New Penalty Approaches for Bilevel Optimization Problems arising in Transportation Network Design

Jörg Fliege, Konstantinos Kaparis, & Huifu Xu

Melbourne, 2013

• • • • • • • •

Contents

Problem Statement

- 2 A Slight Detour: Optimizing over Abstract Sets
- Application to Bilevel Optimization
- 4 Theoretical Results
- 5 Numerical Results
- 6 Lessons Learnt & Future Plans

-

3 1 4 3

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Current Section

1 Problem Statement

- 2 A Slight Detour: Optimizing over Abstract Sets
- 3 Application to Bilevel Optimization
- 4 Theoretical Results
- 5 Numerical Results
- 6 Lessons Learnt & Future Plans

A D N A B N A B N A B

The Problem

General setting: transportation network design & use. At least two decision makers u ("upper") and ℓ ("lower").

- Decision maker u (the network designer) makes decisions x_u on investment & maintenance costs, pricing, etc.
- ② Decision maker(s) ℓ (network users) make network usage decisions x_ℓ. (For simplicitly, here only one lower-level decision maker. Can be generalized to the general case.)

Decision maker *u* tries to minimize its cost function $f_u(x_u, x_\ell)$; decision maker ℓ tries to minimize its own cost function $f_\ell(x_u, x_\ell)$.

Decision variables are

upper-level decision vector lower-level decision vector $\begin{aligned} x_u \in \mathbb{R}^{n_u}, \\ x_\ell \in \mathbb{R}^{n_\ell}. \end{aligned}$

For a fixed $x_u \in \mathbb{R}^{n_u}$, consider the parameterized *lower level* problem

$$\min_{\substack{x_{\ell} \\ \text{subject to } g_{\ell}(x_{u}, x_{\ell}) \leq 0. } f_{\ell}(x_{u}, x_{\ell}) \leq 0.$$
 $(P(x_{u}))$

The bilevel optimization problem is now

$$\begin{array}{ll} \min_{x_u, x_\ell} & f_u(x_u, x_\ell) \\ \text{subject to} & g_u(x_u, x_\ell) \leq 0, \\ & x_\ell \text{ solves } P(x_u). \end{array} \tag{1}$$

(Optimistic formulation.)

Note: upper level constraints g_u can also depend on x_{ℓ} .

ヘロト ヘ回ト ヘヨト ヘヨト

Problem Statement

2 A Slight Detour: Optimizing over Abstract Sets

3 Application to Bilevel Optimization

- 4 Theoretical Results
- 5 Numerical Results
- 6 Lessons Learnt & Future Plans

(4) (3) (4) (4) (4)

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $C \subseteq \mathbb{R}^n$ be closed and $f \in \mathbf{C}^1(\mathbb{R}^n, \mathbb{R})$. Consider the problem

$$\begin{array}{l} \min_{x} f(x) \\ \text{subject to} \quad x \in C. \end{array}$$
(P)

Let $\|\cdot\|$ be the euclidean norm. For arbitrary $y \in \mathbb{R}^n$, denote by $\operatorname{proj}_C(y)$ the *projection of y onto C*, i. e.

$$\operatorname{proj}_{C}(y) := \arg\min_{z} \{ \|y - z\| \mid z \in C \}.$$

Then, the first-order optimality condition for (P) holds if and only if

$$x \in \operatorname{proj}_{C}(x - \nabla f(x))$$
.

(See Eaves 1971, Harker & Pang 1990, Sun 1996, Fl. & V. 2004.)

-

ヘロト ヘアト ヘビト ヘビト

Idea:

Solve

$$\operatorname{proj}_{C}\left(x - \nabla f(x)\right) = x$$

instead of

 $\min_{x} f(x)$
subject to $x \in C$.

Disadvantage: reformulation is nonsmooth.

Advantage: only knowlege of proj_C is assumed, and not of *C*. (Especially, no explicit knowledge of functions g_i , h_j with $C = \{x \mid g_i(x) \le 0, h_j(x) = 0 \forall i \forall j\}$ required.)

Advantage: can easily be generalized if lower-level problem is equilibrium problem.

J. Fliege

(P)

Situations where proj_{C} might be easier to handle than explicit constraint functions:

- Information of *C* resides in a distributed computing environment: proj_C easy to compute, but Lagrangian hard to assemble. (FI. 2006, 2010)
- C a particular cone:
 - C convex with "nice" dual C° (use Moreau:
 - $x = \text{proj}_{\mathcal{C}}(x) + \text{proj}_{\mathcal{C}^{\circ}}(x)$): *C* isotone cone or simplicial cone, known only by extreme rays. (Nemeth et al '10, Ekarl et al '10)
 - C copositive cone? (Sponsel 2011)
 - G epigraph of some matrix norm (spectral, nuclear, 1-norm, oc-norm). (Ding at at 2010)
- Image C $\subset \mathbb{R}^n$ polyhedron with *m* faces, $n \ll m$. (Llanas et al '00)
- C complement of open polyhedron. (Mangasarian '00)
- ② *C* set of correlation matrices. (Higham 2002) ③ *C* = { *Y* ∈ $\mathbb{R}^{m \times m}$ | *Y* = *Y*^T, *Y*_{*i,i*} = 1 ∀ *i*_{*i*}, (Q_i & Sun, 2006)

- Information of C resides in a distributed computing environment: $proj_c$ easy to compute, but Lagrangian hard to assemble. (Fl. 2006, 2010)
- C a particular cone:
 - C convex with "nice" dual C° (use Moreau: $x = \operatorname{proj}_{C}(x) + \operatorname{proj}_{C^{\circ}}(x)$: C isotone cone or simplicial cone, known only by extreme rays. (Nemeth et al '10, Ekart et al '10)

- Information of C resides in a distributed computing environment: $proj_c$ easy to compute, but Lagrangian hard to assemble. (Fl. 2006, 2010)
- C a particular cone:
 - C convex with "nice" dual C° (use Moreau: $x = \operatorname{proj}_{C}(x) + \operatorname{proj}_{C^{\circ}}(x)$: C isotone cone or simplicial cone, known only by extreme rays. (Nemeth et al '10, Ekart et al '10)
 - O copositive cone? (Sponsel 2011)

- Information of C resides in a distributed computing environment: $proj_c$ easy to compute, but Lagrangian hard to assemble. (Fl. 2006, 2010)
- C a particular cone:
 - C convex with "nice" dual C° (use Moreau: $x = \operatorname{proj}_{C}(x) + \operatorname{proj}_{C^{\circ}}(x)$: C isotone cone or simplicial cone, known only by extreme rays. (Nemeth et al '10, Ekart et al '10)
 - O copositive cone? (Sponsel 2011)
 - 3 C epigraph of some matrix norm (spectral, nuclear, 1-norm, ∞ -norm). (Ding et al 2010)

Situations where proj_{C} might be easier to handle than explicit constraint functions:

- Information of *C* resides in a distributed computing environment: proj_C easy to compute, but Lagrangian hard to assemble. (FI. 2006, 2010)
- C a particular cone:
 - C convex with "nice" dual C° (use Moreau:
 x = proj_C(x) + proj_{C°}(x)): C isotone cone or simplicial cone, known only by extreme rays. (Nemeth et al '10, Ekart et al '10)
 - 2 C copositive cone? (Sponsel 2011)
 - C epigraph of some matrix norm (spectral, nuclear, 1-norm, ∞-norm). (Ding et al 2010)
- **③** *C* ⊂ \mathbb{R}^n polyhedron with *m* faces, *n* ≪ *m*. (Llanas et al '00)
 - C complement of open polyhedron. (Mangasarian '00)
- **③** *C* set of correlation matrices. (Higham 2002) **④** *C* = { *Y* ∈ $\mathbb{R}^{m \times m}$ | *Y* = *Y*^T, *Y*_{*U} = 1 ∀ <i>U*₁, (Qi, & Sun, 2006)</sub>

- Information of C resides in a distributed computing environment: $proj_c$ easy to compute, but Lagrangian hard to assemble. (Fl. 2006, 2010)
- C a particular cone:
 - C convex with "nice" dual C° (use Moreau: $x = \operatorname{proj}_{C}(x) + \operatorname{proj}_{C^{\circ}}(x)$: C isotone cone or simplicial cone, known only by extreme rays. (Nemeth et al '10, Ekart et al '10)
 - O copositive cone? (Sponsel 2011)
 - 3 C epigraph of some matrix norm (spectral, nuclear, 1-norm, ∞ -norm). (Ding et al 2010)
- **O** $C \subset \mathbb{R}^n$ polyhedron with *m* faces, $n \ll m$. (Llanas et al '00)
- C complement of open polyhedron. (Mangasarian '00)

Situations where proj_{C} might be easier to handle than explicit constraint functions:

- Information of *C* resides in a distributed computing environment: proj_C easy to compute, but Lagrangian hard to assemble. (FI. 2006, 2010)
- C a particular cone:
 - C convex with "nice" dual C° (use Moreau:
 x = proj_C(x) + proj_{C°}(x)): C isotone cone or simplicial cone, known only by extreme rays. (Nemeth et al '10, Ekart et al '10)
 - 2 C copositive cone? (Sponsel 2011)
 - O epigraph of some matrix norm (spectral, nuclear, 1-norm, ∞-norm). (Ding et al 2010)
- $C \subset \mathbb{R}^n$ polyhedron with *m* faces, $n \ll m$. (Llanas et al '00)
- C complement of open polyhedron. (Mangasarian '00)
- Set of correlation matrices. (Higham 2002)

 $C = \{ Y \in \mathbb{R}^{m \times m} \mid Y = Y^{\top}, Y_{i,i} = 1 \forall i \}$ (Qi & Sun, 2006)

Situations where proj_{C} might be easier to handle than explicit constraint functions:

- Information of *C* resides in a distributed computing environment: proj_C easy to compute, but Lagrangian hard to assemble. (FI. 2006, 2010)
- C a particular cone:
 - C convex with "nice" dual C° (use Moreau:
 x = proj_C(x) + proj_{C°}(x)): C isotone cone or simplicial cone, known only by extreme rays. (Nemeth et al '10, Ekart et al '10)
 - 2 C copositive cone? (Sponsel 2011)
 - O epigraph of some matrix norm (spectral, nuclear, 1-norm, ∞-norm). (Ding et al 2010)
- $C \subset \mathbb{R}^n$ polyhedron with *m* faces, $n \ll m$. (Llanas et al '00)
- C complement of open polyhedron. (Mangasarian '00)
- O set of correlation matrices. (Higham 2002)

ⓑ
$$C = \{Y \in \mathbb{R}^{m \times m} | Y = Y^{\top}, Y_{i,i} = 1 \forall i\}$$
. (Qi & Sun, 2006)

Problem Statement

2 A Slight Detour: Optimizing over Abstract Sets

3 Application to Bilevel Optimization

- 4 Theoretical Results
- 5 Numerical Results
- 6 Lessons Learnt & Future Plans

A D N A B N A B N A B

Reformulation of the lower level problem I

Use the reformulation on the lower level problem:

$$n = n_{\ell},
x = x_{\ell},
f = f_{\ell}(x_{u}, \cdot),
C = C(x_{u}) := \{z \in \mathbb{R}^{n_{\ell}} \mid g_{\ell}(x_{u}, z) \leq 0\}$$

and define the nonsmooth function

$$P(x_u, x_\ell) := \operatorname{proj}_{C(x_u)} (x_\ell - \nabla_{x_\ell} f_\ell(x_u, x_\ell)) - x_\ell.$$

A reformulation of the bilevel problem is then

$$\min_{x_u, x_\ell} \quad f_u(x_u, x_\ell)$$

subject to
$$g_u(x_u, x_\ell) \le 0,$$
$$P(x_u, x_\ell) = 0.$$

ヘロト ヘ回ト ヘヨト ヘヨト

Current Section

Problem Statement

2 A Slight Detour: Optimizing over Abstract Sets

- 3 Application to Bilevel Optimization
- 4 Theoretical Results
- 5 Numerical Results
- 6 Lessons Learnt & Future Plans

A D N A B N A B N A B

How smooth is $P(x_u, x_\ell) = \text{proj}_{C(x_u)} (x_\ell - \nabla_{x_\ell} f_\ell(x_u, x_\ell)) - x_\ell$? I.e. let f_ℓ be sufficiently smooth. How smooth is $\text{proj}_{C(x_u)}(\ldots)$ w.r.t. (x_u, x_ℓ) ?

Three easy special cases for fixed x_u :

• $\operatorname{proj}_{C(x_u)}(\cdot) = \operatorname{id} \operatorname{within} \operatorname{int}(C(x_u)).$

• $y \in bd(C(x_u))$; direction $d \in \mathbb{R}^{n_\ell}$ given:

 $(\operatorname{proj}_{\mathcal{C}(x_u)})'_+(y;d) = \operatorname{proj}_{\mathcal{T}(x_u,y)}(d),$

where $T(x_u, y)$ is the tangent cone of $C(x_u)$ at y (Zarantonello 1971).

• Let $C(x_u)$ have a \mathbb{C}^2 -boundary. Then, proj_{$C(x_u)$}(\cdot) $\in \mathbb{C}^1(\mathbb{R}^{n_\ell} \setminus C(x_u))$, and explicit representations of the derivative exist (Holmes 1973).

イロン 不良 とくほう 不良 とうほう

How smooth is $P(x_u, x_\ell) = \text{proj}_{C(x_u)} (x_\ell - \nabla_{x_\ell} f_\ell(x_u, x_\ell)) - x_\ell$? I.e. let f_ℓ be sufficiently smooth. How smooth is $\text{proj}_{C(x_u)}(\ldots)$ w.r.t. (x_u, x_ℓ) ?

Three easy special cases for fixed x_u :

- $\operatorname{proj}_{C(x_u)}(\cdot) = \operatorname{id} \operatorname{within} \operatorname{int}(C(x_u)).$
- $y \in bd(C(x_u))$; direction $d \in \mathbb{R}^{n_\ell}$ given:

$$(\operatorname{proj}_{C(x_u)})'_+(y;d) = \operatorname{proj}_{T(x_u,y)}(d),$$

where $T(x_u, y)$ is the tangent cone of $C(x_u)$ at y (Zarantonello 1971).

• Let $C(x_u)$ have a \mathbb{C}^2 -boundary. Then, proj_{$C(x_u)$}(\cdot) $\in \mathbb{C}^1(\mathbb{R}^{n_\ell} \setminus C(x_u))$, and explicit representations of the derivative exist (Holmes 1973).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うらつ

How smooth is $P(x_u, x_\ell) = \text{proj}_{C(x_u)} (x_\ell - \nabla_{x_\ell} f_\ell(x_u, x_\ell)) - x_\ell$? I.e. let f_ℓ be sufficiently smooth. How smooth is $\text{proj}_{C(x_u)}(\ldots)$ w.r.t. (x_u, x_ℓ) ?

Three easy special cases for fixed x_u :

- $\operatorname{proj}_{C(x_u)}(\cdot) = \operatorname{id} \operatorname{within} \operatorname{int}(C(x_u)).$
- $y \in bd(C(x_u))$; direction $d \in \mathbb{R}^{n_\ell}$ given:

$$(\operatorname{proj}_{C(x_u)})'_+(y;d) = \operatorname{proj}_{T(x_u,y)}(d),$$

where $T(x_u, y)$ is the tangent cone of $C(x_u)$ at y (Zarantonello 1971).

• Let $C(x_u)$ have a \mathbb{C}^2 -boundary. Then, $\operatorname{proj}_{C(x_u)}(\cdot) \in \mathbb{C}^1(\mathbb{R}^{n_\ell} \setminus C(x_u))$, and explicit representations of the derivative exist (Holmes 1973).

<ロト (四) (日) (日) (日) (日) (日) (日)

Theorem (Directional Differentiability) Assume the following:

- $f_{\ell} \in \mathbf{C}^2(\mathbb{R}^{n_u} \times \mathbb{R}^{n_{\ell}}, \mathbb{R}).$ and $g_{\ell} \in \mathbf{C}^2(\mathbb{R}^{n_u} \times \mathbb{R}^{n_{\ell}}, \mathbb{R}^{m_{\ell}}).$
- **2** For each $x_u \in \mathbb{R}^{n_u}$, $g_{\ell,i}(x_u, \cdot)$ is convex.
- Slater's condition for each lower level problem: for each $x_u \in \mathbb{R}^{n_u}$, there exists a $z \in \mathbb{R}^{n_\ell}$ with $g_{\ell,i}(x_u, z) < 0$ for all *i*.
- There exists a constant $\alpha > 0$, such that, for all (x_u, x_ℓ) :

 $\|(\nabla_{y}g_{\ell}(x_{u}, y(x_{u}, x_{\ell})))_{[:,i:g_{\ell,i}(x_{u}, P(x_{u}, x_{\ell}) - x_{\ell}) = 0]}v\| \geq \alpha \|v\|$

for all $v \in \mathbb{R}^{\{i:g_{\ell,i}(x_u, P(x_u, x_\ell) - x_\ell) = 0\}}$.

Then, P is directionally differentiable at (x_u, x_ℓ) in an arbitrary direction $d \in \mathbb{R}^{n_u} \times \mathbb{R}^{n_\ell}$ and the forward and backward directional differentials can be computed by solving some explicitly known QPs.

<ロト (四) (日) (日) (日) (日) (日) (日)

Theorem (Gateaux Differentiability) Let the same assumptions as in the last theorem hold and let the function g_{ℓ} not depend on x_u . Then, the function P is Gateaux differentiable if and only if strict complementarity holds:

$$\{i: g_{\ell,i}(P(x_u, x_\ell) - x_\ell) = 0\} = \{j: \lambda_j(x_u, x_\ell) > 0\},\$$

where $\lambda_i(x_u, x_\ell)$ are the Lagrangians of the projection problem

$$\min_{y} ||y - x_{\ell} + \nabla_{x_{\ell}} f_{\ell}(x_{u}, x_{\ell})||$$

subject to $g_{\ell}(y) \leq 0.$

Again, differentials can be computed by solving some explicitly known QPs.

・ロト ・ 同ト ・ ヨト ・ ヨト - 三日

Theorem Let $\nabla_{x_{\ell}} f_{\ell}$ be piecewise analytic; let f_u be Lipschitz continuous. Let $C : x_u \mapsto C(x_u)$ be continuous and convex for all x_u and let the mapping have the following property: for each $x_u \in \mathbb{R}^{n_u}$ and for each $y \in bd(C(x_u))$ let there be a neighbourhood U of y such that there exists finitely many analytic and strongly convex functions $g_i(x_u, \cdot)$ such that

$$C(x_u) \cap U = \{x_\ell \mid g_i(x_u, x_\ell) \leq 0 \ \forall i\}.$$

Let $\{(x_u, x_\ell) | g_u(x_u, x_\ell) \le 0\}$ be compact and subanalytic. Then, there exists a constant $\beta^* > 0$ such that for all $\beta \ge \beta^*$ we have that

 $\|P(x_u, x_\ell)\|_1^{1/\beta}$

is an exact penalty function for the reformulated problem.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Current Section

Problem Statement

2 A Slight Detour: Optimizing over Abstract Sets

3 Application to Bilevel Optimization

4 Theoretical Results

5 Numerical Results

6 Lessons Learnt & Future Plans

A D N A B N A B N A B

Very preliminary results.

- Purpose: sanity check. Does the reformulation make sense at all?
- Lazy approach: reformulated problem solved with SLP/SQP code with l₁-penalty for constraints and nonsmooth step length algorithm. (Previously implemented for ESA, European Space Agency.)
- Oifferentials approximated by finite differences.

イロト イポト イヨト イヨ

Random bilinear problems with $n_u = n_\ell = 10$, $m_u = 1$, $m_\ell = 2$, feasibility & optimality tolerance 1e-6:

prob.	1	2	3	4	5	6	7	8	9	10
SLP iter	65	25	17	19	27	60	117	234	97	7
SQP iter	10f	43	6f	4f	11	15	5f	12	14	5

- All problems solved to specified accuracy by SLP.
- Central differences perform better than forward differences. (In contrary to theory?!)
- SQP performance sensitive to upper and lower starting point: code can jam at an infeasible point, restoration phase then unsuccessful.

<ロト (四) (日) (日) (日) (日) (日) (日)

Test problems from literature, reformulated problems solved with IPOPT, all other settings as before.

problem	iter	feval
Shimizu & Aiyoshi I	170	932
Shimizu & Aiyoshi II	19	23
Bard1	27	78
Bard2	3000*	*
Aiyoshi & Shimuzu	12	18
Ye, Zhu, & Zhu	31	111

イロン 不得 とくほ とくほう 一座

Current Section

Problem Statement

- 2 A Slight Detour: Optimizing over Abstract Sets
- 3 Application to Bilevel Optimization
- 4 Theoretical Results
- 5 Numerical Results

A D N A B N A B N A B

Lessons learnt & Future Plans

- Reformulation provides flexible framework for bilevel problems.
- Can be approached with a variety of algorithms. What is the best approach to solve the reformulated problem?
- No assumption on uniqueness of lower level solutions.
- Further tests necessary to ascertain performance of the approach.
- Generalization to multilevel problems possible.
- Generalization to multiobjective lower level problems?

イロト イポト イヨト イヨト

Questions?

Further information:

J.Fliege@soton.ac.uk www.cormsis.soton.ac.uk

3

イロト イポト イヨト イヨト