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TRAFFIC DISRUPTIONS

Traffic disruptions cause bottlenecks, which reduce the network capacity, and usually
result in traffic jam.
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Transient behaviors
Loading process
Recovery process
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ONE-DIMENSIONAL CELLULAR AUTOMATA (CA)

TRAFFIC MODEL

Two-lane route with open boundary conditions

Nagel-Schreckenberg model (NaSch): discretizing a lane into cells.
For each vehicle at each iteration
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No crash
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Simple lane-changing rules

Defect (incident)
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ANIMATION

Two-lane route with a defect

Red: v = 0, Orange: v = 1, Yellow: v = 2, Green: v = 3.
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FD FOR THE UNPERTURBED SYSTEM

Fundamental Diagram (FD) describes the relationship between densityρ and flowJ.

α β
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FIGURE: Phase diagram and fundamental diagram for the unperturbed system.
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FD FOR THE PERTURBED SYSTEM
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FIGURE: The perturbed system divided into two sections by the defectsite.
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EMPIRICAL RESULT
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FIGURE: Fundamental diagrams of a link upstream of the defect. (Flowfor one-lane route has
been divided by 2.) For the 1D systemJc ≈ 0.317,ρc ≈ 0.158,Jd ≈ 0.165,ρp ≈ 0.067,
ρq ≈ 0.605.

Forρ ∈ [0, ρp] ∪ [ρq, ρj ] the defect has no impact on either flow or density.

Forρ ∈ (ρp, ρq) the defect results in phase separation: high density regimein
upstream and free flow regime in the downstream.

The capacity reduces by less than 50%.
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DOMAIN WALL MODEL

A domain wallW−|+ moves left to right with speed

V−|+ =
J− − J+
ρ− − ρ+

, (1)

whereJ− andρ− (J+ andρ+) are flow and density on the left (right) of the wall.

The position of the domain wall at timet satisfies

dP−|+(t)

dt
= V−|+. (2)
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LOADING PROCESS
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Once the defect is present, two domain walls at the defect site start and move
upstream and downstream respectively.

The loading process is complete once both of the domain wallshave arrived at
the boundaries.

Domains:C = (ρq, Jd) F = (ρp, Jd) U = E = (ρo, Jo)
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RECOVERY PROCESS
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Once the defect is removed, two domain walls start at the defect site and move
upstream and downstream respectively.

Domains:M = (ρc, Jc)
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RECOVERY PROCESS
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Once the defect is removed, two domain walls start at the defect site and move
upstream and downstream respectively.

Domains:M = (ρc, Jc)

Assume thatα(ρ) (β(ρ)) is a non-decreasing (non-increasing) function ofρ.

For MC it satisfies thatαc = α(ρc) andβc = β(ρc).

SinceρC > ρc andρF < ρc, α(ρC) ≥ αc andβ(ρF) ≥ βc.

11 / 21



CA Model Stationary State Non-Stationary Process 2D Systems Conclusion Domain wall model Loading/Recovery Simulations

RECOVERY PROCESS
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Once the defect is removed, two domain walls start at the defect site and move
upstream and downstream respectively.

Domains:M = (ρc, Jc)

* Maximum flow: H = G = M

* Low density:H = (ρo, Jo), G = M

* High density:H = M, G = (ρo, Jo)
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MORE COMPLICATED RECOVERY PROCESS
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MORE COMPLICATED RECOVERY PROCESS

!" #" $"%"&

WU |C

'()*+(",-("

+(.*/01"*)"

23425(3,"

/(+6"(0+16"

07(+",-("

+(.*/01"*)"

23425(3,"

!"#$%"&'()&$#"**((

%"!" #" $"

WU |C WF |D

WM |FWC|M WF |D

Loading and recovery processes for a route initially in low density regime.
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SIMULATIONS

ROUTE PARTITION

A route of two lanes, each consisting of 800 cells.

In/out boundaries: each consisting of 50 cells

Seven segments: each consisting of 100 cells (L = 700).

The defect is placed at the middle of segment 6 (X = 550) for durationDmin.
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Route-aggregated density and flow

Segment density and flow
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MAXIMUM FLOW CASE
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(a) MC: Route-aggregated flow
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(b) MC: Route-aggregated density

14 / 21



CA Model Stationary State Non-Stationary Process 2D Systems Conclusion Domain wall model Loading/Recovery Simulations

MAXIMUM FLOW CASE CONT.
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(c) MC: Segment-aggregated flow
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(d) MC: Segment-aggregated density

With D = 60min, for each upstream segmentl, a translation in the time variable

t′ =

{

t − (5− l)|VU|C| for 0 ≤ t < D;
t − (5− l)|VC|M| for D ≤ t < D + X/|VC|M|.
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HIGH DENSITY CASE
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(e) HD: Route-aggregated flow
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(f) HD: Route-aggregated density
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2D NETWORKS
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2D NETWORKS
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2D NETWORKS
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STATIONARY STATE

Fundamental diagram
Defect’s location matters.

Heterogeneities in density and flow
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FIGURE: Fundamental diagrams of a link upstream of the defect. The network is governed by
CR – cross-over intersection (left) and self-organizing traffic lights – SOTL (right).
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STATIONARY STATE

Fundamental diagram
Defect’s location matters.

Heterogeneities in density and flow
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FIGURE: MC: Flow and density distributions of the defect route in theunperturbed and the
perturbed stationary states. The network is governed by CR (top) and SOTL (bottom).
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NON-STATIONARY STATE

ρ− andJ− (or ρ+ andJ+) vary when the domain wallW−|+ passes an intersection.
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FIGURE: LD by FC: Route-aggregated flow and density.
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NON-STATIONARY STATE CONT.
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FIGURE: MC by SOTL: Route-aggregated flow and density.

Significantly long recovery time with respect to route-aggregated density.
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CONCLUSION

We studied the impact of traffic incidents on road networks.

Stationary state
Fundamental diagram and phase diagram

Non-stationary process
Domain wall model
The simple model can describe the transient behavior in the loading and
recovery process.
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