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Abstract

In this paper, we present a randomized algorithm to compute the bisection width of cubic and
4-regular graphs. The analysis of the proposed algorithms on random graphs provides asymptotic
upper bounds for the bisection width of random cubic and random 4-regular graphs with »
vertices, giving upper bounds of 0.174039n for random cubic, and of 0.333333n for random
4-regular. We also obtain asymptotic lower bounds for the size of the maximum bisection,
for random cubic and random 4-regular graphs with n vertices, of 1.32697n and 1.66667n,
respectively. The randomized algorithms are derived from initial greedy algorithm and their
analysis is based on the differential equation method.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Given a graph G =(V,E) with |V| even, a bisection of G is a partition of ¥ into
two parts with the same cardinality, and its size is the number of edges crossing
between the parts. A minimum bisection is a bisection of V' with minimal size (to
avoid parity problems, throughout this paper we assume that n=|V| is even). The size
of a minimum bisection is called the bisection width and the min bisection problem
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consists of finding a minimum bisection in a given G. In the same manner, we can also
consider a maximum bisection, i.e. a bisection that maximizes the number of crossing
edges. A related problem is that of finding the cut of the largest bipartite subgraph
of a graph, i.e. a bipartite subgraph with as many edges as possible. This problem
is known as the max cut problem (see for example [12]). Given a graph, the size
of a maximum bisection is clearly a lower bound on the size of a max cut in the
graph.

The min bisection problem has received a lot of attention, as the bisection width plays
an important role in finding lower bounds to the routing performance of a network.
The decisional version of the problem is known to be NP-complete [12], even for
cubic graphs [5]. In [1] it is shown that min bisection has a PTAS for everywhere
dense graphs (graphs with minimum degree Q(n)). Moreover, there exists an O(log” 1)
approximation for the min bisection on general graphs and an O(logn) approximation
for planar graphs [8]. The min bisection problem can be solved in polynomial time for
bounded treewidth graphs [13]. Several other exact and heuristic positive results are
known for particular cases of the problem (see for example [7]).

With respect to lower bounds, well known is the spectral lower bound of 2,n/4 for
the bisection width of any graph, where 4, is the second eigenvalue of the Laplacian
of the graph [11]. Bollobas provided a lower bound of (d — 2v/d In 2)n/4, for almost
all d-regular graphs [3]. In the same paper, he gave a lower bound of 0.22n for the
particular case of 4-regular graphs. In [15] it is shown that almost all cubic graphs
have bisection width greater than 0.101#n. Recently, using spectral techniques, Bezrukov
et al. have given lower bounds for of 0.082n for the bisection width of cubic Ramanujan
graphs, and of 0.176n for the case of 4-regular Ramanujan graphs [2].

Recently, Monien and Preis [17] gave upper bounds on the bisection width of
(1/6 + &)n for 3-regular graphs and of (0.4 + ¢)n for 4-regular graphs, for any &¢>0
(n sufficiently large, depending on ¢).

The problem of finding the maximum bisection has also received a lot of attention.
This is again NP-hard even for planar graphs [13]. It is known to be solvable in
polynomial time for bounded treewidth graphs [13]. There exists several approximations
algorithms for the problem; the max bisection problem has a PTAS for planar graphs
[14]. In the case of regular graphs, there is a 0.795 approximation algorithm for the max
bisection [10]. In the same paper, the authors gave an 0.834 approximation algorithm
for the special case of max bisection on cubic graphs. The best approximation algorithm
for max bisection on general graphs has an approximation ratio of 0.7027 [9]. We are
not aware of any non-trivial lower bounds on the size of the maximum bisection.

We will use standard notation and we refer the reader to [16], for the definitions of
v.a.r. (uniformly at random) and a.a.s. (asymptotically almost surely).

In this paper, we present asymptotic results for the typical bisection width and the
expected maximum bisection of random cubic and random 4-regular graphs, where
our graphs have no loops or multiple edges. In particular we prove the following
theorems.

Theorem 1. For all ¢>0, the bisection width of a random 4-regular graph on n
vertices is a.a.s. smaller than n/3 + en.
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This upper bound improves the previously best known upper bound of 0.4n which
follows from the upper bound on the bisection width of all 4-regular graphs by Monien
and Preis. Recall that Bollobas’ lower bound for random 4-regular graphs is 0.22n.

Theorem 1 is proved by setting ¢ sufficiently small in the simple randomized
algorithm in Fig. 3. Doing the same (¢<107°) for the algorithm in Fig. 4 gives
the following.

Theorem 2. The algorithm in Fig. 4 a.a.s. finds a bisection of width at most 0.17404n
in a random cubic graph on n vertices.

This asymptotic upper bound is close to but weaker than the asymptotic upper bound
of 1/6 + ¢ (any £>0) for all cubic graphs, by Monien and Preis [17]. We give this
result here for two reasons: our algorithm is much simpler, and our method also gives
Theorem 3.

Slightly modifying the proposed algorithms and using the same analysis as for the
previous results, we can get the following lower bounds for the maximum bisection of
random cubic and random 4-regular graphs.

Theorem 3. The maximum bisection of a random cubic graph with n vertices is a.a.s.
greater than 1.32595n.

Theorem 4. For all ¢>0, the maximum bisection of a random 4-regular graph with
n vertices is a.a.s. greater than 5n/3 + en.

As mentioned above, the size of the maximum bisection is a trivial lower bound on
the size of the maximum cut, but removing the balance constraint does not permit our
method to obtain any better result. We conjecture that the largest balanced bipartite
subgraph of a random d-regular graph is a.a.s. almost the same size as the largest
bipartite subgraph. For the particular example of random cubic graphs, we can state
this even more strongly and precisely, as follows.

Conjecture 1. For every ¢>0, a.a.s. the largest bipartite subgraph of a random cubic
graph has a 2-colouring with the difference in the numbers of vertices of the two
colours less than en.

The techniques in the present paper should extend in some fashion to regular graphs
of higher degree. However, it then becomes unclear even what algorithms should be
used, so we do not pursue this question here.

2. Greedy algorithms for the minimum bisection of random cubic and 4-regular
graphs

In this section, we give the basic randomized greedy procedures to find a bisection
for random cubic and random 4-regular graphs. We also introduce some notation to be
used in the analysis.
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Initial step: select two non-adjacent vertices u.a.r., colour one with R and
the other with B
Phase 1: repeat
if there are vertices of both types (2,0) and (0,2)
or vertices of types (2,1) and (1,2)
then
select u.a.r. a (0,2)- or (1,2)-symmetric pair
and perform Maj;
else if there are vertices of both types (1,0) and (0,1)
then
select uw.a.r. a (0,1)-symmetric pair and perform Maj;
until no new vertex is coloured
Cleanup: colour any remaining uncoloured vertices, half of them R
and half B, in any manner, and output the bisection R, B.

Fig. 1. Algorithm 4-min greedy for obtaining a bisection of 4-regular graphs.

Given a graph, and given a partial assignment of colours red (R) and blue (B) to
its vertices, we classify the non-coloured vertices according with the number of their
coloured neighbours:

A vertex is of Type (r,b) if it has r neighbours coloured R and b neighbours
coloured B.

We say that a pair of uncoloured vertices is (7, b)-symmetric if their types are (r,b)
and (b, r).

The greedy procedures work by colouring vertices chosen randomly in symmetric
pairs, to maintain balance, and repeatedly use one of the following two operations: the
majority operation (Maj), that colours each vertex with the majority colour among its
neighbours, and the random operation (Rand) that randomly colours one vertex R and
the other B.

The greedy procedure 4-min greedy for 4-regular graphs is given in Fig. 1, while
the greedy procedure 3-min greedy for cubic graphs is given in Fig. 2.

A major difference between the two algorithms is that while the algorithm for
4-regular graphs consists of only one phase (followed by a “cleaning up” operation),
for cubic graphs the algorithm consists of three phases. This fact makes the analysis
of the 4-regular case simpler, so it is presented here first.

The algorithm 4-min greedy considers only (0,1)-, (0,2)- and (1,2)-symmetric pairs
of uncoloured vertices and gives higher priority to the (0,2)- and (1,2)-symmetric pairs
than to the (0,1)-symmetric pairs. Note that the size of the bisection is the number of
bicoloured edges, with one vertex of each colour, so only each Maj operation on a
(1,2)-symmetric pair contributes, with 2, to the bisection.

On the other hand, each phase of the algorithm 3-min greedy considers two types
of symmetric pairs and gives priority to one of them. Observe that in the first phase
there is no contribution to the bisection, while in the second and third phases, every
time a (1,1)- or (1,2)-symmetric pair is coloured, the bisection is increased by 2.
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Initial step:  select two non-adjacent vertices u.a.r., colour one with R
and the other with B
Phase 1: repeat
if there are vertices of both types (2,0) and (0,2)
then
select u.a.r. a (0,2)-symmetric pair and perform Maj;
else if there are vertices of both types (1,0) and (0,1)
then
select u.a.r. a (0,1)-symmetric pair and perform Maj;
until no new vertex is coloured
Phase 2: repeat
if there are vertices of both types (1,0) and (0,1)
then
select u.a.r. a (0,1)-symmetric pair and perform Maj;
else if there are at least two vertices of type (1,1)
then
select u.a.r. a (1,1)-symmetric pair and perform Rand;
until no new vertex is coloured
Phase 3: repeat
if there are vertices of both types (3,0) and (0,3)
then
select w.a.r. a (0,3)-symmetric pair and perform Maj;
else if there are vertices of both types (2,1) and (1,2)
then
select u.a.r. a (1,2)-symmetric pair and perform Maj;
until no new vertex is coloured
Cleanup: colour any remaining uncoloured vertices, half of them R
and half B, in any manner, and output the bisection R, B.

Fig. 2. Algorithm 3-min greedy for obtaining a bisection of cubic graphs.

One method of analysing the performance of a randomized algorithm is to use a
system of differential equations to express the expected changes in the variables de-
scribing the state of the algorithm during its execution. An exposition of this method
can be found in [18], which includes various examples of graph-theoretic optimiza-
tion problems. For purposes of exposition, we continue for the present to discuss
the proposed algorithms, without giving full justification. After this, in order to re-
duce the complexity of the justification, it is in fact a different but related algo-
rithm which we will analyse to yield our claimed bounds. We call this variation
of algorithm a deprioritized algorithm as in [20], where this technique was first
used.

We use the pairing model to generate n-vertex d-regular graphs u.a.r. Briefly, to
generate such a random graph, it is enough to begin with dn points in n cells, and
choose a random perfect matching of the points, which we call a pairing. The corre-
sponding pseudograph (possibly with loops or multiple edges) has the cells as vertices
and the pairs as edges. Since d is fixed, any property a.a.s. true of the random pseudo-
graph is also a.a.s. true of the restriction to random graphs, with no loops or multiple
edges, and this restricted probability space is uniform (see for example [4,19] for a
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full description). Without loss of generality, when stating such asymptotic results, we
restrict n to being even to avoid parity problems.

We consider the greedy algorithms applied directly to the random pairing. As dis-
cussed in [18], the random pairing can be generated pair by pair, and at each step
a point p can be chosen by any rule whatsoever, as long as the other point in the
pair is chosen u.a.r. from the remaining unused points. We call this step exposing the
pair containing p.

At each point in the algorithm, let Z,, represent the number of uncoloured vertices
of type (r,b), and let W denote the number of points not yet involved in exposed
pairs. It follows that, for d-regular graphs,

W= S (d—r—b)Z
r+b<d

To analyse the algorithm, when a vertex is coloured we immediately expose all pairs
involved in that vertex. In this way, the numbers Z,, are always determined. Further-
more, W points are available for the pairs that will be exposed during the next step.

3. Analysis of an algorithm for random 4-regular graphs

When considering algorithm 4-min greedy run on a random pairing, at any time
step, the number of points not yet involved in exposed pairs is

W =4Zy + 3Z10 + 3Z01 + 2202 + 2750 + 27211 + Zia + Zoy + Zos + Zso.

Consider what happens when a vertex u is newly coloured R and one of the pairs
containing a point p in that cell is exposed. The other point will lie in some vertex v.
The probability that v has type (i,j) will be (4 —i — j)Z;/(W — 1) (except for a
correction due to the change in status of u). Let d,;, denote the expected contribution
to the increment A(Z,,) in Z; due to the change in the status of v. Up to terms
O(1/W), this contribution is gains (4 —i — j)Z;;/W from the case (i,j)=(r —1,b), and
(4—(i+j))Zj/(W — 1) from the case (7,j)=(r,b). The error term O(1/W) is due to
the replacement of W — 1 by W and an adjustment occurring when v happens to be
the same as u. This gives (ignoring O(1/W) terms)

d00:*42%, doi :*infl, dozi*%, dosi*%dm:(),
dyy = 4Zno V;3Zm’ i = 3Zp ;;/ZZU’ dyy = 22021/; le, dys = ZT?/}’

dyy = 3Zyo V;2220’ doy = 2ZUV; ZZI) dyy = %’

d3 = 22207[/;230, ds = %;

dip =22

w
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The corresponding equations when a vertex is coloured B form a symmetric set with
these: they are the same but with the index pair on all variables swapped. Therefore,
denoting by d_,,b the expected increments due to a dual step, consisting of colouring
two vertices R and B, we get (again ignoring O(1/W) terms)

- 87

doo = —T;O

= —6Zo1 +4Zoy - 3Zo1 + 3210 — 471,

doy = — di = 7 ,

- —4Z0 + 3701 - 220y — 2721, + 2714 - Zin + 72

dp = — dip = 7 , dp= —7

- —2703 + 270 - Zos + Zio

d03 - T’ d13 - Ta

- Z

dos = 7> (1)

and symmetric equations for d,;, when »>b. We now make the assumption of having
rb-symmetry: for all i and j, Z; =Z;;. Later we will see how to remove it, but when
it holds, the values of d1, and d» can be simplified, and the equations are:

- 87

doo = —%

- —6Zy1 + 47y - 6Z01 — 4721,

doy = — diy = —

- —4Zyy + 3Zo1 - 220p — 2715 + 2714 - 271,

dp = — dip = 7 , dyp= N

- —2703 + 2720 - Zos +Z1»

d03 - T’ d13 == Ta

- Z

dos = 7. (2)

The rest of our discussion, until considering the deprioritized algorithm, is non-rigorous,
mainly for motivation, but also including the derivations of some formulae used later.
The difficulty of analysis is caused by the prioritization. To proceed, define ¢, to be the
probability of processing a (0, 1)-symmetric pair, let ¢, be the probability of processing
a (0,2)-symmetric pair, and let ¢»; be the probability of processing a (1,2)-symmetric
pair, at a given step in the algorithm. Then immediately

$1+dr+ 3 =1 (3)

Moreover, every dual colouring of a (0, 1)-symmetric pair produces in expectation
3dy, (0,2)-symmetric pairs and 3d;, (1,2)-symmetric pairs. Every dual colouring of a
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(0,2)-symmetric pair produces 2dg, (0,2)-symmetric pairs and 2d,, (1,2)-symmetric
pairs; and every dual colouring of (1,2)-symmetric pair produces do, (0,2)-symmetric
pairs and d}, (1,2)-symmetric pairs. Therefore, the expected number of (0, 2 )-symmetric
pairs produced in a given step is

(31 + 202 + ¢3)do2. (4)
and the expected number of (1,2)-symmetric pairs is
(31 + 22 + h3)d 12 (5)

In a large number of consecutive steps, the prioritization ensures that virtually all of the
(0,2)- and (1,2)-symmetric pairs are used up (unless ¢, has reached 0), implying that
¢, and ¢3 should be equated to the expressions in (4) and (5), respectively. Solving
these together with (3), we get

- 1—2dy —dia by = 3do by = 3di,
1 +do+2dy, ? 1 +do+2d1 ’ 1+dy+2d

Phase 1 will finish when Zy, = Zy, = Z;, = 0. Continuing our non-rigorous computation,
we can find the expected increments of the random variables Z;; in each iteration in
phase 1 (assuming rb-symmetry). Using linearity of expectation,

E[A(Z)] = dij(¢3 +2¢2 +3¢1) — So1d1 — donha — S126h3 (7

for any i,j with i<j and i + j <3, where d,, =1 if (p,q)=(i,j), and 0 otherwise.

We may express the above expected increments as a set of differential equations,
where each E[4(Z;;)] is expressed as the differential Z,-’j (as a function of the number
t of iterations). We scale both time, ¢, and the variables by dividing by », and denote
Zij/n by zj;, t/n by x and W/n=W(t)/n by w=w(x). This yields

ol (6)

D D D
Zoo = —8200 " zo1 = (4200 — 6201); — 01,z = (6201 — 4211);, (8)
where
D =D(x)= 03 + 20, + 304,
w = W(_X) = 4Z()0 —|— 6Z()1 —|— 4202 + 2211 + 2212 —|— 22()3 (9)

and 0; = 0;(x), representing ¢(¢/n), is defined as ¢; in (6) but with Z; replaced by
zjj(x) in the definition of the variables d. For instance,

3(—4zp2 + 3z01)

0, = .
2T we (—4zpo + 3z01) + 2(2z0p — 2212 + 2211)

As long as 0; remains positive (which, as we see later, is the case in phase 1), it
will follow that the number of vertices of types (0,2), (2,0), (1,2) and (2,1) remain
small and that there is regularly no symmetric pair of either of these types (since it
is the only time that (0, 1)-symmetric pairs are processed). This implies that a negli-
gible number of vertices of types (1,3) or (2,2) are ever created. It follows that the
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z;; whose derivatives are not included in (8) should remain constant at 0, and so for
the present discussion we write

z; =0, j=2. (10)

It also follows that the size of the bisection in phase 1 is approximately equal to
the twice the total number of (1,2)-symmetric pairs of vertices which are processed
(since colouring a (0,2) or (0,1) vertex does not add to the bisection). Letting Y (¢)
be a random variable keeping track of the number of times a (1,2)-symmetric pair
is processed, we have the expected change in Y in one step equal to dj,. Let y(x)
represent Y (¢)/n. Then the suggested equation for y is

V'(x) =z 383 (11)
Solving this together with (8)—(10) with the initial conditions

200(0) =1; z;(0)=0 forO0<i<j,i+j<4 »0)=0, (12)
is equivalent to solving

2 = —2;1200’ 2 = 8200 _ngzma 2 = 18z¢; ; 12211’ Y= IZTy’ (13)

where R =4zyy + 9z9; + 6z;;, with the same initial conditions. We do not know the
explicit solution to these equations, but we can deduce all that we need as follows.

Let x; be the infimum of those x>0 for which either ¢; =0 or z;;(x) =0 for ij =00,
01 or 11. From (13) we have

(zo0 + 2201 +2z11)' = — 2
and hence
zo0 +2z01 +z11 = 1 — 2x. (14)

Note that for small x >0, all the variables zgy, zo; and z;; must be positive. Can any be
positive at x;? All are non-negative, so if one of them is strictly positive, this implies
R(x1)>0. But then from (13) it follows that zpo(x;)>0, and from this zp;(x;)>0 and
z11(x1)>0 in turn. We also find that

4Z()0 9201 6211
0 =——, 0h=—, 0;=—. 15
1 R R U R (15)
Thus 6; is then positive, and this contradicts the definition of x;. Hence
zoo(x1) = zo1(x1) = z11(x1) = 0 (16)

and hence R and 0, are 0 as well at x;. So from (13),

x=1 (17)
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Furthermore, from (13),

—24200 — 54201 — 72211 322]1
Rl = = —6 — - _6 - 6 !
R R 4
and solving R' + 6)' = — 6 with the given initial conditions, we have R(0)=4 and
R+ 6y=4— 6x. Since R(1/2)=R(x;)=0, it follows that
»(1/2) = 1/6. (18)

So the solution of the differential equation system at the end of phase 1 represents the
situation that all nodes are coloured, and indicates a bisection of size asymptotically
2z 1n1n=n / 3.

Now we are in position to carry out the formal analysis. We wish to avoid the com-
plications created by the prioritization, which makes it difficult to rigorously establish
the meaning of the ¢,. For a given sufficiently small £>0 (let us say ¢<10~° in order
to derive Theorem 1), consider the deprioritized algorithm given in Fig. 4. Pre-phase
1, where a large number of vertices with no coloured neighbours are coloured in pairs,
is just to ensure a good supply of symmetric pairs of vertices of types (0, 1),(0,2) and
(1,2) before entering phase 1. Note that the way the deprioritization is carried out here
differs slightly from that in [20], since in that paper the ¢; were precomputed from the
solution of the differential equations analogous to (8), whereas here, they are computed
dynamically in the algorithm. The net effect is the same, and either version will work
here, the only difference being some aspects of the justification which determine which
version may be preferred.

In pre-phase 1, we have a unique operation which colours two vertices of type (0, 0).
Working as in the lead-up to (1), we find that the expected increment of Z;; due to the
vertex v is E[4(Z;;)] :4d_,~j — 0go. Each operation involves four such vertices v (except
for cases that one vertex is involved more than once in the same operation, which
happens with probability O(1/W) and is therefore ignored.) At this stage, we entirely
avoid using the rb-symmetry assumption (as a reminder of which we reinstate » and
b as general subscripts). Referring back to (1) and the ensuing derivation of (8), the
suggested system of differential equations is

. —8(4 =71 —=Db)zp +4(5 — 7 — b)z(— 1050 + 4S5 — 7 — b)z,(p—1)0p>0
b W(X)

— Orb=00, (19)

where
w(x) = 4zgo(x) + 3z01(x) + 3z10(x) + 2z02(x) + 2220(x)

+2z11(x) + z30(x) + zo3(x) (20)

and for any statement S, o5 denotes 1 if S is true and O otherwise. These apply for
0<r+b<4, together with the additional equation y’(x)=0, with the initial conditions
(12). It follows from the symmetric nature of the equations that the solution (which
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exists uniquely by standard theory of differential equations) must be the symmetric one,
satisfying z;;(x) =z;(x) for all i, j and x. We write Z;;(x) for the (unique) solutions
of this initial value problem, 0 <x <e.

Let Z,,(t) denote the value of Z,;, after ¢ steps of the algorithm. Regarding z,,(¢/n)
as Zp(t)/n, the right-hand side of give the expected one-step change in the variables
Z.» with error O(1/n). (This error is due to the changing value of the variables between
when one vertex of type (0,0) is chosen and the next.) We may now apply the
differential equation method (using, for example, [18, Theorem 5.1] or the simplified
version [20, Theorem 3]) to deduce that during pre-phase 1, we have a.a.s.

Zyp(1) = nZp(t/n) + o(n) (21)

for each r and b. This applies until either 1= |en] or one of the derivatives approaches
a singularity, which we can prevent by restricting to a domain in which w>¢, or the
differential equations no longer apply for some other reason, which in this case only
occurs if Zyy reaches 0. Note that the derivatives are all O(1), so Zyy(x) stays close to
1 for x<e (recall £>0 is arbitrarily small). We conclude that a.a.s.

Zwp(to) = nzup(to/n) +o(n), to:= [en]. (22)

We also note that zj, must be strictly positive, and so Z;, Zp, and Z), are strictly
positive on (0,¢). Thus, in particular, for sufficiently small & =¢&(¢)>0,

Zo1(e) = e1, Ze(e) = e, Zia(e) =er. (23)

Now consider phase 1. Note that the values of the ¢; are defined in an asymmetric
way, but they in turn affect the expected changes symmetrically. Arguing as in the
lead-up to (8) (but with the discussion around the ¢; simplified because they are
prescribed), the expected changes in the Z,;, can easily be computed with error O(1/W).
For (r,0)=1(0,0), (0,1) and (1, 1), these expected changes are given by the right-hand
side of the equations in (8) (reading z,, as Z,), with w=4zyy + 3z¢; + 3z19 + 2zp2 +
2250 + 2211 + z12 + 221 + 230 + 203 and the replacement equation

D
21y = (3z01 + 3210 — 4z (24)
to avoid the rb-symmetry assumption. At this point we do not try to argue (as in the

informal discussion) that the other variables can be ignored. Some of the analogous
equations for those variables are

D D
! = (zor — 4z00) > — 05, L= Q2 — 2203) 2 2 = 205 =,
Zpp = (3201 Zoz)w ) 203 = (2202 203)W Z04 =203
D D
Zy = (2z00 + 2211 — 2212); — 03, zi3= (203 +212);,

D
Zéz = (z12 +221);. (25)

The symmetrically reversed functions have symmetrically reversed equations (the 6;
are defined without symmetric reversal in these equations, of course, and w is defined
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in (3)). Continue the definition of the functions Z;;(x) for x>¢ by the solution of
these equations (z(, and z|, given in (8), the other variables in (23) and (24), together
with the symmetrically reversed versions) with initial conditions given by the values
of these functions at x =¢ as determined above.

Again applying the differential equation method, we deduce that (20) holds a.a.s. as
long as the solution set Z; stays within a predefined closed domain which does not
contain singularities of the derivatives, and also the variables Zy;, Zy; and Z;, and
their symmetrically reversed counterparts stay positive (so that the operations can be
carried out when required) and the ¢; remain positive (so that the probability step
in the algorithm is well defined). With ¢, as before, we may select the domain L
defined by Z,,>¢; for rb=01, 10, 02, 20, 12 and 21, w>¢, and 0,=¢; for i=1,
2 and 3. By (22) and the symmetrically reversed versions, the first set of these in-
equalities hold at x =¢. On the other hand the constraints on 6; hold for ¢; sufficiently
small by a slightly deeper analysis which shows that Z,, = ©(¢/*?) (and then consid-
ering (1)). Finally, w(0)=1, and the derivative of w is clearly bounded near 0. Thus,
the solution at x =¢ lies within the domain L. We need to study where the solution
leaves L.

First, this is a convenient point to consider symmetry. It follows as before, from
the symmetry in the differential equations and the initial conditions, that the unique
solution is symmetric, with Z;; =Z;. The symmetric solution must satisfy Egs. (8) and
(24), with w as in (9). In discussing the solution, we may therefore restrict our attention
to the variables which appear in these equations, ignoring z,;, with »>b.

Arguing by continuity, z), as given in (8) is strictly positive for x <J, where 6>0
is an absolute constant independent of ¢. In view of Eqs. (4) which was involved in
the (circuitous) definition of 6; to represent ¢;, we see that z(, is identical to 0. (The
reader may find it easiest to refer to (7) in verifying this.) Thus Zp, = Zp(¢), and we
obtain Zj; = Z15(¢) in a similar fashion. Hence, for ¢ sufficiently small, the solution set
Z;; stays inside L for x <J, and can only leave L when, for some x >4,

Zop =&, w=¢g or 0; =¢ for some i € {1,2,3}. (26)

Note that for ¢ and ¢, sufficiently small, the initial conditions for Z;; are arbitrarily close
to (12). Let us denote the solutions with initial conditions (12) by Zz;. By standard
theory of first order systems of differential equations, it follows that the functions Z;;
can be made arbitrarily close to Z;; in the domain L, by taking ¢ and ¢; sufficiently
small. By (15) and the definition of x;, the conditions corresponding to (25) for Z;
are not reached until x approaches the x; given in (17), at which point all z;; reach 0
by (16). It follows that, as ¢ and ¢; tend towards 0, the value of x at the exit point of
the Z;; from D also tends towards x; =1/2.

We also introduced the variable y, to keep track of the number Y of times a (1,2)-
symmetric pair is processed. In phase 1, this is the only contributor to the size of the
bisection. The conclusion is that there is a deprioritized algorithm in which the values
of the variables Z;;(¢) are a.a.s. fiz;j(t/n) +o(n), and Y(¢) is a.a.s. nj(t/n)+o(n) where
the functions Z;; and y solve (8)—(11), and moreover, that these functions can be made
arbitrarily close to the solutions z;; and y with initial conditions (12). It follows that
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the size of the bisection at the end of phase 1 is a.a.s.
2y(x1)n + O(8'n),
where ¢’ — 0 as ¢ and ¢ go to 0. By (16) the clean-up phase increases the size of

the bisection by a negligible amount. In view of (18), this completes the proof of
Theorem 1.

4. Analysis of the algorithm for random cubic graphs

Consider analysing the algorithm 3-min greedy in the same way as we have done
for 4-min greedy. In the discussion leading up to (8) we obtain for a vertex newly
coloured R

dooz—@, do :—22%, doz——ZOZ, do3 =0,
dyy = 3740 V—szlo’ ) = 22011/; Z11, i %’
dy = 2ZIOV; Zzo’ da @,
Z
d3o = %,

- 67,
doo = —%,
Jo — 3Zyo — 42y, Ji— 2701 + 2710 — 2714
n=—"7p > du 7 ,
7 2201 — 2202 d— _ ZOZ +le
w=——7p—" do=—7p—,
- Z
dos = % (27)

The difference in the analysis for algorithm 3-min greedy, given in Fig. 2, with respect
to the analysis of the previous section is that we must analyse each phase separately,
feeding to it the solutions to the differential equation in the previous phase.

For the non-rigorous discussion of phase 1, assume that a given iteration in phase
1 colours a (0,1)-symmetric pair with probability ¢, and (0,2) with probability ¢,,
where ¢ + ¢ =1.

Analogous to (13), we find eventually (see [6] for details of all but the final step)

r_ —122()0 r 6200 — 8201 r_ 82()1 —4211
Zoo—iR ) 201—71{ ) 211—71{ )
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2211 ’

== =0 28
Z1 R Y s (28)
where R =3zyy + 6z91 + z11, with initial conditions
200(0) = 1,  201(0) = z11(0) = z12(0) = y(0) = 0. (29)

Note that y has zero derivative because the two operations in this phase do not add
to the bisection size.

We are interested in the point that zy; first goes negative, which by numerical solution
(using an order 2 Runge Kutta algorithm) occurs when

x =x; =~ 041178, zoo ~ 0.002405, z;; =~ 0.046633, =z, ~ 0.063700. (30)

The whole algorithm “takes off” at the start because the derivative of z; is strictly
positive, so a.a.s. phase 1 does not quickly use up all vertices to be processed.

At the point given by (29), since zy; and zp, are both 0, phase 2 is entered. The
situation is similar to phase 1, but with different operations. We pause to highlight
one difference. When colouring a (1,1)-symmetric pair, there is one pair exposed from
each of two vertices of type (1,1), and the expected number of new vertices of type
(0,1) arising from this is 261701 =(4Zyy —4Zy)/W, where two vertices of type (1,1) are
used in this operation. The rest of the argument is similar and the resulting differential
equation is

p —6209 p p 3z00 — 8201 — 3z11 — 2202 p Zop + 211
J— — 0 J— —
200 = R’ Zo1 =Yz = R s 212 = R

, 2201 — 2zop , —6z00 + 24201 + 4zpo + 2211
e K ’
where R’ =8z + 2z¢p + z11, with initial conditions given by (29) and zo; =zgp, =0.
(Again, see [6] for details.) Note that the derivative of y comes from the fact that the
colouring of a (1,1)-symmetric pair increases de bisection by two, and this is the only
cause of increase of the bisection.
The point of interest is

(€19)

xy =sup{x: z;; > 0, w > 0}. (32)

This corresponds to the beginning of phase 3. During phase 3 the number of bicoloured
edges created is 2 for every pair of vertices of types (1,2) and (2,1) (using rb-
symmetry) and at most 6 for every other pair coloured except types (0,3) and (3,0),
which give none. Since zyg; =zp, =z;; =0 at x,, our upper bound for the size of the
bisection is thus (6zg9+2z12 +2y+¢)n where the variables are evaluated at x,. Solving
numerically, we find

6200(x2) + 2212(x2) + 21(x2) < 0.174038. (33)

As with the 4-regular case, we introduce a deprioritized algorithm, in Figs. 3 and 4.

The formal analysis, completing the proof of Theorem 2, is essentially the same as
the previous section within each phase, so is omitted from this paper (the interested
reader may again consult [6]).
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Pre-phase 1:

Phase 1:

Cleanup:

do the following |en] times:
select u.a.r. a non-adjacent (0,0)-symmetric pair
and perform Rand;

while all of Zy, Zi0, Zo2, Z20, Z21 and Z;, are non-zero

_ 1=2dp—dp., 3dyy
let 1= I+dgy+2d 15 sh2= I+dga+2d1,°

$s= 3
I+dp+2d1;°

with probability ¢,

select u.a.r. a (0, 1)-symmetric pair and perform Maj;

with probability ¢

select u.a.r. a (0,2)-symmetric pair and perform Maj;

with probability ¢

select u.a.r. a (1,2)-symmetric pair and perform Maj;
colour any remaining uncoloured vertices, half of them R
and half B, in any manner, and output the bisection R, B.

Fig. 3. Algorithm deprioritized 4-min greedy for bisection of random 4-regular graphs.

Pre-phase 1:

Phase 1:

Pre-phase 2:
Phase 2:

Phase 3:

do the following |en] times:
select u.a.r. a non-adjacent (0,0)-symmetric pair
and perform Rand;
while all of Zyi, Zio, Zo» and Z»y are non-zero
_ 27-27 _1-9.
let 9—% and ¢—m,

with probability ¢

select a (2,0)-symmetric pair and perform Maj;

otherwise

select a (1,0)-symmetric pair and perform Maj;

do |en] steps as in Pre-phase 1;
while Zo1 >0, Z10>0 and Z;1 >1

_ 3Zyo—4Zy _ 120,
let 92— — and ¢2— q,

with probability ¢»
select a (1,0)-symmetric pair an perform Maj;
otherwise

select a (1,1)-symmetric pair an perform Rand,

as for Algorithm 3-min greedy.

Fig. 4. Algorithm deprioritized 3-min greedy for bisection.

5. Maximum bisection

545

Let us consider the variation of the algorithms 4-min greedy and 3-min greedy
(given in Figs. 1 and 2, respectively) obtained by changing the meaning of Maj, now

we will colour a vertex with the minority colour among its coloured neighbours.
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Let us say that an edge is fully coloured when both its ends are finally coloured.
A fully coloured edge is monocoloured if both ends have the same colour and bi-
coloured if both ends have different colour. So the monocoloured edges by min greedy
get bicoloured by max greedy and vice versa, whenever the vertices of the graph are
treated in the same order (which happens with the same probability, in both cases).
That is, every edge that counts in the bisection for one algorithm does not count in
the other and vice versa. Therefore, taking into account that the total number of edges
in a 4-regular graph is 2n, and in a cubic graph is 1.5n, we have proved Theorems 3
and 4.

6. Further remarks

We have given an application of the differential equation method to analyse the
bisection of random cubic and random 4-regular graphs, providing reasonable bounds
both for max and min bisection.

One natural problem remains open, to find the exact solution of the system of dif-
ferential equations for cubic graphs. By doing so, more accurate constants will be
obtained, up to now we have been only able to solve them numerically. This may
have also a bearing on extending the method to larger d.
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