(nmovesleft-1,swap(q[i],q[j]));

function has_ended: finish(int: nmovesleft) =

if current_penalty == 0 then sol(get_valuation)

elseif nmovesleft =< 0 then end(get_valuation)

else continue

endif;

where function swap takes two variables and returns a valuation in which the
values of variables have been swapped. The built-in type valuation is defined
in Zinc as a list of variable/value pairs. The built-in functions minimizes and
maximizes take a list and a function and return the position of the element
in the list that minimizes and maximizes the function, respectively. The move
function chooses the most violated queen q1 and determines the queen q2 with
which it can be swapped to reduce the overall violation. The number of moves
left for the next iteration is decremented. After each move, the function finish
is invoked which decides upon the state whether the search should finish. The
enumerated type has ended is defined in Zinc’s library as:

enum has_ended = {sol(valuation),end(valuation),continue};

to indicate if the search has found a solution, it has not but it must end, or
should continue.

It is worth pointing out that Zinc allows the modeller to override the default
violation of constraints and variables by using annotations that can take complex
expressions and functions. Also, the Zinc modeller does not have to explicitly
set up invariants (or functional constraints). These are inferred automatically
from the choice of driver variables based on the initial valuation and the model
constraints. The compiler generates an error if some non-driver variable cannot
be computed from the driver variables.

Evaluation
To evaluate the expressiveness of our approach, we chose a set of 8 well known
benchmarks and searched the literature for the best tree and local search strategy
for each problem. The three search patterns in Zinc were expressive enough to
implement the best search algorithms for all models (models can be found at [6]).

628 R. Rafeh et al.

Our implementation maps Zinc models into ECLiPSe programs (ECLiPSe was
chosen because it supports all target solving techniques). Our results show that
the models with user-defined search are often orders of magnitude faster than
the equivalent models using the default search, and that the mapped models
are competitive with hand-written models in ECLiPSe that use the same search
algorithm (on average, the overhead is less than 10%).

3 Discussion

Our extension to Zinc allows users to run the same conceptual model with dif-
ferent solving methods and, when the default search is too slow, to tailor it with
user-defined search. This can be achieved by simply writing functions in Zinc to
pass as the required parameters to one of the search templates: backtracking,
branch and bound, and local search. The success of this pragmatic solution to an
inherently difficult problem is only possible because: (1) the modelling language
is powerful enough to allow the user to provide user-defined functions to tailor
the search; and (2) a limited number of different generic search schemas covers
most of the useful search routines.

Modelling languages for combinatorial problems have traditionally been declar-
ative. Early languages such as AMPL [3] had search built into the solvers and pro-
vided only a few simple parameters for controlling it. This approach is too inflex-
ible. The main alternative approach used, for example, in Mosel [2] and OPL [4],
is to allow users to specify the search with the model. However, this requires the
modelling language to be extended with non-declarative procedural constructs,
something that is avoided in our approach.

The closest predecessor to Zinc’s search appears to be the ECLiPSe search
predicate [1] (which in turn was preceded by that of CHIP). While most search
parameters in ECLiPSe are multiple-choice ones, some can be user-defined pred-
icates. The key difference is that ECLiPSe is not fully declarative: modelling and
search are both performed by procedural statements.

Acknowledgements. We thank members of the G12 team at National ICT
Australia for helpful discussions, in particular Ralph Becket and Peter Stuckey.

References

1. Apt, K.R., Wallace, M.G.: Constraint Logic programming using ECLiPSe. Cam-
bridge University Press, Cambridge (2006)

2. Colombani, Y., Heipcke, S.: Mosel: An overview (2007),
http://www.dashoptimization.com/home/downloads/pdf/mosel.pdf

3. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Math-
ematical Programming. Duxbury Press (2002)

4. Van Hentenryck, P., Perron, L., Puget, J.F.: Search and strategies in OPL. ACM
Transactions on Computational Logic 1(2), 285–320 (2000)

http://www.dashoptimization.com/home/downloads/pdf/mosel.pdf

Adding Search to Zinc 629

5. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace,
M.: The design of the Zinc modelling language. Constraints 13(3) (2008)

6. Rafeh, R.: The Zinc modelling language home page,
http://www.csse.monash.edu.au/∼rezar/Zinc

7. Rafeh, R., Garcia de la Banda, M., Marriott, K., Wallace, M.: From Zinc to design
model. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354, pp. 215–229. Springer,
Heidelberg (2006)

8. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge (2005)

http://www.csse.monash.edu.au/~rezar/Zinc

	Adding Search to Zinc
	Introduction
	Using Search in Zinc
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

