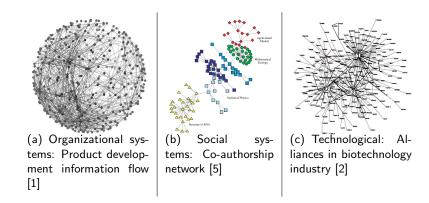
Implications of patterned interactions in complex systems for the structure of decision making organization

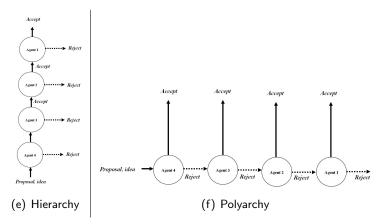
Mohsen Jafari Songhori

University of Melbourne

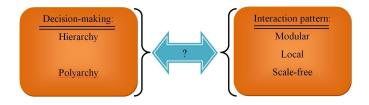

Mohsenj@student.unimelb.edu.au

June 19, 2013

Motivation.

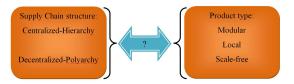

- Problem definition
- 8 Research methodology.
- Addressing research questions by NK landscape.
- Second se
- Oiscussion and extension.
- References.

Motivation: Interactions pattern in organizational, social and technological sytems


				.,	Α.	Ra	nd	əm										В	. L	oci	d										С	. s	ma	ıll-	we	orld									. В	loc	k-d	iag	ona	d		
[x						х			х				11	X	х											x	[8						2	s -				X	11	х	х	х									- 1
	х			x i	х									х	X	х											>		х	х										Ш	х	х	Х									
		3	6					Х	х						X	x	Х												х	х	х									Ш	х	х	х									
x				ĸ			х									х	х	Х)	1			х	х								Ш				х	х	х						
			c		х		х										х	х	х												х	х	X							Ш				х	х	х						
						х				х		X	Ш					х	x	Х												х	x	>	¢					Ш				х	X	x						
					х		х			х									х	X	х												х		c 7	c				Ш							х	х	х			
	x				х			х													x		ς									х			,	0				Ш							х	х	х			
									х														ć.	x											- 5	ç ,	6.3			Ш									х			
					х					x	х														x															Ш										x	х	x
×.	x										x														x	x							x						x	ш											x	
l^	1		c			х					~	x		x											x		,	1											x												x	
5									e.					L												1	L				2		~							11						are le						1
Гx		E.	Pre				u a	ua	chr	nei	n			г.,			r	. 5	ca	e-I	ree					7	г.				C	J. (Lei	1tra	aliz	æd				1 Г				- 1	1.1	Hie	rary	chie	cal			1
1×					х	x							Ш	X											Х				X																							
	>												Ш												х				х												ĸ											
						х					х	X	Ш												х				х													х										
			2			х							Ш		X	х	х								х			3.3			х												х	х								
X			ς		х								Ш					х			Х	>			х			3.3				х										х			Х							
						х		х	х			X	Ш						х			>	¢										X									Х	Х			х						
						х	х						Ш			х				Х	Х							1.0						X	¢						ĸ						х					
X						х		Х					Ш								Х	>	ς		х		3	1.0	X						2	£.				Ш	κ.	Х						Х				
		1	¢		Х	х			Х							х						>	ς				3	11	х							2	¢				κ.	х							х			
			¢.			х		х		Х						x						3	6	x	х		X	1	Х								X				ĸ	х								х		
x		1	¢.			х					х											3	¢		х		3	8.8	х									,			κ.	х									х	
												Х										>	ς		х	х	L.	8.8	х										x	11	ĸ	х										х

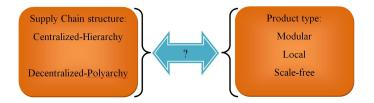
Motivation- cont: Decision-making organizations' structure [7]

Figure: Hierarchy reduces possibility of accepting an inferior decision (Type II error), polyarchy reduces possibility of rejecting a superior (Type I error).


Problem definition

Research questions:

- Does any of the organizational decision making structures, hierarchy or polyarchy, have a superior performance than the other one when deployed for a particular interaction pattern?
- Are there interaction patterns for which deployment of an organizational decision making structure (hierarchy or polyarchy), results in higher performance than the other interaction patterns?


Problem definition- cont- Implications of products for Supply Chain

Research questions:

- A centralized Supply Chain (SC) uses a hierarchical decision making structure in which there is a high level of control on SC firms. A decentralized SC applies a polyarchy decision making structure in which there is a high level of authority.
- A product type is a set of product with a particular interaction pattern (i.e. modular product).

Problem definition- cont- Implications of products for Supply Chain

Research questions:

- Does any of the supply chain structures (centralized or decentralized) have a superior performance than the other one when deployed for a particular product type?
- Are there product types for which deployment of a supply chain structure (centralized or decentralized), results in higher performance than the other product types?

NK fitness landscape model [3]:

- An agent is responsible for design of a system with *N* elements each of which can have two binary states.
- Contribution of each element of system depends on (has interactions with) the state of K other elements of that agent.
- There are a number of possible states for agent (for N = 6 binary elements, $2^6 = 64$ states).
- Agent at each state has a fitness value (average of the contribution of each element).
- Agent searches to find the best state with the highest fitness.

(1) Generate the interactions among the elements of agents:

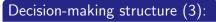
- To specify which elements influence contribution of an element to the fitness of the agent.
- Interaction matrix of system with six elements (N = 6, K = 4):

	Agent			. /	٩		
Agent	Elements	1	2	3	4	5	6
		1 🗸				\checkmark	\checkmark
		2 1			\checkmark	\checkmark	\checkmark
Α		3 1			\checkmark		\checkmark
А		4 🗸		\checkmark	\checkmark	\checkmark	\checkmark
		5 🗸			\checkmark	\checkmark	\checkmark
		5 1					

(2) Generate the fitness landscape:

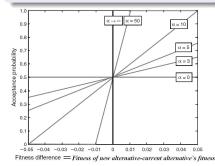
- The contributions are generated from an uniform distribution [0,1].
- Fitness landscape: Not sensitive to the type of distribution [8].
- Contributions of the elements of agent A from uniform distribution [0,1] for N = 6, K = 4 is shown in below table.
- The fitness of agent A at state s = 110001 is: $f_A[s_A = (110001)] = \frac{0.31+0.82+0.39+0.22+0.17+0.75}{0.44} = 0.44$

Focal element	Agent	State of decisions	Contribution
		SĄ	randomlygenerated
1	Α	110*01	0.31
1	Α	010*01	0.43
2	Α	1 <mark>1</mark> *001	0.82
2	Α	1 <mark>0</mark> *001	0.11
3	Α	11 <mark>1</mark> 0*1	0.65
3	Α	11 <mark>0</mark> 0*1	0.39
4	Α	1*0 <mark>1</mark> 01	0.68
4	Α	1*0 <mark>0</mark> 01	0.22
5	Α	11*0 <mark>1</mark> 1	0.91
5	Α	11*0 <mark>0</mark> 1	0.17
6	Α	1*000 <mark>1</mark>	0.75
6	Α	1*000 <mark>0</mark>	0.41


(3) Agent searches on the generated landscape function:

- At each time, the agent flips the state of one (or some) of its elements toward a higher fitness (perfect search).
- Agent A at state $s_t = 110001$ flips its state to $s_{new} = 111001$.
 - If the fitness of agent A at $s_{new} = 111001 > 0.44$, then agent A changes its state to $s_{t+1} = 111001$.
 - 2 If the fitness of agent A at $s_{new} = 111001 \le 0.44$, then agent A retains its state to $s_{t+1} = 110001$.

(3) Agent imperfectly searches on the generated landscape function:

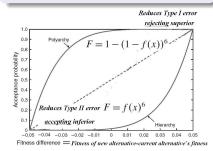

- At each time, the agent flips the state of one (or some) of its elements toward a higher fitness (imperfect search).
- Agent A at state $s_t = 110001$ flips its state to $s_{new} = 111001$.
 - If the fitness of agent A at s_{new} = 111001 > 0.44, then agent A may retain its state to s_{t+1} = 110001 (Type I error-rejecting a superior solution).
 - ② If the fitness of agent A at $s_{new} = 111001 ≤ 0.44$, then agent A may change its state to $s_{t+1} = 111001$ (Type II-accepting an inferior).

Addressing research questions by NK landscape.

- Imperfect local search on generated landscape.
- Screening function of a decision-maker

 $f(x) = \alpha x + \beta \ [4].$

Interactions pattern (1):


- A particular interaction pattern is used to the first step of NK landscape.
- Modular with N = 6 and K = 2:

	Agent			1	4		
Agent	Elements	1	2	3	4	5	6
		1 🗸	\checkmark	\checkmark			
		2 🗸	\checkmark	\checkmark			
A		3.		\checkmark		\checkmark	
A		4		\checkmark		\checkmark	
		5					
		6					

Addressing research questions by NK landscape-cont.

Decision-making (DM) structure (3):

- Imperfect local search at organizational level.
- Organizational screening function of n = 6 and α = 10, β = 0[4]:

Interactions pattern (1):

- A particular interaction pattern is used to the first step of NK landscape.
- Modular with N = 6 and K = 2:

	Agent			1	4		
Agent	Elements	1	2	3	4	5	6
		1 🗸		\checkmark			
		2 1	\checkmark	\checkmark			
•		3.				\checkmark	
A		4		\checkmark		\checkmark	
	3	5				\checkmark	\checkmark
		5					\checkmark

Simulation goal

• Simulate hierarchy/polyarchy structure on NK landscape instances with different interaction pattern and analyze their performances.

Parameters and experiments

- Number of elements, N=12, K=[1,6].
- Number of runs/landscape instances: 35
- Simulation time in each run: 800 (search space, $2^{12} = 4096$).
- Pattern: Random, local, central, and small-world.
- n = 6 decision-makers.
- $\alpha = [-0.2, 0, 0.2]$ and $\beta = [-0.05, 0, 0.05]$.

Statistical analysis of results (lpha=0.1)

	Input	s		Results	Conclusion
Pattern	α	β	Κ	P-value	DM with higher performance
Random	-0.2	-0.05	1	0.225	-
Random	-0.2	-0.05	6	0.018	Hierarchy
Random	0	-0.05	1	0.003	Hierarchy
Random	0	-0.05	6	0.062	Hierarchy
Random	0.2	-0.05	1	0.798	-
Random	0.2	-0.05	6	0.005	Hierarchy
Local	-0.2	-0.05	1	0.009	Hierarchy
Local	-0.2	-0.05	6	0.021	Hierarchy
Local	0	-0.05	1	0.024	Hierarchy
Local	0	-0.05	6	0.093	Hierarchy
Local	0.2	-0.05	1	0.073	Hierarchy
Local	0.2	-0.05	6	0.050	Hierarchy
Central	-0.2	-0.05	1	0.005	Hierarchy
Central	-0.2	-0.05	6	0.039	Hierarchy
Central	0	-0.05	1	0.001	Hierarchy
Central	0	-0.05	6	0.057	Hierarchy
Central	0.2	-0.05	1	0.048	Hierarchy
Central	0.2	-0.05	6	0.002	Hierarchy

Statistical analysis of results - (lpha=0.1)

Input	s			Results	Conclusion
Pattern	α	β	Κ	P-value	DM with higher performance
Small-world (p=0.1)	-0.2	-0.05	1	0.094	Hierarchy
Small-world (p=0.1)	-0.2	-0.05	6	0.001	Hierarchy
Small-world (p=0.1)	0	-0.05	1	0.073	Hierarchy
Small-world $(p=0.1)$	0	-0.05	6	0.001	Hierarchy
Small-world $(p=0.1)$	0.2	-0.05	1	0.496	-
Small-world $(p=0.1)$	0.2	-0.05	6	0.457	-
Small-world (p=0.4)	-0.2	-0.05	1	$3e^{-4}$	Hierarchy
Small-world (p=0.4)	-0.2	-0.05	6	0.002	Hierarchy
Small-world (p=0.4)	0	-0.05	1	0.025	Hierarchy
Small-world (p=0.4)	0	-0.05	6	0.321	-
Small-world (p=0.4)	0.2	-0.05	1	0.612	-
Small-world (p=0.4)	0.2	-0.05	6	0.170	-
Small-world (p=0.9)	-0.2	-0.05	1	0.580	-
Small-world (p=0.9)	-0.2	-0.05	6	0.232	-
Small-world (p=0.9)	0	-0.05	1	0.124	-
Small-world (p=0.9)	0	-0.05	6	0.002	Hierarchy
Small-world (p=0.9)	0.2	-0.05	1	0.342	-
Small-world (p=0.9)	0.2	-0.05	6	0.550	-

Statistical analysis of results (lpha=0.1)

	Inputs			Results	Conclusion
Pattern	α	β	Κ	P-value	DM with higher performance
Random	-0.2	0.05	1	0.049	Polyarchy
Random	-0.2	0.05	6	0.008	Polyarchy
Random	0	0.05	1	0.001	Polyarchy
Random	0	0.05	6	0.045	Polyarchy
Random	0.2	0.05	1	0.001	Polyarchy
Random	0.2	0.05	6	0.038	Polyarchy
Local	-0.2	0.05	1	0.013	Polyarchy
Local	-0.2	0.05	6	0.002	Polyarchy
Local	0	0.05	1	0.021	Polyarchy
Local	0	0.05	6	0.012	Polyarchy
Local	0.2	0.05	1	0.018	Polyarchy
Local	0.2	0.05	6	0.072	Polyarchy
Central	-0.2	0.05	1	0.48	-
Central	-0.2	0.05	6	0.070	Polyarchy
Central	0	0.05	1	0.005	Polyarchy
Central	0	0.05	6	0.081	Polyarchy
Central	0.2	0.05	1	0.031	Polyarchy
Central	0.2	0.05	6	0.032	Polyarchy

Statistical analysis of results - (lpha=0.1)

Input	s			Results	Conclusion
Pattern	α	β	Κ	P-value	DM with higher performance
Small-world (p=0.1)	-0.2	0.05	1	0.266	-
Small-world (p=0.1)	-0.2	0.05	6	0.033	Polyarchy
Small-world (p=0.1)	0	0.05	1	0	Polyarchy
Small-world (p=0.1)	0	0.05	6	0	Polyarchy
Small-world (p=0.1)	0.2	0.05	1	0.017	Polyarchy
Small-world $(p=0.1)$	0.2	0.05	6	0.333	-
Small-world (p=0.4)	-0.2	0.05	1	0.254	-
Small-world (p=0.4)	-0.2	0.05	6	$2e^{-6}$	Polyarchy
Small-world (p=0.4)	0	0.05	1	0.055	Polyarchy
Small-world (p=0.4)	0	0.05	6	0.018	Polyarchy
Small-world (p=0.4)	0.2	0.05	1	0.406	-
Small-world (p=0.4)	0.2	0.05	6	0.036	Polyarchy
Small-world (p=0.9)	-0.2	0.05	1	0.043	Polyarchy
Small-world (p=0.9)	-0.2	0.05	6	0.004	Polyarchy
Small-world (p=0.9)	0	0.05	1	0.023	Polyarchy
Small-world (p=0.9)	0	0.05	6	0.45	-
Small-world (p=0.9)	0.2	0.05	1	0.027	Polyarchy
Small-world (p=0.9)	0.2	0.05	6	0.528	-

Discussion on results

- Changes in capability of decision makers (+/- β) changes the better DM structure.
- Different results for small-world pattern than the other patterns.
- Performance of DM structure (hierarchy or polyarchy) depends on interaction pattern as well as individual DM capabilities (+/- β).

Extension

- Incorporating other interaction patterns.
- Analysis of the complete search space for 100 landscape instances [4].
- Investigation of wider range of parameters and hybrid DM structure [4].

[1] Dan Braha and Yaneer Bar-Yam.

The statistical mechanics of complex product development: Empirical and analytical results.

Management Science, 53:11271145, 2007.

[2] Brigitte Gay and Bernard Dousset.

Innovation and network structural dynamics: Study of the alliance network of a major sector of the biotechnology industry. *Research Policy*, 34:1457–1475, 2005.

[3] Stuart A. Kauffman.

The origins of order: self organization and selection in evolution. Oxford University Press, 1993.

 [4] Thorbjrn Knudsen and Daniel A. Levinthal. Two faces of search: Alternative generation and alternative evaluation. *Organization Science*, 18:3954, 2007.

[5] Mark Newman.

Coauthorship networks and patterns of scientific collaboration. In *Proceeding of the National Academy of Sciences of the USA*, pages 5200–5, 2004.

[6] Jan W. Rivkin and Nicolaj Siggelkow.

Patterned interactions in complex systems: Implications for exploration.

Management Science, 53(7):1068–1085, 2007. 0025-1909.

 [7] Raaj Kumar Sah and Joseph Stiglitz. The architecture of economic systems: Hierarchies and polyarchies. *American Economic Review*, 76:716–727, 1986.

[8] Edward D. Weinberger.

Local properties of kauffmans n-k model: A tunably rugged energy landscape.

Physical Review A, 44:63996413, 1991.