
Core-Guided Model Reformulation?

Kevin Leo[0000−0003−4720−4265], Graeme Gange[0000−0002−1354−431X], Maria Garcia
de la Banda[0000−0002−6666−514X], and Mark Wallace[0000−0001−7326−8110]

{kevin.leo,graeme.gange,maria.garciadelabanda,mark.wallace}@monash.edu

Faculty of Information Technology, Monash University, Australia

Abstract. Constraint propagation and SAT solvers often underperform when
dealing with optimisation problems that have an additive (or separable) objec-
tive function. The core-guided search introduced by MaxSAT solvers can over-
come this weakness by detecting and exploiting cores: subsets of the objective
components that cannot collectively take their lower bounds. This paper shows
how to use the information collected during core-guided search, to reformulate
the objective function for an entire class of problems (those captured by the prob-
lem model). The resulting (currently manual) method is examined on several case
studies, with very promising results.

1 Introduction

Modern approaches for solving combinatorial optimisation problems first specify a
model that formally describes the problem’s parameters, variables, constraints and ob-
jective function. All parameters are later instantiated with input data, describing an
instance of the problem. Each instance is then compiled to the format required by the
selected solver, which explores the model’s search space to find high quality solutions.

The economic impact of combinatorial optimisation problems has fuelled the de-
sign of powerful modelling languages, such as AMPL [9], OPL [23], Essence [10] and
MINIZINC [18], and powerful solvers within the Mixed Integer Programming (MIP),
Constraint Programming (CP), and MaxSAT solving paradigms. However, while there
have been many advances in the variety and quality of solvers available, advances in
technology that helps users improve their models have been scarce. This is unfortunate
since, while the way in which a problem is modelled can significantly affect its solving
time, designing good models is still very challenging, even for expert users. As a result,
users must follow a time consuming, iterative, modify-and-test approach that can still
yield poor results.

This paper aims at helping users identify model improvements, by taking advantage
of some of the great advances achieved by Lazy Clause Generation (LCG) [19,8] and
MaxSAT solvers. LCG solvers, such as Chuffed [6], GEAS [11] and ORTools [20],
combine the strengths of the CP and SAT solving paradigms. This allows LCG solvers
to infer nogoods (i.e., reasons for failure), and use them to avoid repeatedly exploring
infeasible subproblems. Previous work [24] showed that the nogoods inferred by LCG
solvers for a model’s instances can be used to identify (a) existing constraints that may

? Partly funded by Australian Research Council grant DP180100151.

2 K. Leo, G. Gange, M. G. de la Banda, and M. Wallace

be strengthened, and (b) new redundant constraints on the existing model variables that
are likely to increase performance.

Our work complements this line of research by providing a (currently manual)
method that uses the information inferred by the core-guided search of MaxSAT solvers,
to improve a common class of optimisation models: those with an additive (or separa-
ble) objective function, i.e. a sum of components, each containing a single variable.
In particular, we show how the cores found by a core-guided solver can help identify
components in the model (rather than in the instance) that can yield better bounds when
grouped. We then show how to use these components to reformulate the model itself,
by adding new variables to the model. Note that most previous works on model re-
formulation, have only used variables appearing in the original model. One of the few
exceptions is [5], which introduced new variables to achieve a lower computational
complexity in handling the SEQUENCE constraint. While adding new variables to a
model is very unusual and challenging, our experimental results indicate that, if done
appropriately, it can significantly speed up LCG (and sometimes CP) solvers. In addi-
tion, we show how the first two steps of the method can be automated. Automating the
last step is a challenging and important future goal.

2 Background

Constraint Optimisation Problems: A constraint optimisation problem P is a tuple
(C,D, f), where C is a set of constraints, D a domain mapping each variable x appear-
ing in C to set of values D(x), and f an objective function. C is logically interpreted
as the conjunction of its elements, and D(x) as the conjunction of unary constraints on
x. A literal of P is a unary constraint whose variable appears in C. To solve problem
P ≡ (C,D, f), a CP solver first applies constraint propagation to reduce domain D to
D′, by executing the propagator associated with the constraints in C until reaching a
fixpoint. If D′ is equivalent to false (D′(x) is empty for some variable x), we say P
fails. If D′ is not equivalent to false and fixes all variables, we have found a solution to
P . Otherwise, the solver splits P into n subproblems Pi ≡ (C ∧ ci, D

′, f), 1 ≤ i ≤ n,
where C ∧ D′ ⇒ (c1 ∨ c2 ∨ . . . ∨ cn) and ci are literals (the decisions), and then
iteratively searches these subproblems.

The search proceeds propagating and making decisions until either (1) a solution
is found, or (2) a failure is detected. In case (1) the search computes the value of f ,
constraints the next value of f to be better (greater or smaller, depending on f) and
continues the search for this better value (the traditional branch-and-bound). In case
(2) the search usually backtracks to a previous point to make a different decision.

Lazy Clause Generation: LCG solvers [19,8] extend CP solvers by instrumenting their
propagators to explain domain changes in terms of equality (x = d for d ∈ D(x)),
disequality (x 6= d) or inequality (x ≥ d or x ≤ d) literals. An explanation for literal
` is S → `, where S is a set of literals (interpreted as a conjunction). For example, the
explanation for the propagator of constraint x 6= y, which infers literal y 6= 5 given
literal x = 5, is {x = 5} → y 6= 5. Each literal inferred when solving problem P
is recorded with its explanation, forming an implication graph. If failure is detected
for subproblem P ′, LCG solvers use this graph to compute a clause L (or nogood): a

Core-Guided Model Reformulation 3

disjunction of literals that holds under any solution of P but is inconsistent under P ′. 1

L is then added to P ’s constraints, to avoid failing for the same reasons.
Core-Guided Optimisation: CP solvers often underperform when proving optimality
for additive objectives. This is because the lower bound of any objective component, say
oci of variable xi for minimising function f ≡ oc1 + · · ·+ ocn, can often be achieved
by sacrificing others, and f ’s lower bound is inferred only from the bounds of its com-
ponents. Core-guided solvers overcome this weakness by first fixing all components to
their lower bounds, and then searching for a solution. If this succeeds, an optimum has
been found. Otherwise, they return a core: a (hopefully small) subset of components
that cannot collectively take their lower bounds. They then update f ’s bound without
committing to which core component incurs the cost, and adjust the lower bounds of the
components in the core. Finally they re-solve, repeating this process until a solution is
found. Different core-guided solvers differ mostly in how the interaction between cores,
component bounds, and the objective is handled. We assume such solvers return either
an empty set, indicating the current subproblem is satisfiable, or a set S of literals of the
form xi ≥ k where variable xi appears in the objective, indicating at least one literal in
S must hold. Extending LCG solvers to support this interface is straightforward.

This paper uses the LCG, core-guided solver GEAS [11]. Its core-guided approach is
based on the OLL [1] method, which progressively reformulates the objective to use the
discovered cores: upon finding core S, OLL introduces a new variable p =

∑
S (with

lower bound increased by at least 1), and rewrites the objective in terms of p. GEAS
improves the basic OLL with stratification [17,2] (extracting cores on high-coefficient
terms first), weight-aware core extraction [4] (delaying the introduction of new variables
until no cores can be found), and the ‘hardening rule’ [2] (upper-bound propagation on
new variables).

3 Motivation for Core-guided Model Reformulation

The reformulation of the objective performed by GEAS when solving an instance, can
significantly reduce the search and, thus, the solving time for both LCG and branch-and-
bound solvers. This is somewhat counter-intuitive, as the reformulation introduces new
instance variables. The reasons for such reduction are twofold. First, LCG solvers can
use the new variables to learn nogoods that shorten their optimality proof. This shows
the importance of what we call the language of learning. Second, branch-and-bound
solvers can use the bounds on the new variables to detect failed subproblems earlier.

This paper aims to achieve similar improvements to those achieved by core-guided
solvers, but at the model (rather than instance) level. Thus, performance can be im-
proved for multiple instances (rather than only for the one being executed), and also for
non-core-guided solvers (either because they are not available, or are not as fast for the
instance in question). Let us demonstrate via two (extreme) examples the radical per-
formance improvements made possible by reformulating the objective to use variables
whose bounds are detected by core-guided search.

1 Note our nogoods denote a positive (implied) clause. In other works they denote the (conjunc-
tive) negation of its literals.

4 K. Leo, G. Gange, M. G. de la Banda, and M. Wallace

Example 1. Consider an optimisation problem with n pairs of variables, xi, yi : i ∈
1..n, where each variable has 0..m domain, ∀i ∈ 1..n : xi + yi ≥ k, and the objective
is to minimise the sum of the variables (

∑n
i=1 xi + yi). With a CP or LCG solver,

propagation ensures assignments to xi and yi are mutually consistent and, if the lower
values in the domains are tried first by the search, the first solution to be found will be
optimal. Given a direct model for this problem, the first row of the table below shows,
for n = 10 and m = 5, the number of search steps required by CP solver Gecode [12]
to find the first solution and prove its optimality, for several values of k.

Search steps with: k = 2 k = 3 k = 4

original objective 21 73,955 11,163,595
reformulated objective 21 21 21

The last row shows the number of search steps required after (a) adding to the model
new variables xyi and constraints xyi = xi + yi, xyi ≥ k for each i ∈ 1..n, and (b)
reformulating its objective as

∑n
i=1 xyi. With this model reformulation, once Gecode

finds the first solution and starts searching for a better (smaller) objective, the bounds
on the xyi variables allow it to immediately realise that no higher value is possible for
any xi or yi. Thus, the search to prove optimality efficiently finishes right after the first
solution is found, regardless of the value of k.2

Example 2. Consider now a problem with n decision variables x1 . . . xn, with domain
0..1. Each triple of variables (xi, xj , xk) : i > j > k has a target values (ai, aj , ak)
and the triple incurs a benefit of 1 if xi = ai, xj = aj and xk = ak. The objective is the
sum of these benefits. Given a direct model for this problem, the first row of the table
below gives the average CPU time it took the Gecode, Chuffed and Gurobi [13] solvers
to find an optimal solution and prove optimality for 10 randomly generated instances.

CPU time (secs) Gecode 6.1.1 Chuffed 0.10.4 Gurobi 7.5.2
original objective 57 236 232

reformulated objective 4 3 152

The last row shows the time required after (a) adding to the model a new variable xai
for each decision variable xi, and (b) reformulating its objective as

∑
i xai. To define

xai, let tv1 be the first variable in the tth triple; ta1 be its first matching value; valt
be the value of this triple in an assignment; and xai(b) be

∑
t:tv1=xi∧ta1=b valt. Then

xai = max(xai(1), xai(0)).
2

4 Methodology

The examples presented in the previous section clearly show the potential benefits of
introducing new variables to a model. However, picking an effective reformulation is
very difficult, since the number of possible new variables is huge. This is true even for
our reduced scope, where these new variables must be formed from any (iterative) com-
bination of the variables in the objective. The challenge then is to chose those variables
that will achieve good improvements in a large number of instances.

Core-Guided Model Reformulation 5

Our core-guided reformulation method is designed to address this challenge. To
achieve this, it takes two inputs: an optimisation model whose objective function is
additive, and a set of input data files. It then performs the following main steps:

1. Use a core-guided solver to find, for each model instance, cores that are candidates
for new variables;

2. Select some of these candidates, based on their likely reduction in solving time;
3. Modify the model to add new variables for the selected cores, constrain them, and

use them to reformulate the objective, without changing the optimal solutions.

The rest of this section discusses the above three steps in more detail, using the Resource-
Constrained Project Scheduling Problem with Weighted Earliness and Tardiness cost to
illustrate the method. This problem tries to schedule tasks that have a given duration
and desired start time, subject to precedence constraints and cumulative resource re-
strictions. The objective is to find an optimal schedule that minimises the weighted cost
of the earliness and tardiness of any task that is not completed by their desired deadline.

The model we use (rcpsp-wet in the MINIZINC benchmarks) has the objective:

objective = sum (i in Tasks) (
deadline[i,2]*max(0,deadline[i,1]-s[i]) + % earliness cost
deadline[i,3]*max(0,s[i]-deadline[i,1])); % tardiness cost

that is, the sum of the earliness and tardiness costs for every task i in input set of Tasks,
where parameter deadline[i,1] gives the desired start time for i, parameters deadline
[i,2] and deadline[i,3] give the cost per time unit for task i to start before or after
its desired time, respectively, and variable s[i] represents the start time for task i.

4.1 Step 1: Finding core candidates

Step 1.1 Solver instrumentation: As we will see below, we currently find new variables
by manually interpreting the cores found by the solver. Therefore, the solver needs to
be instrumented to output them in human readable form. The GEAS solver, which con-
nects to the MINIZINC system and is the core-guided solver we use, already produces
verbose output for debugging purposes. This includes, for each iteration in which the
objective is modified, the value of the objective function at the end of each iteration,
and all cores found together with their individual impact on the lower bound (for a
minimising objective). While our current manual method simply uses this output, any
future automation of the method will require a formal protocol for communicating with
the core-guided solver, similar to that used in the profiling of CP solvers [21].

Step 1.2 Collect the cores: To collect the cores for a given problem, we run GEAS in
core-opt mode on a subset of the model instances we have, and record its verbose output.
Currently, the subset selected corresponds to at most 2 small instances, as this will
simplify the remaining manual steps. For the case of rcpsp-wet, we used the instances
obtained by instantiating the model with data files j30_1_3.dzn and j30_43_10.dzn.
Once this step is automated, better results will be obtained by using a large and diverse
set of instances. Note that we disabled GEAS core hardening for this step, as we do
not want any literals (including those made false by hardening) to be omitted from the
reported cores.

6 K. Leo, G. Gange, M. G. de la Banda, and M. Wallace

Step 1.3 Rename the cores: Solvers express cores in terms of the variables created when
compiling the instance, or those created by the solver itself. These names are generic,
making them difficult for humans to interpret. For example, the following shows an ex-
tract from the verbose output created by GEAS when solving the j30_1_3.dzn instance:

Found core of size 2, new lb: 5

CORE: X_INTRODUCED_261_ >= 7,

X_INTRODUCED_217_ >= 1

indicating that the core has 2 literals, resulted in a new lower bound of 5 for the objective
function, and contains instance variables X_INTRODUCED_261_ and X_INTRODUCED_217_.
Typically, solver writers who want to interpret such names, must examine the compiled
instance output to see what these variables might refer to. In [24], the authors used a
source map produced by the MINIZINC compiler, to map instance variables back to
variables and expressions in the original model. Herein, we use the same method to link
back the core variables, which for the above core results in:

Found core of size 2, new lb: 5

CORE: ’max(0, deadline[16, 1] - s[16])’ >= 7,

’max(0, s[25] - deadline[25, 1])’ >= 1

The variables can now be easily recognised (from the objective) as the earliness of task
16, and the tardiness of task 25.

Step 1.4 Collect new variable core candidates: Cores containing more than one literal
are candidates for new variables to be introduced in the model (singleton cores contain
a variable that already exists in the model and are, therefore, not useful for our method).
We collect all such cores by performing the previous two steps for the selected subset
of model instances, and recording the results.

4.2 Step 2: Selecting good candidates

Step 2.1 Find patterns among the cores: Once all candidate cores are collected, the
next main step in our method involves interpreting these cores to determine subsets that
are likely to reduce solving time for many instances. To achieve this, we first try to find
patterns among the different cores found. The following details three of the patterns we
have often found in our experiments. Importantly, we focus on finding patterns for the
most effective cores, i.e., those with greater impact on the objective function value and
its lower bound. In GEAS, these are often the cores found early in the search.

Identical up to renaming: Many of the cores collected differ only in the name of the
parameters present in the core’s variables, and their bounds. For example, core:

Found core of size 2, new lb: 10

CORE: ’max(0, s[14] - deadline[14, 1])’ >= 4,

’max(0, deadline[8, 1] - s[8])’ >= 1

and the one in Step 1.3, have two variables with pattern max(0,deadline[i,1]-s[i]),
max(0,s[j]-deadline[j,1]), where i represents tasks 16 in the first core and 8 in the
second, and j represents tasks 25 and 14. Note that we always ignore the literals’ bound
(e.g., 4 and 1 in the above core). While we currently find these patterns manually, the

Core-Guided Model Reformulation 7

method described in [24] for finding nogood patterns across instances, can be easily
adapted to cores.

Simple ordering: A simple but common pattern consists of pairs or triplets of vari-
ables that appear “near” each other in some ordering in the model. For example, vari-
ables representing the state of some object at time points t and t + 1, or variables
representing two tasks where one is a successor of the other, as task 14 is of task 8 in
the above core for rcpsp-wet.

Element constraints: Sometimes cores have literals assigning all (or most of) the
possible values of a variable, e.g., 1 ∗ (x = 1) + 5 ∗ (x = 2) + 6 ∗ (x = 3) This
often occurs when the variable’s contribution to the objective is non-linear. These cores
reconstruct an element global constraint (see, for example, the reformulation for the
jp-encoding model in Section 5.1).

Step 2.2 Interpret the patterns: We now look for reasons for the patterns to appear, that
is, for the associated variables to appear often together in effective cores. This usually
requires in-depth knowledge regarding the relationship between these variables. For
example, for the pattern max(0,deadline[i,1]-s[i]), max(0,s[j]-deadline[j,1])
mentioned above, we must understand what connects the earliness of the tasks repre-
sented by i (16 or 8) to the tardiness of those represented by j (25 or 14, respectively).
Visualising the input data using a variation of a Gantt chart helped us realise, for exam-
ple, that task j is often the direct successor of task i, they overlap in time, and have the
highest earliness and tardiness costs. In other cores j is often a non-direct successor of
i, and the penalty for scheduling the chain of tasks is also very high due to overlaps.

4.3 Step 3: Reformulating the model

Step 3.1 Reformulate the objective: Once the patterns are interpreted, we reformulate
the objective using this information. The aim is to group objective components that
are expected to form effective cores. We have observed that patterns often suggest an
ordering of components that places them in cores together. For example, for rcpsp-wet
we can sort the earliness/tardiness components of direct successor tasks that overlap,
based on the cost of enforcing their precedence (we call this ordering direct), leaving
the remaining components unchanged. Alternatively, we can use an ordering obtained
by simply sorting the earliness/tardiness components based on the desired start time of
their task (we call this ordering start).

For any such ordering of the components in the objective, our method recursively
creates new variables for each disjoint pair of adjacent components, and replaces them
in the objective function with the new variable. We achieve this by using the following
group function, which we have implemented in MINIZINC and added to its library:

group([x]) = x
group([x1, . . . , x2n]) = group([z1, . . . , zn])

s.t. zi ≥ x2i−1 + x2i, ∀. i ∈ 1 . . . n
group([x1, . . . , x2n, x2n+1]) = group([z1, . . . , zn, x2n+1])

s.t. zi ≥ x2i−1 + x2i, ∀. i ∈ 1 . . . n
The function receives as its argument a list with the objective components in the given
ordering [x1, . . . , xm], and creates a new variable zi for each pair of adjacent compo-
nents x2i−1 + x2i. It then recursively calls itself with a list of the new variables in the

8 K. Leo, G. Gange, M. G. de la Banda, and M. Wallace

order they were created as input, while appropriately dealing with the case of m being
odd or even. The recursion ends when the list contains a single component x, simply
returning x as the new objective to minimize. Note that the best performance for GEAS
occurs when zi is bound from below. However, other solvers may perform better when
zi is defined as zi = x2i−1 + x2i. Therefore, in practice we use the bounding strat-
egy that is best for a given solver. Note also that the group function uses recursion to
combine more distant components. We do this to compensate for the locality brought
by the fact we currently only consider the early cores of a very small selected subset of
small instances, since these are the ones that are easier to interpret by hand. Once better
support for the interpretation step is achieved, this should be reconsidered.

Our method adds to the model both the function that produces the ordering and the
group function which uses it (in the case of the group function, this is done by adding
it to the MINIZINC library, but it has the same effect). As a result, the time needed
to compute this ordering is an overhead to the execution of the instance. Therefore,
care needs to be taken when defining orderings that might be too time consuming to
compute. The same can be said for the group function, although in this case reducing the
time overhead might not be as important as reducing the number of variables created.
We therefore experimented with a version of the group function that only performs k
iterations, with the aim of introducing fewer new variables. The resulting models did
not yield noticeable improvements in our experiments (data not shown).

Step 3.2 Add bounds for new variables: The reformulation of the objective can improve
the solving time of any clause-learning solver (such as LCG and MaxSAT). This is be-
cause it introduces new variables that can be used by these solvers to learn new clauses
and, thus, reduce the search space. However, the reformulation would not usually help
CP solvers, as they will be unable to infer tighter bounds on the introduced variables.

To counter this, we modify group to add a bound to the new zi variables it creates.
For example, for rcpsp-wet, if the first iteration creates the following variable:

new_var = deadline[i,2]*max(0,deadline[i,1]-s[i]) +
deadline[j,3]*max(0,s[j]-deadline[j,1])

we also add to the model the constraint:

new_var >= min(deadline[i,2],deadline[j,3])*
(deadline[i,1]+d[i]-deadline[j,1]);

ensuring new_var is greater or equal than the minimum cost to enforce the precedence,
that is, the minimum of the earliness cost of task i and the tardiness cost of task j,
multiplied by their overlap (d[i] is a parameter of the model representing i’s duration).

4.4 Automating the method

The initial stages of our method (all substeps in step 1: finding core candidates) are
automatic, thanks to the use of core-guided optimisation to generate the cores and their
information, and the use of existing MINIZINC infrastructure to collect and rename the
cores, and identify the core candidates. While substep 2.1 (finding patterns among the

Core-Guided Model Reformulation 9

cores) is currently done manually, it can be automated using similar technology to that
used by [24] to identify patterns among nogoods.

The most difficult manual stages to automate are the analytical ones: pattern in-
terpretation (step 2.2), and designing the reformulation (step 3). As these rely on in-
sights regarding the underlying model structure, full automation is quite challenging.
However, it is possible to automate certain processes to make these stages easier. For
example, interpreting the patterns requires understanding why the cores represented by
the pattern hold. Since each such core typically only relates to a small fragment of the
model, identifying this fragment can often immediately reveal the meaning of the core.
And this identification is something that can be automated: given a model M and core
C, we know M ∧ ¬C is unsatisfiable. Thus, we can use tools such as FINDMUS [16]
to identify a minimal unsatisfiable subset of M that causes the failure.

Example 3. Consider the following core which was part of the output created by GEAS
for the rcpsp-wet model, with the instance obtained from data file j30_1_3.dzn.

CORE: ’max(0, s[27] - deadline[27, 1])’ >= 3,

’max(0, deadline[17, 1] - s[17])’ >= 1

We update the model with name annotations that explain what each constraint means.

constraint forall (i in Tasks, j in suc[i]) (
(s[i] + d[i] <= s[j])

:: "Task \(i) must finish before task \(j) starts");

We then add the negation of the core to the MINIZINC model as follows:

constraint :: "Core 5"
not (max(0, s[27] - deadline[27, 1]) >= 3

\/ max(0, deadline[17, 1] - s[17]) >= 1);

With just these modifications, FINDMUS is able to output the following:

MUS: Core 5

Task 17 must finish before task 24 starts

Task 24 must finish before task 27 starts

Note that, while the core only mentions tasks 17 and 27, FINDMUS is able to identify
the chain of precedence constraints required for explaining the negated core. This makes
the task of interpreting the cores much easier.

Automating the model reformulation (step 3) is more involved, as it requires the
design of higher-level groupings using the reasons for the cores found in step 2.2. How-
ever, as we will see in the next section, the reformulations we produce are usually struc-
turally simple: either an ordering or hierarchical clustering, based on proximity with
respect to numeric parameters (i.e. jp-encoding and seat-moving), or constraint
structures (i.e. spot5 and rcpcsp-wet). It is thus possible (although non-trivial) to
use structural analysis methods, such as [15], to do this, since they are able to identify
subsets of the model constraints that correspond to pre-defined constraint structures.

10 K. Leo, G. Gange, M. G. de la Banda, and M. Wallace

5 Experimental Evaluation

This section illustrates how to apply our core-guided model reformulation method to
five models, and experimentally evaluates the efficiency of the reformulations obtained
for different orderings.

5.1 Models and their reformulation

To evaluate the effectiveness of our method, we require models of optimisation prob-
lems with an additive objective function, and for which core-guided solvers can obtain
better results than branch and bounds ones (otherwise, the method has no chance of
success). Therefore, we selected the top five models in the MINIZINC annual com-
petition [22], for which core-guided GEAS performs drastically better on at least one
instance, than branch-and-bound GEAS. This yielded the rcpsp-wet model used above
to illustrate our method, and the four models described below.

For each model, we selected 1–2 instances to analyze (typically, the smallest in-
stance to identify cores, and a moderate one to check that the identified patterns reoc-
cur). After modification, we evaluated the reformulated model over all instances from
the challenge. The following describes how our core-guided reformulation method was
applied to the other four selected models.

The seat-movingmodel: Given a set of seats and the people sitting in them (some may
be empty), the problem is to find the minimum number of moves and time-steps needed
to reach a target seating plan. Some people can swap seats with anyone in one move;
the rest must first move to an empty seat to make way. The objective is defined as:

cost = sum(i in 1..MAX_STEP -1,p in 1..P)
(person[i,p]!=person[i+1,p]);

objective = cost + step*MAX_STEP*P;

where variable cost counts, for each time-step i and person p, the seats where p is at
time i but not at i+1 (note that boolean person[i,p]!=person[i+1,p] is coerced to an
integer), and variable step is the number of time-steps needed. Therefore, the objective
sums all moves performed in every step by any person,

Studying the early cores GEAS finds for instances sm-10-12-00 and sm-10-20-00,
we realised they contain the moves of a single person, rather than those of a time-step,
which is how they appear in the sum that defines variable cost. Thus, we grouped the
components using a reverse ordering that simply reverses the order of the sum indices:

cost = group(p in 1..P, i in 1..MAX_STEP -1)
(person[i,p]!=person[i+1,p]);

In addition, we also added a (very weak) bound on the first set of new variables (i.e.,
those created in the first iteration of the group function), that ensures the number of
moves for people not starting in their target seat is ≥ 1.

The jp-encoding model: The Japanese Encoding problem tries to find the most likely
encoding used for each byte in a byte stream of encoded Japanese text, where multiple

Core-Guided Model Reformulation 11

encodings may be used. The model considers the ASCII, EUC-JP, SJIS and UTF-8
encodings, each with a scoring table that maps each byte to its penalty score (based on
likelihood) for that encoding, plus an “unknown” encoding with a large penalty. The
objective to minimise is defined in the model as:

objective = 1000*n_unknown + sum(i in 1..len) (
(encoding[i]==e_euc_jp)*eucjp_score[stream[i]+1]

+ (encoding[i]==e_sjis)*jis_score[stream[i]+1]

+ (encoding[i]==e_utf8)*utf8_score[stream[i]+1]);

that is, it sums the penalties (given by parameter tables eujp_score, sjis_score and
utf8_score) for the encoding chosen by variable encoding[i] for each byte (repre-
sented by parameter stream[i]) in position i of the input stream. Note that the penalty
is 0 for the ASCII encoding, and 1000 for an unknown encoding (in this case variable
n_unknown has been incremented by 1).

Studying the early cores found by GEAS on data200.dzn, we realised they refer
to all possible encodings of the byte in a given position (it must get some encoding).
We thus used the element global constraint to create new variables encoding_cost(i),
representing the encoding penalty of position i:

function var int: encoding_cost(int: i) =
array1d(0..4,[0,eucjp_score[stream[i]+1],

sjis_score[stream[i]+1],

utf8_score[stream[i]+1],1000])[encoding[i]];

objective = sum(i in 1..len)(encoding_cost(i));

We then re-applied our method to the reformulated model and realised that the new
cores were local, i.e., involved encoding_cost(i) and either encoding_cost(i+1) or
encoding_cost(i+2). Thus, we defined a local ordering that simply sorted the encod-
ings by position (which is the same as the original order in the model):

objective = group(i in 1..len)(encoding_cost(i));

The rel2ontomodel: The Relational-To-Ontology Mapping problem takes as input (a)
an alignment graph formed by cnodes, corresponding to the ontology’s classes, dnodes
corresponding to the data properties of the classes, and weighted edges, (b) the set of
attributes of a relational database, and (c) the set of dnodes each attribute might be
matched to with a given cost. The problem is to find a single match for all attributes and
a Steiner Tree for the alignment graph, such that the matched dnode of every attribute
is in the tree, and the cost of the edges in the Steiner Tree and of the matched attributes
is minimised. The objective to minimise is defined in the model as:

w = sum(i in edges)(es[i]) * ws[i]);
wm = sum(a in atts)(match_costs[a, match[a]]);
objective = w + wm;

that is, the sum w of the weight (given by parameter ws[i]) of every edge i in the graph
that appears in the Steiner tree (true if variable es[i] holds), plus the sum wm of the cost
for every attribute a of the match (given by variable match[a]).

12 K. Leo, G. Gange, M. G. de la Banda, and M. Wallace

When studying the cores inferred by GEAS for 5_5.dzn and 5_28.dzn, we dis-
covered many cores involve two variables es[i] and es[j], where i and j are edges of
the alignment graph. Moreover, the cores were generated for attributes that could only
be associated with two possible dnodes, indicating that, since each attribute must be in
the matching, some edge adjacent to that attribute must be in the Steiner tree. Based
on this, we constructed an adjacent ordering that groups edges associated with a given
attribute. As this did not perform as well as hoped, we looked deeper into the cores and
realised that, when an attribute’s matches overlapped with a previous one, the solver
would merge the old variable with the new adjacent edges. Thus, we encoded a similar
iterative merging strategy: starting with each edge in a singleton partition, we repeat-
edly select a new attribute a, and introduce a fresh variable for the sum of all partitions
containing edges adjacent to a. Once all attributes are processed, the objective sums the
resulting cost variables.

The spot5model: The SPOT5 earth observation satellite management problem [3]
tries to find a subset of a given set of photographs to take, given many different con-
straints, including minimum distance, non-overlapping, and recording capacity. The
model encodes these constraints as a set of binary and ternary table constraints. The
objective to minimise is defined in the model as:

objective = sum(j in 1..num_variables)(costs[j]*(p[j]=0));

which sums the cost (given by parameter costs[j]) of each given photograph j (j in
1..num_variables) that is not taken (given by variable p[j] having value 0).

While the table encoding of constraints makes interpretation difficult, we did ob-
serve for 54.dzn that the early cores have two variables connected by some binary
table, constraining one of them to be 0. This ensures at most one of two photos is taken.
Later cores also contain 2 or 3 variables, connecting a new variable to existing reformu-
lated costs, or grouping some new variables together. Moreover, the variables in these
expanded cores formed cliques connected by non-zero cost tables.

Our first reformulation used a merging strategy that, given a set of (initially single-
ton) clusters, iteratively merged the two with greatest inter-cluster cost (creating a new
cost variable). This yielded effective reformulations but was too slow to compute. Visu-

Fig. 1: Constraint structure of two spot5 instances (left|right). Nodes represent variables; edges
binary constraints (red if non-zero cost).

Core-Guided Model Reformulation 13

alising the constraint graph of two instances, Figure 1, we realised that they form almost
(but not always) interval graphs: those where vertices are real intervals and edges their
intersection [14]. 2 If they form an interval graph, there must be an ordering where
members of any maximal clique appear sequentially. This interval ordering would be a
good candidate for grouping, as it keeps related vertices nearby. For interval graphs, the
ordering can be obtained using lexicographic breadth-first searches (LexBFSs) [7]. We
used this procedure, expecting suitable orderings even for constraints that do not form
interval graphs. The bounds for group G are computed by a greedy vertex cover of the
subgraph of non-zero cost tables containing only leaves of G.

5.2 Experimental Results

Each of the sub-figures in Figure 2 shows the results obtained for the problem shown
in the caption. For each problem, the results are grouped by the data files used to create
the instances, as given in the x-axis. The results for each data file are divided into 3
sets of bars separated by spaces. Each set of bars corresponds to the results given by
one solver when executing the instances obtained by adding the data file to each of
the reformulations named in the caption in the given order. Note the captions always
start with the original model and a naı̈ve grouping of the components in the order they
appear in the original objective. The three solvers used are Gecode (set of bars on the
left), Chuffed (middle) and the branch-and-bound version of GEAS (right). The values
shown per instance are as follows: (a) the solving time as the height of the bar w.r.t. left
y-axis in logarithmic scale, and with a 300 sec timeout; (b) the objective value as a black
dot on the bar w.r.t. right y-axis, and scaled to the range [0, 1], and (c) the baseline for
each instance (core-guided GEAS on the original model) as the horizontal blue line for
time, and the black dotted line for the objective value. Note that we also obtained results
for reformulations with random orderings. These results were consistently worse, and
are omitted to improve legibility.

For rcpsp-wet, start, direct and direct-bound achieve very good improvements for
both LCG solvers (given the logarithmic scale for time), with direct able to improve
the time of the largest instance, and direct-bound often performing best. As expected,
Gecode does not benefit from start or direct, but drastically improves with direct-bound
on two instances and gets a much better objective bound on the remaining three.

For seat-moving, both reverse and reverse-bound significantly improve the perfor-
mance of the two LCG solvers for most instances. Instance sm-10-12-00 is interesting,
as the LCS solvers often outperforms the baseline time. The reverse-bound reformula-
tion did not improve Gecode (the bound was too weak).

For jp-encoding element and local both yield good performance, with element of-
ten performing much better for Chuffed, and local performing outstandingly for GEAS
(often better than the baseline). Interestingly, naı̈ve performs badly for Chuffed but, for
GEAS, despite never proving optimality, discovers similar or better bounds than ele-
ment. This is because the terms in the implied element constraint are grouped together
in the original objective, resulting in similar reformulations.

2 Vertices in the model correspond to observations made along the trajectory of a satellite (have
an underlying ordering); edges correspond to observations that are close enough to interfere.

14 K. Leo, G. Gange, M. G. de la Banda, and M. Wallace

j30_1_3 j60_19_6 j30_43_10 j90_48_4 j60_28_3

10−1

100

101

102

0.0

0.2

0.4

0.6

0.8

1.0

(a) rcpsp-wet: original, naı̈ve, start, direct, direct-bound

sm-10-20-05 sm-15-20-00 sm-20-20-00 sm-10-12-00 sm-15-12-00

10−1

100

101

102

0.0

0.2

0.4

0.6

0.8

1.0

(b) seat-moving: original, naı̈ve, reverse, reverse-bound

data0200 data0300 data0900 data1400 data1900

100

101

102

0.0

0.2

0.4

0.6

0.8

1.0

(c) jp-encoding: original, naı̈ve, element, local

5_28 5_5 3_9 5_17 5_6

101

102

0.0

0.2

0.4

0.6

0.8

1.0

(d) rel2onto: original, naı̈ve, adjacent, merging

503 54 414 1401 28

10−1

100

101

102

0.0

0.2

0.4

0.6

0.8

1.0

(e) spot5: original, naı̈ve, interval, interval-bound

Fig. 2: Results for our five models

Core-Guided Model Reformulation 15

3 9 5 28 5 5

Fig. 3: Visualising three rel2onto instances: black edges for ontology structure; magenta for
possible attribute/concept matchings.

For rel2onto, adjacent and merging make Chuffed worse for 3_9, whose structure
is quite different from the two instances we used for our cores, as shown in Figure 3).
However, they significantly improve Chuffed and GEAS on most other instances except
Interestingly, core-guided GEAS on the original model times out for three instances, but
branch-and-bound LCG solvers perform much better with the reformulations.

For spot5, interval and interval-bound perform significantly better than original or
naı̈ve for both LCG solvers, while interval-bound did not improve Gecode.

6 Conclusions and Future Work

From the above results we conclude the following. First, non-bound core-guided re-
formulations are often enough to achieve excellent improvements for LCG solvers, as
bounds can be learned for the new variables. Second, tight bounds (as for rcpsp-wet)
can drastically improve CP solvers. Finally, our reformulations of simple models yield
great results, but we believe the insights of model owners should enable even better
groupings and tighter bounds for all models, as in-depth knowledge is key. Given the
scarcity of core-guided (and LCG) solvers, a key contribution is to show modellers the
importance of appropriately grouping the objective components and tightly bounding
them. In particular, we show that significant speedups can be obtained by simply us-
ing our grouping function on orderings of the objective components that are based on
“relatedness”. While these orders can be tried speculatively without using core-guided
optimization, its use can help to quickly identify where to look for “usefully related”
terms (i.e., orderings), and for candidates for analytic bounds to add. We also show how
parts of the process can be either automated or supported by automation. We are par-
ticularly excited by the idea of using an MUS enumeration tool to identify the reasons
behind the cores. We are following this approach in our future work, where we aim to
further automate our method as much as possible.

16 K. Leo, G. Gange, M. G. de la Banda, and M. Wallace

References

1. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in
clasp. In: Proc. ICLP Technical Communications. LIPIcs, vol. 17, pp. 211–221. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted MaxSAT
solvers. In: Proc. CP. Lecture Notes in Computer Science, vol. 7514, pp. 86–101. Springer
(2012)

3. Bensana, E., Lemaı̂tre, M., Verfaillie, G.: Earth observation satellite management. Con-
straints 4(3), 293–299 (1999). https://doi.org/10.1023/A:1026488509554, https://doi.org/10.
1023/A:1026488509554

4. Berg, J., Järvisalo, M.: Weight-aware core extraction in SAT-based MaxSAT solving. In:
Proc CP. Lecture Notes in Computer Science, vol. 10416, pp. 652–670. Springer (2017)

5. Brand, S., Narodytska, N., Quimper, C.G., Stuckey, P., Walsh, T.: Encodings of the sequence
constraint. In: Bessière, C. (ed.) Principles and Practice of Constraint Programming – CP
2007. pp. 210–224. Springer Berlin Heidelberg (2007)

6. Chu, G.: Improving combinatorial optimization. Ph.D. thesis, University of Melbourne, Aus-
tralia (2011), http://hdl.handle.net/11343/36679

7. Corneil, D.G.: Lexicographic breadth first search - A survey. In: Hromkovic, J., Nagl, M.,
Westfechtel, B. (eds.) 30th International Workshop on Graph-Theoretic Concepts in Com-
puter Science. Lecture Notes in Computer Science, vol. 3353, pp. 1–19. Springer (2004)

8. Feydy, T., Stuckey, P.J.: Lazy Clause Generation Reengineered. In: Gent, I.P. (ed.) Proceed-
ings of the 15th International Conference on Principles and Practice of Constraint Program-
ming. LNCS, vol. 5732, pp. 352–366. Springer (2009)

9. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A mathematical programming language.
AT & T Bell Laboratories Murray Hill, NJ 07974 (1987)

10. Frisch, A.M., Grum, M., Jefferson, C., Martı́nez, B., Miguel, H.I.: The design of ESSENCE:
a constraint language for specifying combinatorial problems. In: IJCAI-07. pp. 80–87 (2007)

11. Gange, G., Berg, J., Demirović, E., Stuckey, P.J.: Core-guided and core-boosted search for
CP. In: Hebrard, E., Musliu, N. (eds.) Proceedings of Seventeenth International Conference
on Integration of Artificial Intelligence and Operations Research techniques in Constraint
Programming (CPAIOR2020). Springer (2020), to appear

12. Gecode Team: Gecode: Generic Constraint Development Environment (2006), Available
from http://www.gecode.org

13. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual Version 7.5. Houston,
Texas: Gurobi Optimization (2017)

14. Lekkeikerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real
line. Fundamenta Mathematicae 51(1), 45–64 (1962)

15. Leo, K., Mears, C., Tack, G., Banda, M.G.d.l.: Globalizing Constraint Models. In: Schulte,
C. (ed.) CP. LNCS, vol. 8124, pp. 432–447. Springer (2013)

16. Leo, K., Tack, G.: Debugging unsatisfiable constraint models. In: Salvagnin, D., Lombardi,
M. (eds.) CPAIOR 2017. Lecture Notes in Computer Science, vol. 10335. Springer (2017).
https://doi.org/10.1007/978-3-319-59776-8

17. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimization:
algorithms & applications. Annals of Mathematics and Artificial Intelligence 62(3-4), 317–
343 (2011)

18. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards
a Standard CP Modelling Language. In: Bessiere, C. (ed.) CP. LNCS, vol. 4741, pp. 529–
543. Springer (2007)

https://doi.org/10.1023/A:1026488509554
https://doi.org/10.1023/A:1026488509554
https://doi.org/10.1023/A:1026488509554
http://hdl.handle.net/11343/36679
https://doi.org/10.1007/978-3-319-59776-8

Core-Guided Model Reformulation 17

19. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = Lazy Clause Generation. In:
Bessiere, C. (ed.) Proceedings of the 13th International Conference on Principles and Prac-
tice of Constraint Programming. LNCS, vol. 4741, pp. 544–558. Springer (2007)

20. Perron, L., Furnon, V.: OR-Tools (2019), https://developers.google.com/optimization/
21. Shishmarev, M., Mears, C., Tack, G., Garcia de la Banda, M.: Visual search tree profiling.

Constraints pp. 1–18 (2015)
22. Stuckey, P., Becket, R., Fischer, J.: Philosophy of the MiniZinc challenge. Constraints 15(3),

307–316 (2010). https://doi.org/10.1007/s10601-010-9093-0
23. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge,

MA, USA (1999)
24. Zeighami, K., Leo, K., Tack, G., de la Banda, M.G.: Towards semi-automatic learning-based

model transformation. In: Hooker, J.N. (ed.) Principles and Practice of Constraint Program-
ming - 24th International Conference, CP 2018, Lille, France, August 27-31, 2018, Proceed-
ings. Lecture Notes in Computer Science, vol. 11008, pp. 403–419. Springer (2018)

https://developers.google.com/optimization/
https://doi.org/{10.1007/s10601-010-9093-0}

	Core-Guided Model Reformulation

