Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Open Problems

Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems

Tim Garoni

School of Mathematical Sciences Monash University

Australian Government

Australian Research Council

Exclusion Processes

Simulations 00000 Hysteresis & the 2-bin model

Transportation Research Part B 49 (2013) 1-23

A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems

Lele Zhang^{a,b}, Timothy M Garoni^{b,*}, Jan de Gier^c

³ ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia

^b School of Mathematical Sciences, Monash University, Clayton, Victoria 3800, Australia

^c Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia

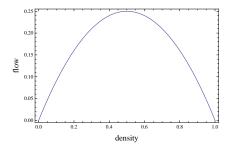
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the fundamental diagram (Greenshields, 1935)



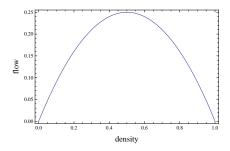
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the fundamental diagram (Greenshields, 1935)



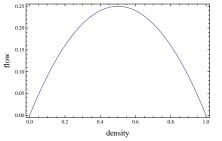
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the fundamental diagram (Greenshields, 1935)



Intuitively makes sense to have a unimodal FD in one dimension

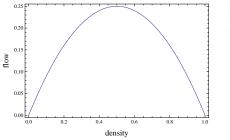
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the fundamental diagram (Greenshields, 1935)



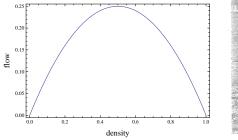
- Intuitively makes sense to have a unimodal FD in one dimension
- What should happen in a network?

Exclusion Processes

Simulations 00000 Hysteresis & the 2-bin model

Fundamental Diagram

- Consider a one-dimensional flow (vehicles along a freeway)
- The functional relationship between flow and density is the fundamental diagram (Greenshields, 1935)



- Intuitively makes sense to have a unimodal FD in one dimension
- What should happen in a network?
- How should one even define network flow? (No prescribed direction)

Exclusion Processes

Simulations

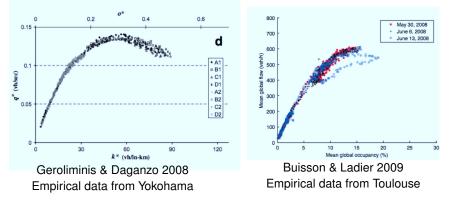
Hysteresis & the 2-bin model

Macroscopic Fundamental Diagrams

- Simplest idea: relate arithmetic means of link density and flow
- If network has link set Λ:

$$ho = rac{1}{|\Lambda|} \sum_{\lambda \in \Lambda}
ho_{\lambda}, \qquad \qquad J = rac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} J_{\lambda}$$

• ρ_{λ} is density of link λ and J_{λ} is its flow



Exclusion Processes

Simulations 00000 Hysteresis & the 2-bin model

- Existence of MFDs is trivial:
 - If all links have the same FD
 - and if the distribution of congestion is always perfectly uniform
 - then network MFD coincides with common link FD

Exclusion Processes

Simulations

Hysteresis & the 2-bin model

- Existence of MFDs is trivial:
 - If all links have the same FD
 - and if the distribution of congestion is always perfectly uniform
 - then network MFD coincides with common link FD
 - This is not very interesting...

- Existence of MFDs is trivial:
 - If all links have the same FD
 - and if the distribution of congestion is always perfectly uniform
 - then network MFD coincides with common link FD
 - This is not very interesting...
- Existence of MFDs is impossible:
 - If one has a network and is free to vary the demand on each link in any way imaginable, then no MFD can exist
 - e.g. half the links have $\rho_{\lambda} = 1$ and other half have $\rho_{\lambda} = 0$, then $\rho = 1/2$ and J = 0
 - e.g. all links have ρ_λ = 1/2, then ρ = 1/2 but J > 0 (could even have J = J_{max})
 - Existence of MFDs clearly not independent of demand

- Existence of MFDs is trivial:
 - If all links have the same FD
 - and if the distribution of congestion is always perfectly uniform
 - then network MFD coincides with common link FD
 - This is not very interesting...
- Existence of MFDs is impossible:
 - If one has a network and is free to vary the demand on each link in any way imaginable, then no MFD can exist
 - e.g. half the links have $\rho_{\lambda} = 1$ and other half have $\rho_{\lambda} = 0$, then $\rho = 1/2$ and J = 0
 - e.g. all links have ρ_λ = 1/2, then ρ = 1/2 but J > 0 (could even have J = J_{max})
 - Existence of MFDs clearly not independent of demand
- MFDs are interesting because there is something in between
- In practice, on many networks the demand will rise and fall in a fairly constrained way during a typical day

Exclusion Processes

Simulations

Hysteresis & the 2-bin model

What are MFDs?

Consider a fixed network with link set Λ First of all, one needs to agree on what ρ and J mean.

- $\rho_{\lambda}(t)$ and $J_{\lambda}(t)$ are stochastic processes
- Aggregate variables

$$ho(t) = rac{1}{|\Lambda|} \sum_{\lambda \in \Lambda}
ho_{\lambda}(t) \qquad \qquad J(t) = rac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} J_{\lambda}(t)$$

- MFD is the relationship between $\mathbb{E}J(t)$ and $\mathbb{E}\rho(t)$
- Can be interested in instantaneous or stationary MFDs

Hysteresis & the 2-bin model

What are MFDs?

Consider a fixed network with link set Λ First of all, one needs to agree on what ρ and J mean.

- $\rho_{\lambda}(t)$ and $J_{\lambda}(t)$ are stochastic processes
- Aggregate variables

$$\rho(t) = rac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} \rho_{\lambda}(t) \qquad \qquad J(t) = rac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} J_{\lambda}(t)$$

- MFD is the relationship between $\mathbb{E}J(t)$ and $\mathbb{E}\rho(t)$
- Can be interested in instantaneous or stationary MFDs
- "Heterogeneity" is also important

$$h(t) = \sqrt{\frac{1}{|\Lambda|} \sum_{\lambda \in \Lambda} [\rho_{\lambda}(t) - \rho(t)]^2}$$

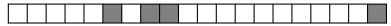
Helbing 2009; Mazloumian, Geroliminis & Helbing 2010; Geroliminis & Sun 2011; de Gier, G & Zhang 2013

- J, ρ, h all stochastic processes
- In time dependent context, heterogeneity can explain hysteresis

Hysteresis & the 2-bin model

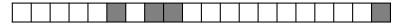
Asymmetric Simple Exclusion Process (ASEP) "Everything should be made as simple as possible, but not simpler"

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining qualitative behaviour of freeway traffic
 - "Phantom" jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete



Asymmetric Simple Exclusion Process (ASEP) "Everything should be made as simple as possible, but not simpler"

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining gualitative behaviour of freeway traffic
 - "Phantom" jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete



- ASEP with open boundaries:
 - If $x_1(t) = 0$, then with probability α , $x_1(t+1) = 1$ For each cell i = 1, ..., L with $x_i(t) = 1$
 - - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t+1) = 0$ and $x_{i+1}(t+1) = 1$
 - Else $x_i(t+1) = 1$
 - If $x_L(t) = 1$, then with probability β , $x_L(t+1) = 0$

Asymmetric Simple Exclusion Process (ASEP) "Everything should be made as simple as possible, but not simpler"

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining gualitative behaviour of freeway traffic
 - "Phantom" jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

- ASEP with open boundaries:
 - If $x_1(t) = 0$, then with probability α , $x_1(t+1) = 1$ For each cell i = 1, ..., L with $x_i(t) = 1$
 - - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t+1) = 0$ and $x_{i+1}(t+1) = 1$
 - Else $x_i(t+1) = 1$
 - If $x_L(t) = 1$, then with probability β , $x_L(t+1) = 0$

Asymmetric Simple Exclusion Process (ASEP) "Everything should be made as simple as possible, but not simpler"

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining gualitative behaviour of freeway traffic
 - "Phantom" jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

- ASEP with open boundaries:
 - If $x_1(t) = 0$, then with probability α , $x_1(t+1) = 1$ For each cell i = 1, ..., L with $x_i(t) = 1$
 - - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t+1) = 0$ and $x_{i+1}(t+1) = 1$
 - Else $x_i(t+1) = 1$
 - If $x_L(t) = 1$, then with probability β , $x_L(t+1) = 0$

Asymmetric Simple Exclusion Process (ASEP) "Everything should be made as simple as possible, but not simpler"

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining gualitative behaviour of freeway traffic
 - "Phantom" jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

- ASEP with open boundaries:
 - If $x_1(t) = 0$, then with probability α , $x_1(t+1) = 1$ For each cell i = 1, ..., L with $x_i(t) = 1$
 - - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t+1) = 0$ and $x_{i+1}(t+1) = 1$
 - Else $x_i(t+1) = 1$
 - If $x_L(t) = 1$, then with probability β , $x_L(t+1) = 0$

Asymmetric Simple Exclusion Process (ASEP) "Everything should be made as simple as possible, but not simpler"

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining gualitative behaviour of freeway traffic
 - "Phantom" jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

- ASEP with open boundaries:
 - If $x_1(t) = 0$, then with probability α , $x_1(t+1) = 1$ For each cell i = 1, ..., L with $x_i(t) = 1$
 - - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t+1) = 0$ and $x_{i+1}(t+1) = 1$
 - Else $x_i(t+1) = 1$
 - If $x_L(t) = 1$, then with probability β , $x_L(t+1) = 0$

Asymmetric Simple Exclusion Process (ASEP) "Everything should be made as simple as possible, but not simpler"

- Want an Ising model of traffic flow
- One-dimensional stochastic cellular automata very popular in statistical mechanics starting in 1990s
 - Such models do a reasonable job of explaining gualitative behaviour of freeway traffic
 - "Phantom" jams emerge as consequence of collective behaviour
- Cellular automata are discrete dynamical systems
- Space, time, and state variables are discrete

- ASEP with open boundaries:
 - If $x_1(t) = 0$, then with probability α , $x_1(t+1) = 1$ For each cell i = 1, ..., L with $x_i(t) = 1$
 - - If $x_{i+1}(t) = 0$ then with probability p, $x_i(t+1) = 0$ and $x_{i+1}(t+1) = 1$
 - Else $x_i(t+1) = 1$
 - If $x_L(t) = 1$, then with probability β , $x_L(t+1) = 0$

Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Open Problems

Nagel-Schreckenberg process

NaSch generalizes ASEP

Hysteresis & the 2-bin model

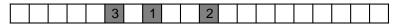
- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}

3 1 2	2
-------	---

Hysteresis & the 2-bin model

Nagel-Schreckenberg process

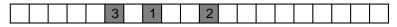
- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}



Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle

Hysteresis & the 2-bin model

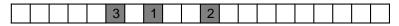
- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}



- ▶ Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let d_n denote the gap in front of the nth vehicle

Hysteresis & the 2-bin model

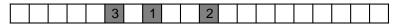
- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}



- Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let *d_n* denote the gap in front of the *nth* vehicle
- The NaSch rules are as follows:

Hysteresis & the 2-bin model

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}



- Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let *d_n* denote the gap in front of the *nth* vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\max})$

Hysteresis & the 2-bin model

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}

- Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let *d_n* denote the gap in front of the *nth* vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\max})$
 - $v_n \mapsto \min(v_n, d_n)$

Hysteresis & the 2-bin model

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}

- Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let *d_n* denote the gap in front of the *nth* vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\max})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n 1, 0)$ with probability p

Hysteresis & the 2-bin model

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}

- Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let *d_n* denote the gap in front of the *nth* vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\max})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$

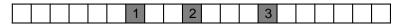
Hysteresis & the 2-bin model

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}

- Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let *d_n* denote the gap in front of the *nth* vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\max})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$

Hysteresis & the 2-bin model

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}



- Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let *d_n* denote the gap in front of the *nth* vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\max})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$

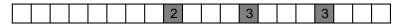
Hysteresis & the 2-bin model

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}

- Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let *d_n* denote the gap in front of the *nth* vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\max})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$

Hysteresis & the 2-bin model

- NaSch generalizes ASEP
 - Vehicles can have different speeds 0, 1, ..., v_{max}



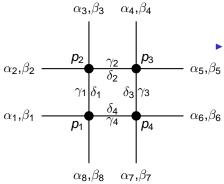
- Let *x_n* and *v_n* denote the position & speed of the *nth* vehicle
- Let *d_n* denote the gap in front of the *nth* vehicle
- The NaSch rules are as follows:
 - $v_n \mapsto \min(v_n + 1, v_{\max})$
 - $v_n \mapsto \min(v_n, d_n)$
 - $v_n \mapsto \max(v_n 1, 0)$ with probability p
 - $x_n \mapsto x_n + v_n$

Hysteresis & the 2-bin model

NetNaSch model

Goal: Minimal stat-mech model that can mimic realistic traffic signals

Take multiple NaSch models and glue them together



• Need to include:

- Multiple lanes with lane changing
- Turning decisions (random)
- Input and output (endogenous/exogenous)
- Appropriate rules for how vehicles traverse intersections

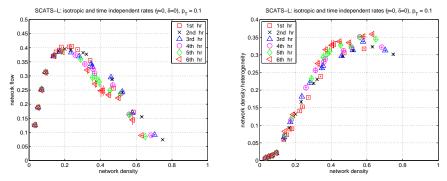
Varying all the $\alpha_{\lambda}, \beta_{\lambda}, \gamma_{\lambda}, \delta_{\lambda}, p_{n}...$ cannot give an MFD Varying a lower-dimensional space of parameters can

Exclusion Processes

Simulations •0000 Hysteresis & the 2-bin model

Static demand – Approach to Stationarity

Generate MFD by setting $\alpha_{\lambda} = \alpha$, $\beta_{\lambda} = \beta$, $\gamma_{\lambda} = \delta_{\lambda} = 0$ for all $\lambda \in \Lambda$



- Intersections governed by model of SCATS with adaptive linking
- Instantaneous MFD converges to stationary curve
- Although there is uniform boundary demand, the density distribution in the network is not homogeneous

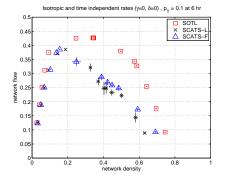
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Static demand – Stationary MFDs

Use MFDs to quantify performance of signal systems



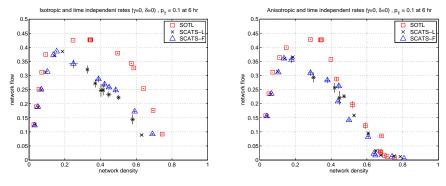
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Static demand – Stationary MFDs

Use MFDs to quantify performance of signal systems



Isotropic boundary demand

Higher demand on west side

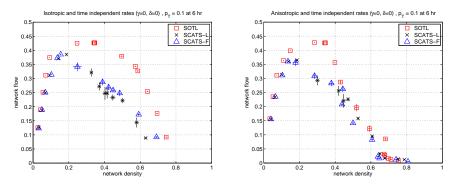
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Static demand – Stationary MFDs

Use MFDs to quantify performance of signal systems



Isotropic boundary demand Higher demand on west side

Anisotropic demand can still produce well-defined MFD

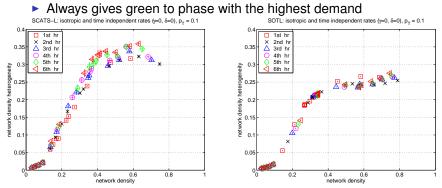
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Self-organizing traffic lights

SOTL is a toy model of a highly adaptive acyclic signal system



SOTL has lower heterogeneity than SCATS

Accounts for its better MFD

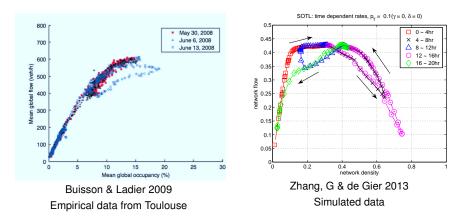
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Time-dependent demand

- Vary α, β over 24 hours to mimic am/pm peaks
- Hysteresis observed clockwise and anticlockwise



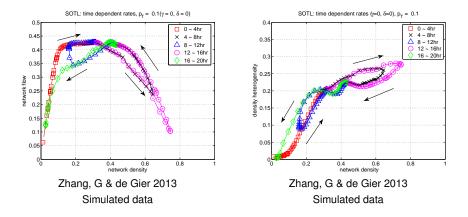
Exclusion Processes

Simulations

Hysteresis & the 2-bin model

Time-dependent demand

Hysteresis in MFD consequence of heterogeneity



Simulations

Hysteresis & the 2-bin model

Two-bin model

- Consider two adjacent networks (bins) exchanging vehicles
- Each bin has same well-defined MFD $J(\rho)$

$$\frac{d\rho_1}{dt} = \frac{a_1 - b_1 J(\rho_1) + p_2 J(\rho_2) - p_1 J(\rho_1)}{L_1}$$
$$\frac{d\rho_2}{dt} = \frac{a_2 - b_2 J(\rho_2) + p_1 J(\rho_1) - p_2 J(\rho_2)}{L_2}$$

Simulations

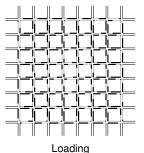
Hysteresis & the 2-bin model

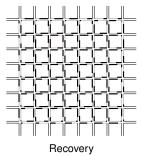
Two-bin model

- Consider two adjacent networks (bins) exchanging vehicles
- Each bin has same well-defined MFD $J(\rho)$

$$\frac{d\rho_1}{dt} = \frac{a_1 - b_1 J(\rho_1) + p_2 J(\rho_2) - p_1 J(\rho_1)}{L_1}$$
$$\frac{d\rho_2}{dt} = \frac{a_2 - b_2 J(\rho_2) + p_1 J(\rho_1) - p_2 J(\rho_2)}{L_2}$$

Let bin 1 be boundary layer, bin 2 the interior





Simulations

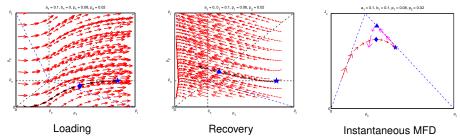
Hysteresis & the 2-bin model

Two-bin model

- Consider two adjacent networks (bins) exchanging vehicles
- Each bin has same well-defined MFD $J(\rho)$

$$\frac{d\rho_1}{dt} = \frac{a_1 - b_1 J(\rho_1) + p_2 J(\rho_2) - p_1 J(\rho_1)}{L_1}$$
$$\frac{d\rho_2}{dt} = \frac{a_2 - b_2 J(\rho_2) + p_1 J(\rho_1) - p_2 J(\rho_2)}{L_2}$$

Let bin 1 be boundary layer, bin 2 the interior



Simulations

Hysteresis & the 2-bin model

Open Problems

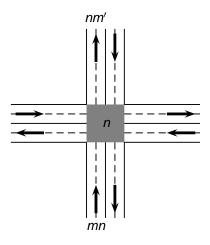
- Can we observe anticlockwise hysteresis empirically?
- Can we understand cross-correlations between flow, density and density heterogeneity?
- How does driver adaptivity affect the shape of MFDs?

Open Problems

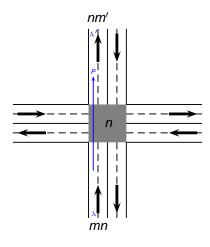
- Can we observe anticlockwise hysteresis empirically?
- Can we understand cross-correlations between flow, density and density heterogeneity?
- How does driver adaptivity affect the shape of MFDs?
- How should one partition networks in order to produce well-defined MFDs?
- Several groups are attempting to use MFDs as a basis for perimeter control?

Fundamental Diagrams	Exclusion Processes	Simulations	Hysteresis & the 2-bin model	Open Problems
0000	000	00000	00	

Consider a particular node *n* in a traffic network



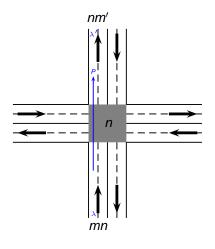
Consider a particular node *n* in a traffic network



Definition

A path *P* is an ordered pair of lanes (λ, λ') with $\lambda \in mn$ and $\lambda' \in nm'$

Consider a particular node *n* in a traffic network

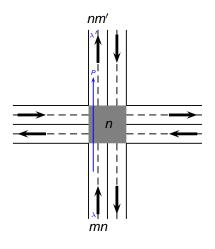


Definition

A path *P* is an ordered pair of lanes (λ, λ') with $\lambda \in mn$ and $\lambda' \in nm'$

 Vehicles can only move from one link to another along paths

Consider a particular node *n* in a traffic network

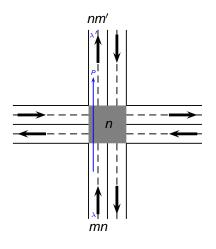


Definition

A path *P* is an ordered pair of lanes (λ, λ') with $\lambda \in mn$ and $\lambda' \in nm'$

- Vehicles can only move from one link to another along paths
- Ignore the actual dynamics through the intersection

Consider a particular node *n* in a traffic network



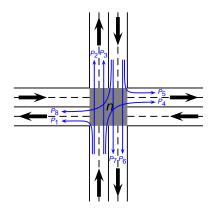
Definition

A path *P* is an ordered pair of lanes (λ, λ') with $\lambda \in mn$ and $\lambda' \in nm'$

- Vehicles can only move from one link to another along paths
- Ignore the actual dynamics through the intersection
- No cells in the intersection we use paths to glue the CA on adjacent links together

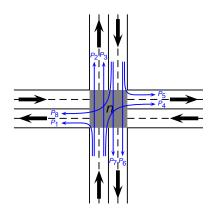
We can't simply let all paths be traversed at once – vehicles would crash inside the intersection

We can't simply let all paths be traversed at once – vehicles would crash inside the intersection



Definition

We can't simply let all paths be traversed at once – vehicles would crash inside the intersection

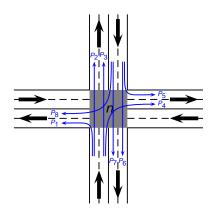


Definition

A phase \mathcal{P} of node *n* is a subset of the paths belonging to *n*

 At each instant node *n* has a current phase *P*_{current}

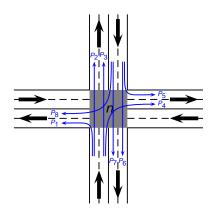
We can't simply let all paths be traversed at once – vehicles would crash inside the intersection



Definition

- At each instant node *n* has a current phase *P*_{current}
- Only paths in P_{current} may be traversed

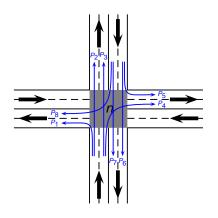
We can't simply let all paths be traversed at once – vehicles would crash inside the intersection



Definition

- At each instant node *n* has a current phase *P*_{current}
- Only paths in P_{current} may be traversed
- Implement traffic signals using phases

We can't simply let all paths be traversed at once – vehicles would crash inside the intersection

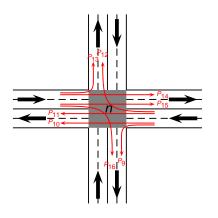


Definition

- ► At each instant node *n* has a current phase P_{current}
- Only paths in P_{current} may be traversed
- Implement traffic signals using phases
- Time t:

$$\mathcal{P}_{\text{current}} = \mathcal{P}_1 = \{ \boldsymbol{P}_1, \dots, \boldsymbol{P}_8 \}$$

We can't simply let all paths be traversed at once – vehicles would crash inside the intersection



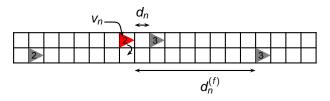
Definition

- ► At each instant node *n* has a current phase P_{current}
- Only paths in P_{current} may be traversed
- Implement traffic signals using phases

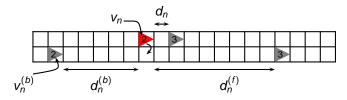
Time
$$t + \Delta t$$
:
 $\mathcal{P}_{\text{current}} = \mathcal{P}_2 = \{P_9, \dots, P_{16}\}$

			2	3						
2			1					8		

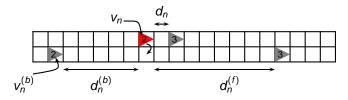
In order to model freeways or urban networks we need multiple lanes and lane changing



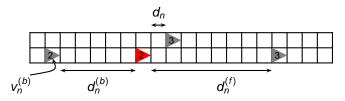
► If min(v_n + 1, d^(f)_n, v_{max}) > min(v_n + 1, d_n, v_{max}) the lane change is desirable



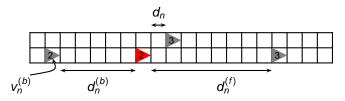
- ► If min(v_n + 1, d^(f)_n, v_{max}) > min(v_n + 1, d_n, v_{max}) the lane change is desirable
- If $d_n^{(b)} \ge v_n^{(b)}$ the lane change is safe



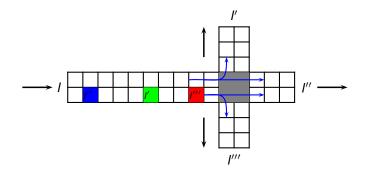
- ► If min(v_n + 1, d^(f)_n, v_{max}) > min(v_n + 1, d_n, v_{max}) the lane change is desirable
- If $d_n^{(b)} \ge v_n^{(b)}$ the lane change is safe
- If desirable and safe accept with probability p_{change}

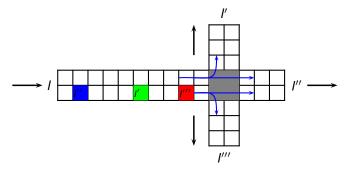


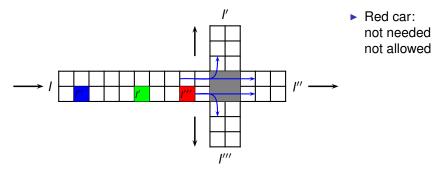
- ► If min(v_n + 1, d^(f)_n, v_{max}) > min(v_n + 1, d_n, v_{max}) the lane change is desirable
- If $d_n^{(b)} \ge v_n^{(b)}$ the lane change is safe
- If desirable and safe accept with probability p_{change}

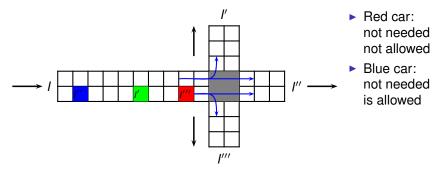


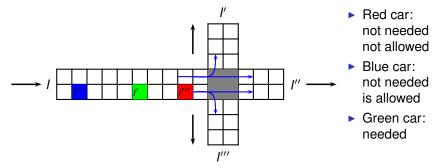
- ► If min(v_n + 1, d^(f)_n, v_{max}) > min(v_n + 1, d_n, v_{max}) the lane change is desirable
- If $d_n^{(b)} \ge v_n^{(b)}$ the lane change is safe
- If desirable and safe accept with probability p_{change}
- ► Allow only left→right (right→left) at odd (even) time steps

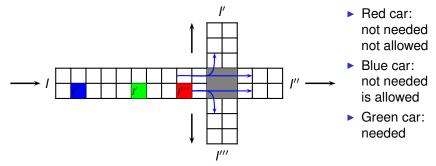






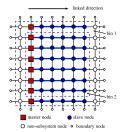




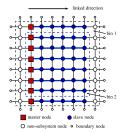


- Each vehicle wants to be in a lane for which there exists a path consistent with its desired turn
- Only allow dynamical lane changing if it doesn't contradict topological lane changing – only blue car can

- We must consider open systems
- So some links only have one endpoint in the network

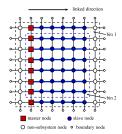


- We must consider open systems
- So some links only have one endpoint in the network



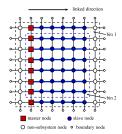
Do not model traffic flow on boundary links

- We must consider open systems
- So some links only have one endpoint in the network



- Do not model traffic flow on boundary links
 - Each boundary lane λ has a fixed average density $\overline{\rho_{\lambda}}$

- We must consider open systems
- So some links only have one endpoint in the network



- Do not model traffic flow on boundary links
 - Each boundary lane λ has a fixed average density $\overline{\rho_{\lambda}}$
 - This is a boundary condition

Each vehicle should know which link it wants to turn into when it reaches the end of its current link

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link
- In this sense the model should be agent-based

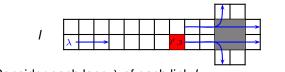
- Each vehicle should know which link it wants to turn into when it reaches the end of its current link
- In this sense the model should be agent-based
- A sophisticated approach would use origin-destination data and route planning algorithms

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link
- In this sense the model should be agent-based
- A sophisticated approach would use origin-destination data and route planning algorithms
- We take a simple approach

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link
- In this sense the model should be agent-based
- A sophisticated approach would use origin-destination data and route planning algorithms
- We take a simple approach
- ► For each node *n*, inlink l = mn, & outlink l' = nm', we input $\mathbb{P}(l \rightarrow l') = \mathbb{P}(\text{vehicle on link } l \text{ wants to turn into link } l')$

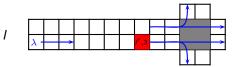
- Each vehicle should know which link it wants to turn into when it reaches the end of its current link
- In this sense the model should be agent-based
- A sophisticated approach would use origin-destination data and route planning algorithms
- We take a simple approach
- ► For each node *n*, inlink l = mn, & outlink l' = nm', we input $\mathbb{P}(l \to l') = \mathbb{P}(\text{vehicle on link } l \text{ wants to turn into link } l')$
- Turning decision made when vehicle first enters a link

- Each vehicle should know which link it wants to turn into when it reaches the end of its current link
- In this sense the model should be agent-based
- A sophisticated approach would use origin-destination data and route planning algorithms
- We take a simple approach
- ► For each node *n*, inlink l = mn, & outlink l' = nm', we input $\mathbb{P}(l \to l') = \mathbb{P}(\text{vehicle on link } l \text{ wants to turn into link } l')$
- Turning decision made when vehicle first enters a link
- Turning decisions affect lane changing dynamics

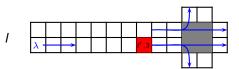


ľ

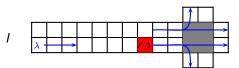
• Consider each lane λ of each link I



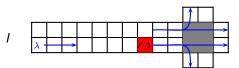
- Consider each lane λ of each link /
- Let v be the last vehicle on \u03c6



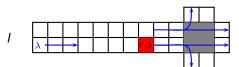
- Consider each lane λ of each link /
- Let v be the last vehicle on \u03c6
- Suppose $x(\mathbf{v}) + v(\mathbf{v}) > length(\lambda)$



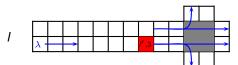
- Consider each lane λ of each link *I*
- Let v be the last vehicle on \u03c6
- Suppose $x(\mathbf{v}) + v(\mathbf{v}) > length(\lambda)$
- If there exists $P \in \mathcal{P}_{current}$ with:



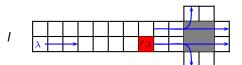
- Consider each lane λ of each link *I*
- Let v be the last vehicle on \u03c6
- Suppose $x(\mathbf{v}) + v(\mathbf{v}) > length(\lambda)$
- If there exists $P \in \mathcal{P}_{current}$ with:
 - inlane(P) = λ



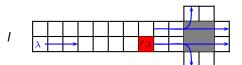
- Consider each lane \(\lambda\) of each link I
- Let v be the last vehicle on \u03c6
- Suppose $x(\mathbf{v}) + v(\mathbf{v}) > length(\lambda)$
- If there exists $P \in \mathcal{P}_{current}$ with:
 - inlane(P) = λ
 - outlane(P) has unoccupied first cell



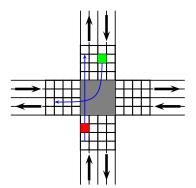
- Consider each lane λ of each link *I*
- Let v be the last vehicle on \u03c6
- Suppose $x(\mathbf{v}) + v(\mathbf{v}) > length(\lambda)$
- If there exists $P \in \mathcal{P}_{current}$ with:
 - inlane(P) = λ
 - outlane(P) has unoccupied first cell
 - $outlink(P) = turn(\mathbf{v})$

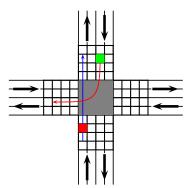


- Consider each lane λ of each link *I*
- Let v be the last vehicle on \u03c6
- Suppose $x(\mathbf{v}) + v(\mathbf{v}) > length(\lambda)$
- If there exists $P \in \mathcal{P}_{current}$ with:
 - inlane(P) = λ
 - outlane(P) has unoccupied first cell
 - $outlink(P) = turn(\mathbf{v})$
- Then associate $\mathbf{v} \leftrightarrow P$ (in this case we say P is marked)

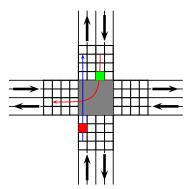


- Consider each lane λ of each link *I*
- Let v be the last vehicle on \u03c6
- Suppose $x(\mathbf{v}) + v(\mathbf{v}) > length(\lambda)$
- If there exists $P \in \mathcal{P}_{current}$ with:
 - inlane(P) = λ
 - outlane(P) has unoccupied first cell
 - $outlink(P) = turn(\mathbf{v})$
- Then associate $\mathbf{v} \leftrightarrow P$ (in this case we say P is marked)
- Else stop **v** at the end of λ

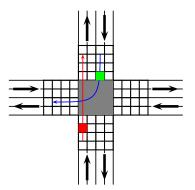




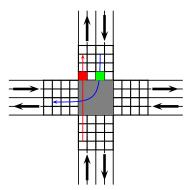
If P must give way to another marked path P' of n



- ▶ If *P* must give way to another marked path *P'* of *n*
 - Stop the vehicle $\mathbf{v} \leftrightarrow P$ on the last cell of *inlane*(*P*)



- ▶ If *P* must give way to another marked path *P'* of *n*
 - Stop the vehicle v ↔ P on the last cell of inlane(P)
- Else move the vehicle $\mathbf{v} \leftrightarrow P$ to the first cell of outlane(P)



- ▶ If *P* must give way to another marked path *P'* of *n*
 - Stop the vehicle v ↔ P on the last cell of inlane(P)
- ► Else move the vehicle v ↔ P to the first cell of outlane(P)