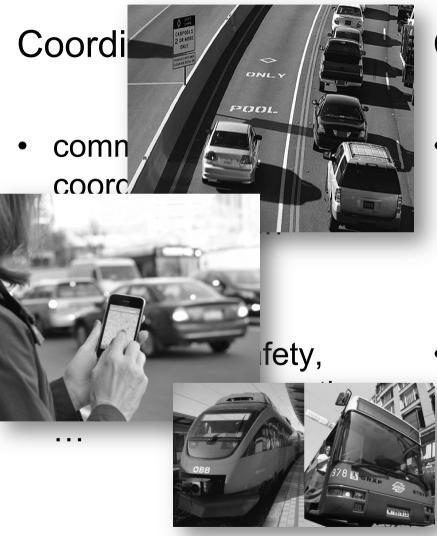


Stephan Winter winter@unimelb.edu.au

Collaborative Transportation: A Case for Computational Transportation Science

AMSI Workshop on Mathematics of Transportation Networks


Computational transportation science

Sixth ACM SIGSPATIAL International Workshop on Computational Transportation Science

Collaborative urban transport

THE UNIVERSITY OF MELBOURNE

Collaboration

- communication* for sharing transport resources and reducing load in networks
- apps: ride sharing, car sharing, demandresponsive transport, collaborative freight, ...

* V2V, V2I, V2P, P2P, P2I

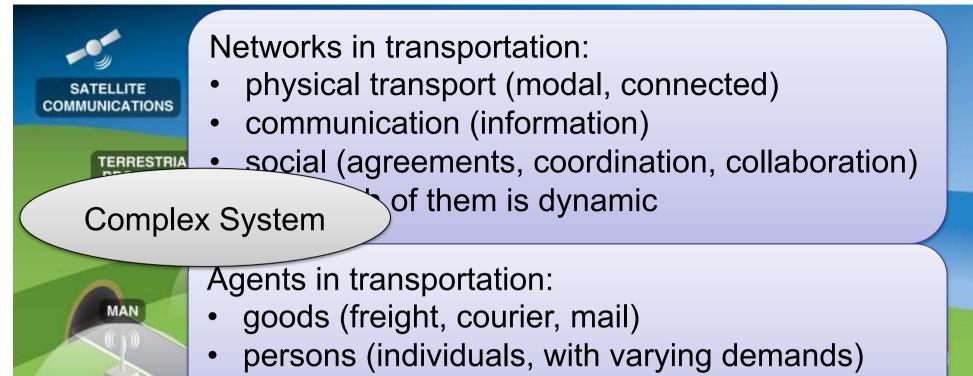
General knowledge ...

• 23% of world energy-related GHG emissions

Melbourne Principles for Sustainable Cities (UNEP & ICLEI 2002)

02

- Enable communities to minimise their ecological footprint.
- Empower people and foster participation.
- Expand and enable cooperative networks.
- Enable continual improvement, based on [...] transparency, [...].

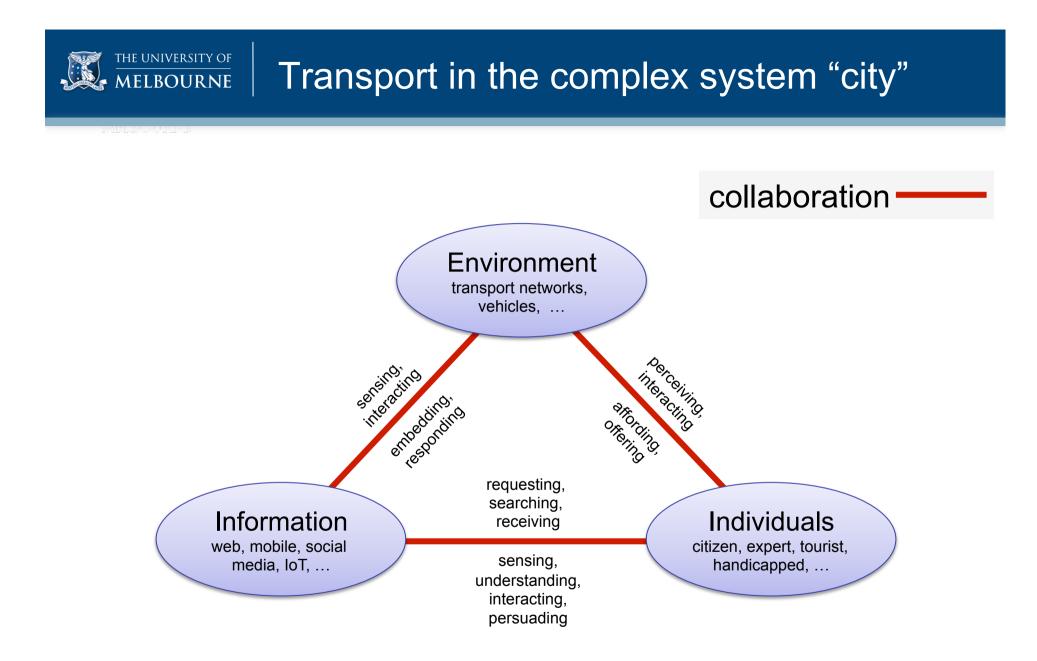


Collaborative urban transport

bottom-up

THE UNIVERSITY OF **MELBOURNE**

- > working with available infrastructure and systems
- potentially disruptive to current challenges
- better utilization of capacity
 > with environmental, equity and economic benefits
- real-time sensing
- connectedness
- information fusion
- intelligent search, discovery and control
- intelligent and persuasive interaction


vehicles (car, bus, tram / rail, bike, pram, ...)

"Computing increasingly happens somewhere, with that geographic location being relevant to the computational process itself."

Matt Duckham 2012 (p. 3)

Sensing, computing and communicating must be:

- location-aware
- time-aware

MELBOURNE 10 core concepts

- location
 - multiple ref systems
 - salient locations
- neighborhood
 - flexibility in space, time, intention
- field
 - dynamic; macro-models
- object
 - people (entering and leaving); intentions
- network
 - dynamic
 - lane change, indoor, intermodal, …
- event
 - varying impact
 - unlikely

- granularity
 - suburb-suburb \leftrightarrow door-door
 - macro vs micro
 - obfuscation, privacy
- accuracy
 - localization
 - sample size
 - choice behavior
- meaning
 - knowledge extraction
 - UI: "stopped for a coffee", "the store near the theatre"
- value
 - footprint
 - costs / fares
 - ease of use

- Modelling transport networks
 - e.g., centrality
- Modelling transport on networks
 - e.g., people
- Optimization
 - e.g., collaboration on demand
- Interaction design
 - e.g., persuasion / ease of use

Examples from our research

- 1. ride sharing
- 2. bus on demand
- 3. opportunistic interaction design
- 4. collaborative evacuations

MELBOURNE #1 – Ride sharing

- real-time decision making
- decentralized (local) planning for scalability
 - exploiting 1st law of geography
 - local knowledge
 - fragile communication network
- results:
 - with transfers: travel times close to global optimum

#2 – Bus on demand

- real-time decision making
- centralized planning for coordination
 - optimization across fleet
 - constrained by QoS for passengers on-board
 - QoS can be relaxed by dynamic pricing
- results: preliminary

#3 – Interaction design (a)

- real-time decision making

MELBOURNE

- passenger chooses vehicle
 - pre-selected by destinations, time of departure
 - vehicles have flexibility: no fix time or location of departure
 - privacy preserving
 - offering vehicle should not identify passengers
 - searching passenger should not identify vehicles

mir

• fragile over near future: first-come first-serve

#3 – Interaction design (b)

- "intelligent" spatial communication
- enabling the machine to:
 - understanding people
 - communicating to people in their terms

THE UNIVERSITY OF MELBOURNE

Can you tell me the way to the airport?

Sure. Tullamarine, you mean? Follow this street [*points*] to the hospital, then turn right. From there, just follow the signs.

#4 – Collaborative evacuations

Collaborative ... why?

- indoor services lack maps
- maps are outdated by event anyway
- communication infrastructure may be damaged
- solution:
 - devices track themselves (SLAM)
 - devices share their knowledge via short-range radio
 - iterative route planning and random search

Collaborative transportation:

- why:
 - sustainability (environmental, equity and economic benefits)
 - resilience (safety benefits)
- how:
 - urban connectedness (sensing & communication & fusion & smart search)
- and where is the maths:
 - optimization within spatial, social and economic framework
 - user behaviour

MELBOURNE Some future questions

- leverage points?
 - urban areas / characteristics?
 - numbers of participants?
 - pricing?
 - safety?
- integration?
 - data fusion
 - transport modes
 - user groups / contexts
 - competing platforms

MELBOURNE

© Copyright The University of Melbourne 2008

Sustainable urban transport

• Sustainability: an aspiration

THE UNIVERSITY OF **MELBOURNE**

- environmental, social equity and economic demands

(UN World Summit 2005)

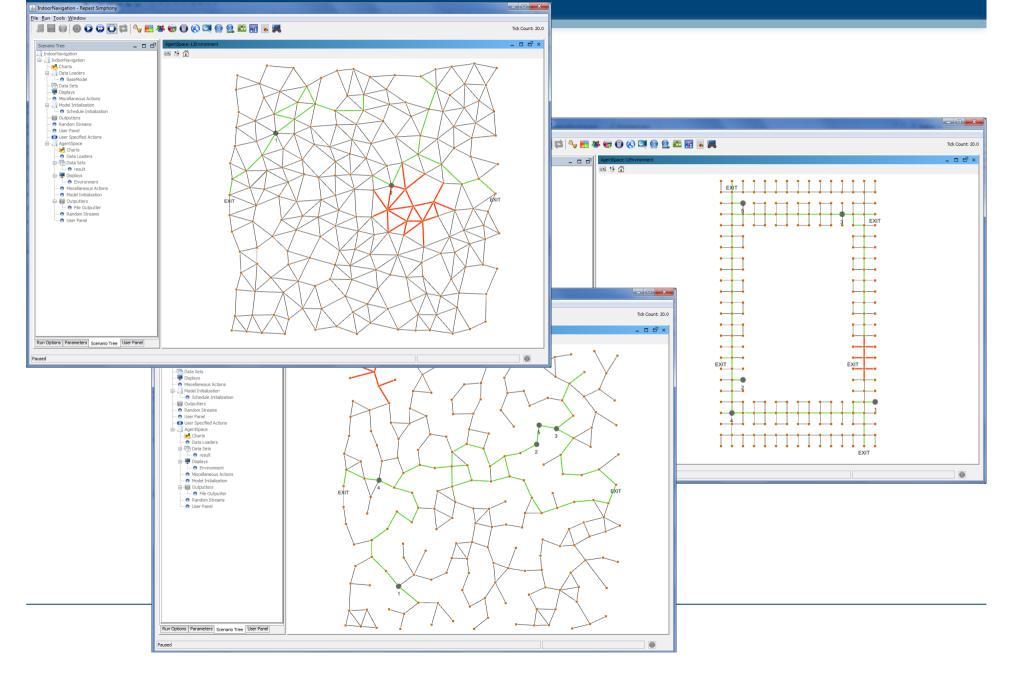
- the environmental demands:
 - urbanization/sprawl, space, energy, emissions, ...
- the social equity demands:
 - accessibility, mobility, equity among groups, ...
- the economic demands:
 - costs, time, health, ...

#3 – Interaction design (c)

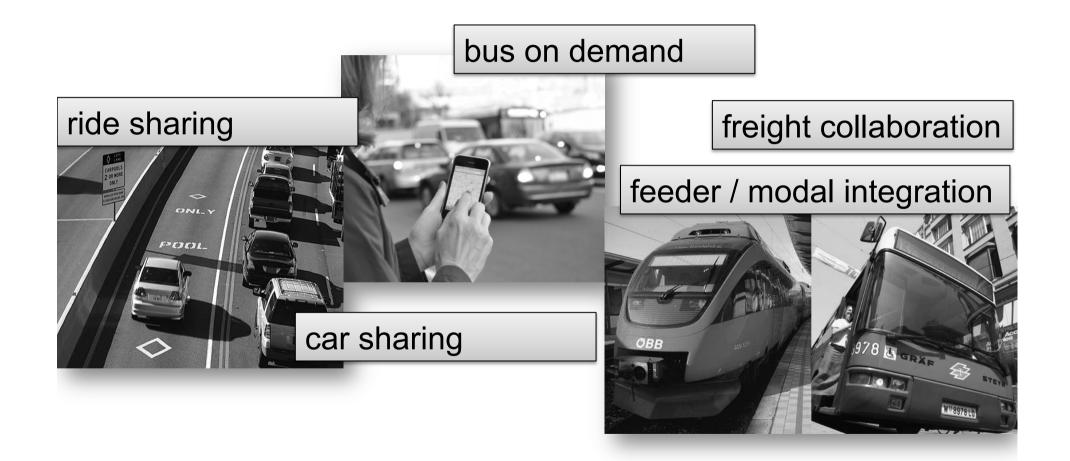
MELDOORICE.

Can you tell me the way to the airport?

Journey Planner				
I want to go:				
From:	Station / Stop 💌	Enter	Origin	
To:	Station / Stop 💌	Enter	Destination	
Select De Departii	Addrose	Day 25 💌	Month/Year December 2012 💌	
		Hour 11 💌	Minute AM/PM 55 • AM •	
Clear		Search	→ More options	


Sure. Tullamarine, you mean? Follow this street [*points*] to the hospital, then turn right. From there, just follow the signs.

Q



#4 – Collaborative evacuations (b)

Collaborative urban transport

Core concepts of CTS

Core concepts of spatial information

- identified by Kuhn (2012)

THE UNIVERSITY OF MELBOURNE

- spatial concepts:
 location, neighborhood, field, object, network, event
- information concepts:
 granularity, accuracy, meaning, value

Are these concepts relevant for computational transportation science?

- challenges for mathematics?
- foundations for algebras?

THE UNIVERSITY OF MELBOURNE

Core concept #1: Location

- relation of *figure* to *ground*
- ground and relation: context-dependent

- multiple reference systems
- salient locations

Core concept #2: Neighborhood

- space is autocorrelated
- nearness is context-dependent

- expands in time and intention
- flexibility in space, time and intention

• function (scalar or vector attributes) of space

- expands in time
- macro models: supply / demand as densities

MELBOURNE Core concept #4: Object

- (dual to field)
- individuals with spatial, temporal and thematic properties

- objects of high fragility (entering/leaving transport)
- intentions as an attribute
- micro models: supply / demand as agents

- relations between objects
- G(N,E), with both N and E having spatial, temporal and thematic properties

- transportation networks ...
 - Lane change? Turn restrictions? Indoor spaces?
 Transfer between modes?
 - everything in the city is dynamic: physical networks, demand, economy, …

- changes to previous core concepts
- (events : processes) ~ (objects : fields)

- Events in transportation networks
 - largely varying impact
 - unlikely hard to predict
 - infrastructure (incl communication), vehicles, people

Core concept #7: Granularity

• precision

THE UNIVERSITY OF MELBOURNE

- applies to each spatial core concept
- involves spatial, temporal and thematic attributes

- macro \leftrightarrow micro simulation (demand, supply)
- localization (space and time), obfuscation
- access, privacy

Core concept #8: Accuracy

- correctness
- applies to spatial, temporal and thematic attributes

- transport as a complex system
- sample size
- localization (space and time)
- choice behavior

Core concept #9: Meaning

- interpretation of information
- involves spatial, temporal and thematic attributes

- agents ('vehicle', 'person', 'mode', ...)
- intentions ("perhaps a coffee on my way to work")

social / emotional attachment to information

- sustainability, footprint, health
- ease of access, ease of use
- economic costs and benefits