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Generalisations of the Harer–Zagier recursion for 1-point functions

Anupam Chaudhuri and Norman Do

Abstract. Harer and Zagier proved a recursion to enumerate gluings of a 2d-gon that result in an ori-

entable genus g surface, in their work on Euler characteristics of moduli spaces of curves. Analogous

results have been discovered for other enumerative problems, so it is natural to pose the following ques-

tion: how large is the family of problems for which these so-called 1-point recursions exist?

In this paper, we prove the existence of 1-point recursions for a class of enumerative problems that have

Schur function expansions. In particular, we recover the Harer–Zagier recursion, but our methodology

also applies to the enumeration of dessins d’enfant, to Bousquet-Mélou–Schaeffer numbers, to mono-

tone Hurwitz numbers, and more. On the other hand, we prove that there is no 1-point recursion that

governs simple Hurwitz numbers. Our results are effective in the sense that one can explicitly compute

particular instances of 1-point recursions, and we provide several examples. We conclude the paper

with a brief discussion and a conjecture relating 1-point recursions to the theory of topological recursion.
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1 Introduction

For integers g ≥ 0 and d ≥ 1, let ag(d) denote the number of ways to glue the edges of a 2d-gon in pairs

to obtain an orientable genus g surface. The data of a surface constructed by gluing edges of polygons

in pairs is often referred to in the literature as a ribbon graph. In their pioneering work, Harer and Zagier

apply matrix model techniques to this enumeration of ribbon graphs with one face to deduce a formula

for the virtual Euler characteristics of moduli spaces of curves. One consequence of their calculation is

the fact that the numbers ag(d) satisfy the following recursion [34].

(d + 1) ag(d) = 2(2d − 1) ag(d − 1) + (2d − 1)(d − 1)(2d − 3) ag−1(d − 2) (1)

Despite the simple appearance of this formula, Zagier later stated [39]: “No combinatorial interpretation

of the recursion. . . is known.” The Harer–Zagier recursion has since attracted a great deal of interest,

and there now exist several proofs, some of which are combinatorial in nature [1, 10, 32, 40, 44, 52].

In more recent work of the second author and Norbury [19], as well as the subsequent work of Chekhov [13],

an analogue of the Harer–Zagier recursion was deduced for the number of dessins d’enfant with one face.

More precisely, let bg(d) denote the number of ways to glue the edges of a 2d-gon, whose vertices are

alternately coloured black and white, in pairs to obtain an orientable genus g surface. Of course, we

impose the caveat that vertices may only be glued together if they share the same colour. The numbers

bg(d) satisfy the following recursion.

(d + 1) bg(d) = 2(2d − 1) bg(d − 1) + (d − 1)2(d − 2) bg−1(d − 2) (2)

It is natural to embed the problem of calculating ag(d) into the more general enumeration of ways to glue

the edges of n labelled polygons with d1, d2, . . . , dn sides to obtain an orientable genus g surface. This

problem then lends itself naturally to a simple combinatorial recursion, whose roots lie in the work of

Tutte [56], but was first expressed by Walsh and Lehman [57]. The mechanism for such a recursion comes

from removing an edge from the ribbon graph formed by the edges of the polygons, and observing that

one is left with either a simpler ribbon graph or the disjoint union of two simpler ribbon graphs. The

cost of combinatorial simplicity is the necessity to consider gluings of an arbitrary number of polygons,

rather than gluings of just one polygon.

Recursions similar to those expressed in equations (1) and (2) have appeared in other contexts, such

as random matrix theory [41]. However, it is not true in general that these recursions involve three

terms, as in the examples above. In the context of enumerative geometry and mathematical physics,

the analogues of ag(d) and bg(d) are known as 1-point invariants, since they often arise as expansion

coefficients of 1-point correlation functions. And more generally, the enumeration of ways to glue n

polygons to obtain surfaces produces numbers known as n-point invariants. The preceding discussion

motivates us to make the following definition.

Definition 1.1. We say that the collection of numbers ng(d) ∈ C for integers g ≥ 0 and d ≥ 1 satisfies a

1-point recursion if there exist integers imax, jmax and complex polynomials pij, not all equal to zero, such

that
imax

∑
i=0

jmax

∑
j=0

pij(d) ng−i(d − j) = 0, (3)

whenever all terms in the equation are defined.

The current work is motivated by the following interrelated questions.

What unified proofs of 1-point recursions exist, which encompass both equations (1) and (2)?

How universal is the the notion of a 1-point recursion?
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We partially answer these questions by first observing that the enumeration of both ribbon graphs and

dessins d’enfant can be expressed in terms of Schur functions. This suggests that 1-point recursions may

exist more generally for problems that may be defined in an analogous way. Thus, we consider double

Schur function expansions of the following form.

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(
q1
h̄ ,

q2
h̄ , . . .) ∏

�∈λ

G(c(�)h̄)

= exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]
(4)

The precise meaning of all terms appearing in this equation will be discussed in Section 2. It currently

suffices to observe that the “enumerative problem” is stored in the numbers Ng,n(d1, d2, . . . , dn) appear-

ing in the second line. These numbers have been recently studied in the work of Alexandov, Chapuy,

Eynard and Harnad [2], where they are given a combinatorial interpretation and referred to as weighted

Hurwitz numbers.

The primary contribution of this paper is an approach to proving 1-point recursions for such “enumera-

tive problems”. In particular, our main result is the following.

Theorem 1.2. Let G(z) ∈ C(z) be a rational function with G(0) = 1 and suppose that finitely many terms of

the sequence q1, q2, q3, . . . of complex numbers are non-zero. Then the numbers ng(d) = d Ng,1(d) defined by

equation (4) satisfy a 1-point recursion.

The proof of this theorem will be taken up in Section 4, where we use the theory and language of

holonomic sequences and functions. The basic observation is Lemma 4.1, which states that a 1-point

recursion exists for ng(d) if and only if the sequence nd = ∑
g

ng(d) h̄2g−1 is holonomic over C(h̄).

Example 1.3. If we take G(z) = 1 + z and q = (0, 1, 0, 0, . . .) in equation (4), then we recover the

enumeration of ribbon graphs introduced earlier. In other words, we have ng(d) = ag(d), so Theorem 1.2

asserts the existence of a 1-point recursion for the numbers ag(d).

Analogously, if we take G(z) = (1 + z)2 and q = (1, 0, 0, . . .) in equation (4), then we recover the enu-

meration of dessins d’enfant introduced earlier. In other words, we have ng(d) = bg(d), so Theorem 1.2

asserts the existence of a 1-point recursion for the numbers bg(d).

One of the features of the theory of holonomic sequences and functions is that there are readily available

algorithms to carry out computations, such as those found in the gfun package for MAPLE [53]. Our

proof of Theorem 1.2 not only asserts the existence of 1-point recursions, but also yields an algorithm to

produce them. We use this to determine explicit 1-point recursions for:

the enumeration of 3-hypermaps and 3-BMS numbers (see Proposition 5.1); and

the enumeration of monotone Hurwitz numbers (see Proposition 5.4).

Example 1.4. The monotone Hurwitz numbers satisfy the following 1-point recursion.

d mg(d) = 2(2d − 3) mg(d − 1) + d(d − 1)2 mg−1(d)

As a partial converse to Theorem 1.2, we prove that there are enumerative problems governed by double

Schur function expansions that do not satisfy a 1-point recursion. Of particular note is the case of simple

Hurwitz numbers, which arise from equation (4) by taking G(z) = exp(z) and q = (1, 0, 0, . . .).

Proposition 1.5. The simple Hurwitz numbers do not satisfy a 1-point recursion.

Underlying our work are the related notions of integrability and topological recursion. Regarding the

former, we only remark that the double Schur function expansions of equation (4) are examples of hy-

pergeometric tau-functions for the Toda integrable hierarchy [51]. The topological recursion can be
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used to produce enumerative invariants from a spectral curve, which is essentially a plane algebraic

curve satisfying some mild conditions and equipped with certain extra data. From the work of Alexan-

drov, Chapuy, Eynard and Harnad [2], we know that the assumptions of Theorem 1.2 lead to numbers

Ng,n(d1, d2, . . . , dn) in equation (4) that can be calculated via the topological recursion. Furthermore,

the associated spectral curve is an explicit rational curve, which depends on the particular choice of

G(z) and q. Combining Theorem 1.2 with the aforementioned work of Alexandrov et al. suggests the

following conjecture, whose precise statement will later appear as Conjecture 6.2.

Conjecture 1.6. Topological recursion on a rational spectral curve produces invariants that satisfy a 1-point

recursion.

In practice, one may only be interested in 1-point functions, as is the case for the problem originally

studied by Harer and Zagier [34]. Calculating these via the topological recursion requires the knowledge

of n-point functions for all positive integers n. Thus, a 1-point recursion can provide an effective tool

for calculation, from both the practical and theoretical perspectives. For instance, a 1-point recursion

can lead to direct information regarding the structure of 1-point invariants — see Corollary 5.5 for an

example of this phenomenon.

We conclude the paper with some evidence towards the conjecture above as well as a brief discussion on

the related notion of quantum curves. In the context of the double Schur function expansions studied in

this paper, quantum curves arise from a specialisation of equation (4) that reduces the summation over

all partitions to a summation over 1-part partitions. On the other hand, we will observe that 1-point

recursions arise from a different specialisation that reduces it to a summation over hook partitions.

The structure of the paper is as follows.

In Section 2, we introduce four classes of enumerative problems that will provide motivation for

and examples of our main results. These are: the enumeration of ribbon graphs and dessins

d’enfant; Bousquet-Mélou–Schaeffer numbers; Hurwitz numbers; and monotone Hurwitz num-

bers. A common thread between these problems is that their so-called partition functions have

double Schur function expansions.

In Section 3, we precisely define double Schur function expansions and deduce an expression for

their 1-point invariants. We also present certain evaluations of Schur functions that will subse-

quently prove useful.

In Section 4, we recall the notion of holonomicity and relate it to the existence of 1-point recursions.

This is used to prove Theorem 1.2 on the existence of 1-point recursions, which then leads to an

algorithm for 1-point recursions.

In Section 5, we return to the four classes of enumerative problems introduced in Section 2. For

three of these, we present examples of 1-point recursions, but for the case of simple Hurwitz num-

bers, we prove that no such recursion exists. We also demonstrate how 1-point recursions can be

used to prove structural results, and sometimes explicit formulas, for 1-point invariants.

In Section 6, we discuss relations between our work and the theory of topological recursion. In

particular, we formulate a precise statement of Conjecture 1.6, which loosely states that is a 1-point

recursion for the invariants arising from topological recursion applied to a rational spectral curve.

Some evidence toward this conjecture is presented, along with some remarks on the similarity

between our calculation of 1-point recursions and the calculation of quantum curves.

2 Enumerative problems

Our work is primarily motivated by the Harer–Zagier formula for the enumeration of ribbon graphs

with one face [34], as well as the analogue for the enumeration of dessins d’enfant with one face [13, 19].

Apart from the obvious similarities between these two problems, they also both arise from double Schur

function expansions. So we propose to study the broad class of “enumerative problems” stored in
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double Schur function expansions of the general form

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(
q1
h̄ ,

q2
h̄ , . . .) Fλ(h̄).

Here, P denotes the set of all partitions (including the empty partition), sλ(p1, p2, . . .) denotes the Schur

function expressed in terms of power sum symmetric functions, and Fλ(h̄) is a formal power series in

h̄ for each partition λ. We use the shorthand p = (p1, p2, p3, . . .) and q = (q1, q2, q3, . . .) throughout

the paper. Following the mathematical physics literature, we will refer to such power series as partition

functions (although we note that this name does not refer to the integer partitions that appear in the

equation above).

For our applications, we will take Fλ(h̄) to have the so-called content product form

Fλ(h̄) = ∏
�∈λ

G(c(�)h̄).

Here, the product is over the boxes in the Young diagram for λ, G(z) ∈ C[[z]] is a formal power series

normalised to have constant term 1, and c(�) denotes the content of the box. Recall that the content of a

box in row i and column j of a Young diagram is the integer j − i.

The partition function can be expressed as

Z(p; q; h̄) = exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]
,

where Ng,n(d1, d2, . . . , dn) ∈ C[q1, q2, . . .]. For various natural choices of the formal power series G(z)

and the weights q1, q2, q3, . . ., the quantity Ng,n(d1, d2, . . . , dn) enumerates objects of combinatorial inter-

est. We will be primarily concerned with the 1-point invariants that arise when n = 1. In particular,

we consider the numbers ng(d) = d Ng,1(d), with the goal of determining whether or not there exists a

1-point recursion governing these numbers.

We now proceed to examine four classes of combinatorial problems that arise from double Schur func-

tion expansions. Readers looking for the general description of double Schur function expansions and

their 1-point recursions may wish to skip directly to Section 3.

2.1 Ribbon graphs and dessins d’enfant

A ribbon graph — also known as a map, embedded graph, fat graph or rotation system — can be

thought of as the 1-skeleton of a cell decomposition of an oriented compact surface. Ribbon graphs

arise naturally in various areas of mathematics, including topological graph theory, moduli spaces of

Riemann surfaces, and matrix models [39]. A more formal definition is the following.

Definition 2.1. A ribbon graph is a finite connected graph equipped with a cyclic ordering of the half-

edges meeting at each vertex. An isomorphism between two ribbon graphs is a bijection between their

sets of half-edges that preserves all adjacencies, as well as the cyclic ordering of the half-edges meeting

at each vertex.

The underlying graph of a ribbon graph is precisely the 1-skeleton of a cell decomposition of a compact

connected orientable surface. The cyclic ordering of the half-edges meeting at every vertex allows one

to reconstruct the 2-cells and hence, the underlying oriented compact surface. Thus, one can assign a

genus to a ribbon graph.

Alternatively, one can encode a ribbon graph as a pair of permutations (τ0, τ1) such that τ1 has cycle

type (2, 2, . . . , 2), and τ0 and τ1 generate a transitive subgroup of the symmetric group. We think of

these permutations as acting on the half-edges of the ribbon graph, where τ0 rotates half-edges anti-

clockwise around their adjacent vertex and τ1 swaps half-edges belonging to the same underlying edge.
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More generally, one can consider an m-hypermap as a pair of permutations (τ0, τ1) such that τ1 has cycle

type (m, m, . . . , m), and τ0 and τ1 generate a transitive subgroup of the symmetric group. For further

information on these topics, one may consult the book of Lando and Zvonkin [39].

Definition 2.2. Define the ribbon graph number Ag,n(d1, d2, . . . , dn) to be the weighted count of ribbon

graphs of genus g with n labelled faces of degrees d1, d2, . . . , dn. The weight of a ribbon graph Γ is 1
|Aut Γ|

,

where Aut Γ denotes the group of face-preserving automorphisms. The corresponding 1-point invariant

is denoted ag(d) = 2d Ag,1(2d). (The factor of 2d in this definition provides agreement with the work of

Harer and Zagier [34] and produces a simpler 1-point recursion.)

We analogously define Am
g,n(d1, d2, . . . , dn) to be the weighted count of m-hypermaps of genus g with

n labelled faces of degrees d1, d2, . . . , dn. The corresponding 1-point invariant is denoted am
g (d) =

md Am
g,1(md).

The following result is a consequence of the work of Alexandrov, Lewanski and Shadrin, in which they

show an equivalence between counting hypermaps and the notion of strictly monotone orbifold Hur-

witz numbers [3].

Lemma 2.3. The ribbon graph numbers arise from taking q = (0, 1, 0, 0, . . .) and G(z) = 1 + z in equation (4).

In other words, we have

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(0, 1
h̄ , 0, . . .) ∏

�∈λ

(1 + c(�)h̄)

= exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Ag,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]
.

More generally, the enumeration of m-hypermaps arises from keeping G(z) = 1 + z, but taking qm = 1 and

qi = 0 for i 6= m.

Ribbon graphs can be considered as special cases of the more general notion of dessins d’enfant.

Definition 2.4. A dessin d’enfant is a ribbon graph whose vertices are coloured black and white such that

every edge is adjacent to one vertex of each colour. An isomorphism between two dessins d’enfant is an

isomorphism between their underlying ribbon graphs that preserves the vertex colouring.

One obtains the notion of a ribbon graph by considering dessins d’enfant in which every black vertex

has degree two. In that case, one can simply remove the degree two vertex and amalgamate the adjacent

two edges into a single edge, to obtain a ribbon graph. Similarly, dessins d’enfant in which every black

vertex has degree m give rise to m-hypermaps.

Definition 2.5. Define the dessin d’enfant number Bg,n(d1, d2, . . . , dn) to be the weighted count of dessins

d’enfant of genus g with n labelled faces of degrees 2d1, 2d2, . . . , 2dn. The weight of a dessin d’enfant Γ

is 1
|Aut Γ|

, where Aut Γ denotes the group of face-preserving automorphisms. The corresponding 1-point

invariant is denoted bg(d) = d Bg,1(d).

More generally, we can refine the enumeration by weighting with parameters that record the degrees of

the black vertices.

Definition 2.6. Define the double dessin d’enfant number Bg,n(d1, d2, . . . , dn) to be the analogous weighted

count of dessins d’enfant, where the weight of a dessin d’enfant Γ with black vertices of degrees λ1, λ2, . . . , λℓ

is
qλ1

qλ2
···qλℓ

|Aut Γ|
. The corresponding 1-point invariant is denoted bg(d) = d Bg,1(d).

In the above definition, q1, q2, q3, . . . are indeterminates, so we have Bg,n(d1, d2, . . . , dn) ∈ Q[q1, q2, q3, . . .].

The following result generalises Lemma 2.3.
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Lemma 2.7. The double dessin d’enfant numbers arise from taking q = (q1, q2, q3, . . .) and G(z) = 1 + z in

equation (4). In other words, we have

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(
q1
h̄ ,

q2
h̄ , . . .) ∏

�∈λ

(1 + c(�)h̄)

= exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Bg,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]
.

One obtains the usual dessin d’enfant enumeration by setting q = (1, 1, 1, . . .) in the double dessin

d’enfant enumeration.

Z(p; q; h̄) = exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Bg,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]

= ∑
λ∈P

sλ(p1, p2, . . .) sλ(
1
h̄ , 1

h̄ , 1
h̄ , . . .) ∏

�∈λ

(1 + c(�)h̄)

= ∑
λ∈P

sλ(p1, p2, . . .) sλ(
1
h̄ , 0, 0, . . .) ∏

�∈λ

(1 + c(�)h̄)2

The second equality here relies on the fact that sλ(
1
h̄ , 1

h̄ , 1
h̄ , . . .) = sλ(

1
h̄ , 0, 0, . . .) ∏(1 + c(�)h̄), which is a

direct corollary of the hook-length and the hook-content formulas — see equation (6).

d g ag(d) bg(d)

1 0 1 q1

2 0 2 q2 + q2
1

2 1 1 0

3 0 5 q3 + 3q2q1 + q3
1

3 1 10 q3

4 0 14 q4 + 4q3q1 + 2q2
2 + 6q2q2

1 + q4
1

4 1 70 5q4 + 4q3q1 + q2
2

4 2 21 0

5 0 42 q5 + 5q4q1 + 5q3q2 + 10q3q2
1 + 10q2

2q1 + 10q2q3
1 + q5

1

5 1 420 15q5 + 25q4q1 + 15q3q2 + 10q3q2
1 + 5q2

2q1

5 2 483 8q5

6 0 132 q6 + 6q5q1 + 6q4q2 + 15q4q2
1 + 3q2

3 + 30q3q2q1 + 20q3q3
1 + 5q3

2 + 30q2
2q2

1 + 15q2q4
1 + q6

1

6 1 2310 35q6 + 90q5q1 + 60q4q2 + 75q4q2
1 + 25q2

3 + 90q3q2q1 + 20q3q3
1 + 10q3

2 + 15q2
2q2

1

6 2 6468 84q6 + 48q5q1 + 24q4q2 + 12q2
3

6 3 1485 0

Figure 1: Table of ribbon graph numbers and double dessin d’enfant numbers.

2.2 Bousquet-Mélou–Schaeffer numbers

One can encode a dessin d’enfant via a pair (σ1, σ2) of permutations acting on the edges. Here, σ1 acts

by rotating each edge anticlockwise around its adjacent black vertex and σ2 acts by rotating each edge

anticlockwise around its adjacent white vertex. The connectedness of the dessin d’enfant is encoded in

the fact that the two permutations generate a transitive subgroup of the symmetric group. For more

details, one can consult the extensive literature on dessins d’enfant [39]. More generally, one has the

notion of Bousquet-Mélou–Schaeffer numbers [9].
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Definition 2.8. For m a positive integer, the Bousquet-Mélou–Schaeffer (BMS) number Bm
g,n(d1, d2, . . . , dn)

is equal to 1
|d|!

multiplied by the number of tuples (σ1, σ2, . . . , σm) of permutations in S|d| such that

∑
m
i=1(|d| − k(σi)) = 2g − 2 + n + |d|, where k(σ) denotes the number of cycles in σ;

σ1 ◦ σ2 ◦ · · · ◦ σm has n labelled cycles with lengths d1, d2, . . . , dn; and

σ1, σ2, . . . , σm generate a transitive subgroup of the symmetric group.

The corresponding 1-point invariant is denoted bm
g (d) = d Bm

g,1(d).

Lemma 2.9. The m-BMS numbers arise from taking q = (1, 0, 0, . . .) and G(z) = (1 + z)m in equation (4). In

other words, we have

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(
1
h̄ , 0, 0, . . .) ∏

�∈λ

(1 + c(�)h̄)m

= exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Bm
g,n(d1, d2, . . . , dn)

h̄2g−2+n

n!
pd1

pd2
· · · pdn

]
.

By the Riemann existence theorem, one can equivalently consider Bm
g,n(d1, d2, . . . , dn) to be the weighted

count of connected genus g branched covers f : (C; p1, p2, . . . , pn) → (CP1; ∞) such that

f−1(∞) = d1 p1 + d2 p2 + · · ·+ dn pn;

all other ramification occurs at the mth roots of unity.

The weight of a branched cover f : C → CP1 is 1
|Aut f |

, where an automorphism of f is a Riemann

surface automorphism φ : C → C such that f ◦ φ = f .

More generally, we can refine the enumeration by weighting by parameters that record the ramification

profile at one of the roots of unity.

Definition 2.10. The double Bousquet-Mélou–Schaeffer number B
m
g,n(d1, d2, . . . , dn) is the weighted count of

genus g connected branched covers f : (C; p1, p2, . . . , pn) → (CP1; ∞) such that

f−1(∞) = d1 p1 + d2 p2 + · · ·+ dn pn;

all other ramification occurs at the mth roots of unity.

The weight of a branched cover with ramification profile (λ1, λ2, . . . , λℓ) over exp( 2πi
m ) is

qλ1
qλ2

···qλℓ
|Aut f |

. The

corresponding 1-point invariant is denoted b
m
g (d) = d B

m
g,1(d).

These numbers arise from taking q = (q1, q2, q3, . . .) and G(z) = (1 + z)m−1 in equation (4).

2.3 Hurwitz numbers

Hurwitz numbers enumerate branched covers of the Riemann sphere. They were first studied by Hur-

witz [35] in the late nineteenth century, although interest in Hurwitz numbers has been revived in recent

decades due to connections to enumerative geometry [23, 49], integrability [50], and topological recur-

sion [8, 26].

Definition 2.11. The simple Hurwitz number Hg,n(d1, d2, . . . , dn) is the weighted count of genus g con-

nected branched covers f : (C; p1, p2, . . . , pn) → (CP1; ∞) such that

f−1(∞) = d1 p1 + d2 p2 + · · ·+ dn pn; and

the only other ramification is simple and occurs at the mth roots of unity.

The weight of a branched cover f is 1
m! |Aut f |

, where we have m = 2g − 2 + n + |d| from the Riemann–

Hurwitz formula. The corresponding 1-point invariant is denoted hg(d) = d Hg,1(d).
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d g b
3
g(d)

1 0 q1

2 0 q2 + 2q2
1

2 1 q2

3 0 q3 + 6q2q1 + 5q3
1

3 1 8q3 + 12q2q1 + q3
1

3 2 3q3

4 0 q4 + 8q3q1 + 4q2
2 + 28q2q2

1 + 14q4
1

4 1 30q4 + 96q3q1 + 34q2
2 + 100q2q2

1 + 10q4
1

4 2 93q4 + 88q3q1 + 34q2
2 + 16q2q2

1

4 3 20q4

5 0 q5 + 10q4q1 + 10q3q2 + 45q3q2
1 + 45q2

2q1 + 120q2q3
1 + 42q5

1

5 1 80q5 + 400q4q1 + 280q3q2 + 770q3q2
1 + 560q2

2q1 + 700q2q3
1 + 70q5

1

5 2 901q5 + 1990q4q1 + 1290q3q2 + 1405q3q2
1 + 1055q2

2q1 + 380q2q3
1 + 8q5

1

5 3 1650q5 + 1200q4q1 + 820q3q2 + 180q3q2
1 + 140q2

2q1

5 4 248q5

Figure 2: Table of double BMS-3 numbers.

Again, the Riemann existence theorem allows one to encode a branched cover via its monodromy repre-

sentation, which makes connection with permutation factorisations. The result is the following algebraic

description of simple Hurwitz numbers.

Proposition 2.12. The simple Hurwitz number Hg,n(d1, d2, . . . , dn) is 1
m! |d|!

multiplied by the number of tuples

(τ1, τ2, . . . , τm) of transpositions in S|d| such that

m = 2g − 2 + n + |d|;

τ1 ◦ τ2 ◦ · · · ◦ τm has labelled cycles of lengths d1, d2, . . . , dn; and

τ1, τ2, . . . , τm generate a transitive subgroup of the symmetric group.

This algebraic description of simple Hurwitz numbers then leads naturally to the following result [50].

Lemma 2.13. The simple Hurwitz numbers arise from taking q = (1, 0, 0, . . .) and G(z) = exp(z) in equa-

tion (4). In other words, we have

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(
1
h̄ , 0, 0, . . .) ∏

�∈λ

exp(c(�)h̄)

= exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Hg,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]
.

As with the enumerations considered previously in this section, one can consider a generalisation of the

Hurwitz enumeration to its “double” counterpart [16].

Definition 2.14. The double Hurwitz number Hg,n(d1, d2, . . . , dn) is the weighted count of genus g con-

nected branched covers f : (C; p1, p2, . . . , pn) → (CP1; ∞) such that

f−1(∞) = d1 p1 + d2 p2 + · · ·+ dn pn;

the ramification profile over 0 is arbitrary; and

the only other ramification is simple and occurs at the mth roots of unity.

9



The weight of a branched cover f with ramification profile (λ1, λ2, . . . , λℓ) over 0 is
qλ1

qλ2
···qλℓ

m! |Aut f |
.

Again, we have a natural double Schur function expansion for double Hurwitz number partition func-

tion [50].

Lemma 2.15. The double Hurwitz numbers arise from taking q = (q1, q2, q3, . . .) and G(z) = exp(z) in

equation (4). In other words, we have

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(
q1
h̄ ,

q2
h̄ , . . .) ∏

�∈λ

exp(c(�)h̄)

= exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Hg,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]
.

d g hg(d) hg(d)

1 0 1 q1

1 1 0 0

1 2 0 0

2 0 1 q2 + q2
1

2 1 1
6

1
2 q2 +

1
6 q2

1

2 2 1
120

1
24 q2 +

1
120 q2

1

3 0 3
2 q3 + 3q2q1 +

3
2 q3

1

3 1 9
8 3q3 +

9
2 q2q1 +

9
8 q3

1

3 2 27
80

9
4 q3 +

81
40 q2q1 +

27
80 q3

1

4 0 8
3 q4 + 4q3q1 + 2q2

2 + 8q2q2
1 +

8
3 q4

1

4 1 16
3 10q4 + 24q3q1 +

28
3 q2

2 +
80
3 q2q2

1 +
16
3 q4

1

4 2 208
45

82
3 q4 +

216
5 q3q1 +

244
15 q2

2 +
1456
45 q2q2

1 +
208
45 q4

1

5 0 125
24 q5 + 5q4q1 + 5q3q2 +

25
2 q3q2

1 +
25
2 q2

2q1 +
125
6 q2q3

1 +
125
24 q5

1

5 1 3125
144 25q5 +

250
3 q4q1 +

125
2 q3q2 +

3125
24 q3q2

1 +
625
6 q2

2q1 +
3125
24 q2q3

1 +
3125
144 q5

1

5 2 15625
384

2125
12 q5 +

1250
3 q4q1 +

6875
24 q3q2 +

21875
48 q3q2

1 +
3125

9 q2
2q1 +

15625
48 q2q3

1 +
15625

384 q5
1

Figure 3: Table of simple Hurwitz numbers and double Hurwitz numbers.

2.4 Monotone Hurwitz numbers

Monotone Hurwitz numbers first appeared in a series of papers by Goulden, Guay-Paquet and Novak,

in which they arose as coefficients in the large N asymptotic expansion of the Harish-Chandra–Itzykson–

Zuber matrix integral over the unitary group U(N) [29, 30, 31]. Their definition resembles that of Hur-

witz numbers, but with a monotonicity constraint imposed on the transpositions. This monotonicity

condition is rather natural from the standpoint of the Jucys–Murphy elements in the symmetric group al-

gebra C[S|d|]. Monotone Hurwitz numbers are known to obey several analogous properties to Hurwitz

numbers. For instance, there is a polynomial structure theorem [30], they are governed by topological

recursion [15], there is a quantum curve [15], and there is an ELSV-type formula [3, 14].

Definition 2.16. The simple monotone Hurwitz number Mg,n(d1, d2, . . . , dn) is 1
|d|!

multiplied by the number

of tuples (τ1, τ2, . . . , τm) of transpositions in S|d| such that

m = 2g − 2 + n + |d|;

τ1 ◦ τ2 ◦ · · · ◦ τm has labelled cycles of lengths d1, d2, . . . , dn;
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τ1, τ2, . . . , τm generate a transitive subgroup of the symmetric group; and

if τi = (ai bi) with ai < bi, then b1 ≤ b2 ≤ · · · ≤ bm.

The corresponding 1-point invariant is denoted mg(d) = d Mg,1(d).

Lemma 2.17. The monotone Hurwitz numbers arise from taking q = (1, 0, 0, . . .) and G(z) = 1
1−z in equa-

tion (4). In other words, we have

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(
1
h̄ , 0, 0, . . .) ∏

�∈λ

1

1 − c(�)h̄

= exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Mg,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]
.

Again, one can consider a generalisation of the monotone Hurwitz enumeration to its “double” counter-

part.

Definition 2.18. The double monotone Hurwitz number Mg,n(d1, d2, . . . , dn) is the weighted count of tuples

(σ, τ1, τ2, . . . , τm) of transpositions in S|d| such that

m = 2g − 2 + n + k(σ), where k(σ) denotes the number of cycles in σ;

σ ◦ τ1 ◦ τ2 ◦ · · · ◦ τm has labelled cycles of lengths d1, d2, . . . , dn;

σ, τ1, τ2, . . . , τm generate a transitive subgroup of the symmetric group; and

if τi = (ai bi) with ai < bi, then b1 ≤ b2 ≤ · · · ≤ bm.

The weight of such a tuple with σ of cycle type (λ1, λ2, . . . , λℓ) is 1
|d|!

qλ1
qλ2

· · · qλℓ
. The corresponding

1-point invariant is denoted mg(d) = d Mg,1(d).

Lemma 2.19. The double monotone Hurwitz numbers arise from taking q = (q1, q2, q3, . . .) and G(z) = 1
1−z

in equation (4). In other words, we have

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(
q1
h̄ ,

q2
h̄ , . . .) ∏

�∈λ

1

1 − c(�)h̄

= exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Mg,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]
.

3 Double Schur function expansions

3.1 Partition functions and 1-point invariants

In the previous section, we established that for various choices of the formal power series G(z) and the

parameters q1, q2, q3, . . ., certain enumerative problems of geometric interest are stored in the partition

function via the following equation.

Z(p; q; h̄) = ∑
λ∈P

sλ(p1, p2, . . .) sλ(
q1
h̄ ,

q2
h̄ , . . .) ∏

�∈λ

G(c(�)h̄)

= exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
h̄2g−2+n

n!
pd1

pd2
· · · pdn

]

The numbers Ng,n(d1, d2, . . . , dn) have been referred to in the literature as weighted Hurwitz numbers and

are known to enumerate certain paths in the Cayley graph of S|d| generated by transpositions [2]. Fur-

thermore, the partition function Z(p; q; h̄) is a hypergeometric tau-function for the Toda integrable hier-

archy [51].
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d g mg(d) mg(d)

1 0 1 q1

1 1 1 0

1 2 1 0

2 0 1 q2 + q2
1

2 1 1 q2 + q2
1

2 2 1 q2 + q2
1

3 0 2 q3 + 3q2q1 + 2q3
1

3 1 10 5q3 + 15q2q1 + 10q3
1

3 2 42 21q3 + 63q2q1 + 42q3
1

4 0 5 q4 + 4q3q1 + 2q2
2 + 10q2q2

1 + 5q4
1

4 1 70 15q4 + 60q3q1 + 25q2
2 + 140q2q2

1 + 70q4
1

4 2 735 161q4 + 644q3q1 + 252q2
2 + 1470q2q2

1 + 735q4
1

5 0 14 q5 + 5q4q1 + 5q3q2 + 15q3q2
1 + 15q2

2q1 + 35q2q3
1 + 14q5

1

5 1 420 35q5 + 175q4q1 + 140q3q2 + 490q3q2
1 + 420q2

2q1 + 1050q2q3
1 + 420q5

1

5 2 8778 777q5 + 3885q4q1 + 2835q3q2 + 10605q3q2
1 + 8505q2

2q1 + 21945q2q3
1 + 8778q5

1

Figure 4: Table of monotone Hurwitz numbers and double monotone Hurwitz numbers.

We consider in particular the 1-point invariants ng(d) = d Ng,1(d) stored in the partition function.1 In

order to obtain information about these numbers, we deform the partition function via a parameter s

that keeps track of the unweighted degree in p1, p2, p3, . . . and then extract the 1-point invariants by

differentiation.
[

∂

∂s
Z(sp; q; h̄)

]

s=0

= ∑
λ∈P

[
∂

∂s
sλ(sp1, sp2, . . .)

]

s=0

sλ(
q1
h̄ ,

q2
h̄ , . . .) ∏

�∈λ

G(c(�)h̄)

=
∞

∑
g=0

∞

∑
d=1

Ng,1(d) h̄2g−1 pd

At this stage, it is natural to introduce the so-called principal specialisation pd = xd to record the degree

via the single variable x.

[
∂

∂s
Z(sx, sx2, sx3, . . . ; q; h̄)

]

s=0

= ∑
λ∈P

[
∂

∂s
sλ(sx, sx2, sx3, . . .)

]

s=0

sλ(
q1
h̄ ,

q2
h̄ , . . .) ∏

�∈λ

G(c(�)h̄)

=
∞

∑
g=0

∞

∑
d=1

Ng,1(d) h̄2g−1 xd (5)

3.2 Schur function evaluations

In this section, we deduce some facts about Schur functions that will be required at a later stage. We

begin with the crucial observation that the evaluation of the Schur function appearing in equation (5) is

zero unless λ is a hook partition. Here, and throughout the paper, a hook partition refers to a partition of

the form (k, 1d−k), where 1 ≤ k ≤ d.

1The extra factor of d in the definition of ng(d) will have little bearing on our results, but is introduced here for consistency with the

original Harer–Zagier recursion and other results in the literature. We remark that the 1-point recursions are generally simpler

with this normalisation, as can be witnessed from equations (1) and (2).
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Lemma 3.1.

[
∂

∂s
sλ(sx, sx2, sx3, . . .)

]

s=0

=

{
(−1)d−k xd

d , if λ = (k, 1d−k) is a hook partition,

0, otherwise.

Proof. The lemma follows from the hook-content formula [43], which states that

sλ(s, s, s, . . .) = ∏
�∈Λ

s + c(�)

h(�)
, (6)

where c(�) and h(�) denote the content and hook-length of a box in the Young diagram for λ, respec-

tively.

If λ is a non-empty partition that is not a hook, then its Young diagram contains at least two boxes with

content 0. So the hook-content formula implies that sλ(s, s, s, . . .) is a polynomial divisible by s2 and it

follows that [
∂

∂s
sλ(sx, sx2, sx3, . . .)

]

s=0

= 0.

If λ = (k, 1d−k) is a hook partition, then its hook-lengths are {1, 2, . . . , k − 1} ∪ {1, 2, . . . , d − k} ∪ {d},

while its contents are {1, 2, . . . , k − 1} ∪ {−1,−2, . . . ,−(d − k)} ∪ {0}. Thus, we obtain

sλ(s, s, s, . . .) = (−1)d−k (s + k − 1)(s + k − 2) · · · (s + k − d)

d(k − 1)!(d − k)!
.

By directly differentiating with respect to s and evaluating at s = 0, we obtain

[
∂

∂s
sλ(s, s, . . .)

]

s=0

=
(−1)d−k

d
.

The powers of x appearing in the statement of the lemma can be reinstated, using the fact that Schur

functions are weighted homogeneous.

Now use Lemma 3.1 in equation (5) to obtain the following.

[
∂

∂s
Z(sx, sx2, sx3, . . . ; q; h̄)

]

s=0

=
∞

∑
g=0

∞

∑
d=1

Ng,1(d)h̄2g−1xd

=
∞

∑
d=1

d

∑
k=1

(−1)d−k xd

d
s(k,1d−k)(

q1
h̄ ,

q2
h̄ , . . .) ∏

�∈λ

G(c(�)h̄)

Extracting the xd coefficient yields the following result.

Lemma 3.2. The 1-point invariants ng(d) = d Ng,1(d) defined by equation (4) satisfy

∞

∑
g=0

ng(d) h̄2g−1 =
d

∑
k=1

(−1)d−k s(k,1d−k)(
q1
h̄ ,

q2
h̄ , . . .)

d

∏
i=1

G((k − i)h̄),

for every positive integer d.

We will later be interested in setting the parameter qi = 0 for i sufficiently large. In this case, we write

sλ(
q1
h̄ ,

q2
h̄ , . . . ,

qr

h̄ ) to mean the Schur function sλ(
q1
h̄ ,

q2
h̄ , . . .) evaluated at qr+1 = qr+2 = · · · = 0.

We complete the section by presenting the following relations concerning Schur functions, which will

be useful for the next section [43].
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Lemma 3.3. The Schur function indexed by the hook (k, 1d−k) can be expressed as

s(k,1d−k)(p) =
k

∑
j=1

(−1)j+1 hk−j(p) ed−k+j(p).

Here, hn and en respectively denote the homogeneous and elementary symmetric functions, which can in turn be

expressed in terms of power sum symmetric functions via

∞

∑
n=0

hn(p) xn = exp

[ ∞

∑
k=1

pk

k
xk

]
and

∞

∑
n=0

en(p) xn = exp

[ r

∑
k=1

(−1)k−1 pk

k
xk

]
.

In the case p1 = s and pk = 0 for k ≥ 2, the above expression evaluates to

s(k,1d−k)(s, 0, 0, . . .) =

(
d − 1

k − 1

)
sd

d!
.

4 Recursions for 1-point functions

4.1 Holonomic sequences and functions

A sequence a0, a1, a2, . . . is said to be holonomic over K if the terms satisfy a non-zero linear difference

equation of the form

pr(d) ad+r + pr−1(d) ad+r−1 + · · ·+ p1(d) ad+1 + p0(d) ad = 0, (7)

where p0, p1, . . . , pr are polynomials over the field K of characteristic 0. Moreover, a formal power series

A(x) =
∞

∑
d=0

ad xd is said to be holonomic over K if it satisfies a non-zero linear differential equation of the

form [
Pr(x)

∂r

∂xr
+ Pr−1(x)

∂r−1

∂xr−1
+ · · ·+ P1(x)

∂

∂x
+ P0(x)

]
A(x) = 0, (8)

where P0, P1, . . . , Pr are polynomials over K. The dual use of the term “holonomic” is due to the ele-

mentary fact that the sequence a0, a1, a2, . . . is holonomic over K if and only if the formal power series

a0 + a1x + a2x2 + · · · is holonomic over K. For our applications, we will use the ground field K = C(h̄).

Lemma 4.1. A 1-point recursion exists for the numbers ng(d) in the sense of Definition 1.1 if and only if the

formal power series

F(x, h̄) =
∞

∑
d=1

∞

∑
g=0

ng(d) h̄2g−1 xd

is holonomic over C(h̄).

Proof. If F(x, h̄) is holonomic, then there exist polynomials P0, P1, . . . , Pr with coefficients in C(h̄) such

that [
Pr(x)

∂r

∂xr
+ Pr−1(x)

∂r−1

∂xr−1
+ · · ·+ P1(x)

∂

∂x
+ P0(x)

]
F(x, h̄) = 0.

One can assume that the coefficients of P0, P1, . . . , Pr actually lie in C[h̄], by clearing denominators in the

equation above. Thus, the equation takes the form

[
finite

∑
i,j,k=0

Cijk h̄ix j ∂k

∂xk

]
F(x, h̄) = 0, (9)

for some complex constants Cijk. Applying Cijk h̄ix j ∂k

∂xk to a term ng(d) h̄2g−1 xd in the expansion for

F(x, h̄) has the effect of shifting the powers of h̄ and x, and introducing a factor that is polynomial in d.
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So after collecting terms in the resulting equation, one obtains a relation of the form of equation (3).

Therefore, there exists a 1-point recursion for the numbers ng(d).

Conversely, suppose that there exists a 1-point recursion for the numbers ng(d), so there exists a relation

of the form of equation (3). Multiplying both sides by h̄2g−1 xd and summing over g and d yields

∞

∑
d=1

∞

∑
g=0

imax

∑
i=0

jmax

∑
j=0

pij(d) ng−i(d − j) h̄2g−1 xd = 0.

Now replace pij(d) xd with pij

(
x ∂

∂x

)
xd and reindex the summations over d and g to obtain

∞

∑
d=1

∞

∑
g=0

imax

∑
i=0

jmax

∑
j=0

pij

(
x ∂

∂x

)
h̄2i x j ng(d)h̄2g−1 xd = 0 ⇒

[ imax

∑
i=0

jmax

∑
j=0

pij

(
x ∂

∂x

)
h̄2i x j

]
F(x, h̄) = 0.

This final equation can be expressed in the form of equation (9) by applying the commutation relation

[ ∂
∂x , x] = 1. It then follows that F(x, h̄) is holonomic over C(h̄).

The following result lists some closure properties, which provide standard tools to prove holonomic-

ity [36].

Proposition 4.2. Let A(x) =
∞

∑
d=0

ad xd and B(x) =
∞

∑
d=0

bd xd be holonomic over a field K of characteristic zero.

Then

(a) αA(x) + βB(x) is holonomic for all α, β ∈ K;

(b) the Cauchy product A(x) B(x) and the Hadamard product
(
anbn

)
n=0,1,2,...

are holonomic;

(c) the derivative a′(x) and the forward shift
(

an+1

)
n=0,1,2,...

are holonomic; and

(d) the integral
∫ x

A(x) dx and the indefinite sum
(

∑
n
k=0 ak

)
n=0,1,2,...

are holonomic.

Definition 4.3. We define the order and degree of the difference equation

pr(d) ad+r + pr−1(d) ad+r−1 + · · ·+ p1(d) ad+1 + p0(d) ad = 0

to be r (assuming pr(d) 6= 0) and max{deg p0, deg p1, . . . , deg pr}, respectively. Similarly, we define the

order and degree of the differential equation

[
Pr(x)

∂r

∂xr
+ Pr−1(x)

∂r−1

∂xr−1
+ · · ·+ P1(x)

∂

∂x
+ P0(x)

]
A(x) = 0

to be r (assuming Pr(x) 6= 0) and max{deg P0, deg P1, . . . , deg Pr}, respectively.

Remark. Note that for a fixed holonomic sequence or function, there are difference or differential oper-

ators of many possible orders and degrees that annihilate it. Furthermore, it is not generally true that

there exists such an operator that simultaneously minimises both the order and the degree. Thus, one

does not usually refer to the order and degree of a holonomic sequence or function itself, but to the order

and degree of a particular operator.

4.2 Multivariate holonomic functions

There are competing ways in which the notion of holonomicity may be generalised to the case of many

variables, but the following is well-suited to our purposes. Let x = (x1, x2, . . . , xn) and let K[[x]] =

K[[x1, x2, . . . , xn]]. A multivariate formal power series A(x) ∈ K[[x]] is said to be holonomic over K —

also commonly known as D-finite — if the set of derivatives

{
∂i1+i2+···+in

∂x
i1
1 ∂x

i2
2 · · · ∂xin

n

A(x)

∣∣∣∣∣ i1, i2, . . . , in ∈ Z≥0

}
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lie in a finite-dimensional vector space over K(x). This is equivalent to the fact that A(x) satisfies a

system of linear partial differential equations of the form

[
Pi,r(x)

∂r

∂xr
i

+ Pi,r−1(x)
∂r−1

xr−1
i

+ · · ·+ Pi,0(x)

]
A(x) = 0, for i = 1, 2, . . . , n, (10)

where Pij(x) ∈ K[x]. Clearly, the case n = 1 recovers the definition of a holonomic function described

earlier.

Definition 4.4. For A(x) = ∑
i1,i2,...,in

a(i1, i2, . . . , in) x
i1
1 x

i2
2 · · · xin

n ∈ K[[x]] and integers 1 ≤ k < ℓ ≤ n,

define the primitive diagonal

Ikℓ(A(x)) = ∑
i1,...,îℓ,...,in

a(i1, . . . , ik, . . . , ik, . . . , in) x
i1
1 · · · x

ik
k · · · x̂

iℓ
ℓ
· · · xin

n ,

where the hats denote omission of the index iℓ and the term x
iℓ
ℓ

.

For example, taking k = 1, ℓ = 2 and n = 4 leads to I12(A(x1, x2, x3, x4)) = ∑
i1,i3,i4

a(i1, i1, i3, i4) xi1
1 xi3

3 xi4
4 .

The following result lists some closure properties for multivariate holonomic functions [42, 55].

Proposition 4.5. Let A(x) = ∑ a(i1, i2, . . . , in) x
i1
1 x

i2
2 · · · xin

n and B(x) = ∑ b(i1, i2, . . . , in) x
i1
1 x

i2
2 · · · xin

n be

holonomic functions over a field K of characteristic zero. Then

(a) the primitive diagonal Ikℓ(A(x)) is holonomic for all 1 ≤ k < ℓ ≤ n;

(b) the Cauchy product A(x) B(x) is holonomic;

(c) the Hadamard product A(x) ∗ B(x) = ∑ a(i1, i2, . . . , in) b(i1, i2, . . . , in) x
i1
1 xi2

2 · · · xin
n is holonomic; and

(d) the formal power series

∑
(i1,i2,...,in)∈C

a(i1, i2, . . . , in) xi1
1 xi2

2 · · · xin
n

is holonomic if C ⊆ Zn
≥0 is defined by a finite set of inequalities of the form ∑ akik + b ≥ 0, where

a1, a2, . . . , an, b ∈ Z.

4.3 Existence of 1-point recursions

We begin by proving the existence of 1-point recursions in the simple case when q = (1, 0, 0, . . .). (The

word “simple” has been ported from the context of Hurwitz numbers to this more general setting.)

Theorem 4.6. Let G(z) ∈ C(z) be a rational function and let q = (1, 0, 0, . . .). Define the numbers ng(d) =

d Ng,1(d) via equation (4). Then the numbers ng(d) satisfy a 1-point recursion in the sense of Definition 1.1.

Proof. We define n(d) and calculate it as follows.

n(d) =
∞

∑
g=0

ng(d) h̄2g−1

=
d

∑
k=1

(−1)d−k s(k,1d−k)(
1
h̄ , 0, 0, . . .)

d

∏
i=1

G((k − i)h̄) (Lemma 3.2)

=
1

d! h̄d

d

∑
k=1

(−1)d−k

(
d − 1

k − 1

) d

∏
i=1

G((k − i)h̄) (Lemma 3.3)

=
1

d h̄d

d

∑
k=1

(−1)d−k 1

(k − 1)! (d − k)!

d

∏
i=1

G((k − i)h̄) (11)
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Define the sequences

uk =
1

(k − 1)! h̄k

k

∏
i=1

G((i − 1)h̄) and vk =
(−1)k

k! h̄k

k

∏
i=1

G(−ih̄).

These are holonomic over C(h̄) since the ratios
uk+1

uk
= G(kh̄)

kh̄ and
vk+1

vk
= −G(−(k+1)h̄)

(k+1)h̄
are rational func-

tions of k with coefficients from C(h̄). Hence, parts (b) and (c) of Proposition 4.2 implies that the se-

quence

n(d) =
1

d

d

∑
k=1

uk vd−k

is holonomic over C(h̄). So Lemma 4.1 guarantees the existence of a 1-point recursion for ng(d).

To tackle the case of general weights q = (q1, q2, . . . , qr, 0, 0, . . .), we use the following lemma.

Lemma 4.7. If ad, bd, ud, vd are holonomic sequences, then so is

sd =
d

∑
k=1

akbd−k

k−1

∑
ℓ=0

uℓvd−ℓ.

Proof. Define the generating functions

A(x1) =
∞

∑
n=1

anxn
1 , B(x2) =

∞

∑
n=0

bnxn
2 , U(x3, x4) =

∞

∑
n=0

un(x3x4)
n, V(x4) =

∞

∑
n=1

vnxn
4 .

Observe that each of these is a holonomic function in the appropriate variables. Since Cauchy products

preserve holonomicity — see part (b) of Proposition 4.5 — we know that

H(x3, x4) =
x3

1 − x3
U(x3, x4)V(x4) =

∞

∑
k=1

∞

∑
n=1

(
k−1

∑
ℓ=0

uℓvn−ℓ

)
xk

3xn
4

is holonomic. (We interpret the inner summation by discarding any terms that involve vn−ℓ with n− ℓ ≤

0.) By part (d) of Proposition 4.5, restricting to the terms satisfying n − k ≥ 0, we obtain the holonomic

function

Ĥ(x3, x4) = ∑
n≥k≥1

(
k−1

∑
ℓ=0

uℓvn−ℓ

)
xk

3xn
4 .

Then

L(x1, x2, x3, x4) = A(x1) B(x2) Ĥ(x3, x4) =
∞

∑
i=1

∞

∑
j=0

∑
n≥k≥1

aibj

(
k−1

∑
ℓ=0

uℓvn−ℓ

)
xi

1x
j
2xk

3xn
4

is holonomic by closure under Cauchy products. Invoking part (a) of Proposition 4.5, we know that

I13(L(x1, x2, x3, x4)) =
∞

∑
k=1

∞

∑
j=0

∞

∑
n=k

akbj

(
k−1

∑
ℓ=0

uℓvn−ℓ

)
xk

1x
j
2xn

4

is holonomic. Now use part (d) of Proposition 4.5 with the inequalities j + k − n ≥ 0 and −j − k + n ≥ 0

— in other words, restricting to j = n − k — to deduce holonomicity of

L̂(x1, x2, x4) =
∞

∑
k=1

∞

∑
n=k

akbn−k

(
k−1

∑
ℓ=0

uℓvn−ℓ

)
xk

1xn−k
2 xn

4 .

By evaluating this formal power series at x1 = 1, x2 = 1 and x4 = x — which clearly preserves holo-

nomicity — we obtain the desired result.

We are now in a position to prove Theorem 1.2, which we restate in the following way.
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Theorem 4.8. Let G(z) ∈ C(z) be a rational function with G(0) = 1 and let q = (q1, q2, . . . , qr, 0, 0, . . .).

Define the numbers ng(d) = d Ng,1(d) via equation (4). Then the generating function

∞

∑
d=1

∞

∑
g=0

ng(d) h̄2g−1 xd (12)

is holonomic over C(h̄), so the numbers ng(d) satisfy a 1-point recursion in the sense of Definition 1.1.

Proof. We calculate the coefficient n(d) of xd in equation (12) as follows.

n(d) =
∞

∑
g=0

ng(d) h̄2g−1

=
d

∑
k=1

(−1)d−k s(k,1d−k)(
q1
h̄ ,

q2
h̄ , . . . ,

qr

h̄ )
d

∏
i=1

G((k − i)h̄) (Lemma 3.2)

=
d

∑
k=1

(−1)d−k
d

∏
i=1

G((k − i)h̄)
k

∑
j=1

(−1)j+1 hk−j(
q1
h̄ ,

q2
h̄ , . . . ,

qr

h̄ ) ed−k+j(
q1
h̄ ,

q2
h̄ , . . . ,

qr

h̄ ) (Lemma 3.3)

=
d

∑
k=1

k

∏
i=1

G((i − 1)h̄)
d−k

∏
i=1

G(−ih̄)
k−1

∑
ℓ=0

hℓ(
q1
h̄ ,

q2
h̄ , . . . ,

qr

h̄ ) (−1)d−ℓ+1 ed−ℓ(
q1
h̄ ,

q2
h̄ , . . . ,

qr

h̄ )

Now define the sequences

an =
n

∏
i=1

G((i − 1)h̄), bn =
n

∏
i=1

G(−ih̄), un = hn(
q1
h̄ ,

q2
h̄ , . . . ,

qr

h̄ ), vn = (−1)n+1 en(
q1
h̄ ,

q2
h̄ , . . . ,

qr

h̄ ).

The first two are holonomic over C(h̄) since the ratios
an+1

an
= G(nh̄) and

bn+1
bn

= G(−(n + 1)h̄) are ratio-

nal functions of n with coefficients from C(h̄). The last two are holonomic over C(h̄) due to Lemma 3.3,

from which we deduce that
[

h̄
∂

∂x
−

r

∑
k=1

qkxk−1

](
∞

∑
n=0

unxn

)
= 0 and

[
h̄

∂

∂x
+

r

∑
k=1

(−1)kqkxk−1

](
∞

∑
n=0

vnxn

)
= 0.

Hence, Lemma 4.7 implies that the sequence

n(d) =
d

∑
k=1

akbd−k

k−1

∑
ℓ=0

uℓvd−ℓ

is holonomic over C(h̄). It then follows from Lemma 4.1 that there exists a 1-point recursion for the

numbers ng(d).

4.4 Algorithms for 1-point recursions

One of the features of the theory of holonomic sequences and functions is the fact that theoretical results

can often be turned into effective algorithms. Although Theorem 4.8 only asserts the existence of 1-

point recursions, its proof can be converted into an algorithm to calculate them from the initial data

of the rational function G(z) and the positive integer r that records the number of non-zero weights

q = (q1, q2, . . . , qr). For example, a naive though feasible approach would be to express the putative

1-point recursion as
D

∑
i=0

R

∑
j=0

aij di n(d − j) = 0,

and treat this as a linear system in the (D + 1)(R + 1) variables aij ∈ C(h̄). One obtains a linear con-

straint for each positive integer d, so a finite number of these allows for the computation of the 1-point

recursion.
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In order to implement this approach, one requires explicit and simultaneous bounds on the degree D and

the order R of such a recursion. We remark that it is possible to obtain such bounds in terms of the degree

of G(z) and the positive integer r. Begin with the operators that annihilate the generating functions for

the sequences an, bn, un, vn that appear in the proof of Theorem 4.8. Then use known bounds for the

degree and order of operators that annihilate functions obtained by the holonomicity closure properties

used in the proof — namely, Cauchy product, taking diagonals, restricting summations, and evaluation.

We do not pursue these calculations in the current work.

There are more efficient algorithms for computing with holonomic functions that are implemented in

the gfun package for MAPLE [53]. For example, we demonstrate below how the previously unknown

1-point recursion for monotone Hurwitz numbers may be derived from several lines of code.

Example 4.9. The proof of Theorem 4.6 implies that monotone Hurwitz numbers satisfy the relation

m(d) =
∞

∑
g=0

mg(d) h̄2g−1 =
1

d

d

∑
k=1

uk vd−k,

where
uk+1

uk
= G(kh̄)

kh̄ and
vk+1

vk
= −G(−(k+1)h̄)

(k+1)h̄
. So the sequence m(d) can be obtained by taking the

Cauchy product of uk and vk, and then taking the Hadamard product of the result and the sequence
1
k . The following shows several lines of hopefully self-explanatory MAPLE code that produce a 1-point

recursion for monotone Hurwitz numbers.

> with(gfun):

> G(z) := 1
1−z:

> rec1:={d*hbar*m(d+1)-G(d*hbar)*m(d)=0, m(0)=0, m(1)=1}:

> rec2:={(d+1)*hbar*m(d+1)+G(-(d+1)*hbar)*m(d)=0, m(1)=-G(-hbar)}:

> rec3:={(d+1)*m(d+1)-d*m(d)=0, m(1)=1}:

> recprod:={cauchyproduct(rec1, rec2, m(d))=0}:

> finalrec:=‘rec*rec‘(recprod, rec3, m(d));

{(−2 + 4 ∗ d) ∗ m(d) + (−d − 1 + hbar2 ∗ d3 + hbar2 ∗ d2) ∗ m(d + 1), m(0) = 0, m(1) = C[0]}

The output asserts that

(−2h̄ + 4dh̄) m(d) + (−d − 1 + h̄2d3 + h̄2d2) m(d + 1) = 0.

By collecting the coefficient of h2g−1 and shifting the index, we obtain the 1-point recursion

d mg(d) = 2(2d − 3) mg(d − 1) + d(d − 1)2 mg−1(d).

5 Examples and applications

In this section, we return our attention to the enumerative problems introduced in Section 2. In particu-

lar, we apply the methodology developed in Section 4 to deduce 1-point recursions for the enumeration

of hypermaps, Bousquet-Mélou–Schaeffer numbers and monotone Hurwitz numbers. For the case of

simple Hurwitz numbers, the weight generating function G(z) is not a rational function, so Theorem 1.2

ceases to apply. As a partial converse to this theorem, we show that simple Hurwitz numbers do not sat-

isfy a 1-point recursion. We furthermore demonstrate how our calculations may yield explicit formulas

and polynomial structure results for 1-point invariants.

5.1 Hypermaps and Bousquet-Mélou–Schaeffer numbers

The methodology of Section 4 allows one to recover the 1-point recursions for the enumeration of ribbon

graphs and dessins d’enfant, stated as equations (1) and (2), respectively. Recall that these two examples
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inspired the current work. It is possible to use the methodology developed in Section 4 to deduce other

1-point recursions, although the results are often rather lengthy to state. The following result provides

two examples.

Proposition 5.1. The 3-hypermap enumeration satisfies the following 1-point recursion.

2d(2d + 1) a3
g(d) = 3(3d − 1)(3d − 2) a3

g(d − 1) + (3d − 1)(3d− 2)(9d2 − 8d + 2) a3
g−1(d − 1)

− (d − 1)(3d − 1)(3d − 2)(3d − 4)(3d − 5)(6d − 7) a3
g−2(d − 2)

+ (d − 1)(d − 2)(3d − 1)(3d − 2)(3d − 4)(3d − 5)(3d − 7)(3d − 8) a3
g−3(d − 3)

The 3-BMS numbers satisfy the following 1-point recursion.

2d(2d + 1)(3d − 4) b3
g(d) = 3(3d − 1)(3d − 2)(3d − 4) b3

g(d − 1)

+ (d − 1)(3d + 1)(9d3 − 22d2 + 14d − 2) b3
g−1(d − 1)

− (d − 1)2(d − 2)(18d4 − 93d3 + 1722 − 127d + 26) b3
g−2(d − 2)

+ (d − 1)2(d − 2)5(d − 3)(3d − 1) b3
g−3(d − 3)

5.2 Hurwitz numbers

Observe that Theorem 1.2 does not apply in the case of Hurwitz numbers, since the weight generating

function G(z) = exp(z) is not rational. Thus, the following result provides a partial converse to our

main theorem.

Proposition 5.2. The simple Hurwitz numbers do not satisfy a 1-point recursion.

Proof. By Lemma 4.1, we know that the simple Hurwitz numbers satisfy a 1-point recursion if and only

if the sequence

h(d) =
1

d! h̄d

d

∑
k=1

(−1)d−k

(
d − 1

k − 1

)
exp(d(2k − d − 1)h̄/2) =

1

d! h̄d
exp(−d(d + 1)h̄/2) (exp(dh̄)− 1)d−1

is holonomic over C(h̄). However, if this were the case, then we could evaluate at h̄ = 1 to deduce that

the sequence
1

d!
exp(−d(d + 1)/2) (exp(d)− 1)d−1

is holonomic over C. It is known that holonomic sequences a1, a2, a3, . . . over C must satisfy the asymp-

totic growth condition ad = O(d!α) for some constant α. On the other hand, we have

1

d!
exp(−d(d + 1)/2) (exp(d)− 1)d−1 ∼

1

d!
exp(d(d − 3)/2).

Applying Stirling’s formula, we see that this grows too fast to be holonomic. So it follows that the simple

Hurwitz numbers do not satisfy a 1-point recursion.

Equation (11) still applies to this case though, so the 1-part Hurwitz numbers satisfy

∞

∑
g=0

hg(d) h̄2g−1 =
1

d! h̄d

d

∑
k=1

(−1)d−k

(
d − 1

k − 1

)
exp (d(2k − d − 1)h̄/2) .

By extracting coefficients of h̄ on both sides, we recover the following formula.

20



Proposition 5.3. The 1-part simple Hurwitz numbers are given by

hg(d) =
(d/2)d+2g−1

d! (d + 2g − 1)!

d−1

∑
k=0

(−1)k

(
d − 1

k

)
(d − 1 − 2k)d+2g−1.

In particular, it follows that hg(d) =
dd

d! pg(d), where pg is a polynomial of degree 3g − 1. One can make sense of

this statement in the case g = 0 by taking p0(d) =
1
d .

We remark that the polynomial structure derived here is a direct corollary of the more general poly-

nomial structure for simple Hurwitz numbers with any number of parts. This in turn follows from

the ELSV formula, which relates simple Hurwitz numbers to intersection theory on moduli spaces of

curves [23]. The formula of Proposition 5.3 is not new either, but first appeared in the work of Shapiro,

Shapiro and Vainshtein [54]. The result and proof here may generalise to other settings, as we will

observe in the context of monotone Hurwitz numbers.

5.3 Monotone Hurwitz numbers

In Section 4.4, we observed that the following 1-point recursion for monotone Hurwitz numbers could

be deduced from several lines of MAPLE code. As with the Harer–Zagier recursion, it would be of

interest to have an independent and purely combinatorial proof of this statement.

Proposition 5.4. The 1-part monotone Hurwitz numbers satisfy the 1-point recursion

d mg(d) = 2(2d − 3) mg(d − 1) + d(d − 1)2 mg−1(d).

In the context of monotone Hurwitz numbers, equation (11) implies that

∞

∑
g=0

mg(d) h̄2g−1 =
1

d! hd

d

∑
k=1

(−1)d−k

(
d − 1

k − 1

) d

∏
j=1

1

1 − (k − j)h̄

=
(2d − 2)!

d! (d − 1)!

d−1

∏
k=−d+1

1

1 − kh̄
.

The identity that leads to the second equality can be established by considering the residue at h̄ = 1
k for

−d + 1 ≤ k ≤ d − 1. By extracting coefficients of h̄ on both sides, we recover the following formula.

Corollary 5.5. The 1-part monotone Hurwitz numbers satisfy the equation

mg(d) =
(2d − 2)!

d!(d − 1)! ∑
k1+···+kd−1=g

d−1

∏
i=1

i2ki

=
(2d − 2)!

d!(d − 1)! ∑
1≤m1≤m2≤···≤mg≤d−1

(m1m2 · · · mg)
2.

From the latter summation, it follows that mg(d) = (2d
d ) pg(d), where pg is a polynomial of degree 3g − 1. One

can make sense of this statement in the case g = 0 by taking p0(d) =
1
d .

This polynomial structure is a particular case of the more general result of Goulden, Guay-Paquet and

Novak [30], who prove that monotone Hurwitz numbers satisfy

Mg,n(d1, d2, . . . , dn) =
n

∏
i=1

(
2di

di

)
× Pg,n(d1, d2, . . . , dn),

where Pg,n is a polynomial of degree 3g − 3 + n. One wonders whether the techniques of this paper can

be used to prove this more general structure theorem.
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6 Relations to topological recursion and quantum curves

6.1 Topological recursion

In this section, we aim to address the question: how universal is the the notion of a 1-point recursion?

Thus, one seeks a natural class of “enumerative” problems for which 1-point recursions exist. Such a

class should include not only the ribbon graph and dessin d’enfant enumerations, but also those families

of problems encompassed by Theorem 4.8 — namely, those arising from the double Schur expansion

of equation (4) with q = (q1, q2, . . . , qr, 0, 0, . . .) and a rational weight generating function G(z). We

claim that a natural candidate is the class of problems governed by the topological recursion that we

subsequently discuss.

The topological recursion of Chekhov, Eynard and Orantin was originally inspired by the loop equations

in the theory of matrix models [11, 24]. It has since found widespread applications to various problems

across mathematics and physics. For example, it is known to govern the enumeration of maps on sur-

faces [4, 18, 20, 22, 37, 46], various flavours of Hurwitz problems [6, 8, 15, 17, 26], the Gromov–Witten

theory of P1 [21, 48] and toric Calabi–Yau threefolds [7, 25, 27]. There are also conjectural relations to

knots invariants [5, 33]. Much of the power of the topological recursion lies in its universality — in other

words, its wide applicability across broad classes of problems — and its ability to reveal commonality

among such problems.

The topological recursion can naively be thought of as a vast generalisation of Tutte’s recursion for

the enumeration of ribbon graphs. It calculates n-point functions in a recursive manner, starting from

the input data of a spectral curve. For our purposes, we restrict to the class of rational spectral curves,

that are given by a pair (x(z), y(z)) of rational functions satisfying some mild assumptions. For more

information on the theory of the topological recursion, one should consult the relevant literature [24].

The following result asserts that the weighted Hurwitz numbers — essentially, the Ng,n(d1, d2, . . . , dn)

of equation (4) — are governed by the topological recursion.

Theorem 6.1 (Alexandrov, Chapuy, Eynard and Harnad [2]). The rational spectral curve given by

x(z) =
z

G(Q(z))
and y(z) =

Q(z)

z
G(Q(z)), where Q(z) = q1z + q2z2 + · · ·+ qrzr,

produces correlation differentials that satisfy

ωg,n =
∞

∑
d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
n

∏
i=1

dix
di−1
i dxi.

This lends credence to the following conjecture, which states that 1-point recursions exist for rational

spectral curves in general.

Conjecture 6.2. Consider a rational spectral curve given by the pair of rational functions (x(z), y(z)). Sup-

pose that the correlation differentials produced by the topological recursion applied to this spectral curve have an

expansion of the form

ωg,n =
∞

∑
d1,d2,...,dn=1

Ng,n(d1, d2, . . . , dn)
n

∏
i=1

dix
di−1
i dxi.

Then the numbers ng(d) = d Ng,1(d) satisfy a 1-point recursion.

We conclude this section with an example of a problem that is governed by topological recursion and

satisfies a 1-point recursion, but does not satisfy the conditions of Theorem 4.8. Thus, one can consider

this as further evidence towards the conjecture above.
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Example 6.3. Chekhov and Norbury [12] consider topological recursion applied to the spectral curve

x2y2 − 4y2 − 1 = 0 given by the rational parametrisation

x(z) = z +
1

z
and y(z) =

z

z2 − 1
.

The resulting correlation differentials can be expressed as

ωg,n =
∞

∑
d1,d2,...,dn=1

Jg,n(d1, d2, . . . , dn)
n

∏
i=1

diz
di−1
i dzi.

These are derivatives of the correlation functions for the Legendre ensemble, which arise from a particu-

lar Hermitian matrix model, as well as related models from conformal field theory. In the latter context,

Gaberdiel, Klemm and Runkel use null vectors for Virasoro highest weight representations to deduce an

equation [28, equation (4.18)] that is equivalent to a 1-point recursion for the numbers jg(d) = d Jg,1(d).

In summary, the 1-point invariants produced by the topological recursion on the rational spectral curve

above satisfy a 1-point recursion.2

Kontsevich and Soibelman have recently provided an alternative and more general formulation of the

topological recursion [38]. It allows one to calculate n-point functions using a technique that is ostensibly

more algebraic and less analytic. So it may provide a promising approach to Conjecture 6.2.

6.2 Quantum curves

The notion of quantum curves is closely related to that of topological recursion [47]. In short, they are

non-commutative deformations of spectral curves that are used as the input to the topological recursion.

Although it is not currently clear when they exist, the quantum curve phenomenon has been proven or

observed in many instances of the topological recursion.

A quantum curve can be viewed as a differential operator P̂(x̂, ŷ) that annihilates the so-called principal

specialisation of the partition function.

P̂(x̂, ŷ) Z(p; h̄)|pi=xi = 0

We use here the operators x̂ = x and ŷ = −h̄ ∂
∂x . The quantum curve phenomenon is the fact that there

is a natural choice of the operator P̂(x̂, ŷ) whose semi-classical limit — obtained by setting h̄ = 0 and

allowing x and y to commute — recovers the spectral curve P(x, y) = 0.

In the context of the double Schur expansions considered in this paper, the principle specialisation of

the wave function is given by

Ψ(x; q; h̄) = ∑
λ∈P

sλ(x, x2, x3, . . .) sλ(
q1
h̄ ,

q2
h̄ , . . .) ∏

�∈λ

G(c(�)h̄).

As in Section 3, the hook-content formula stated in equation (6) may be invoked to simplify the expres-

sion to obtain

Ψ(x; q; h̄) =
∞

∑
d=0

xd s(d)(
q1
h̄ ,

q2
h̄ , . . .)

d−1

∏
k=1

G(kh̄) =
∞

∑
d=0

xd
d−1

∏
k=1

G(kh̄)[yd] exp

( r

∑
k=1

qk

kh̄
yk

)
.

Here, [yd] denotes extraction of the coefficient of yd.

We simply remark here that our calculation of the 1-point invariants from the partition function in

Section 3 bears a strong resemblance to the calculation of the quantum curve from the partition func-

tion [2, 3, 45]. In the former case, the partition function reduces to a sum over hook partitions, while

in the latter case, it reduces to a sum over 1-part partitions. One may wonder whether there may be a

deeper connection here.

2Observe that we are here expanding in z, while Conjecture 6.2 has been expressed in terms of x. However, since they are related

by a rational change of coordinates, this does not affect the existence of a 1-point recursion.
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