MONASH University Engineering

AMSI Workshop on Mathematics of Transportation Networks 2013, Melbourne

Road Safety Modeling Using a Safety Analysis Chain: A Theoretical Discussion

Amir Sobhani

Institute of Transport Studies, Monash University

Contents

- Research Background
- Safety Analysis Chain (SACH)
- Quantifying Components of the SACH
- Future Research
- Conclusion

Research Background

Perspective	Method	Input Variable	Output Variable
Transportation	Statistical Analysis Micro Simulation	Road and Environmental Characteristics	Number and Severity of Conflicts and Crashes
Crash Analysis	Statistical Analysis Newtonian Mechanics Crash Simulation	Crash Characteristics	Crash severity
Medical	Statistical Analysis	Human Body Characteristics	Crash Severity
Psychological	Experiments and Studies to Understand Human Behaviour	N/A	N/A

Safety Analysis Chain (SACH)

Contents

- Research Background
- Safety Analysis Chain (SACH)
- Quantifying Components of the SACH
- Future Research
- Conclusion

Safety Analysis Chain (SACH)

SACH(Link of Events)

SACH(Variables)

Contents

- Research Background
- Safety Analysis Chain (SACH)
- Quantifying Components of the SACH
- Future Research
- Conclusion

Step 1: Modelling The Link Between "Traffic" and "Conflict" and "Severe Conflict"

- Researchers have developed several conflict techniques to find out the number and severity of conflicts using micro-simulation model (<u>Hyden 1987</u>; <u>Hyden 1996</u>; <u>Archer 2005</u>).
- After generating individual vehicle movement, the conflicts could be determined using probabilistic human behaviour models such as lane changing, car following, gap acceptance and stop-or-go decision at the onset of amber (Archer 2005; Cunto and Saccomanno 2008; Archer and Young 2009).

- (1) f₁ is the mathematical model presenting the kinectic energy transferred to the subject vehicle in crash according to crash characteristics
- (2) f₂ is the mathematical model presenting the ISS of the crash according to impact characteristics, kinectic energy transferred to the subject vehicle and occupant characteristics.

Quantifying SACH (Step 3)

Road Safety Index

DATA

	Data		
Model	Calibration	Validation/Verification	
Micro-Simulation Model	SCATS data Recorded Video	SCATS data Recorded Video Police Data	
Driver Reaction Model	ANCIS Database	ANCIS Database NASS Database	
ΔV Model	ANCIS Database	ANCIS Database NASS Database	
ISS Model	ANCIS Database	ANCIS Database NASS Database	

Contents

- Research Background
- Safety Analysis Chain (SACH)
- Quantifying Components of the SACH
- Future Research
- Conclusion

Future Research

Contents

- Research Background
- Safety Analysis Chain (SACH)
- Quantifying Components of the SACH
- Future Research
- Conclusion

Conclusion

- A Safety Analysis Chain (SACH) has been introduced as a basis for assessing safety performance of roads.
- A method has been outlined to quantify the components of the SACH through integrating the preceding safety modelling perspectives.
- The proposed theoretical framework proposed takes an important step towards the evaluation of the safety performance of roads.
- The SACH framework is a key for future research in road safety modelling since it provides a general overview of the main components of road safety modelling.

Questions

