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The Math of Traffic

Societal urgency: accessibility
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Accessibility and Traffic Congestion

• History of traffic queues: from ‘unique sightseeing event’ to major 
and very common nuisance!

• Costs of traffic congestion in The Netherlands 4.6 billion Euros 
(2012), for Australia around 8.3 billion dollars (2005) 
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Societal urgency: accessibility
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Reliability of Transport and Network Robustness

• In particular in peak-hours, travel times 
are hard to predict beforehand

• Trip planners have to take this 
uncertainty into consideration, resulting 
in extra cost (VOR = VOT!)

• Moreover, critically loaded networks are 
often not very robust (relatively small 
perturbations have very severe effects)

• Examples of robustness issues: 
• Extreme impact of weather (snow)
• Impacts of incident on critical links
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Societal urgency: Safety & Security
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Emergencies and Evacuations

• Increasing risks of flooding of highly urbanized Randstad area
• Focus traditionally on prevention, but times are changing!

• Simple simulation
• Normal evacuation plans

are inadequate and 
yield too long evacuation 
times (> 48 hours)

• How van we improve
these plans or otherwise
mitigate impacts of 
an emergency?
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Example EVAQ application

• Flood strikes from West to East in six hours in which 120.000 
residents / 48.000 cars need to be evacuated

• Capacity of outlinks = 8000 veh/h
• Spatio-temporal dynamics

of hazard are known
• Evacuation instructions entail 

departure time, safe destination, 
and route to destination

 for specific groups of evacuees
(e.g. per area code)

• Use shortest route to closest 
destination not overloading route

Assessing and improving evacuation plans
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Evacuation of Walcheren 
Assessing standard evacuation plan...

Number of evacuated people around 41000 (~34%)



• Maximizing function of the number of arrived 
evacuees in each time period:

     number of arrived evacuees in time period t
     evacuation scheme

• Evacuate as many people as possible
• Use of evacuation simulation model EVAQ to 

compute J(u) as function of u
• NP hard problem: Ant Colony optimization
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Optimization objectives
Objective applied in this research

J(u) = qu (t)dt
0

T

∫
qu (t)
u
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Example results

• Optimization of evacuation plan yields very significant 
improvement compared to other scenarios

• Computation times are large, even for small network (10 hrs)
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Optimal pedestrian evacuation

• Optimal departure time & routing:
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Similar problem, different approaches
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• Network loading:

• Fixed point problem...

∂ρ
∂t

+ ∂
∂x

ρ ⋅v( ) = 0

− ∂W
∂t

= L t,x,v*( ) + v*∇W + σ 2

2
ΔW

where v* = −c0∇W
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Math and traffic / transportation
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Examples of using mathematical techniques

• Evacuation case is example of (off-line) model-based optimization 
(in this case: evacuation instructions; but also: design, planning) 

• Example applications of mathematical techniques:
• Model-based analysis of traffic and transportation phenomena, e.g. to 

understand key mechanisms or to determine key decision variables 
by fitting models

• Mathematical modeling and simulation for off-line applications 
(scenario assessment, (network) designs, new ITS measures, etc.) 

• Improving data quality using data fusion by Kalman filtering
• On-line traffic prediction and analysis of scenarios
• On-line model-based optimization in for control purposes

• Let’s take a look at some other examples...
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Traffic instabilities

• Field data analysis (bottom 
figure) and physical experiments 
(top movie) show that in certain 
density regimes, traffic is 
unstable

• Small disturbances amplify as 
they travel from one vehicle to 
the next

• Eventually, disturbance grows 
into so-called wide moving jam, 
moving upstream in opposite 
direction of traffic at speed of 18 
km/h

• Outflow of wide-moving jam is 
about 30% less than free flow 
capacity
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Understanding Traffic Instability

• CHM car-following model describes acceleration of vehicle in 
response to distance to predecessor, and speed:

• Parameters are reaction time     and sensitivity
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Using relatively simple models...

d
dt
vi (t +Tr ) =κ ⋅Δvi (t)

 s

  s0

 v  v + Δv

Tr κ



• Stability analysis of shows for 
which parameters we get 
asymptotic instability that is, 
disturbances grow as they 
traverse from one vehicle to 
the next

• It turns out that string stability
is determined by:
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Understanding Traffic Instability
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Using relatively simple models...
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Understanding Transit disturbances

• Description of scheduled rail network as a Discrete Event System:

• Max-plus algebra allows us to rewrite system as a linear system:
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Propagation of delays through transit networks

xi (k) = max max j (aij + x j (k − µij )),d i (k)( )

k-departure
time of train i

departures of previous
trains on which i waits

travel time
from i to j

scheduled
departure time

xi (k) =⊕ j=1..n (aij ⊗ x j (k − µij ))⊕ d i (k)

x(k) = A⊗ x(k)⊕ d
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Understanding Transit disturbances
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Propagation of delays through transit networks
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Understanding Transit disturbances

• Stability of delay propagation can be analyzed by looking at 
eigenvalues of A
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Propagation of delays through transit networks

A⊗ v = λ ⊗ v

periodic 
minimal time-
table for all 
trains

minimum period 
length for network
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State estimation
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Making sense of real-time traffic data...
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State estimation and data fusion
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Estimate traffic state from different data sources

• Problems using Kalman filter approach using LWR model because 
of problematic linearization

• Use of Lagrangian formulation (change of coordinate system)

• Advantages of Lagrangian formulation:
• Easy numerical discretization (upwind) with almost no num diffusion
• A natural set of observation equations to deal with Lagrangian 

sensing data (probe vehicle, trajectory-based data)
• Advantageous properties of application EKF (compared to Godunov)

( ) 0q
t x
ρ ρ∂ ∂+ =
∂ ∂   

∂s
∂t

+ ∂v(s)
∂n

= 0

Godunov Upwind
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Modeling
Not an exact science!



Traffic and Transport Models

• Traffic operations result from human 
decision making and complex multi-
actor interactions at different 
behavioral levels )

• Human behavior is ‘not easy to 
capture and predict’

• System is highly complex, non-
linear, has chaotic features, etc.

• Challenge is to develop theories and 
models that represent and predict 
operations sufficiently accurate for 
application at hand

• But how is this achieved? Induction 
vs deduction...

…for Distinction Sake, a Deceiving by 
Words, is commonly called a Lye, and a 

Deceiving by Actions, Gestures, or 
Behavior, is called Simulation… 

Robbert South (1643–1716)
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Deduction

• Starts with an axiom, an assumed 
truth, a theory (which come from 
an observations, logic, other 
theories)

• Typical in (theoretical) physics, 
mathematics

• Example: special theory of relativity 
(Einstein postulated that the speed of 
light is the same for all observers, 
regardless of their motion relative to the 
light source – observations proved him 
right)

21

Theory / theories

An assumed truth

Confirmation / rejection

Observations / predictions

Hypothesis

On the basis of these theories / truths

Testing / analyzing

Qualitative (math) / quantitative (sim)

Modeling approaches
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Induction

• Starts with observations 
(phenomena, patterns, etc.)

• Typical in social sciences and 
biology 

• Example: Darwin’s theory of 
evolution by natural selection 
(Darwin observed populations finks 
diverging in different habitats and 
postulated natural selection as the 
motor – modern genetics, biology and 
many, many other scientific disciplines 
proved him right)
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Observations

Phenomena, patterns

New theory

Until falsified...

Tentative hypotheses

About underlying relations / theories

Testing / operationalizing

Qualitatively / quantitatively

Modeling approaches
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Traffic and Transportation Theory?

• Traffic flow theory is largely based on induction (with a bit of 
deduction): theory building is for a large part based on empirical 
or experimental observations 

• Our theories and models are as good as the quality of their 
predictions (and should be assessed with that in mind!)
• Do they predict the key phenomena and traffic flow features we 

observe in the real world?
• Do they incorporate a (mathematical) structure that provide 

insight into how these phenomena emerge?

• Let us consider some of these phenomena, starting with the 
father of traffic flow theory...

23

Inductive or deductive?
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Bruce Greenshields...

• First traffic data collection using cameras 
and may hours of manual labour...

• Studied relation between average vehicle speeds and vehicle 
density (= average distance-1) and found an important relation  

24

The discovery of the Fundamental Diagram
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Bruce Greenshields

• Decreasing relation between speed and density
• When speed decreases, drivers drive closer

25

The discovery of the Fundamental Diagram

•Although the assumption of a linear relation turned out to be flawed, FD formed basis for contemporary traffic flow theory!•With q = ku = Q(k) and conservation of vehicle equation we get a complete model of traffic flow!
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First-order theory
Application of the FD

• Predicting queue dynamics using first order theory
• Predicts dynamics of congestion using FD
• Flow in queue = C – qon-ramp
• Shock speed determined by: 
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With improved data 
collection to better theory!
• Data collection system for 

collecting high-frequency 
images from the air 
(helicopter, drones)

• Algorithms for stabilization of 
images and geo-referencing

• Vehicle detection and 
tracking, resulting in high-
resolution data on revealed 
driving behavior (long + lat)

• 15-30 min of data, 500 m 
roadway, 15 Hz, 40 cm 
resolution, all vehicles!

• Multiple data sets for variety 
of circumstances (congestion, 
merges, incidents, etc.)
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Vehicle trajectory information

• New data has provided avalanche of new insights for regular and 
non-recurrent conditions:
• Driver heterogeneity and adaptation effects (e.g. in case of incidents)
• Benchmarking of car-following models
• Discontinuous car-following behavior (action points)
• Detailed analysis of lane changing and merging behavior

• Example analysis merging behavior:
• Accepted models for merging turn out to be flawed since 

drivers actively select gap actively rather than passively accept it
• Paradigm shift and new mathematical models yield increased 

predictive validity of microscopic flow models
• Practically: distribution of merging points far less concentrated

28

Example of findings
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Vehicle trajectory information

• New data has provided avalanche of new insights for regular and 
non-recurrent conditions:
• Driver heterogeneity and adaptation effects (e.g. in case of incidents)
• Benchmarking of car-following models
• Detailed analysis of lane changing and merging behavior

• Example analysis merging behavior:
• Accepted models for merging turn out to be flawed since 

drivers actively select gap actively rather than passively accept it
• Paradigm shift and new mathematical models yield increased 

predictive validity of microscopic flow models
• Practically: distribution of merging points far less concentrated
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Example of findings

Gap-acceptance theory
Empirical data

•Although microscopic simulation models can be tuned such that most important macroscopic features can be represented, the microscopic processes often are not correctly described!
• Impacts of this observation, e.g. with respect to the predictive validity 
•Consider how models are used!



Challenge the future

More (big?) data, new insights

• Availability of large datasets from 
urban and motorway arterials leads to 
new insights into network dynamics 

• Data from GPS (Yokohama) 
empirically underpins existence of 
Network Fundamental diagram

• Fundamental property of traffic 
network: production deteriorates a 
high loads!

Number of vehicles in network

Exit rates

Courtesy of Nikolas Geroliminis
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More (big?) data, new insights

• Recent studies (TU Delft, ICL) show 
that network dynamics are a “bit more 
involved”

• Next to average density, spatial 
variation of density plays a crucial role 
in representing network traffic 
production and level of service...

• Congestion nucleation causes spatial 
variation to self-sustain & increase

Number of vehicles in network

Exit rates
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Network Dynamics

Features and phenomena that you 
need to capture! 



Efficient and inefficient self-organization and network degradation

• For low network loads, interactions between traffic participants is very efficient 

• For high loads, inefficient phenomena self-organize / occur reducing performance

Efficient self-
organization

Capacity-drop 
and waves

Grid-lock and 
turbulence

There are severe limits to the self-organization
capacities of the traffic system

Increasing traffic loads

Decreasing system performance
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Characteristic features of traffic flow

• Dynamically formed walking lanes 
• High efficiency in terms of capacity and observed walking speeds 
• Experiments by Hermes group show similar results
• Phenomena is characteristic of a pedestrian flow, and needs to be 

included in model

34

Efficient self-organization in dilute flow conditions



• Main behavioral assumptions (loosely based on psychology):
• Pedestrian can be described as optimal, predictive controllers who 

make short-term predictions of the prevailing conditions, including 
the anticipated behavior of the other pedestrians

• Pedestrians minimize walking effort caused by distance between 
peds, deviations from desired speed / direction, and acceleration

• Costs are discounted over time, yielding:

• Use of differential game theory to determine the pedestrian 
acceleration behavior (i.e. the acceleration a)

The Math of Traffic

Interaction modeling

35

Use of differential game theory

J = e−ηt 1
2
aTa + c1

1
2
(v0 − v)T (v0 − v)+ c2 e

−
||rq−r||
R0

q∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥t

∞

∫
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Game-theory applications

• Next to walker behavior, other applications of differential game 
theory have been put forward
• Car-following and merging behavior modeling
• Cooperative driving control strategies for vehicle platoons

• Recent work involves interactions of large vessels, where game 
theory is used to describe the behavior of the bridge team under 
different scenarios (cooperative and single-sided interaction, 
demon-ship interaction)

• Note that the resulting optimization problem can be solved using 
Pontryagin’s minimum principle + dedicated numerical solver

• Computationally quite demanding!

36

To modeling interactions of traffic participants
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Adding fraction terms

• Under the assumption that the opponent 
peds do not react to the considered ped, we 
find a closed form expression for acc vector:

• Resulting expression is same as original 
Social Forces model of Helbing 

• Physical interactions (physical contact, 
pushing) can be modeled by adding physical 
forces between pedestrians

37

friction
normal force

The simplest of models...

a p (t) =
v p
0 − v p
τ p

− Ap
0 n pqe

−||rp−rq ||/Rp
0

q≠p
∑



The Math of Traffic

Interaction modeling

• Simple model reproduces lane formation processes adequately

38

Use of differential game theory

Example shows lane formation process 
for homogeneous groups...

Heterogeneity yields 
less efficient lane formation (freezing by heating)



Pedestrian flow capacity drop

• Adding friction between 
pedestrians causes severe 
reduction in capacity 

• Capacity drop is due to arc 
formation in front of exit

• Gets worse when pedestrians are 
more anxious to get out (Helbing 
et al, Nature 2000)

• In line with results from 
pedestrian experiments (TU 
Dresden, TU Delft) 

• Capacity drop also occurs in car-
traffic: when congestion sets in, 
capacity reduces with 10-15%
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Impact of spillback on throughput

•Example of impacts of 

spillback on A10 
motorway

•Average daily 
collective delay of 
300 veh-h

•Societal cost about 1 

million Euros per year!
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Spill-back and grid-lock

• Spill-back easily leads to grid-lock effects, 
as we saw earlier...

• Similarly, grid-lock can occur in pedestrian 
networks when network load is too high

• In this case, self-organization
fails and capacity drops

41

Urban networks 
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Stochasticity...
Random nature of traffic



Which is the representative day?
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Stochasticity

• Clearly, traffic demand is 
stochastic but what about capacity?

• Capacity = maximum (hourly) flow 
that can be sustained for a 
considerable time period

• What determines capacity?
• Infrastructure
• Driving behavior 
• Vehicle characteristics
• Occurrence of incidents

• It is not reasonable to assume that 
capacity is deterministic!

44

Supply factors



COST / NEARCTIS 2012 Summercourse

Example: IDM

• Vehicle trajectories collected from
airborne platform (helicopter)

• IDM model by Treiber and Helbing:

• Find estimates for parameters that maximize the likelihood L of 
finding the actually observed car-following behavior

45

Explaining stochasticity?

a = f (s,v,Δv) = a ⋅ 1− v
v*

⎛
⎝⎜

⎞
⎠⎟

4

− s*(v,Δv)
s

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
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⎢

⎤

⎦
⎥
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where  s* = s0 +τv +
vΔv

2 ab



Pictures show CDFs of 
estimated parameters 
showing large heterogeneity 
in driving behavior! 

COST / NEARCTIS 2012 Summercourse 46
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Modeling approaches

Fitting models...
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Some considerations

• Trivial: model requirements 
depend on application, 
which in turn prescribes:
• Which behavioral 

processes to include
• Type of validity 

(qualitative, quantitative, 
reproduce or predict?)

• Which phenomena or 
features need to be 
reproduced 

• Math / computational 
properties of approach

When choosing / developing a model

demand

supply

short
term

longer
term

Location choice

Trip choice

Destination choice

Mode choice

Route choice

Departure time choice

Driving behavior
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Modeling approaches

• Two dimensions:
• Representation of traffic
• Behavioral rules

Reproducing vs predicting

Individual 
particles Continuum

Individual 
behavior

Microscopic (simulation) 
models

Gas-kinetic models 
(Boltzmann equations)

Aggregate 
behavior

Particle discretization 
models (Dynasmart)

Queuing models
Macroscopic flow models

Reproduce

Explain and
predict

Individual 
particles Continuum

Individual 
behavior Microscopic Mesoscopic

Aggregate 
behavior Mesoscopic Macroscopic
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Relation between micro and macro

• Microscopic models (aim to) explain and predict driving behavior 
(car-following, lane changing, etc.)

• Macroscopic features (e.g. capacity, jam-density, etc.) are thus 
predicted output of these models 

• Example:
(CHM model)

• Ensuring correct reproduction of macroscopic features is often a 
difficult (calibration) process (parameters not directly observable)

• Macroscopic models generally (often) take macroscopic features as 
input and correct representation is thus ‘trivial’

50

car-following 
model

reaction-
time, 

sensitivity

Road 
capacity

Micro, meso and macro?
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How good are these models anyway?

51

Phenomena BPR functions
Queuing 
models

First-order 
theory

Micro-
simulation

Capacity drop N/A EVAQ
Infinite wave 

speed
Yes, but often 

too small

Spill-back N/A Extended LTM Yes
Only if model 
reproduces FD

Stochastic demand and 
supply N/A Quast

Only research 
models

Variation often 
too small

Congestion instability N/A N/A
Only research 

models
No absolute 

validity

Some example approaches...
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Trade-offs!

52

It is not only accuracy that counts...

Application Key requirements Examples

Understanding phenomena •Construct / face validity
•Analytical properties

Flow instability, train delay 
propagation analysis

Off-line assessment of 
(ITS) measures •Predictive validity Evacuation assessment 

and optimization

State estimation (Kalman 
filters)

•Computational properties
•Content validity

Lagrangian multi-class 
modeling

On-line prediction and 
scenario assessment

•Predictive validity
•Computation speed

Fastlane Multiclass Traffic 
macro model

On-line optimization •Computation speed / 
properties?

Reduced models, smart 
reformulations (Le et at,2013)

Skip to final remarks
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Reformulate and simplify

• Reformulation can lead to models with more favorable 
mathematical / computational properties 

• Simplified models allowing favorable computational techniques:

• Decomposition the NP-hard evacuation instruction optimization 
problem into three simple subproblems

• Reformulating non-linear optimization problem for MPC control of 
urban networks as a LQ optimization problem (Le et al, 2013), or 
approximating it as a MILP problem (Bart De Schutter)

• Learning for the resulting optimal solutions:

• Deriving heuristics for controlling motorway arterials (Specialist 
speed-limit controllers) or networks (Praktijkproef Amsterdam) 

53

...or conservation of misery? 



The Math of Traffic

Instruction optimization

• Objective: get out as many inhabitants within [0,T]:

• Bi-level problem: instructions yield response from evacuees and 
result in traffic operations

J(u) = q(t)dt
0

T

∫

autority

evacuees

Evacuation plan

Traveler response

Information, 
instructions, 
management, 
contraflow

Traffic flows, 
travel times

54
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Simplifying the problem

Optimization
of turning
fractions

Optimization
of route 
advice

Approximation
of compliance

behavior

• Intermediate optimized 
turning flows

• Link travel times

• Instructed turning 
fractions

• Realized turning 
fractions

• Upper and lower 
bounds on turning 
fractions

55

Using decoupling of the problem...

•Small reduction of effectiveness•Very large impact on computation speed (upto 100 for simple Walcheren network)•Application to other problems likely
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Final words...
Stochastic nature of traffic
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Some final remarks...

• Importance of model choice in relation to application!
• Ensure that your model captures the phenomena that are relevant for 

your application (e.g. optimization of ramp-meter signal requires a 
model to capture the capacity drop and spill-back!)

• Think what type of validity you need (face, content, predictive) and 
which trade-off you need to make between accuracy / performance

• Still many challenges left to solve:
• in modeling (predictive validity of microscopic models, modeling for 

safety assessment, modeling for ITS)
• in estimation (making sense of all these data) and prediction
• in optimization (network-wide control approaches anticipating on 

behavioral adaptation)

57

Almost there!



Innovations in data collection

• Development of a Virtual Traffic and Travel laboratory (VTT-Lab) for collecting 
data under a variety of experimental conditions


