

Assessment of Positioning Accuracy for Cooperative Intelligent Transport Systems

Presenter: Allison Kealy The University of Melbourne

Contributors: Prof. Chris Rizos and Prof. Andrew Dempster, UNSW Prof. Yanmeng Feng and Adj. Prof. Matt Higgins, QUT Mr Azmir Rabian, University of Melbourne

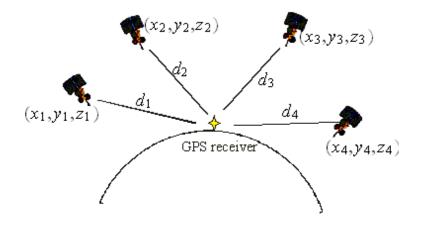
What Positioning Performance is Really Required

Availability Accuracy Integrity Timeliness

What Positioning Performance is Really Required

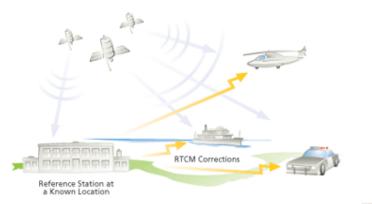
- 1102	Level	Accuracy Re	quirement	Research prototype	Commun- ication Latency (second)
Туре		95 % confidence level (m)	Root means square (order)	Root means square (order)	
	Road-level	5.0	Metre	Metre	1-5
V2I: absolute (V2I = Vehicle to	Lane-level	1.1	Sub metre	Sub metre	1.0
Infrastructure)	Where-in-lane- level	0.7	Decimetre	Decimetre	0.1
	Road-level	5.0	Meter	Sub metre	0.1
V2V: relative (V2I = Vehicle to	Lane-level	1.5	Sub metre	Decimetre	0.1
Vehicle)	Where-in-lane- level	1.0	Decimetre	Centimetre	0.01-0.1

THE EVOLUTION STARTS HERE



Is GPS the Answer?

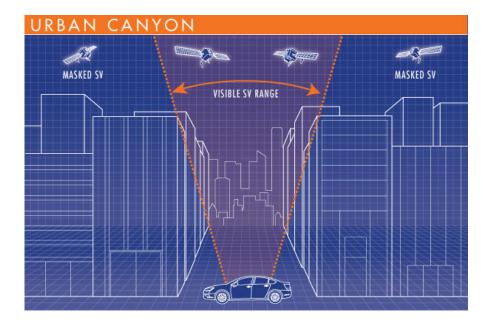
Tier		Technique Option	Status					
	er		Current	Future	Accuracy range	Cost	C-ITS applications	
1		А	Standalone GPS (SPS)	Standalone multiple GNSS	10-20 m	Low	Vehicle navigation, personal route guidance and location based services	
2	2	A	Standalone GNSS (PPS), Code DGPS	Standalone multiple GNSS positioning	1-10 m	Low	Vehicle navigation, location-based services, road traffic management	
Э	8	В	Current WAAS Commercial WADGPS	Future SBAS design for multiple-GNSS	0.1-1m (utilising SBAS and V2V relative positioning)	Low	C-ITS safety applications: lane-level positioning, lane-level traffic management and where-in-lane- level applications	
2		C	Smoothed DGPS	Smoothed DGNSS	0.1-1 m	Medium		
		D	RTK		0.01-0.1m	Medium to High	Research prototype C-ITS safety systems, offering bench mark solutions for testing low-cost units.	
4	1	E	ррр	Combined PPP and RTK (seamless)				
5	5	Advanced D and E	Static positioning	Sub-centimetre RTK with multi- GNSS signals	0.001-0.01m	High	Geosciences and geodynamic studies. Not recommended for C-ITS applications	



Differential GPS/Real Time Kinematic GPS

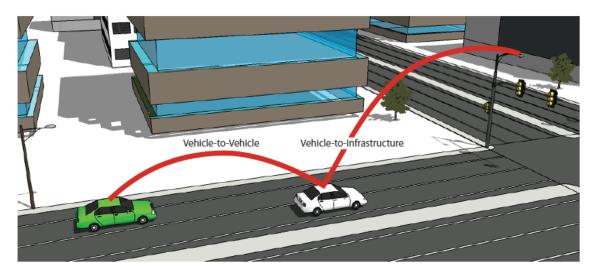
Real-Time Differential GPS

Network RTK for Intelligent Vehicles

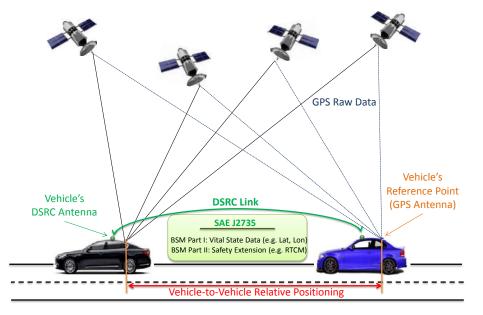

by GPS World staff on January 30, 2013 with 0 Comments in Road

Accurate, Reliable, Available, Continuous Positioning for Cooperative Driving

THE EVOLUTION STARTS HERE

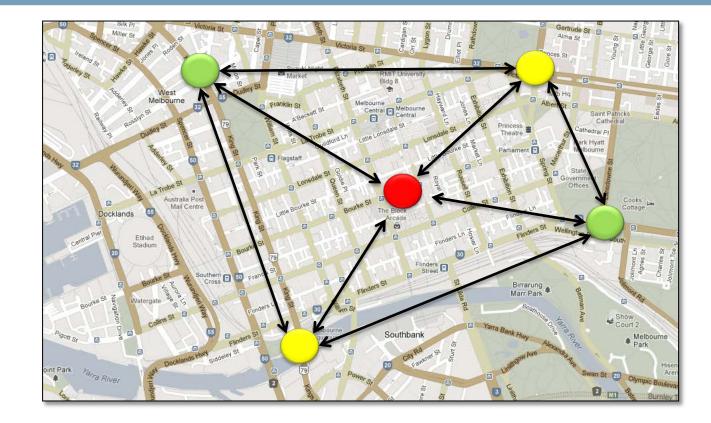


In many environments, such as tunnels, in built up urban areas, or in the presence of signal interference or spoofing, GNSS performance rapidly deteriorates. GNSSs on their own cannot therefore satisfy the "high performance positioning" needs of applications that are either liability-critical or life-critical.



It is the convergence of high performance positioning (HPP), communications and information technologies that will deliver the full promise of ITS.

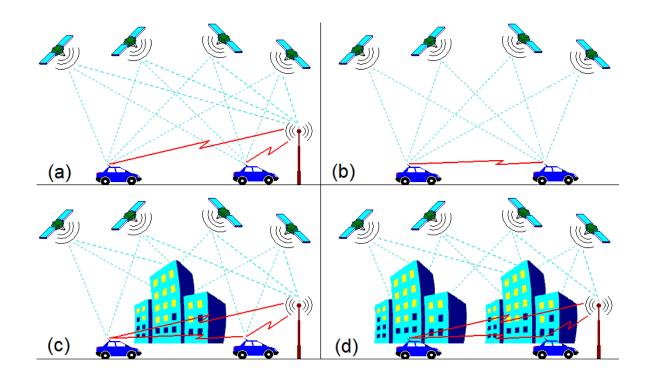
New Positioning Algorithms



- GNSS+
- Locata
- Multi Sensor Fusion
- Augmentation
- Collaborative Positioning
- Fitness for purpose

Concept of Cooperative Positioning

Introduction Techniques Range Range-Rate Algorithms Current Work Range-Rate Non-Radio Algorithm Dataset Future Work Summary


Introduction Techniques

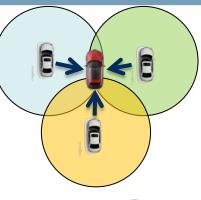
- Range Range-Rate Algorithms
- Current Work Range-Rate Non-Radio
 - Algorithm
 - Dataset
- Future Work
- Summary

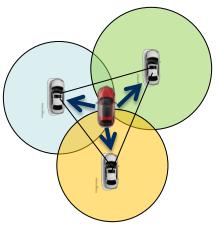
- Wireless communication for vehicle-vehicle (V-V) and vehicle-infrastructure (V-I)
- U.S. Federal Communication Commission (FCC) bandwidth of 75 MHz in the 5.850-5.925 GHz band
- European Telecommunications Standards Institute (ETSI) bandwidth of 30 MHz in the 5.9 GHz band.
- Applications includes intelligent transportation system (ITS), traffic management, safety and efficiency
- Low latency, high speed communication, strong and relative close proximity signals

THE EVOLUTION STARTS HERE

Techniques: CP based on Radio Range

Introduction Techniques Range Range-Rate Algorithms Current Work Range-Rate Non-Radio Algorithm Dataset Future Work

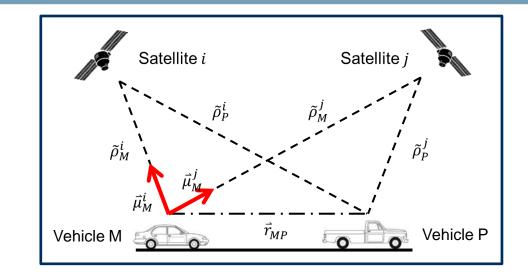

Summary


Time of Arrival (TOA)

- Measures the time flight of signal
- Requires accurate time synchronization
- Not viable, as its base protocol IEEE 802.11only accurate in order of micro-seconds whereas nano-seconds is needed

Time Difference of Arrival (TOA)

- Difference between the time the anchor nodes receive the transmitted signals from non-anchor nodes. Compute the difference of angles and use known baselines between anchor nodes to compute ranges to the non-anchor node.
- Severe effect of multipath can cause overlapping crosscorrelation which makes time difference estimation not possible
- Can only be realised when two nodes are using the same bandwidth. This severely limits deployment in medium to high density VANET



Techniques: CP based on Non-Radio Range

Techniques Range Range-Rate Algorithms Current Work Range-Rate Non-Radio Algorithm Dataset Future Work Summary

Introduction

- Code based double difference measurements
- Requires vehicles to observe common satellites
- Possibly susceptible in high multipath environments

Introduction **Techniques** Range Range-Rate Algorithms Current Work Range-Rate Non-Radio Algorithm Dataset Future Work Summary

- Based on Doppler shift between vehicles
- Less used due to the lower amount of location related information
- Calculated using the carrier frequencies of the vehicles
- Affected by DSRC's clock drift
- Not affected by multipath as much as range based techniques
- Needs resolution of 100 Hz for 5.9 GHz frequency
- Only useful when relative mobility between vehicles is above the level of range-rate noise, which is usually not achievable when vehicles are travelling in the same direction

Algorithms for CP Enablement

Introduction Techniques

Range

Range-Rate

Algorithms

Current Work Range-Rate Non-Radio Algorithm Dataset Future Work

Summary

Kalman Filter


- Optimal, in a minimum variance sense estimate of the state
- Used in applications such as localization and integrated systems

Monte Carlo Localization (MCL)

- Fast sampling technique to represent belief
- Able to represent multi-modal distribution and easy to implement
 SPAWN
- Factor graph + sum product algorithm (SPA)
- Truly distributed algorithm, highly suitable for CP

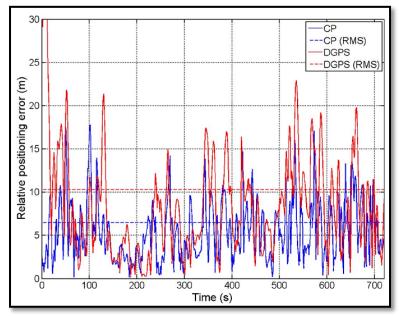
- Introduction Techniques Range Range-Rate Algorithms **Current Work** Range-Rate Non-Radio Algorithm Dataset Future Work Summary
- Avoid complexities of radio based ranges
- GNSS positions and inter vehicle range-rates: loosely coupled
- Uses Doppler shift, which can only be effetely observed when vehicles are travelling in the opposite direction

Improved precision between 27% (7.2 m) and 47% (5.3 m) compared to standalone GNSS (10 m)

CP based on non-radio range

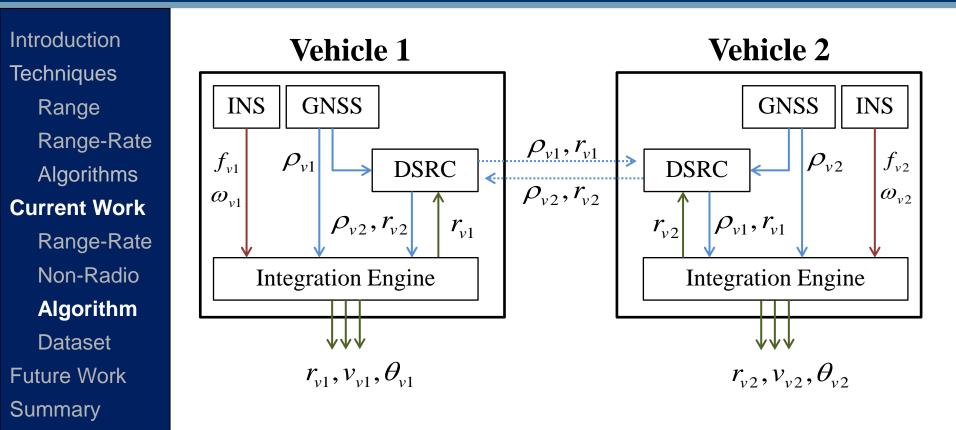
Introduction Techniques Range Range-Rate Algorithms

Current Work Range-Rate Non-Radio


Algorithm

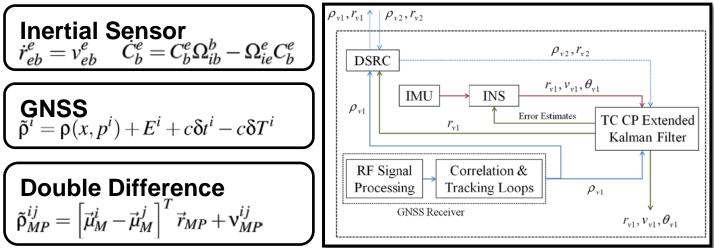
- Dataset
- Future Work

Summary


Relative Positioning in VANET

- Code based double difference better accuracy DGPS
- Eliminates fixed infrastructure
- Performance against DGPS
 - CRLB : 30%
 - RMSE : 37%
- Requires at least 4 common satellites

Innovative Algorithm



Innovative Algorithm

Measurements

Summary

Current work by joint FIG and IAG WG

Website : <u>http://www.ubpos.net</u>

Collaborative Positioning Dataset Collection (1/2)

Introduction Techniques Range Range-Rate Algorithms Current Work Range-Rate Non-Radio Algorithm Dataset Future Work Summary

- University of Nottingham, 2012
- Collaborative Positioning: Indoor, Outdoor and transitions

Collaborative Positioning Dataset Collection

Introduction Techniques

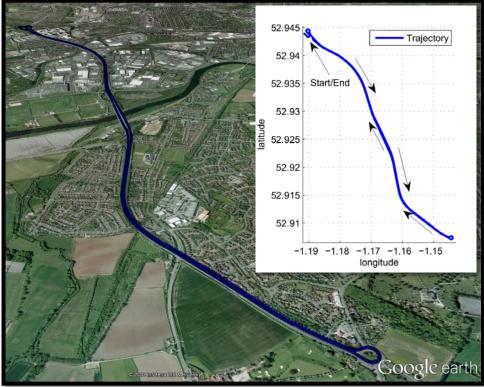
- Range
- Range-Rate
- Algorithms
- **Current Work**
 - Range-Rate Non-Radio Algorithm
- Dataset Future Work
- Summary

Various Platforms

- Train
- Personal Navigator
- Mobile mapping vans

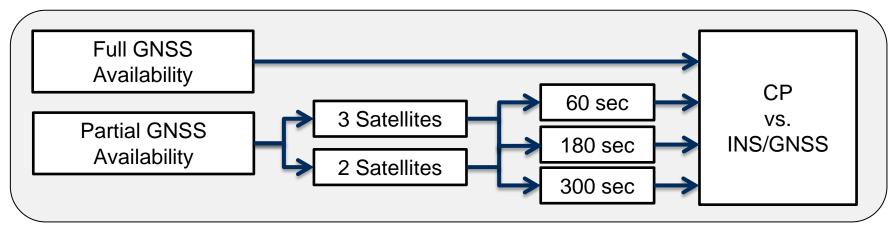
Multi sensor

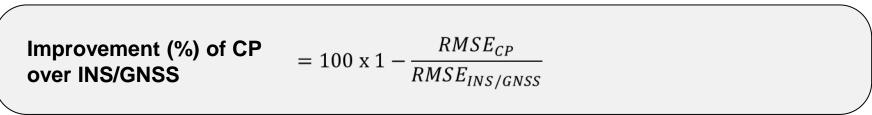
- MEMS, Navigational INS
- High grade GNSS
- DSRC, UWB
- Camera
- Total Station

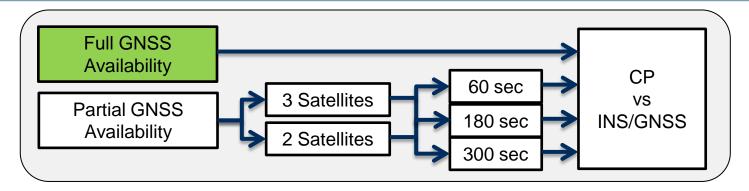


Collaborative Positioning Dataset Collection

Trajectory				
Length	12 kms			
Velocity	0 - 115 km/h			
Time	16 minutes			
GNSS availability	95 %			


CP Dataset Collection - Equipment


Equipment	Vehicle 1	Vehicle 2	
MEMS IMU	Xsens MTi-G	Xsens MTi-G	
High grade IMU	Novatel SPAN IMU	Honeywell CIMU	
GNSS receivers	Novatel SPAN	Leica GS10	
DSRC	MK24 DSRC	MK24 DSRC	


Analysis Methodology

Results – Full GNSS Availability

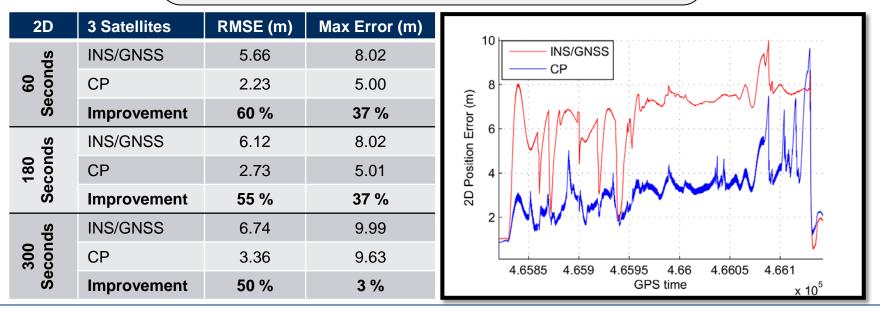
2D	RMSE (m)	Max Error (m)	4 3.5 	
INS/GNSS	1.55	3.83	(E) 3 2.5 U 20 2 1.5 Q 1	
СР	1.54	3.61	9월 2 8월 1.5 R 1	
Improvement	0.50 %	5.56 %	0.5 V MW 74 0 4.655 4.66 GPS time	

THE EVOLUTION STARTS HERE

N

4.665

x 10⁵


THE UNIVERSITY OF

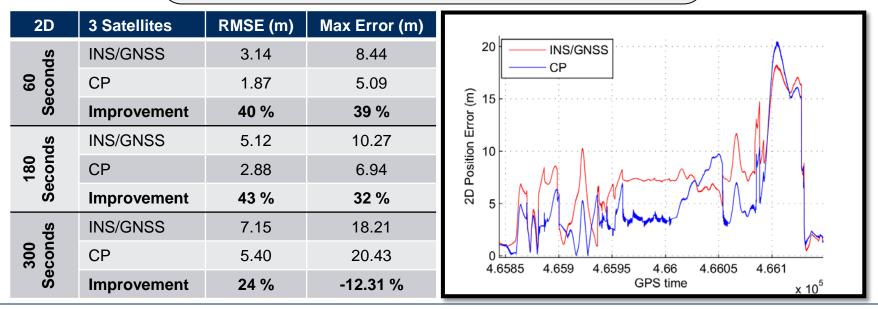
MELBOURNE

 Partial GNSS Availability
 3 Satellites
 60 sec

 2 Satellites
 180 sec

 300 sec

THE EVOLUTION STARTS HERE



Results – Partial GNSS Availability

 Partial GNSS
 3 Satellites
 60 sec

 Availability
 2 Satellites
 180 sec

 300 sec
 300 sec

THE EVOLUTION STARTS HERE

Future Work

Introduction Techniques Range Range-Rate Algorithms Current Work Range-Rate Non-Radio Algorithm

Dataset

Future Work Summary General aim: Improve DSRC observations, smarter algorithms, incorporating other types of sensors

- Hybrid of radio and non-radio range based CP
- Incorporating other sensors such as vision based system
- Improve dynamic modelling and integration algorithms
- Incorporate map matching techniques such as Bayesian, fuzzy logic and set membership methods
- Investigate effects of scalability

MELBOURNE

© Copyright The University of Melbourne 2009