In how many ways can you obtain a genus g surface by gluing together the edges of a given set of polygons? Norbury interprets this question as counting lattice points in the moduli space of curves and shows that the answer exhibits polynomial behaviour. The top degree and constant terms of these lattice point polynomials are known to store interesting geometric information. On the other hand, the intermediate coefficients remain a complete mystery. In this talk, we’ll present some results concerning these polynomials, indicate some interesting connections to other areas, and consider what the intermediate coefficients might mean.
In how many ways can you obtain a genus g surface by gluing together the edges of a given set of polygons?
In how many ways can you obtain a genus g surface by gluing together the edges of a given set of polygons?

- Let the polygons be numbered $1, 2, \ldots, n$ and have b_1, b_2, \ldots, b_n edges.
- The edges of the polygons form a graph on the surface called a **ribbon graph**. We think of a ribbon graph as a cell decomposition of the surface.
- We won’t allow two adjacent edges to be glued together — in other words, we won’t allow vertices of degree one in the ribbon graph.
- Denote the enumeration by $N_{g,n}(b_1, b_2, \ldots, b_n)$.

Example

You should be able to calculate that $N_{0,4}(3, 3, 3, 3) = 8$.

2 labellings 6 labellings
TILING A SURFACE WITH POLYGONS

In how many ways can you obtain a genus g surface by gluing together the edges of a given set of polygons?

- Let the polygons be numbered $1, 2, \ldots, n$ and have b_1, b_2, \ldots, b_n edges.
- The edges of the polygons form a graph on the surface called a ribbon graph. We think of a ribbon graph as a cell decomposition of the surface.
- We won’t allow two adjacent edges to be glued together — in other words, we won’t allow vertices of degree one in the ribbon graph.
- Denote the enumeration by $N_{g,n}(b_1, b_2, \ldots, b_n)$.

Example

You should be able to calculate that $N_{0,4}(3, 3, 3, 3) = 8$.

2 labellings 6 labellings
REPRESENTATION THEORY APPROACH

Let X be the set of oriented edges of the ribbon graph.

- s_0 = the permutation on X which rotates anticlockwise about vertices
 $X/\langle s_0 \rangle = \{\text{vertices of the ribbon graph}\}$

- s_1 = the permutation on X which flips edges
 $X/\langle s_1 \rangle = \{\text{edges of the ribbon graph}\}$

- $s_2 = s_1^{-1} s_0^{-1}$
 $X/\langle s_2 \rangle = \{\text{faces of the ribbon graph}\}$
Let X be the set of oriented edges of the ribbon graph.

- s_0 = the permutation on X which rotates anticlockwise about vertices $X/\langle s_0 \rangle = \{\text{vertices of the ribbon graph}\}$
- s_1 = the permutation on X which flips edges $X/\langle s_1 \rangle = \{\text{edges of the ribbon graph}\}$
- $s_2 = s_1^{-1} s_0^{-1}$
 $X/\langle s_2 \rangle = \{\text{faces of the ribbon graph}\}$

The number $N_{g,n}(b_1, b_2, \ldots, b_n)$ counts triples $s_0 s_1 s_2 = \text{id}$ of permutations which satisfy the following.

- s_2 has cycle structure (b_1, b_2, \ldots, b_n)
- s_1 has cycle structure $(2, 2, \ldots, 2)$
- s_0 has V non-trivial cycles where $V - E + F = 2 - 2g$
Let X be the set of oriented edges of the ribbon graph.

- s_0 = the permutation on X which rotates anticlockwise about vertices $X/\langle s_0 \rangle = \{\text{vertices of the ribbon graph}\}$
- s_1 = the permutation on X which flips edges $X/\langle s_1 \rangle = \{\text{edges of the ribbon graph}\}$
- $s_2 = s_1^{-1}s_0^{-1}$ $X/\langle s_2 \rangle = \{\text{faces of the ribbon graph}\}$

The number $N_{g,n}(b_1, b_2, \ldots, b_n)$ counts triples $s_0 s_1 s_2 = \text{id}$ of permutations which satisfy the following.

- s_2 has cycle structure (b_1, b_2, \ldots, b_n)
- s_1 has cycle structure $(2, 2, \ldots, 2)$
- s_0 has V non-trivial cycles where $V - E + F = 2 - 2g$

The Burnside formula expresses the answer as a sum over characters of the symmetric group — but this is not very useful for our purposes.
MATRIX INTEGRAL APPROACH

- Consider the following matrix integral where \(V(M) = \sum \frac{t_k}{k} M^k \).

\[
Z_N(t_1, t_2, \ldots) = \int_{\mathcal{H}_N} \frac{\exp \left(-\frac{1}{2} N \operatorname{Tr} M^2 \right) dM}{2^{N/2} \pi^{N^2/2}} \exp \left(N \operatorname{Tr} V(M) \right)
\]

Here, \(\mathcal{H}_N \) is the space of \(N \times N \) Hermitian matrices with the Euclidean volume element \(dM \).

Consider the following matrix integral where $V(M) = \sum \frac{t_k}{k} M^k$.

$$Z_N(t_1, t_2, \ldots) = \int_{\mathcal{H}_N} \frac{\exp \left(-\frac{1}{2} N \text{Tr} M^2 \right) dM}{2^{N/2} \pi^{N^2/2}} \exp (N \text{Tr} V(M))$$

Here, \mathcal{H}_N is the space of $N \times N$ Hermitian matrices with the Euclidean volume element dM.

The topological expansion of this matrix integral is

$$\log Z_N(t_1, t_2, \ldots) = \sum_{\Gamma \text{ a ribbon graph}} \frac{N^{2-2g}}{\# \text{Aut } \Gamma} t_{b_1} t_{b_2} \cdots t_{b_n}.$$

Here, Γ is a ribbon graph on a genus g surface made from polygons with b_1, b_2, \ldots, b_n edges. Also, $\text{Aut } \Gamma$ is the automorphism group of Γ.
Consider the following matrix integral where $V(M) = \sum \frac{t_k}{k} M^k$.

$$Z_N(t_1, t_2, \ldots) = \int_{\mathcal{H}_N} \frac{\exp \left(-\frac{1}{2} N \operatorname{Tr} M^2 \right) dM}{2^{N/2} \pi^{N^2/2}} \exp \left(N \operatorname{Tr} V(M) \right)$$

Here, \mathcal{H}_N is the space of $N \times N$ Hermitian matrices with the Euclidean volume element dM.

The topological expansion of this matrix integral is

$$\log Z_N(t_1, t_2, \ldots) = \sum_{\Gamma \text{ a ribbon graph}} \frac{N^{2-2g}}{\# \operatorname{Aut} \Gamma} t_{b_1} t_{b_2} \cdots t_{b_n}.$$

Here, Γ is a ribbon graph on a genus g surface made from polygons with b_1, b_2, \ldots, b_n edges. Also, $\operatorname{Aut} \Gamma$ is the automorphism group of Γ.

By specialising the variables, you can obtain the number $N_{g,n}(b_1, b_2, \ldots, b_n)$ as a coefficient of this generating function — but this is not very useful for our purposes. However, it indicates that we should count ribbon graphs with the weight $\frac{1}{\# \operatorname{Aut} \Gamma}$.
COMBINATORIAL APPROACH (INSPIRED BY GEOMETRY)

Theorem (Norbury, 2008)

There exists a topological recursion in which \(N_{g,n} \) relies on \(N_{g-1,n+1}, N_{g,n-1}, \) and \(N_{g_1,n_1} \times N_{g_2,n_2} \) for \(g_1 + g_2 = g \) and \(n_1 + n_2 = n + 1 \). You can use this to compute \(N_{g,n}(b_1, b_2, \ldots, b_n) \) from the following base cases.

- \(N_{0,3}(b_1, b_2, b_3) = \begin{cases}
1 & \text{if } b_1 + b_2 + b_3 \text{ is even} \\
0 & \text{if } b_1 + b_2 + b_3 \text{ is odd}
\end{cases} \)

- \(N_{1,1}(b_1) = \begin{cases}
\frac{1}{48}(b_1^2 - 48) & \text{if } b_1 \text{ is even} \\
0 & \text{if } b_1 \text{ is odd}
\end{cases} \)
COMBINATORIAL APPROACH (INSPIRED BY GEOMETRY)

Theorem (Norbury, 2008)

There exists a topological recursion in which $N_{g,n}$ relies on $N_{g-1,n+1}$, $N_{g,n-1}$, and $N_{g_1,n_1} \times N_{g_2,n_2}$ for $g_1 + g_2 = g$ and $n_1 + n_2 = n + 1$. You can use this to compute $N_{g,n}(b_1, b_2, \ldots, b_n)$ from the following base cases.

- $N_{0,3}(b_1, b_2, b_3) = \begin{cases}
1 & \text{if } b_1 + b_2 + b_3 \text{ is even} \\
0 & \text{if } b_1 + b_2 + b_3 \text{ is odd}
\end{cases}$

- $N_{1,1}(b_1) = \begin{cases}
\frac{1}{48} (b_1^2 - 48) & \text{if } b_1 \text{ is even} \\
0 & \text{if } b_1 \text{ is odd}
\end{cases}$

Proof.

Think about what happens when you remove an edge from the graph. \square
Theorem (Norbury, 2008)

There exists a topological recursion in which $N_{g,n}$ relies on $N_{g-1,n+1}$, $N_{g,n-1}$, and $N_{g_1,n_1} \times N_{g_2,n_2}$ for $g_1 + g_2 = g$ and $n_1 + n_2 = n + 1$. You can use this to compute $N_{g,n}(b_1, b_2, \ldots, b_n)$ from the following base cases.

- $N_{0,3}(b_1, b_2, b_3) = \begin{cases} 1 & \text{if } b_1 + b_2 + b_3 \text{ is even} \\ 0 & \text{if } b_1 + b_2 + b_3 \text{ is odd} \end{cases}$

- $N_{1,1}(b_1) = \begin{cases} \frac{1}{48}(b_1^2 - 48) & \text{if } b_1 \text{ is even} \\ 0 & \text{if } b_1 \text{ is odd} \end{cases}$

Proof.
Think about what happens when you remove an edge from the graph. \qed

Corollary

The count $N_{g,n}(b_1, b_2, \ldots, b_n)$ is an even symmetric quasi-polynomial of degree $6g - 6 + 2n$. So there exist polynomials $N^{(k)}_{g,n}(b_1, b_2, \ldots, b_n)$ such that

$$N_{g,n}(\underbrace{b_1, b_2, \ldots, b_k}_{\text{odd}}, \underbrace{b_{k+1}, b_{k+2}, \ldots, b_n}_{\text{even}}) = N^{(k)}_{g,n}(b_1, b_2, \ldots, b_n)$$
EXAMPLES OF LATTICE POINT POLYNOMIALS

Example

If k is odd, then $N_{g,n}^{(k)}(b_1, b_2, \ldots, b_n) = 0.$

<table>
<thead>
<tr>
<th>g</th>
<th>n</th>
<th>k</th>
<th>$N_{g,n}^{(k)}(b_1, b_2, \ldots, b_n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0 or 2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$\frac{1}{48}(b_1^2 - 4)$</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0 or 4</td>
<td>$\frac{1}{4}(b_1^2 + b_2^2 + b_3^2 + b_4^2 - 4)$</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>2</td>
<td>$\frac{1}{4}(b_1^2 + b_2^2 + b_3^2 + b_4^2 - 2)$</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>$\frac{1}{384}(b_1^2 + b_2^2 - 4)(b_1^2 + b_2^2 - 8)$</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>$\frac{1}{384}(b_1^2 + b_2^2 - 2)(b_1^2 + b_2^2 - 10)$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>$\frac{1}{2^{16} \times 3^3 \times 5}(b_1^2 - 4)(b_1^2 - 16)(b_1^2 - 36)(5b_1^2 - 32)$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>$\frac{1}{2^{25} \times 3^6 \times 5^2 \times 7}(5b_1^4 - 188b_1^2 + 1152)\prod_{k=1}^5(b_1^2 - 4k^2)$</td>
</tr>
</tbody>
</table>
EXAMPLES OF LATTICE POINT POLYNOMIALS

Example

If \(k \) is odd, then \(N_{g,n}^{(k)}(b_1, b_2, \ldots, b_n) = 0 \).

<table>
<thead>
<tr>
<th>(g)</th>
<th>(n)</th>
<th>(k)</th>
<th>(N_{g,n}^{(k)}(b_1, b_2, \ldots, b_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0 or 2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\frac{1}{48}(b_1^2 - 4))</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0 or 4</td>
<td>(\frac{1}{4}(b_1^2 + b_2^2 + b_3^2 + b_4^2 - 4))</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>2</td>
<td>(\frac{1}{4}(b_1^2 + b_2^2 + b_3^2 + b_4^2 - 2))</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>(\frac{1}{384}(b_1^2 + b_2^2 - 4)(b_1^2 + b_2^2 - 8))</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>(\frac{1}{384}(b_1^2 + b_2^2 - 2)(b_1^2 + b_2^2 - 10))</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>(\frac{1}{2^{16} \times 3^3 \times 5}(b_1^2 - 4)(b_1^2 - 16)(b_1^2 - 36)(5b_1^2 - 32))</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>(\frac{1}{2^{25} \times 3^6 \times 5^2 \times 7}(5b_1^4 - 188b_1^2 + 1152) \prod_{k=1}^{5}(b_1^2 - 4k^2))</td>
</tr>
</tbody>
</table>

Question

What do the coefficients mean?
MODULI SPACES OF CURVES

surface
\((g = \text{genus}, \, n = \# \text{boundaries})\)

- algebraic curve
 \((n = \# \text{marked points})\)
- Riemann surface
 \((n = \# \text{punctures})\)
- hyperbolic surface
 \((n = \# \text{cusps})\)

The dimension of \(M_{g,n}\) is \(6g - 6 + 2n\). It's a Deligne–Mumford stack — so think of it as a complex orbifold.
MODULI SPACES OF CURVES

- Moduli spaces of curves

\[M_{g,n} = \begin{cases}
& \text{genus } g \text{ smooth algebraic curves with distinct} \\
& \text{points labelled from 1 up to } n \\
& \text{genus } g \text{ Riemann surfaces with distinct} \\
& \text{punctures labelled from 1 up to } n \\
& \text{genus } g \text{ hyperbolic surfaces with} \\
& \text{cusps labelled from 1 up to } n
\end{cases} \]
MODULI SPACES OF CURVES

- Moduli spaces of curves

\[\mathcal{M}_{g,n} = \begin{cases}
\text{genus } g \text{ smooth algebraic curves with distinct} \\
\text{points labelled from 1 up to } n \\
\text{genus } g \text{ Riemann surfaces with distinct} \\
\text{punctures labelled from 1 up to } n \\
\text{genus } g \text{ hyperbolic surfaces with} \\
\text{cusps labelled from 1 up to } n
\end{cases} \]

- The dimension of \(\mathcal{M}_{g,n} \) is \(6g - 6 + 2n \). It’s a Deligne–Mumford stack — so think of it as a complex orbifold.
Deligne–Mumford compactification

$$\overline{\mathcal{M}}_{g,n} = \left\{ \text{genus } g \text{ stable algebraic curves with distinct smooth points labelled from 1 up to } n \right\}$$
Deligne–Mumford compactification

\[\overline{\mathcal{M}}_{g,n} = \left\{ \text{genus } g \text{ stable algebraic curves with distinct smooth points labelled from 1 up to } n \right\} \]

A stable curve may be nodal but its components must satisfy \(2g - 2 + n > 0 \).
Deligne–Mumford compactification

\[M_{g,n} = \left\{ \text{genus } g \text{ stable algebraic curves with distinct smooth points labelled from 1 up to } n \right\} \]

A stable curve may be nodal but its components must satisfy \(2g - 2 + n > 0\).

The spaces \(\overline{M}_{g,n} \) are “stratified” by smaller moduli spaces of curves.

\[\overline{M}_{0,5} = M_{0,5} \cup M_{0,4} \times M_{0,3} \cup M_{0,3} \times M_{0,3} \times M_{0,3} \]

1 labelling \quad 10 labellings \quad 15 labellings
Theorem (Strebel)

Choose positive real numbers r_1, r_2, \ldots, r_n and a Riemann surface S with punctures p_1, p_2, \ldots, p_n. There exists a unique quadratic differential on S whose non-closed horizontal trajectories form an embedded graph with complement punctured disks centred at p_1, p_2, \ldots, p_n and with perimeters r_1, r_2, \ldots, r_n. The perimeters arise by integrating the square root of the quadratic differential along the edges of the graph.
Theorem (Strebel)

Choose positive real numbers r_1, r_2, \ldots, r_n and a Riemann surface S with punctures p_1, p_2, \ldots, p_n. There exists a unique quadratic differential on S whose non-closed horizontal trajectories form an embedded graph with complement punctured disks centred at p_1, p_2, \ldots, p_n and with perimeters r_1, r_2, \ldots, r_n. The perimeters arise by integrating the square root of the quadratic differential along the edges of the graph.

Corollary

Given positive real numbers r_1, r_2, \ldots, r_n, we can uniquely associate a point in $\mathcal{M}_{g,n}$ to a ribbon graph with

- every vertex of degree at least three;
- a length attached to every edge; and
- the perimeter of face k is r_k.

LATTICE POINTS IN MODULI SPACES OF CURVES

Idea
Interpret ribbon graphs with integer edge lengths as lattice points in moduli spaces of curves. So $N_{g,n}(b_1, b_2, \ldots, b_n)$ counts lattice points in $M_{g,n}$. This gives a discrete approximation to the volume of the moduli space, which is known to store interesting topological information.
Idea
Interpret ribbon graphs with integer edge lengths as lattice points in moduli spaces of curves. So $N_{g,n}(b_1, b_2, \ldots, b_n)$ counts lattice points in $\mathcal{M}_{g,n}$. This gives a discrete approximation to the volume of the moduli space, which is known to store interesting topological information.

Theorem (Norbury, 2008)

- The top degree part of the quasi-polynomial $N_{g,n}(b_1, b_2, \ldots, b_n)$ stores all psi-class intersection numbers on $\mathcal{M}_{g,n}$.

$$\int_{\mathcal{M}_{g,n}} \psi_1^{a_1} \psi_2^{a_2} \cdots \psi_n^{a_n}$$

Here, $\psi_1, \psi_2, \ldots, \psi_n \in H^2(\overline{\mathcal{M}}_{g,n}; \mathbb{Q})$ and $a_1 + a_2 + \cdots + a_n = 3g - 3 + n$.

- The quasi-polynomial $N_{g,n}$ satisfies $N_{g,n}(0, 0, \ldots, 0) = \chi(\mathcal{M}_{g,n})$.
LATTICE POINTS IN MODULI SPACES OF CURVES

Idea
Interpret ribbon graphs with integer edge lengths as lattice points in moduli spaces of curves. So \(N_{g,n}(b_1, b_2, \ldots, b_n) \) counts lattice points in \(\mathcal{M}_{g,n} \). This gives a discrete approximation to the volume of the moduli space, which is known to store interesting topological information.

Theorem (Norbury, 20008)

- The top degree part of the quasi-polynomial \(N_{g,n}(b_1, b_2, \ldots, b_n) \) stores all psi-class intersection numbers on \(\mathcal{M}_{g,n} \).
 \[
 \int_{\mathcal{M}_{g,n}} \psi_1^{a_1} \psi_2^{a_2} \cdots \psi_n^{a_n}
 \]
 Here, \(\psi_1, \psi_2, \ldots, \psi_n \in H^2(\mathcal{M}_{g,n}; \mathbb{Q}) \) and \(a_1 + a_2 + \cdots + a_n = 3g - 3 + n \).
- The quasi-polynomial \(N_{g,n} \) satisfies \(N_{g,n}(0, 0, \ldots, 0) = \chi(\mathcal{M}_{g,n}). \)

Corollary
Combining this theorem with the earlier recursion gives a new proof of the Witten–Kontsevich theorem, which governs all psi-class intersection numbers.
New idea

Count lattice points in **compactified** moduli spaces of curves
New idea

Count lattice points in \textit{compactified} moduli spaces of curves

Example

Points in $\overline{M}_{0,5}$ represent curves of the following types.

\[
\overline{M}_{0,5} = M_{0,5} \cup M_{0,4} \times M_{0,3} \cup M_{0,3} \times M_{0,3} \times M_{0,3}
\]

- 1 labelling
- 10 labellings
- 15 labellings

\[
\overline{N}_{0,5}(b_1, b_2, b_3, b_4, b_5) = N_{0,5}(b_1, b_2, b_3, b_4, b_5)
\]

\[
+ \sum_{10 \text{ terms}} N_{0,4}(b_i, b_j, b_k, 0) \cdot N_{0,3}(b_\ell, b_m, 0)
\]

\[
+ \sum_{15 \text{ terms}} N_{0,3}(b_i, b_j, 0) \cdot N_{0,3}(b_k, 0, 0) \cdot N_{0,3}(b_\ell, b_m, 0)
\]
COMPACTIFIED LATTICE POINT POLYNOMIALS

Fact

- The count $\overline{N}_{g,n}(b_1, b_2, \ldots, b_n)$ is an even symmetric quasi-polynomial of degree $6g - 6 + 2n$.
- The quasi-polynomials $N_{g,n}$ and $\overline{N}_{g,n}$ agree to leading order — so the top degree part of the quasi-polynomial $N_{g,n}(b_1, b_2, \ldots, b_n)$ stores all psi-class intersection numbers on $\overline{\mathcal{M}}_{g,n}$.
- The quasi-polynomial $\overline{N}_{g,n}$ satisfies $\overline{N}_{g,n}(0, 0, \ldots, 0) = \chi(\overline{\mathcal{M}}_{g,n})$.
COMPACTIFIED LATTICE POINT POLYNOMIALS

Fact

- The count \(\overline{N}_{g,n}(b_1, b_2, \ldots, b_n) \) is an even symmetric quasi-polynomial of degree \(6g - 6 + 2n \).
- The quasi-polynomials \(N_{g,n} \) and \(\overline{N}_{g,n} \) agree to leading order — so the top degree part of the quasi-polynomial \(N_{g,n}(b_1, b_2, \ldots, b_n) \) stores all psi-class intersection numbers on \(\mathcal{M}_{g,n} \).
- The quasi-polynomial \(\overline{N}_{g,n} \) satisfies \(\overline{N}_{g,n}(0, 0, \ldots, 0) = \chi(\mathcal{M}_{g,n}) \).

<table>
<thead>
<tr>
<th>(g)</th>
<th>(n)</th>
<th>(k)</th>
<th>(\overline{N}_{g,n}^{(k)}(b_1, b_2, \ldots, b_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>0 or 2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\frac{1}{48}(b_1^2 + 20))</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0 or 4</td>
<td>(\frac{1}{4}(b_1^2 + b_2^2 + b_3^2 + b_4^2 + 8))</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>2</td>
<td>(\frac{1}{4}(b_1^2 + b_2^2 + b_3^2 + b_4^2 + 2))</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>(\frac{1}{384}(b_1^4 + b_2^4 + 2b_1^2 b_2^2 + 48b_1^2 + 48b_2^2 + 192))</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>(\frac{1}{384}(b_1^4 + b_2^4 + 2b_1^2 b_2^2 + 48b_1^2 + 48b_2^2 + 84))</td>
</tr>
</tbody>
</table>
QUESTIONS

Claim
The compactified enumeration $\overline{N}_{g,n}$ seems to be the right thing to study.
QUESTIONS

Claim
The compactified enumeration $\overline{N}_{g,n}$ seems to be the right thing to study.

- What are we counting?
 We have a combinatorial interpretation for $N_{g,n}(b_1, b_2, \ldots, b_k, 0, 0, \ldots, 0)$, but only when k is positive.
QUESTIONS

Claim
The compactified enumeration $\overline{N}_{g,n}$ seems to be the right thing to study.

- What are we counting?
 We have a combinatorial interpretation for $N_{g,n}(b_1, b_2, \ldots, b_k, 0, 0, \ldots, 0)$, but only when k is positive.

- Are the coefficients of $\overline{N}_{g,n}$ always positive?
 We conjecture (and hope) that the answer is “yes”.

What geometric information is stored in the coefficients of $\overline{N}_{g,n}$?
The quasi-polynomials $\overline{N}_{g,n}$ seem to have a Hirzebruch–Riemann–Roch flavour and/or a connection to Gromov–Witten theory.

Is there a topological recursion for $\overline{N}_{g,n}$?
We conjecture (and hope) that the answer is “yes”.

The lattice point enumeration is part of a larger story which involves enumerative geometry, matrix integrals, factorisations in the symmetric group, integrable systems, and so on. What are the consequences of these connections?
QUESTIONS

Claim
The compactified enumeration $\overline{N}_{g,n}$ seems to be the right thing to study.

- What are we counting?
 We have a combinatorial interpretation for $N_{g,n}(b_1, b_2, \ldots, b_k, 0, 0, \ldots, 0)$, but only when k is positive.

- Are the coefficients of $\overline{N}_{g,n}$ always positive?
 We conjecture (and hope) that the answer is “yes”.

- What geometric information is stored in the coefficients of $\overline{N}_{g,n}$?
 The quasi-polynomials $\overline{N}_{g,n}$ seem to have a Hirzebruch–Riemann–Roch flavour and/or a connection to Gromov–Witten theory.
QUESTIONS

Claim
The compactified enumeration $\overline{N}_{g,n}$ seems to be the right thing to study.

- What are we counting?
 We have a combinatorial interpretation for $N_{g,n}(b_1, b_2, \ldots, b_k, 0, 0, \ldots, 0)$, but only when k is positive.

- Are the coefficients of $\overline{N}_{g,n}$ always positive?
 We conjecture (and hope) that the answer is “yes”.

- What geometric information is stored in the coefficients of $\overline{N}_{g,n}$?
 The quasi-polynomials $\overline{N}_{g,n}$ seem to have a Hirzebruch–Riemann–Roch flavour and/or a connection to Gromov–Witten theory.

- Is there a topological recursion for $\overline{N}_{g,n}$?
 We conjecture (and hope) that the answer is “yes”.

QUESTIONS

Claim
The compactified enumeration $\overline{N}_{g,n}$ seems to be the right thing to study.

- What are we counting?
 We have a combinatorial interpretation for $N_{g,n}(b_1, b_2, \ldots, b_k, 0, 0, \ldots, 0)$, but only when k is positive.

- Are the coefficients of $\overline{N}_{g,n}$ always positive?
 We conjecture (and hope) that the answer is “yes”.

- What geometric information is stored in the coefficients of $\overline{N}_{g,n}$?
 The quasi-polynomials $\overline{N}_{g,n}$ seem to have a Hirzebruch–Riemann–Roch flavour and/or a connection to Gromov–Witten theory.

- Is there a topological recursion for $\overline{N}_{g,n}$?
 We conjecture (and hope) that the answer is “yes”.

- The lattice point enumeration is part of a larger story which involves enumerative geometry, matrix integrals, factorisations in the symmetric group, integrable systems, and so on. What are the consequences of these connections?