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Objectives

" Brief summary and motivation of traditional
transport network modelling for planning

" Highlight some mathematical advances in
this field related to:

= Dynamics (very brief)
= Strategic decision making (quite brief)
= Adaptive behaviour (more detailed)




Transport Planning/Modelling

" In essence, mathematically represent individual
travel choice and resulting system impacts

= Trip/activity Destination
= Mode Toll Usage
= Lane Acceleration
= Congestion Emissions

= Energy Use Reliability

= And the list continues to grow

Departure-time
Route

Safety
Accessibility



Transport Network Modelling

" Most transport applications
contain network structure

" Numerous application
characteristics

= QOperational vs planning

® Domain-specific network issues

= Physics of traffic/transit

= |Individual operational behaviour (e.g., reaction time,
distraction ,stress)

* |Individual strategic behaviour (eg,route/mode/toll/trip choice)

Today, we will note some advances in dynamics, volatility, and adaptivity



Our Network Model Deployments for

svlanning

" Ongoing and previous project involvements

Sydney, NSW Austin, TX Dallas, TX

El Paso, TX Houston, TX Chicago, IL
New York, NY Atlanta, GA Phoenix, AZ
San Francisco, CA New Jersey, NJ Columbus, OH
Jacksonville, FL Nicosia, Cyprus Orlando, FL

New Orleans, LA

® Over 40 specific externally funded projects in last decade

But, what is the point of the basic model?



Simplified Static Equilibrium Model

Braess’s Paradox (simplified example)

=l 2 Paths -
« P,.=A-B-D
- P,=A-C-D

|' Equilibrium flows

.« P,=P,=25

c,+c,=c5tc,= 9.5

Total cost =475



Braess’'s Paradox Example

g3 Paths o
. P, =A-B-D
. P,=A-C-D
. P, =A-B-C-D

|' Equilibrium flows |y

P,=50,P,=0,P,=0

C,+C;+C,=11

Total cost = 550



“Static” Traffic Assignment

® Formulation (Beckman, 1956)

. y d
min Z[Ca(a)) W

S. 1.
Z h/:S = ql’S Vl’, 5

h =0 Vi r s

X, = 2 2 Zh,jjsé;’fk Va



Advances in Network Realities

" Numerous advances over the past 60 years
= Stochasticity
= Dynamics
= Multiple classes of travel behaviour
= Pricing
= Network design
= Signal design
= Information
= Demand/Supply integration
= Many others



DTA and Travel Demand Formulation

Lin, Eluru, Waller and Bhat (2007)

DTA:W(E) (E-E)=0 VEED
DEMAND :W(E") = S(P(Z(¥(Z"))))

= = Any feasible DTA solution(vector)

= = Optimal DTA solution(vector)

Y(E) = Path cost vector resulting from DTA =

Z(W(E)) = Dynamic trip table resulting from path cost vector W(E)

P(Z(W(E))) = User paths vector from assigning trip table Z(W(2))

S(P(Z(¥(E))))= Path cost vector obtained from simulating user paths P(Z(W(E)))
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Strategic Assignment

" Altered assumption

= Travellers make stable routing decisions
considering daily volatility

= First model, only consider demand uncertainty



Simple Concept —

Assignment with demand uncertainty

" How to account for demand uncertainty
= User equilibrium
» Expected costs equilibrate
= System optimal

* Minimize total expected cost
X1

f(x1)



Strategic traffic assignment

® Path proportions

= What becomes uncertain is simply number of travelers
" User equilibrium

= People equilibrate according to expected cost
® System optimal

= Minimize expected total system cost

X1 = P1lap
f1(P1,taB)
X2 = P2lap e
N -7 \\\ 1
Se_ -7 L2(patap) S /



Literature Sample

" Day-to-day travel

= Asakura and Kashiwadani, 1991; Clark and Watling,
2005

= Watling and Hazelmen, 2003; Hamdouch et al, 2004

® Strategic/Policy Based Approaches

= Chriqui and Robillard, 1975; Marcotte and Nguyen,
1998

= Marcotte et al, 2004: Hamdouch et al, 2004

= Gao, and Chabini, 2006; Unnikrishnan and Waller,
2009

® Stochastic User Equilibrium
= Daganzo and Sheffi, 1977; Sheffi and Powell, 1982
= Maher and Hughes, 1997; Horowitz, 1984

16



Contribution

" New SO-DTA LP formulation for strategic
path choice considering demand
uncertainty

® Analysis of resulting path flows and cell
densities

® Cues to future work and possible
directions

17



The cell transmission mode

Represents network structure in small “street” segments (cells)

Efficient model that propagates traffic according to hydrodynamic flow equations
Dynamic, simple, intuitive
Daganzo, 1994, 1995

At time t to t+1, the amount of flow that
moves from i to j is the minimum of:

Number in cell: 47 Tt

Saturation flow: Q\llj
5 /] =

\ 4

N/

\ 4

Jam density = N,

Distance vehicle can
travel during one time
period

Saturation flow = Q;

18



Strategic SO DTA LP

® Based on Ziliaskopolous (2000): Linear programming
formulation of system optimal dynamic traffic assignment that
embeds the CTM

= Benefits
* Propagates traffic without the use of a link performance function
* Linear program

= Challenges
« Computationally costly

" Benefits of strategic approach
= Encompasses the concept of strategies
= Use path flows instead of link flows
= Stochastic demand
® Challenges of strategic approach
= Complex formulation
= Still preliminary

19



Basic SO-DTA LP

Ziliaskopoulos (2000)

VIEO{CIR,CLS )V tET,

VieEC,VteT

V/EN{CIR,CIS ) VteT
V/EC\CIR,VLeT,

VieEO\CIS,VteT
V/eS(I) ViEC,

20



Strategic Assignment:

Need to maintain path proportions and demand scenarios

Set of demand scenarios.
Demand scenario index.

Demand between OD pair (7,s) at departure time zin demand scenario ¢

Set of all paths , @175 ..., #LiTrs connecting OD pair (7,s)

Number of vehicles at time interval t on cell i which departed at time 7,
following path ¢ between origin r and destination s in demand scenario ¢

Number of vehicles contained in cell i at time interval t in demand scenario ¢

Flow from cell i to cell j at time interval t for OD pair rs with departure time 1
and travelling along path ¢ in demand scenario ¢

Total flow into cell i at time t in demand scenario ¢
Total flow out of cell i at time t in demand scenario ¢

Indicator equal to 1 if cell connector (z/) is included along path @, and 0O
otherwise 21



LP formulation

Waller, Fajardo, Duell, and Dixit (2013)

® Can be intuitively interpreted as many SO DTA LPs all connected by
the same path proportions

Minimize E E E pf xff Minimize the expected total system travel time,
) t which equates to the sum of the densities for
VEEE VLET VieC\Cs each cell over all time periods and demand
scenarios
s.t.
trs,é t-17s8 ki t—17rs¢ ij t—1rs& _ ;
xldn —xl¢r Z o) ‘ykl¢r - Z 6¢ yU¢T =0, Vi € C\{Cg, Cs},Vt €T, )
keP(i) JES(D) V¢ € q)(TS),VTS € RS,Vf cEx .
trsE _ t-1rsg i t-1rsé Vs e CovteT Flow conservation
Yior ~Xior 8¢ Ykigr =0 sElsVLET, 3) constraints
KEP(1) V¢ € ®(rs),Vrs € RS,VE €E
LTS8 _ t-irsg Z §Tiyttrst _ rsk Vr € Cg,VtET
p Ry »
Tror T Frex & ? Tridz #ide vp € O(rs),rs eRS,vi ez D
yl]d)‘c - 1.¢r V¢ € ®(rs),V(rs) € RS,vE &)
jes() €EE
w;:.e + xit,f < Nt Vi € C\{Cg,Cs},VtET,VEEE (6) = it/
23 t : = ell capacity
wiit . < Qf, Yz ECVteT, V¢ EE (7 connector
P;° <Qf, Vi€ C\Cs,VtET,V§ EE ®) constraints
s — 1
Pyt VrsERS,VtET,VEEE )
Voed(7,5)

+8 more constraint sets: aggregate link flow to path flow,

initial demands to zero, non-negativity




Results from the LP SO DTA
Approach

®

Time Period Time Period

D [0 T 33 356759 10 1 12 15 13 55 16 17 18 19 20 21 22 33 24 35 36 37 25 29 30 31 32 33 37 35 36 37 38 39 30 G100 12 3G S5 T6 76 90 i 12 13 14 i5 16 17 s 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 3435 36 37 38 39 40 41 42 43 44 5 46 47 48 45 50 5152 53 54 55 56 5758 59 60 61 62 63 64 65 66 67
3
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W currentwork

" Developing novel numerical solution method
= Marginal cost and dual numerical approximation

® Deriving static equilibrium formulation and solution
algorithm

" Expanding dynamic formulation for network design
and other forms of uncertainty

" NEXT: Adaptivity

24



Recall: Braess’s Paradox Example

g 3 Paths —
* A-B-D (y,)
* A-C-D (y,)
- A-B-C-D (y5)

c’1+c’5+c’4=9.2
/'=423.2
/’-7=87.4




Need such a model for adaptivity

" \We need similar models for information
and uncertainty evaluation

" True impact of real-time ITS?

= Fundamental behavior, including
anticipation, will change

" We will begin with an examination of
individual routing under information



Deterministic Costs:

Example Network

Path Costs
ABDG: 7
ACEG: 4
ACFG: 5

A user travel fromAto G

Costs do not changﬁ

Three elementary



Stochastic Costs:

Arc States & Hyper-paths

2 states
State 1 with cost 1

State 2 with cost 3

Bothistatesthave

equalpreanity

when they reach C

[ Online Routing: Users learn the state of CE 7

State 1: ACEG
State 2: ACFG

~ %) AC/1-EG
AC/2-FG

Recourse : Users change their paths en-route

Solution : Model assigns users to hyperpaths




Online Shortest Path (OSP)

" Numerous issues exist for even simple
OSPs

® A couple quick examples and solution
properties



W Notmation

o = origin node d = destination node

S.p = Set of possible states for arc (a,b)

Elbla,s]= expected cost to d from b, given
that arc (a,b) 1s traversed at state s

pf,’,f’c = probability that arc (b,c) 1s 1n state k,

given that arc (a,b) was 1n state s
SE = scan eligible list
I"1(31) = set of all predecessor nodes of a
r(a) = set of all sucessor nodes of a =



A Priori (offline) Example

571
5[2] All Arcs
1.5




On-line Example

3 15

)

1
.5[ 2]A||AI‘CS

Possible Events at
C-E and C-F;

25(1 1)
2501 2
2502 1
252 2/ 5




On-line Example

)
S

| Al Arcs

25 2.5

25 2.5

25 3.5



On-Line Example

.25
.25
.25
.25

4.0625

Possible Events

at A-B and A-C
143 142.75
1+3 2+2.75
2+3 1+2.75

2+3

2+2.75

2.5

251 3.75

25 4
=>

251 375

25| 475

34



Simple Combined Probability Matrix

0833 [ min( 1+ E[b],2 + E[c],3 + E[d])’
cl,3+ E[d]
1,5 |
I, |

|
0833 | min( 1+ E[b],6 + E [
|
|

e e 0833 | mm( 1+ E[b],2+ E[c],5+ E[d
0833 | min( 1+ E[b],6 + E[c],5+ E[d

0833 | mm( 4 + E[b],2 + E[c],3 + E[d])
0833 | min( 4 + E[b],6 + E[c],3+ E[d])

E =
33311 0833 | min( 4 + E[b],2 + E[c],5+ E[d])
pob _ 333] 4| poe =.5[2] .0833 | min( 4 + E[b],2 + E[c],5 + E[d])
' ’ 56/
3338

0833 | min( 8+ E[b1,6 + E[c],3 + E[d])
pad =-5H 0833 | min( 8 + E[b],2 + E[c],5 + E[d])
0833 | min( 8+ E[b1,6 + E[c],5 + E[d])|

35

|
|
0833 | min( 8+ E[b],2+ E[c],3+ E[d])
|
|
L



Pair-Wise Combination

166 [ min( 1+ E[b],2 + E[c])’

® Combine first two arcs: 166 min(1+ E[b],6 + E[c])
166 | min( 4 + E[b],2 + E[c])
166 | min( 4 + E[b],6 + E[c])
166 | min( 8 + E[b],2 + E[c])
166 | min( 8+ E[b],6 + E[c]) |

" There can be at most 5 unique states in
this matrix.

" Therefore, this matrix can be reduced
and then combined with another arc.

36




Matrix Reduction

= 1)Create an empty dynamic Linked List (LL)

= 2)Remove row (a), consisting of a state cost and
probability, from the original matrix

= 3)Perform a Binary Search on LL for the state of (a)
= 4)If it exists, add the probability from (a) to element in LL

= 5)If it does not exist, insert (a) into LL at the place pointed
to by the binary search

37



Complexity of Reduction

" Take S to be the maximum number of
States on any arc.

" This procedure must be carried out until
the original combined matrix is empty,
at most S? times.

" Each steps takes O(1) except 3.

" The maximum size of a reduced matrix
IS NS.

" Step 3 can be completed in log( nS ).

" Reduction takes S?log( nS ). For each
pair-wise combination 38



Probability Bounds, Positive Costs

® C = Minimum Arc Cost, M = Maximum Arc Cost
" N = Number of Nodes, E=Expected # of Arcs

" p(i) = Probability of exactly i cycles
" F = Cumulative distribution for # of Arcs

" C * E[# of Arcs] = NM

E=§i*p(i)

39



Probability Bounds

" C*E=NM

E=Y1i*p()
" Take ¢(j) as a lower bound on E:

" e())= i]‘*p(i) where j =0 integer

" ¢() = J'(1-F()
" Since ¢(j) = E <= NM/C
" =>1-F(j) = NM/(C))

40



Properties and Complexity

® Cumulative probability F() that the optimal
solution will contain j arcs is bounded:

= 1-F(j) = nM/(C;j)

" State space matrices can be iteratively
bounded and reduced

" Yields algorithm complexity, given error €
= O(n?mS?M(nM-C) / (C? €))



Online Algorithm 1 (of 3)

Waller and Ziliaskopoulos (2002

Step 1.
. . -1

Eldlis]F0  ViET (d), s&€S;; Algorithms are
E[nl1,s]= o0 ¥V nEN/, iEF'l(n), SESin presented for variants
SE:=d of spatial, temporal and

' combined dependency
Step 2.
while SE= &

Remove an element, n, from the SE
for each i€ (n), sESi.,, jE(n)

alnli,s1= % pi/ (e’ + E[j|n,k])
ke n,j
If t[n|1,s]< E[n|1,s], then E[n|1,s]:= m [n]|1,s]
SE:=SE U{ET™ (i)}



UER Network Assignment Model

“ Equilibrium Formulation ™

= Accounts for congestion effect
= Costs are a function of flow & network state

)

- Model Assumptions

Cost functional form varies according to
the network state

= Travelers learn the cost functional form of

an arc when they reach upstream node




Network Equilibrium with Recourse

~
Develop analytical formulation for traffi?

network assignment problem under
online information provision

User Equilibrium  System Optimal

~ )
Develop a Frank-Wolfe based solution

algorithm for solving the problem

Static network Limited one-step
assignment information




UER Model Definitions & Assumptions

< (Arc states follow a discrete probability distribution )

| [When a traveler reaches node i they learn the cost functional

form for ALL arcs (i,j) Special case: travelers learn the
capacity on each arc

Cijs ) is the state-dependent cost function
L SESIj
Sijis the set of possible states for arc (i,j)

| Model A: All users see the same node state
Model B: Users see different node states

N/




Model A : Expected Hyperpath Cost
( Node State ) combination of emanating link state realizations

( §¥§Iﬁm ﬁﬁlﬁ ) combination of node state realizations
(__Hyperpath Flow ) H* (for hyperpath k)

Link/Hyperpath yik " ‘(l) iftlfr:yperpath k uses arc (ij) under state u)
M‘ ' - otherwise

___Hyperarc Flow ) fl._j = Z 7/z'k_ H k (given system state u)

Hyperarc Flow F=A Ijl_ Hyperpath flow vector
T Node-hyperpath aclcessibi/ity matrix
Hyperpa_tl]-_HYpera_rc Pz,k =p, yl.k_ j/u | Probability of system state u
*
Expected Hyperpath PTC[ A H]




Model A: Formulation & Solution Algorithm

Unnikrishnan and Waller (2009)

fi—j/u

CONVEX Min ZIF(H)l= % [p.Ci ;. (x)ax

FORMULATION no
Subjectto F=AH t=BH H=0

SOLUTION ALGORITHM : FRANK-WOLFE

Step 1: At iteration n, fix the costs on the arcs C_,,(f",,)
Step 2: Determine the optimal hyperpath H

Step 3: Conduct all-or-nothing assignment on H

Step 4: Determine the auxiliary link flows y,-”fjl,u

Step 5: Determine £, by a linear combination of ¥/"j..f”;..
Step 6: Test for convergence. If no set n=n+1, go to Step 1




Model A: Equilibrium Condition

Property: A traffic network is in UER if each user follows a hyperpath
that guarantees the minimum expected cost and no user can
unilaterally change his/her hyperpath to improve their expected travel
time

EQUILIBRIUM H'[P"CIAH]-B"u]=0
r T
CONDITION P CIAH]-B u=0
H=0
INSIGHTS

“ All used hyperpaths will have equal (and minimum) expected
cost.

® This implies that those network users who follow a UER solution
without options, still receive precisely the same benefit as those
users who actually experience the options.




Without information

= Arc CBhas 2 STATES:
State 1; C3(x)=1000 (wp 0.2)
State 2: C3(x)=1 (wp 0.8)

= Other arcs: single states
C1(x)=5, Ca(x)=x/10 (wp 1)
Ca(x)=X/10, Cs(x)=5 (wp 1)

» DEMAND: 40 users want to

travel from Ato D

= Solution: all users split over
paths P1 and P2 (P3 too risky)

= P1=P2=20
= UserCost=7




UER Example

= Arc CBhas 2 STATES:
State 1; C3(x)=1000 (wp 0.2)
State 2: C3(x)=1 (wp 0.8)

= Other arcs: single states
C1(x)=5, Ca(x)=x/10 (wp 1)
Ca(x)=X/10, Cs(x)=5 (wp 1)

HYPERPATHS

H1: A-B-D » DEMAND: 40 users want to
H2: A-C/1-B-D & A-C/2-B-D travel fromAto D

H3: A-C/1-B-D & A-C/2-D » Users assigned to HYPERPATHS

H4: A-C/1-D & A-C/2-D
H5: A-C/1-D & A-C/2-B-D




UER Example

HYPERPATH | FLOW | EXP COST
H1 8.33 8.1666
H2 0 207.1333
H3 0 208.3333
H4 2.5 8.1666
HS5 29.166 8.1666

All used hyperpaths have equal and minimal expected costs

7:/ow on BD depends on state of C. Even though states are\

not correlated, the flow induces dependency




Braess

Expected User Cost Expected User Cost
UER : 8.1666 No Information: 7

If everybody has access to the network state information, system
performance may be worse than under a no-Information scenario

Fundamental implications when planning for information
provision through ITS devices

These analytical models form the next generation of
deployable practical models

We need additional algorithmic computational improvement




W summery

® Overview of traditional network equilibrium for planning

" New models for strategic behavior
= |Including some explanatory capability for dis-equilibria

" New algorithms for online shortest path

" New models for user equilibrium with recourse

These models form only one specific

piece of the bigger planning picture.



Questions?

RCITI

Research Centre For Integrated Transport Innovation

School of Civil and Environmental Engineering UNSW
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