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The Problem

General setting: transportation network design & use.
At least two decision makers u ("upper") and ` ("lower").

1 Decision maker u (the network designer) makes decisions
xu on investment & maintenance costs, pricing, etc.

2 Decision maker(s) ` (network users) make network usage
decisions x`. (For simplicitly, here only one lower-level
decision maker. Can be generalized to the general case.)

Decision maker u tries to minimize its cost function fu(xu,x`);
decision maker ` tries to minimize its own cost function
f`(xu,x`).

Decision variables are

upper-level decision vector xu ∈ Rnu ,

lower-level decision vector x` ∈ Rn`.

with x := (xu,x`) ∈ Rnu × Rn` .J. Fliege University of Southampton New Penalty Approaches for Bilevel Optimization Problems arising in Transportation Network Design



The Problem & Notation

For a fixed xu ∈ Rnu , consider the parameterized lower level
problem

min
x`

f`(xu,x`)

subject to g`(xu,x`) ≤ 0.
(P(xu))

The bilevel optimization problem is now

min
xu,x`

fu(xu,x`)

subject to gu(xu,x`) ≤ 0, (1)
x` solves P(xu).

(Optimistic formulation.)

Note: upper level constraints gu can also depend on x`.
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Optimizing over Abstract Sets

Let C ⊆ Rn be closed and f ∈ C1(Rn,R). Consider the problem

min
x

f (x)

subject to x ∈ C.
(P)

Let ‖ · ‖ be the euclidean norm. For arbitrary y ∈ Rn, denote by
projC(y) the projection of y onto C, i. e.

projC(y) := argmin
z

{‖y − z‖ | z ∈ C}.

Then, the first-order optimality condition for (P) holds if and only
if

x ∈ projC (x −∇f (x)) .

(See Eaves 1971, Harker & Pang 1990, Sun 1996, Fl. &
V. 2004.)
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Optimizing over Abstract Sets

Idea:
Solve

projC (x −∇f (x)) = x

instead of
min

x
f (x)

subject to x ∈ C.
(P)

Disadvantage: reformulation is nonsmooth.

Advantage: only knowlege of projC is assumed, and not of C.
(Especially, no explicit knowledge of functions gi ,hj with
C = {x | gi(x) ≤ 0,hj(x) = 0 ∀i∀j} required.)

Advantage: can easily be generalized if lower-level problem is
equilibrium problem.
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Optimizing over Abstract Sets

Situations where projC might be easier to handle than explicit
constraint functions:

1 Information of C resides in a distributed computing
environment: projC easy to compute, but Lagrangian hard
to assemble. (Fl. 2006, 2010)

2 C a particular cone:
1 C convex with "nice" dual C◦ (use Moreau:

x = projC(x)+projC◦(x)): C isotone cone or simplicial
cone, known only by extreme rays. (Nemeth et al ’10, Ekart
et al ’10)

2 C copositive cone? (Sponsel 2011)
3 C epigraph of some matrix norm (spectral, nuclear, 1-norm,

∞-norm). (Ding et al 2010)
3 C ⊂ Rn polyhedron with m faces, n � m. (Llanas et al ’00)
4 C complement of open polyhedron. (Mangasarian ’00)
5 C set of correlation matrices. (Higham 2002)
6 C = {Y ∈ Rm×m | Y = Y >,Yi,i = 1 ∀ i}. (Qi & Sun, 2006)
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Reformulation of the lower level problem I

Use the reformulation on the lower level problem:

n = n`,

x = x`,

f = f`(xu, ·),
C = C(xu) := {z ∈ Rn` | g`(xu,z) ≤ 0}

and define the nonsmooth function

P(xu,x`) := projC(xu) (x` −∇x` f`(xu,x`))− x`.

A reformulation of the bilevel problem is then

min
xu,x`

fu(xu,x`)

subject to gu(xu,x`) ≤ 0,

P(xu,x`) = 0.
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Smoothness of Reformulation I

How smooth is P(xu,x`) = projC(xu) (x` −∇x` f`(xu,x`))− x`?
I.e. let f` be sufficiently smooth. How smooth is projC(xu)(. . .)
w.r.t. (xu,x`)?

Three easy special cases for fixed xu:
projC(xu)(·) = id within int(C(xu)).
y ∈ bd(C(xu)); direction d ∈ Rn` given:

(projC(xu))
′
+(y ;d) = projT(xu,y)(d),

where T (xu,y) is the tangent cone of C(xu) at y
(Zarantonello 1971).
Let C(xu) have a C2-boundary. Then,
projC(xu)(·) ∈ C1(Rn` \ C(xu)), and explicit representations
of the derivative exist (Holmes 1973).

J. Fliege University of Southampton New Penalty Approaches for Bilevel Optimization Problems arising in Transportation Network Design



Smoothness of Reformulation I

How smooth is P(xu,x`) = projC(xu) (x` −∇x` f`(xu,x`))− x`?
I.e. let f` be sufficiently smooth. How smooth is projC(xu)(. . .)
w.r.t. (xu,x`)?

Three easy special cases for fixed xu:
projC(xu)(·) = id within int(C(xu)).
y ∈ bd(C(xu)); direction d ∈ Rn` given:

(projC(xu))
′
+(y ;d) = projT(xu,y)(d),

where T (xu,y) is the tangent cone of C(xu) at y
(Zarantonello 1971).
Let C(xu) have a C2-boundary. Then,
projC(xu)(·) ∈ C1(Rn` \ C(xu)), and explicit representations
of the derivative exist (Holmes 1973).

J. Fliege University of Southampton New Penalty Approaches for Bilevel Optimization Problems arising in Transportation Network Design



Smoothness of Reformulation I

How smooth is P(xu,x`) = projC(xu) (x` −∇x` f`(xu,x`))− x`?
I.e. let f` be sufficiently smooth. How smooth is projC(xu)(. . .)
w.r.t. (xu,x`)?

Three easy special cases for fixed xu:
projC(xu)(·) = id within int(C(xu)).
y ∈ bd(C(xu)); direction d ∈ Rn` given:

(projC(xu))
′
+(y ;d) = projT(xu,y)(d),

where T (xu,y) is the tangent cone of C(xu) at y
(Zarantonello 1971).
Let C(xu) have a C2-boundary. Then,
projC(xu)(·) ∈ C1(Rn` \ C(xu)), and explicit representations
of the derivative exist (Holmes 1973).

J. Fliege University of Southampton New Penalty Approaches for Bilevel Optimization Problems arising in Transportation Network Design



Smoothness of Reformulation I

Theorem (Directional Differentiability) Assume the following:
1 f` ∈ C2(Rnu × Rn`,R). and g` ∈ C2(Rnu × Rn`,Rm`).
2 For each xu ∈ Rnu , g`,i(xu, ·) is convex.
3 Slater’s condition for each lower level problem: for each

xu ∈ Rnu , there exists a z ∈ Rn` with g`,i(xu,z) < 0 for all i .
4 There exists a constant α > 0, such that, for all (xu,x`):

‖(∇yg`(xu,y(xu,x`)))[:,i:g`,i(xu,P(xu,x`)−x`)=0]v‖ ≥ α‖v‖

for all v ∈ R{i:g`,i(xu,P(xu,x`)−x`)=0}.
Then, P is directionally differentiable at (xu,x`) in an arbitrary
direction d ∈ Rnu × Rn` and the forward and backward
directional differentials can be computed by solving some
explicitly known QPs.
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Smoothness of Reformulation I

Theorem (Gateaux Differentiability) Let the same
assumptions as in the last theorem hold and let the function g`

not depend on xu. Then, the function P is Gateaux
differentiable if and only if strict complementarity holds:

{i : g`,i(P(xu,x`)− x`) = 0} = {j : λj(xu,x`) > 0},

where λj(xu,x`) are the Lagrangians of the projection problem

min
y

‖y − x` +∇x` f`(xu,x`)‖

subject to g`(y) ≤ 0.

Again, differentials can be computed by solving some explicitly
known QPs.
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Exact Penalties for Reformulation

Theorem Let ∇x` f` be piecewise analytic; let fu be Lipschitz
continuous. Let C : xu 7→ C(xu) be continuous and convex for
all xu and let the mapping have the following property: for each
xu ∈ Rnu and for each y ∈ bd(C(xu)) let there be a
neighbourhood U of y such that there exists finitely many
analytic and strongly convex functions gi(xu, ·) such that

C(xu)∩ U = {x` | gi(xu,x`) ≤ 0 ∀ i}.

Let {(xu,x`) | gu(xu,x`) ≤ 0} be compact and subanalytic.
Then, there exists a constant β∗ > 0 such that for all β ≥ β∗

we have that
‖P(xu,x`)‖

1/β
1

is an exact penalty function for the reformulated problem.
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Numerical Results

Very preliminary results.

1 Purpose: sanity check. Does the reformulation make
sense at all?

2 Lazy approach: reformulated problem solved with
SLP/SQP code with `1-penalty for constraints and
nonsmooth step length algorithm. (Previously implemented
for ESA, European Space Agency.)

3 Differentials approximated by finite differences.
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Numerical Results

Random bilinear problems with nu = n` = 10, mu = 1, m` = 2,
feasibility & optimality tolerance 1e-6:

prob. 1 2 3 4 5 6 7 8 9 10
SLP iter 65 25 17 19 27 60 117 234 97 7
SQP iter 10f 43 6f 4f 11 15 5f 12 14 5

All problems solved to specified accuracy by SLP.
Central differences perform better than forward differences.
(In contrary to theory?!)
SQP performance sensitive to upper and lower starting
point: code can jam at an infeasible point, restoration
phase then unsuccessful.
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Numerical Results

Test problems from literature, reformulated problems solved
with IPOPT, all other settings as before.

problem iter feval
Shimizu & Aiyoshi I 170 932
Shimizu & Aiyoshi II 19 23

Bard1 27 78
Bard2 3000* *

Aiyoshi & Shimuzu 12 18
Ye, Zhu, & Zhu 31 111
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Lessons learnt & Future Plans

Reformulation provides flexible framework for bilevel
problems.
Can be approached with a variety of algorithms. What is
the best approach to solve the reformulated problem?
No assumption on uniqueness of lower level solutions.
Further tests necessary to ascertain performance of the
approach.
Generalization to multilevel problems possible.
Generalization to multiobjective lower level problems?
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Questions?

Further information:

J.Fliege@soton.ac.uk
www.cormsis.soton.ac.uk
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