A STUDY OF TRAFFIC DISRUPTION AND RECOVERY IN ROAD NETWORKS

Lele (Joyce) Zhang

School of Mathematical Sciences Monash University

21 June 2013

The AMSI Workshop on Mathematics of Transportation Networks

OUTLINE

One-dimensional cellular automata model

- Nagel-Schreckenberg dynamics
- Modeling incidents and lane changing
- One-dimensional systems
 - Stationary process
 - Fundamental diagram
 - Non-stationary process
 - Domain wall model
 - Numerical results
- Two-dimensional systems
- Conclusion

TRAFFIC DISRUPTIONS

Traffic disruptions cause bottlenecks, which reduce the network capacity, and usually result in traffic jam.

- vehicle breakdown
- collision
- illegal parking
- roadwork
- roadside breath alcohol test
- train crossing
- pedestrian crossing

FIGURE: From SunGuide

- Perturbed stationary state
- Transient behaviors
 - Loading process
 - Recovery process

TRAFFIC DISRUPTIONS

Traffic disruptions cause bottlenecks, which reduce the network capacity, and usually result in traffic jam.

- vehicle breakdown
- collision
- illegal parking
- roadwork
- roadside breath alcohol test
- train crossing
- pedestrian crossing

FIGURE: From SunGuide

- Perturbed stationary state
- Transient behaviors
 - Loading process
 - Recovery process

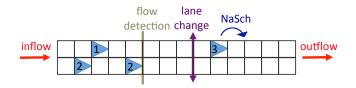
CA Model Stationary State Non-Stationary Process 2D Systems Conclusion NaSch model Animation

ONE-DIMENSIONAL CELLULAR AUTOMATA (CA)

TRAFFIC MODEL

Two-lane route with open boundary conditions

- Nagel-Schreckenberg model (NaSch): discretizing a lane into cells. For each vehicle at each iteration
 - Acceleration
 - No crash
 - Deceleration



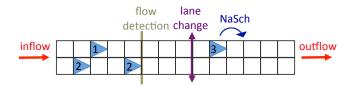
CA Model Stationary State Non-Stationary Process 2D Systems Conclusion NaSch model Animation

ONE-DIMENSIONAL CELLULAR AUTOMATA (CA)

TRAFFIC MODEL

Two-lane route with open boundary conditions

- Nagel-Schreckenberg model (NaSch): discretizing a lane into cells. For each vehicle at each iteration
 - Acceleration
 - No crash
 - Deceleration
- Simple lane-changing rules



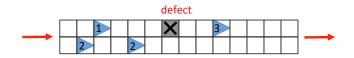
CA Model Stationary State Non-Stationary Process 2D Systems Conclusion NaSch model Animation

ONE-DIMENSIONAL CELLULAR AUTOMATA (CA)

TRAFFIC MODEL

Two-lane route with open boundary conditions

- Nagel-Schreckenberg model (NaSch): discretizing a lane into cells. For each vehicle at each iteration
 - Acceleration
 - No crash
 - Deceleration
- Simple lane-changing rules
- Defect (incident)



ANIMATION

Two-lane route with a defect

Red: v = 0, Orange: v = 1, Yellow: v = 2, Green: v = 3.

FD FOR THE UNPERTURBED SYSTEM

Fundamental Diagram (FD) describes the relationship between density ρ and flow J.

FD FOR THE UNPERTURBED SYSTEM

Fundamental Diagram (FD) describes the relationship between density ρ and flow J.

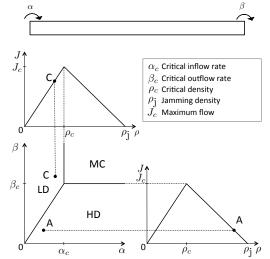


FIGURE: Phase diagram and fundamental diagram for the unperturbed system.

FD FOR THE PERTURBED SYSTEM

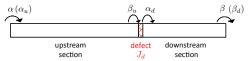


FIGURE: The perturbed system divided into two sections by the defect site.

FD FOR THE PERTURBED SYSTEM

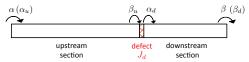


FIGURE: The perturbed system divided into two sections by the defect site.

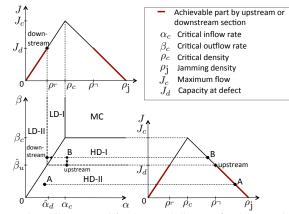


FIGURE: Phase diagram and fundamental diagram for the perturbed system.

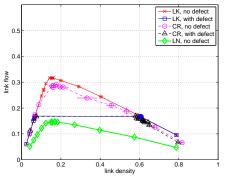


FIGURE: Fundamental diagrams of a link upstream of the defect. (Flow for one-lane route has been divided by 2.) For the 1D system $J_c \approx 0.317$, $\rho_c \approx 0.158$, $J_d \approx 0.165$, $\rho_{-} \approx 0.067$, $\rho_{-} \approx 0.605$.

- For $\rho \in [0, \rho_{\neg}] \cup [\rho_{\neg}, \rho_{i}]$ the defect has no impact on either flow or density.
- For ρ ∈ (ρ_Γ, ρ_¬) the defect results in phase separation: high density regime in upstream and free flow regime in the downstream.
- The capacity reduces by less than 50%.

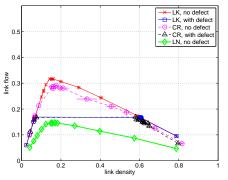


FIGURE: Fundamental diagrams of a link upstream of the defect. (Flow for one-lane route has been divided by 2.) For the 1D system $J_c \approx 0.317$, $\rho_c \approx 0.158$, $J_d \approx 0.165$, $\rho_{\Gamma} \approx 0.067$, $\rho_{\neg} \approx 0.605$.

- For $\rho \in [0, \rho_{r}] \cup [\rho_{\neg}, \rho_{j}]$ the defect has no impact on either flow or density.
- For ρ ∈ (ρ_Γ, ρ_¬) the defect results in phase separation: high density regime in upstream and free flow regime in the downstream.
- The capacity reduces by less than 50%.

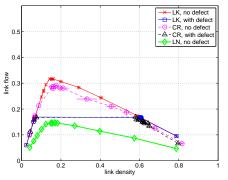


FIGURE: Fundamental diagrams of a link upstream of the defect. (Flow for one-lane route has been divided by 2.) For the 1D system $J_c \approx 0.317$, $\rho_c \approx 0.158$, $J_d \approx 0.165$, $\rho_{\Gamma} \approx 0.067$, $\rho_{\neg} \approx 0.605$.

- For $\rho \in [0, \rho_{r}] \cup [\rho_{\neg}, \rho_{j}]$ the defect has no impact on either flow or density.
- For ρ ∈ (ρ_Γ, ρ_¬) the defect results in phase separation: high density regime in upstream and free flow regime in the downstream.

The capacity reduces by less than 50%.

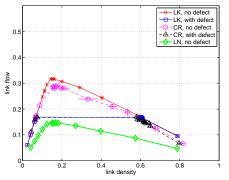


FIGURE: Fundamental diagrams of a link upstream of the defect. (Flow for one-lane route has been divided by 2.) For the 1D system $J_c \approx 0.317$, $\rho_c \approx 0.158$, $J_d \approx 0.165$, $\rho_{\Gamma} \approx 0.067$, $\rho_{\neg} \approx 0.605$.

- For $\rho \in [0, \rho_{r}] \cup [\rho_{\neg}, \rho_{j}]$ the defect has no impact on either flow or density.
- For ρ ∈ (ρ_Γ, ρ_¬) the defect results in phase separation: high density regime in upstream and free flow regime in the downstream.
- The capacity reduces by less than 50%.

DOMAIN WALL MODEL

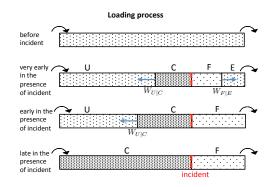
A domain wall $W_{-|+}$ moves left to right with speed

$$V_{-|+} = \frac{J_{-} - J_{+}}{\rho_{-} - \rho_{+}},\tag{1}$$

where J_{-} and ρ_{-} (J_{+} and ρ_{+}) are flow and density on the left (right) of the wall. The position of the domain wall at time t satisfies

$$\frac{\mathrm{d}P_{-|+}(t)}{\mathrm{d}t} = V_{-|+}.$$
(2)

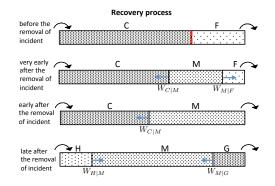
LOADING PROCESS



- Once the defect is present, two domain walls at the defect site start and move upstream and downstream respectively.
- The loading process is complete once both of the domain walls have arrived at the boundaries.

Domains:
$$\mathbf{C} = (\rho_{\neg}, J_d)$$
 $\mathbf{F} = (\rho_{\neg}, J_d)$ $\mathbf{U} = \mathbf{E} = (\rho_o, J_o)$

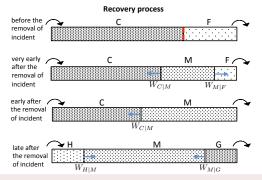
RECOVERY PROCESS



• Once the defect is removed, two domain walls start at the defect site and move upstream and downstream respectively.

Domains: $\mathbf{M} = (\rho_c, J_c)$

RECOVERY PROCESS

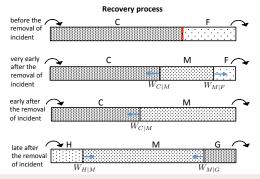


• Once the defect is removed, two domain walls start at the defect site and move upstream and downstream respectively.

Domains: $\mathbf{M} = (\rho_c, J_c)$

Assume that $\alpha(\rho)$ ($\beta(\rho)$) is a non-decreasing (non-increasing) function of ρ . For MC it satisfies that $\alpha_c = \alpha(\rho_c)$ and $\beta_c = \beta(\rho_c)$. Since $\rho_{\rm C} > \rho_c$ and $\rho_{\rm F} < \rho_c$, $\alpha(\rho_{\rm C}) \ge \alpha_c$ and $\beta(\rho_{\rm F}) \ge \beta_c$.

RECOVERY PROCESS

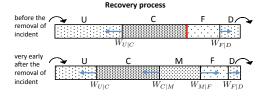


• Once the defect is removed, two domain walls start at the defect site and move upstream and downstream respectively.

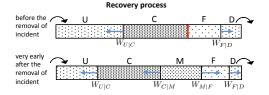
Domains: $\mathbf{M} = (\rho_c, J_c)$

- * Maximum flow: $\mathbf{H} = \mathbf{G} = \mathbf{M}$
- * Low density: $\mathbf{H} = (\rho_o, J_o), \mathbf{G} = \mathbf{M}$
- * High density: $\mathbf{H} = \mathbf{M}, \mathbf{G} = (\rho_o, J_o)$

MORE COMPLICATED RECOVERY PROCESS



MORE COMPLICATED RECOVERY PROCESS



Loading and recovery processes for a route initially in low density regime.

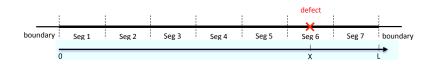
SIMULATIONS

ROUTE PARTITION

A route of two lanes, each consisting of 800 cells.

- In/out boundaries: each consisting of 50 cells
- Seven segments: each consisting of 100 cells (L = 700).

The defect is placed at the middle of segment 6 (X = 550) for duration *D*min.



OBSERVABLES

- Route-aggregated density and flow
- Segment density and flow

SIMULATIONS

ROUTE PARTITION

A route of two lanes, each consisting of 800 cells.

- In/out boundaries: each consisting of 50 cells
- Seven segments: each consisting of 100 cells (L = 700).

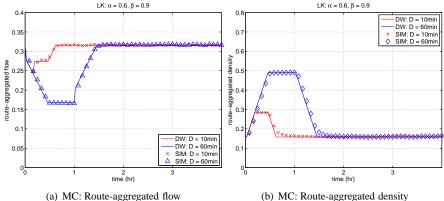
The defect is placed at the middle of segment 6 (X = 550) for duration *D*min.



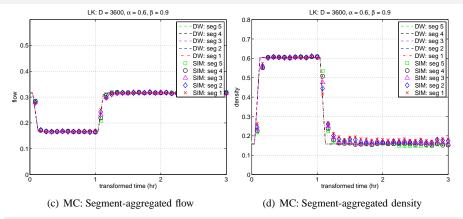
OBSERVABLES

- Route-aggregated density and flow
- Segment density and flow

MAXIMUM FLOW CASE



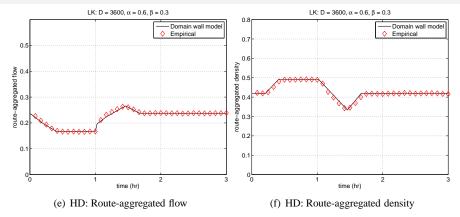
MAXIMUM FLOW CASE CONT.



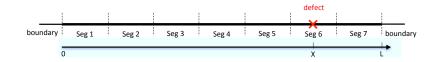
With D = 60 min, for each upstream segment l, a translation in the time variable

$$t' = \begin{cases} t - (5 - l)|V_{U|C}| & \text{for } 0 \le t < D; \\ t - (5 - l)|V_{C|M}| & \text{for } D \le t < D + X/|V_{C|M}|. \end{cases}$$

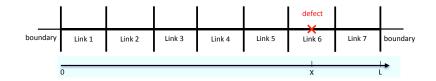
HIGH DENSITY CASE



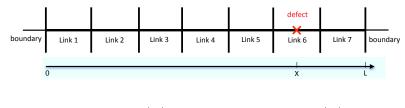
2D NETWORKS

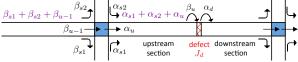


2D NETWORKS



2D NETWORKS





Stationary state Non-stationary state

STATIONARY STATE

Fundamental diagram

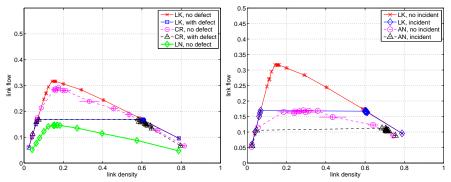


FIGURE: Fundamental diagrams of a link upstream of the defect. The network is governed by CR – cross-over intersection (left) and self-organizing traffic lights – SOTL (right).

STATIONARY STATE

- Fundamental diagram
 - Defect's location matters.
- Heterogeneities in density and flow

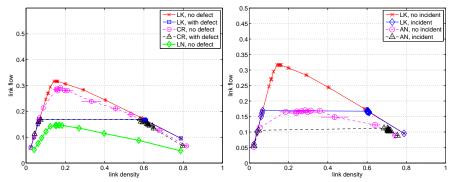


FIGURE: Fundamental diagrams of a link upstream of the defect. The network is governed by CR – cross-over intersection (left) and self-organizing traffic lights – SOTL (right).

STATIONARY STATE

- Fundamental diagram
 - Defect's location matters.
- Heterogeneities in density and flow

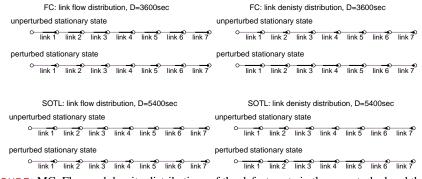


FIGURE: MC: Flow and density distributions of the defect route in the unperturbed and the perturbed stationary states. The network is governed by CR (top) and SOTL (bottom).

NON-STATIONARY STATE

 ρ_{-} and J_{-} (or ρ_{+} and J_{+}) vary when the domain wall $W_{-|+}$ passes an intersection.

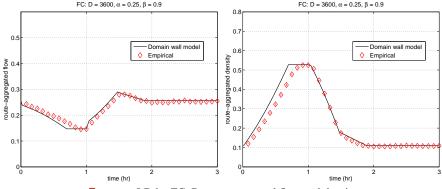


FIGURE: LD by FC: Route-aggregated flow and density.

NON-STATIONARY STATE CONT.

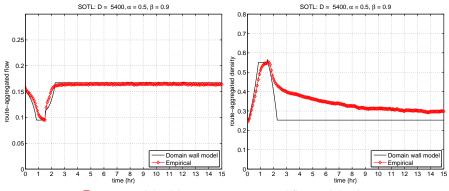


FIGURE: MC by SOTL: Route-aggregated flow and density.

Significantly long recovery time with respect to route-aggregated density.

CONCLUSION

We studied the impact of traffic incidents on road networks.

- Stationary state Fundamental diagram and phase diagram
- Non-stationary process Domain wall model The simple model can describe the transient behavior in the loading and recovery process.