Coordinated Emergency Evacuation

Heng-Soon Gan¹ Mingzheng Shi² Kai-Florian Richter³ Stephan Winter⁴

¹Department of Mathematics and Statistics, The University of Melbourne, Australia.
 ²Centre for Technology Infusion, La Trobe University, Australia
 ³Department of Geography, University of Zurich, Switzerland
 ⁴Department of Infrastructure Engineering, The University of Melbourne, Australia

21st June 2013

The AMSI worshop on Mathematics of Transportation Networks

Presentation Outline

The Evacuation Scenario

- The Evacuation Coordination Problem
- Optimized Results
- Onclusions
- **5** Future work

NOTE:

- This is only a **preliminary** work.
- Stochastic elements not (yet) considered.
- Proof of concept of the methodology.

The Emergency Evacuation Problem

The scenario:

- Disaster detected.
- Region(s) at risk identified.
- Evacuation order issued for the region(s) at risk.

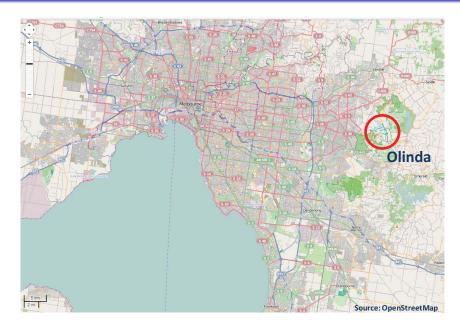
Aim:

We would like to evacuate the region(s) at risk as fast as possible.

- Region receives evacuation order to start evacuating at time *T*.
- Between now and time *T*, evacuees prepare for evacuation.
- On or after time T, evacuation begins.

We further assume that the evacuation order is issued **sufficiently in advance**, so that road infrastructure in the region is not currently affected by the disaster.

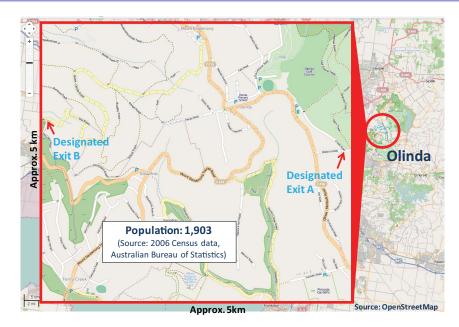
During the evacuation period:

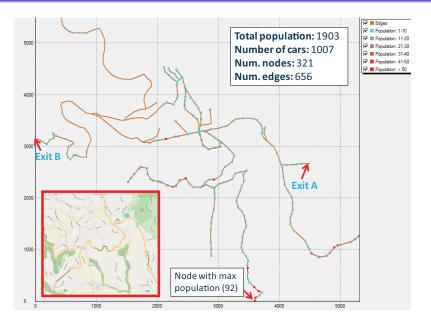

- All evacuees depart at time T.
- All evacuees are headed for their closest exit, via the shortest route (to the exit).

Is this a good idea?

Optimized Results

Future

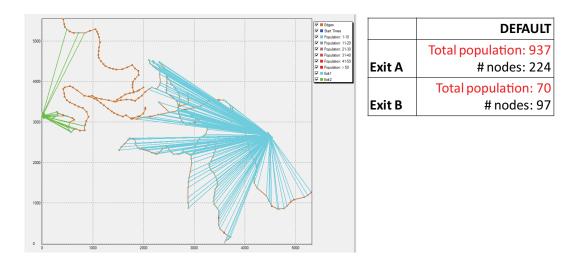

The Olinda Region (Dandenong Ranges)


Optimized Results

Future

The Olinda Region (Dandenong Ranges)

The Olinda Region (Dandenong Ranges)



The DEFAULT case

Simulation:

- All evacuees depart at time T = 0.
- All evacuees are headed for their closest exit, via the shortest route (to the exit).
- No dynamic routing.
- Exits are uncapacitated.

The DEFAULT case - closest exits

iWays - A Microscopic Traffic Simulator

Developed by Rao Kotagiri, Lars Kulik and their students at the Department of Computing and Information Systems, The University of Melbourne.

- User interface.
- Incorporates Open Street Maps.

Based on the Intelligent Driver Model developed by Martin Treiber, Ansgar Hennecke and Dirk Helbing (Institute of Theoretical Physics, University of Stuttgart, Germany)

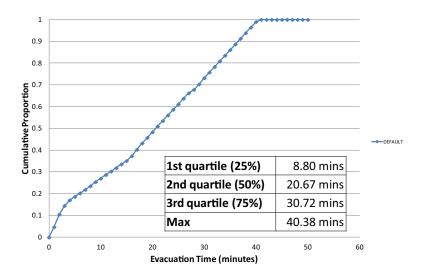
- A car-following model: acceleration/decelaration decisions depend on a car's own speed, its position, and the speed of the "leading vehicle" immediately ahead.
- The model solves a coupled ordinary differential equations in discrete time (speed, acceleration and vehicle gap).

iWays - Some key parameters

Minimum bumper-to-bumper distance to the front vehicle: **3 metres**

Desired safety time headway when following other vehicles: **1.5** seconds

Desired speed when driving on a free road: 40 km/h


Acceleration in everyday traffic: 0.3 m/s^2

Comfortable braking deceleration in everyday traffic: 3 m/s^2

The DEFAULT case

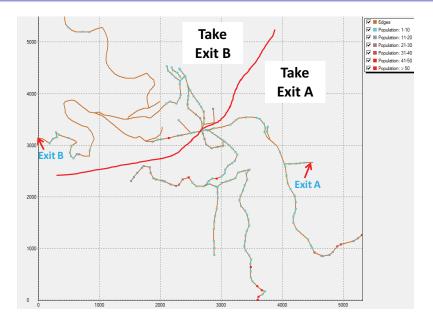
(Show "DEFAULT" simulation)

The DEFAULT case

The DEFAULT case

Congestion is a problem (obviously).

How can congestions be managed *during evacuations*?

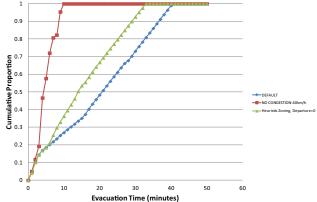

- **Planning phase** (staged evacuation/departure time coordination, exit assignment, route assignment)
- Realtime (e.g. control strategies)

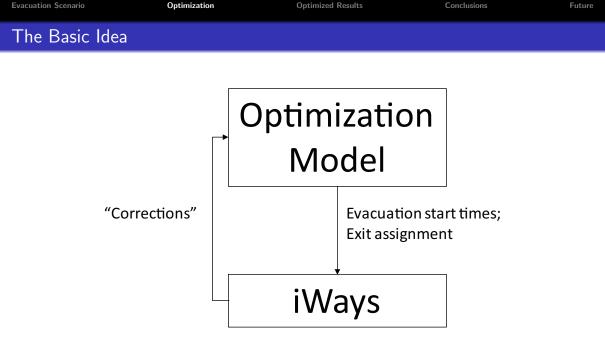
Optimized Results

Conclusions

Future

What about "Heuristic Zoning"?


Heuristic Zoning, Departure=0

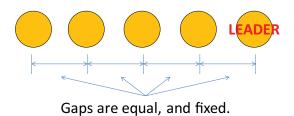

	DEFAULT	Heuristic Zoning, Departure=0	0.9				F.	/	*****		
1st quartile (25%)	8.80 mins	6.92 mins	0.8	<u> </u>		-					
2nd quartile (50%)	20.67 mins	13.93 mins	c 0.7								
3rd quartile (75%)	30.72 mins	23.16 mins	įĘ			E.	A ROAD AND A				
Max	40.38 mins	32.95 mins	6 0.6				•				
Improvement% over	DEFAULT		0.5 Otto								
	DEFAULT	Heuristic Zoning, Departure=0	0.7 0.6 0.5 0.5 0.5 0.3		F.						Heuristic Zoning, Departure
1st quartile (25%)	*	21%	0.2		a far a start a						
2nd quartile (50%)	*	33%									
3rd quartile (75%)	*	25%	0.1								
Мах	*	18%	0	<u> </u>							
				0	10	20 Evacuati	30 ion Time (r	40 ninutes)	50	60	

In the ideal world...

	DEFAULT	No congestion (40km/h)	Heuristic Zoning, Departure=0
1st quartile (25%)	8.80 mins	3.22 mins	6.92 mins
2nd quartile (50%)	20.67 mins	4.32 mins	13.93 mins
3rd quartile (75%)	30.72 mins	6.25 mins	23.16 mins
Max	40.38 mins	9.02 mins	32.95 mins

Improvement% over DEFAULT						
	DEFAULT	No congestion (40km/h)	Heuristic Zoning, Depature=0			
1st quartile (25%)	*	63%	21%			
2nd quartile (50%)	*	79%	33%			
3rd quartile (75%)	*	80%	25%			
Max	*	78%	18%			

The Evacuation Coordination Problem


Aim: Given the set of nodes and their corresponding shortest routes to all exits, we wish to determine, *for each node with at least one evacuee*, its exit location and departure time, such that the *sum of all evacuation times* is minimized and arc capacity requirements are met.

NOTE: The "System Optimal Dynamic Traffic Assignment" problem is "demand driven" and allows for dynamic routing.

The Evacuation Coordination Problem - evacuees at the same location

For example, at a location with 5 evacuees,

Travelling at the same speed.

The Evacuation Coordination Problem - Sets

We define the following sets:

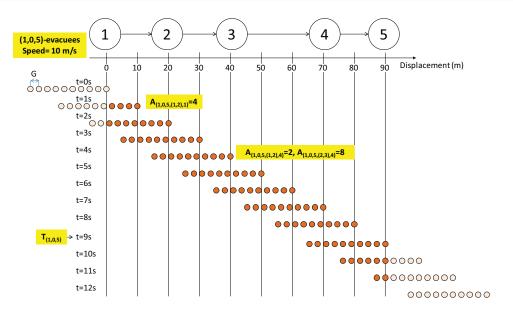
- $\boldsymbol{\mathsf{N}},$ the set of all nodes;
- $\mathbf{N}^{E} \subseteq \mathbf{N}$, the set of all nodes with at least one evacuee;
- A, the set of all arcs;
- E, the set of all exits;

 $\mathbf{T} = \{1, 2, 3...\}$, the set of all time periods; $\mathbf{T}^D = \{1, 2, 3, ..., T^{max}\} \subset \mathbf{T}$, the set of time periods when evacuees can depart.

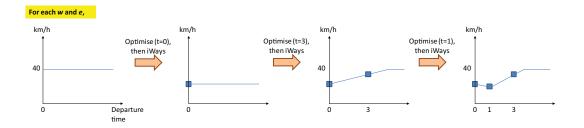
The Evacuation Coordination Problem - Parameters

And the parameters for the model are:

$$\begin{split} \Delta &= \text{size of one time period;} \\ G &= \text{minimum bumper-to-bumper distance;} \\ L_i &= \text{length of arc } i \in \mathbf{A}; \end{split}$$


 $C_i = \lfloor \frac{L_i}{G} \rfloor$ capacity of arc $i \in \mathbf{A}$

 $P_w = population size at node w \in \mathbf{N}^E$;


We will use the notation (w, t, e) to denote the evacuees, whose "leader" departs at time $t \in \mathbf{T}^{D}$ from their origin at node $w \in \mathbf{N}^{E}$ heading for the exit $e \in \mathbf{E}$ using the shortest route. The rest of the population follows the leader at a gap G.

 V_{wte} = average speed of the (w, t, e)-evacuees; T_{wte} = the time period when the *leader* of the (w, t, e)-evacuees arrives at exit $e \in \mathbf{E}$; $A_{wtei\theta}$ = the number of (w, t, e)-evacuees on arc $i \in \mathbf{A}$ at time $\theta \in \mathbf{T}$;

The Evacuation Coordination Problem - the parameter $A_{wtei\theta}$

With updated information from the simulator (iWays), the average speed, V_{wte} , of (w, t, e)-evacuees is corrected in an iterative manner.

The Evacuation Coordination Problem - decision variables

$$egin{aligned} x_{wte} &= egin{cases} 1, & \textit{if the } (w,t,e) - \textit{evacuees are used}; \ 0, & \textit{otherwise}. \end{aligned}$$
 for $w \in \mathbf{N}^E, \ t \in \mathbf{T}^D ext{ and } e \in \mathbf{E}; \end{aligned}$

 $a_{i\theta}$ = additional capacity on arc $i \in \mathbf{A}$ at time $\theta \in \mathbf{T}$.

The Evacuation Coordination Problem - problem formulation

$$\min \sum_{w \in \mathbf{N}^{E}} \sum_{t \in \mathbf{T}^{D}} \sum_{e \in \mathbf{E}} S_{wte} x_{wte} + \sum_{i \in \mathbf{A}} \sum_{\theta \in \mathbf{T}} \Pi_{\theta} a_{i\theta}$$
(1)

s.t.

$$\sum_{t \in \mathbf{T}^{D}} \sum_{e \in \mathbf{E}} x_{wte} = 1, \quad \forall w \in \mathbf{N}^{E}$$
(2)

$$\sum_{w \in \mathbf{N}^{E}} \sum_{t \in \mathbf{T}^{D}} \sum_{e \in \mathbf{E}} A_{wtei\theta} x_{wte} \leq C_{i} + a_{i\theta}, \quad \forall i \in \mathbf{A}, \theta \in \mathbf{T}$$
(3)

$$x_{wte} \in \{0, 1\}, \quad \forall w \in \mathbf{N}^{E}, t \in \mathbf{T}^{D}, e \in \mathbf{E}$$
(4)
$$a_{i\theta} \ge 0, \quad \forall i \in \mathbf{A}, \theta \in \mathbf{T}$$
(5)

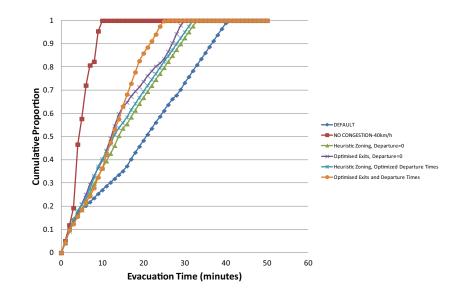
The Evacuation Coordination Problem - problem formulation

... where,

$$S_{wte} = rac{P_w}{2} \left(2(T_{wte} - 1)\Delta + rac{(P_w - 1)G}{V_{wte}}
ight)$$

and

$${\sf \Pi}_{ heta}=250-rac{200}{(1.05)^{ heta-1}}$$

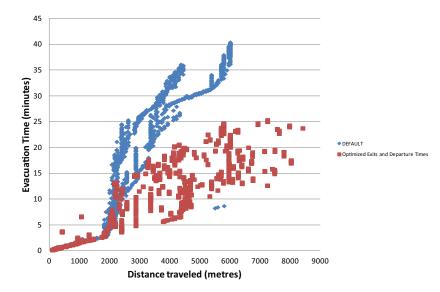

Other parameter settings:
$$\begin{split} \Delta &= 1 \text{ minute} \\ G &= 3 \text{ metres} \\ \mathbf{T} &= \{1, 2, 3, \dots, 50\} \text{ (50 minutes)} \\ \mathbf{T}^D &= \{1, 2, 3, \dots, 11\} \text{ (first 10 minutes)} \end{split}$$

Optimized scenarios

- Heuristic zoning, optimized departure times;
- Optimized exits, departure=0;
- Optimized exits and departure times.

Optimised with FICO Xpress (Xpress Optimizer 23.01.03)

Optimized scenarios - results

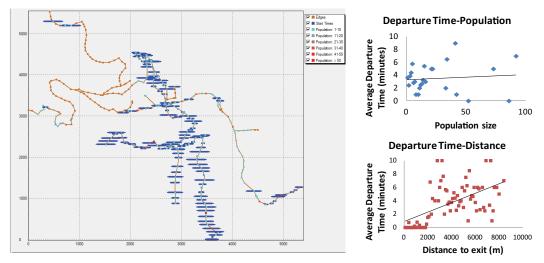


Optimized scenarios - results

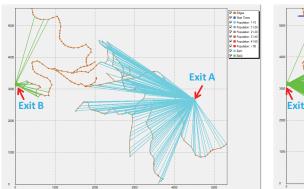
	DEFAULT	No congestion (40km/h)	Heuristic Zoning, Departure=0	Heuristic Zoning, Optimized Departure Times	Optimized Exits, Departure=0	Optimized Exits and Depature Times
1st quartile (25%)	8.80 mins	3.22 mins	6.92 mins	6.41 mins	6.00 mins	7.24 mins
2nd quartile (50%)	20.67 mins	4.32 mins	13.93 mins	12.78 mins	12.17 mins	12.42 mins
3rd quartile (75%)	30.72 mins	6.25 mins	23.16 mins	22.19 mins	20.58 mins	17.46 mins
Max	40.38 mins	9.02 mins	32.95 mins	32.00 mins	29.8 mins	25.33 mins

Improvement% over DEFAULT							
	DEFAULT	No congestion (40km/h)	Heuristic Zoning, Depature=0	Heuristic Zoning, Optimized Departure Times	Optimized Exits, Departure=0	Optimized Exits and Depature Times	
1st quartile (25%)	*	63%	21%	27%	32%	18%	
2nd quartile (50%)	*	79%	33%	38%	41%	39%	
3rd quartile (75%)	*	80%	25%	28%	33%	43%	
Max	*	78%	18%	21%	26%	37%	

Optimized scenarios - results

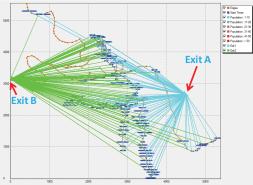


Optimized Results


Future

Optimized scenarios - departure times distributions

Optimized exits and departure times:



Optimized scenarios - exits

DEFAULT

Optimized exits and departure times

	DEFAULT	Optimized Exits and Departure Times
	Total population: 937	Total population: 609
Exit A	# nodes: 224	# nodes: 128
	Total population: 70	Total population: 398
Exit B	# nodes: 97	# nodes: 193

- An optimization-simulation framework introduced.
- With the appropriate "feedback" from the simulator, we may only be required to solve a simpler "surrogate" optimization problem. (c.f. solving the "system optimal dynamic traffic assignment" problem)
- The importance of staged evacuations and exit assignments in relieving congestions (re)emphasized. (consistent with the literature)
- Under ideal conditions, the optimized exits and departure times presents 37% improvement over the DEFAULT case, in terms of maximum evacuation time.

Optimization

Optimized Results

Future

- Refine optimization-simulation framework;
- Verify repeatability of our method;
- Verify scalability of our method;
- Explore the "explainability" of the optimized solutions;
- Introduce stochastic events (e.g. disruptions) and ad-hoc response.

(Show "optimized exits and departure times" simulation)