
Counting non-crossing permutations on surfaces of any genus

Norman Do, Jian He, and Daniel V. Mathews

Given a surface with boundary and some points on its boundary, a polygon diagram is a way to connect those
points as vertices of non-overlapping polygons on the surface. Such polygon diagrams represent non-crossing
permutations on a surface with any genus and number of boundary components. If only bigons are allowed, then it
becomes an arc diagram. The count of arc diagrams is known to have a rich structure. We show that the count of
polygon diagrams exhibits the same interesting behaviours, in particular it is almost polynomial in the number of
points on the boundary components, and the leading coefficients of those polynomials are the intersection numbers
on the compactified moduli space of curvesMg,n.
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1 Introduction

A polygon on a connected compact oriented surface S with boundary is an embedded (closed) disc
bounded by a sequence of properly embedded arcs P1P2, P2P3, . . . , Pm−1Pm, PmP1, where P1, P2, . . . , Pm ∈
∂S. The points P1, . . . , Pm are called the vertices of the polygon and the arcs PiPi+1 (with i taken mod m)
are its edges. Given a finite set of marked points M ⊂ ∂S, a polygon diagram on (S, M) is a disjoint union
of polygons on S whose vertices are precisely the marked points M. See figure 11 for an example. Two
polygon diagrams D1, D2 on (S, M) are equivalent if there is an orientation preserving homeomorphism
φ : S→ S such that φ|∂S is the identity and φ(D1) = D2.
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Figure 1: A polygon diagram on S1,2.

Polygon diagrams are closely related to non-crossing permutations. In this paper we count them.

Denote by Sg,n a connected compact oriented surface of genus g with n ≥ 1 boundary components, or
just S when g and n are understood. Label the boundary components of S as F1, . . . , Fn. Since we will be
performing cutting and pasting operations on polygon diagrams, it is often helpful to choose a single
vertex mi ∈ M∩ Fi to be a decorated marked point on each boundary component Fi containing at least one
vertex (i.e. such that M ∩ Fi 6= ∅). Two polygon diagrams D1, D2 on S can then be regarded as equivalent
if there is an orientation preserving diffeomorphism of S taking D1 to D2, such that each decorated
marked point on D1 is mapped to the decorated marked point of D2 on the same boundary component.
Fixing the total number of vertices on each boundary component Fi to be µi (i.e. |M ∩ Fi| = µi), let
Pg,n(µ1, . . . , µn) be number of equivalence classes of polygon diagrams on (S, M). Clearly Pg,n only
depends on g, n, µ1, . . . , µn (not on the choice of particular S or M) and is a symmetric function of the
variables µ1, . . . , µn.

Proposition 1.

P0,1(µ1) =

(2µ1−1
µ1

) 2
µ1+1 , µ1 > 0

1, µ1 = 0
(1)

P0,2(µ1, µ2) =

(2µ1−1
µ1

)(2µ2−1
µ2

)
(

2µ1µ2
µ1+µ2

+ 1
)

, µ1, µ2 > 0

(2µ1−1
µ1

), µ2 = 0
(2)

P0,3(µ1, µ2, µ3) =

(
2µ1 − 1

µ1

)(
2µ2 − 1

µ2

)(
2µ3 − 1

µ3

)(
2µ1µ2µ3 + ∑

i 6=j
µiµj +

3

∑
i=1

µ2
i − µi

2µi − 1
+ 1

)
(3)

P1,1(µ1) =

(
2µ− 1

µ

)
1

2µ− 1
µ3 + 3µ2 + 20µ− 12

12
(4)

Here we take the convention (−1
0 ) = 1 when µi is 0.

Suppose D is a polygon diagram on (S, M) where S is a disc or an annulus, i.e. (g, n) = (0, 1) or (0, 2).
Each boundary component Fi inherits an orientation from S. Label the marked points of M by the
numbers 1, 2, . . . , |M| = ∑n

i=1 µi, in order around F1 in the disc case, and in order around F1 then F2 in the
annulus case. Orienting each polygon in agreement with S induces a cyclic order on the vertices (and
vertex labels) of each polygon, giving the cycles of a permutation π of {1, . . . ∑ µi}. Such a permutation
is known as a non-crossing permutation if S is a disc, or annular non-crossing permutation if S is an annulus.
We say the diagram D induces or represents the permutation π.

Non-crossing permutations are well known combinatorial objects. It is a classical result that the number
of non-crossing permutations on the disc is a Catalan number. Annular non-crossing permutations
were (so far as we know) first introduced by King [1212]. They were studied in detail by Mingo–Nica [1616],
Nica–Oancea [1818], Goulden–Nica–Oancea [99], Kim [1111] and Kim–Seo–Shin [1414].

In general, if we number the marked points M from 1 to |M| = ∑n
i=1 µi in order around the oriented
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boundaries F1, then F2, up to Fn, then in a similar way, a polygon diagram represents a non-crossing
permutation on a surface with arbitrary genus and an arbitrary number of boundary components. This
paper studies such non-crossing permutations via polygon diagrams.

The relation between permutation and genus here differs slightly from others in the literature. The notion
of genus of a permutation π in [1010] and subsequent papers such as [33, 44, 55], in our language, is the smallest
genus g of a surface S with one boundary component on which a polygon diagram exists representing the
permutation π; equivalently, it is the genus of a surface S with one boundary component on which a
polygon diagram exists representing π, such that all the components of S\D are discs. This differs again
from the notion of genus of a permutation in [22].

Given a non-crossing permutation π on the disc, it’s clear that there is a unique polygon diagram D
(up to equivalence) representing π. Therefore P0,1(µ) is also the µ-th Catalan number. Uniqueness
of representation is also true for connected annular non-crossing partitions. An annular non-crossing
partition is connected if there is at least one edge between the two boundary components, i.e. from F1 to
F2. Uniqueness of representation follows since an edge from F1 to F2 cuts the annulus into a disc. The
number of connected annular non-crossing partitions counted in P0,2(µ1, µ2) is known to be [1616, cor. 6.8](

2µ1 − 1
µ1

)(
2µ2 − 1

µ2

)(
2µ1µ2

µ1 + µ2

)
,

which appears as a term in the formula (22) for P0,2(µ1, µ2). A disconnected annular non-crossing per-
mutation however can be represented by several distinct polygon diagrams, and P0,2 can be viewed
as the total count of annular non-crossing permutations with multiplicities. Similarly, in general the
Pg,n(µ, . . . , µn) can be regarded as counts with multiplicity of non-crossing permutations on arbitrary
connected compact oriented surfaces with boundary.

If all polygons in D are bigons, then collapsing them into arcs turns D into an arc diagram previously
studied by the first and third authors with Koyama [66]. The count of arc diagrams exhibits quasi-
polynomial behaviour, and the asymptotic behaviour is governed by intersection numbers on the moduli
space of curves. In this paper we show that the count of polygon diagrams has the same structure. The
arguments mirror those in [66].

The formulae for Pg,n in Proposition 11 suggest that Pg,n(µ1, . . . , µn) is a product of the (2µi−1
µi

), together
with a rational function of the µi’s. In fact we also know the form of the denominator. Moreover,
the behaviour is better than for arc diagrams in the sense that we obtain polynomials rather than quasi-
polynomials.

Theorem 2. For (g, n) 6= (0, 1), (0, 2), let a = 3g− 3 + n ≥ 0, and

Cg,n(µ) =
1

(2µ− 1)(2µ− 3) . . . (2µ− 2a− 1)

(
2µ− 1

µ

)
Then

Pg,n(µ1, . . . , µn) =

(
n

∏
i=1

Cg,n(µi)

)
Fg,n(µ1, . . . , µn)

where Fg,n is a polynomial with rational coefficients.

Note that Fg,n might have some common factors with (2µi − 1)(2µi − 3) . . . (2µi − 2a− 1), which would
simplify the formula for Pg,n. For example, F1,1 has a factor (2µ1 − 3), hence only (2µ1 − 1) appears on
the denominator in (44).

The Pg,n satisfy a recursion which allows the count on a surface to be computed from the counts on
surfaces with simpler topology, i.e, either smaller genus g, or fewer boundary components n, or fewer
vertices µi.
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Let X = {1, 2, 3, . . . , n}. For each I ⊆ X, let µI = {µi | i ∈ I}.

Theorem 3. For non-negative integers g and µ1, . . . , µn such that µ1 > 0, we have

Pg,n(µ1, . . . , µn) = Pg,n(µ1 − 1,µX\{1}) +
n

∑
k=2

µkPg,n−1(µ1 + µk − 1,µX\{1,k})

+ ∑
i+j=µ1−1

j>0

[
Pg−1,n+1(i, j,µX\{1}) + ∑

g1+g2=g
ItJ=X\{1}

Pg1,|I|+1(i,µI) Pg2,|J|+1(j,µj)

]
. (5)

An edge P1P2 is boundary parallel if it cuts off a disc from the surface S. It is easy to create polygons
using edges that are parallel to the same boundary component. The counts of these polygons are
clearly combinatorial in nature instead of reflecting the underlying topology of S. Therefore from a
topological point of view, it is natural to count polygon diagrams where none of the edges are boundary
parallel. We call such a diagram a pruned polygon diagram. Let the count of pruned polygon diagrams
be Qg,n(µ1, . . . , µn), i.e. the number of equivalence classes of pruned polygon diagrams on a surface
of genus g, with n boundary components, containing µ1, . . . , µn marked points respectively. Clearly
Qg,n(µ1, . . . , µn) is also a symmetric function of µ1, . . . , µn. As the name suggests, the relationship
between Pg,n and Qg,n mirrors that of Hurwitz numbers and pruned Hurwitz numbers [88]. It also mirrors
the relationship between the counts of arc diagrams Gg,n and non boundary-parallel arc diagrams Ng,n in
[66]; we call the latter pruned arc diagrams.

We call a function f (µ1, . . . , µn) a quasi-polynomial if it is given by a family of polynomial functions,
depending on whether each of the integers µ1, . . . , µn is zero, odd, or even (and nonzero). In other words,
a quasi-polynomial can be viewed as a collection of 3n polynomials, depending on whether each µi is
zero, odd, or nonzero even. Our definition of a quasi-polynomial differs slightly from the standard
definition, in that 0 is treated as a separate case rather than an even number. More precisely, for each
partition X = Xe t Xo t X∅, there is a single polynomial f (Xe ,Xo ,X∅)(µXe ,µXo ) such that f (µ1, . . . , µn) =

f (Xe ,Xo ,X∅)(µXe ,µXo ) whenever µi = 0 for i ∈ X∅, µi is nonzero and even for i ∈ Xe, and µi is odd
for i ∈ Xo. (Here as above, for a set I ⊆ X, µI = {µi | i ∈ I}.) A quasi-polynomial is odd if each
f (Xe ,Xo ,X∅)(µXe ,µXo ) is an odd polynomial with respect to each µi ∈ Xe t Xo.

Theorem 4. For (g, n) 6= (0, 1) or (0, 2), Qg,n(µ1, . . . , µn) is an odd quasi-polynomial.

The pruned diagram count captures topological information of Sg,n. The highest degree coefficients of the
quasi-polynomial Qg,n are determined by intersection numbers in the compactified moduli spaceMg,n.

Theorem 5. For (g, n) 6= (0, 1) or (0, 2), Q(Xe ,Xo ,X∅)
g,n (µ1, . . . , µn) has degree 6g − 6 + 3n. The coefficient

cd1,...,dn of the highest degree monomial µ2d1+1
1 · · · µ2dn+1

n is independent of the partition (Xe, Xo), and

cd1,...,dn =
1

2g−1d1! · · · dn!

∫
Mg,n

ψd1
1 · · ·ψ

dn
n .

Here ψi is the Chern class of the i-th tautological line bundle over the compactified moduli spaceMg,n of
genus g curves with n marked points.

2 Preliminaries

In this section we state some identities required in the sequel.

2.1 Combinatorial identities

The combinatorial identities required involve sums of binomial coefficients, multiplied by polynomials.
The sums have a polynomial structure, analogous to the sums in [66, defn. 5.5] and [2020].
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Proposition 6. For any integer α ≥ 0 there are polynomials Pα and Qα such that

∑
0≤i≤n even

i2α+1
(

2n
n− i

)
=

(2n
n )

(2n− 1)(2n− 3) . . . (2n− 2α− 1)
Pα(n)

∑
0≤i≤n odd

i2α+1
(

2n
n− i

)
=

(2n
n )

(2n− 1)(2n− 3) . . . (2n− 2α− 1)
Qα(n).

In particular, when α = 0, 1 we have

P0(n) =
1
2
(n2 − n), Q0(n) =

1
2

n2, P1(n) =
(

n2 − 1
)2

n2 and Q1(n) =
1
2

n2
(

2n2 − 4n + 1
)

. (6)

In other words, we have identities

∑
0≤ν≤n even

ν

(
2µ

µ− ν

)
=

(2µ
µ )

2µ− 1
µ2 − µ

2
, ∑

0≤ν≤n odd
ν

(
2µ

µ− ν

)
=

(2µ
µ )

2µ− 1
µ2

2
(7)

∑
0≤ν≤n even

ν3
(

2µ

µ− ν

)
=

(2µ
µ )

(2µ− 1)(2µ− 3)
(µ2 − 1)2µ2 (8)

∑
0≤ν≤n odd

ν3
(

2µ

µ− ν

)
=

(2µ
µ )

(2µ− 1)(2µ− 3)
µ2(2µ2 − 4µ + 1)

2
(9)

2.2 Algebraic results and identities

We also need some results for summing polynomials over integers satisfying constraints on their sum
and parities. They can be proved as in [66] using generalisations of Ehrhart’s theorem as in [11], but we
give more elementary proofs in the appendix.

Proposition 7. For positive odd integers k1, k2

∑
i1,i2≥1, i1+i2=n

{i1,i2} have fixed parities

ik1
1 ik2

2

is an odd polynomial of degree (k1 + k2 + 1) in n. Furthermore the leading coefficient is independent of the choice
of parities.

In other words, in the sum above, we fix elements ε1, ε2 ∈ Z/2Z and the sum is over integers i1, i2 such
that i1, i2 ≥ 1, i1 + i2 = n and i1 ≡ ε1 mod 2, i2 ≡ ε2 mod 2.

Proposition 77 can be directly generalized by induction to the following.

Proposition 8. For positive odd integers k1, k2, . . . , km

∑
i1,i2,...,im≥1, i1+i2+...+im=n
{i1,i2,...,im} have fixed parities

ik1
1 ik2

2 · · · i
km
m

is an odd polynomial of degree (∑m
i=1 ki + m− 1) in n. Furthermore the leading coefficient is independent of the

choice of parities.

We will need the following particular cases, which can be proved by a straightforward induction, and
follow immediately from the discussion in the appendix.

Lemma 9. Let n ≥ 0 be an integer.

5



1. When n is odd, ∑
0≤i≤n

i odd

i =
(n + 1)2

4
and ∑

0≤i≤n
i odd

i2 =
n(n + 1)(n + 2)

6
.

2. When n is even, ∑
0≤i≤n
i even

i =
n(n + 2)

4
and ∑

0≤i≤n
i even

i2 =
n(n + 1)(n + 2)

6
.

3 Basic results on polygon diagrams

3.1 Base case pruned enumerations

We start by working out Qg,n for some small values of (g, n).

Proposition 10.

Q0,1(µ1) = δµ1,0

Q0,2(µ1, µ2) = µ1δµ1,µ2

Q0,3(µ1, µ2, µ3) =


2µ1µ2µ3, µ1, µ2, µ3 > 0

µ1µ2, µ1, µ2 > 0, µ3 = 0

µ1, µ1 even, µ2 = µ3 = 0

0, µ1 odd, µ2 = µ3 = 0

Here δ is the Kronecker delta and n = n + δn,0 is as in [66]: for a positive integer n = n, and 0 = 1.

Proof. On the disc, every edge is boundary parallel. Therefore Q0,1(µ1) = 0 for all positive µ1.

For (g, n) = (0, 2), all non-boundary parallel edges must run between the two boundary components
B1 and B2, and are all parallel to each other. A pruned polygon diagram must consist of a number of
pairwise parallel bigons running between F1 and F2. Therefore Q0,2(µ1, µ2) = 0 if µ1 6= µ2. If µ1 = µ2 > 0,
consider the bigon containing the decorated marked point on F1. The location of its other vertex on B2

uniquely determines the pruned polygon diagram. Therefore Q0,2(µ1, µ1) = µ1, or Q0,2(µ1, µ1) = µ1 if
we include the trivial case Q0,2(0, 0) = 1.

For (g, n) = (0, 3), we can embed the pair of pants in the plane, with its usual orientation, and denote
the three boundary components by F1 = Fouter, F2 = Fleft and F3 = Bright, with µ1, µ2 and µ3 marked
points respectively. Without loss of generality assume µ1 ≥ µ2, µ3. A non-boundary parallel edge can be
separating, with endpoints on the same boundary component and cutting the surface into two annuli, or
non-separating, with endpoints on different boundary components. See figure 22.

On a pair of pants there can be only one type of separating edge, and all separating edges must be
parallel to each other. Consider a polygon P in a pruned diagram. All its diagonals are also non-boundary
parallel, for a boundary-parallel diagonal implies boundary-parallel edges. Further, P cannot have more
than one vertex on more than one boundary component; if there were two boundary components Fi, Fj
each with at least two vertices then there would be separating diagonals from each of Fi, Fj to itself,
impossible since there can be only one type of separating edge. Moreover, P cannot have three vertices on
a single boundary component, since the three diagonals connecting them would have to be non-boundary
parallel, hence separating, hence parallel to each other, hence forming a bigon at most. Therefore a
polygon in a pruned diagram on a pair of pants is of one of the following types:

a non-separating bigon from one boundary component to another,
a separating bigon from one boundary component to itself,
a triangle with a vertex on each boundary component,

6



Figure 2: Boundary labels and possible non-boundary parallel edges on a pair of pants.

a triangle with two vertices on a single boundary component, and the third vertex on a different
boundary component,
a quadrilateral with two opposite vertices on a single boundary component, and one vertex on each
of the other two boundary components.

See figure 33. It’s easy to see that there can be at most one quadrilateral or two triangles in any pruned
diagram.

If µ2 = µ3 = 0, then all edges must be between Bouter and itself and separating. A pruned polygon
diagram must consist of a number of pairwise parallel bigons. Hence Q0,3(µ1, 0, 0) = 0 if µ1 is odd. If
µ1 > 0 is even, then the configuration of µ1

2 separating bigons gives rise to µ1 pruned polygon diagrams,
as the decorated marked point can be located at any one of the µ1 positions. If µ1 = 0 then there is only
the empty diagram, so in general there are µ1 diagrams.

If µ2 > 0 and µ3 = 0, then since µ1 ≥ µ2, the possible polygons are

a non-separating bigon between Fouter and itself,
a separating bigon between Fouter and Fleft,
a triangle with two vertices on Fouter and a vertex on Fleft.

Furthermore there can be at most one triangle. If µ1 − µ2 is even, then a pruned polygon diagram must
consist of µ2 bigons from Fouter to Fleft and µ1−µ2

2 bigons from Fouter to itself. If µ1 − µ2 is odd, then a
pruned polygon diagram must consist of a single triangle, µ2 − 1 bigons from Fouter to Fleft and µ1−µ2−1

2
bigon from Fouter to itself. Again each such configuration determines µ1µ2 pruned diagrams accounting
for the locations of the two decorated marked points on Fouter and Fleft.

If µ1, µ2, µ3 > 0, then because µ1 is maximal, any separating edge or separating diagonal in a quadrilateral
must be from Fouter to itself. Therefore the single quadrilateral (if it exists) must have a pair of opposite
vertices on Fouter and one vertex each on Fleft and Fright. There are two types of triangles with a separating
edge from Fouter to itself, depending on whether the last vertex is on Fleft or Fright. Call these left or right
triangles respectively. There are also two types of triangles with a vertex on each boundary component,
depending on whether the triangle’s boundary, inheriting an orientation from the surface, goes from
Fouter to Fleft or Fright. Call these up or down triangles respectively. We then have the following cases.

(i) There is one quadrilateral. Then the pruned diagram must consist of this single quadrilateral, µ2− 1
bigons between Fouter and Fleft, and µ3 − 1 bigons between Fouter and Fright. In this case we have
µ1 − µ2 − µ3 = 0.

(ii) There is a left and a right triangle. Then the pruned diagram must consist of these two triangles,
µ2 − 1 bigons between Fouter and Fleft, µ3 − 1 bigons between Fouter and Fright, and µ1−µ2−µ3−2

2

7



Figure 3: The decomposition of a polygon diagram.
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separating bigons between Fouter and itself. In this case we have µ1 − µ2 − µ3 is positive and even.
(iii) There is an up and a down triangle. Then the pruned diagram must consist of these two trian-

gles, µ1+µ2−µ3−2
2 bigons between Fouter and Fleft,

µ1+µ3−µ2−2
2 bigons between Fouter and Fright, and

µ2+µ3−µ1−2
2 bigons between Fleft and Fright. In this case we have µ1 − µ2 − µ3 is negative and even.

(Note that µ1 + µ2 − µ3 and µ1 + µ3 − µ2 are both positive and even in this case.)
(iv) There is a single left (resp. right) triangle. Then the pruned diagram must consist of this triangle,

µ2 − 1 (resp. µ3 − 1) bigons between Fouter and Fleft (resp. Fright), µ3 (resp. µ2) bigons between

Fouter and Fright (resp. Fleft), and µ1−µ2−µ3−1
2 separating bigons between Fouter and itself. In this case

µ1 − µ2 − µ3 is positive and odd.
(v) There is a single up (resp. down) triangle. Then the pruned diagram must consist of this trian-

gle, µ1+µ2−µ3−1
2 bigons between Fouter and Fleft,

µ1+µ3−µ2−1
2 bigons between Fouter and Fright, and

µ2+µ3−µ1−1
2 bigons between Fleft and Fright. In this case µ1 − µ2 − µ3 is negative and odd. (Note that

µ1 + µ2 − µ3 and µ1 + µ3 − µ2 are both positive and odd in this case.)
(vi) There are only non-separating bigons. Then the pruned diagram must consist of µ1+µ2−µ3

2 bigons
between Fouter and Fleft,

µ1+µ3−µ2
2 bigons between Fouter and Fright, and µ2+µ3−µ1

2 bigons between
Fleft and Fright. In this case µ1 − µ2 − µ3 is negative or zero, and even. (Note that µ1 + µ2 − µ3 and
µ1 + µ3 − µ2 are both positive and even in this case.)

(vii) There are only bigons, some of which are separating. Then the pruned diagram must consist of µ2

bigons between Fouter and Fleft, µ3 bigons between Fouter and Fright, and µ1−µ2−µ3
2 separating bigons

between Fouter and itself. In this case we have µ1 − µ2 − µ3 is positive and even.

Observe that for each triple (µ1, µ2, µ3), precisely two of these cases apply, depending on µ1 − µ2 − µ3.
(Here we count the left and right versions of (iv) separately, and the up and down versions of (v)
separately.) We thus have two possible configurations of polygons, and each configuration corresponds
to µ1µ2µ3 pruned diagrams, accounting for the locations of the decorated marked points on the three
boundary components. Thus Q0,3 is as claimed.

3.2 Cuff diagrams

Consider the annulus embedded in the plane with F1 being the outer and F2 the inner boundary. A cuff
diagram is a polygon diagram on an annulus with no edges between vertices on the inner boundary F2.
(These correspond to the local arc diagrams of [66].) Let L(b, a) be the number, up to equivalence, of cuff
diagrams with b vertices on the outer boundary F1 and a vertices on the inner boundary F2.

Proposition 11.

L(b, a) =


a( 2b

b−a), a, b > 0
1
2 (

2b
b ), a = 0, b > 0

1, a = b = 0

Proof. This argument follows [66], using ideas of Przytycki [2121]. A partial arrow diagram on a circle is a
labeling of a subset of vertices on the boundary of the circle with the label “out”.

Assume a > 0. We claim there is a bijection between the set of equivalence classes cuff diagrams counted
by L(b, a), on the one hand, and on the other, the set of partial arrow diagrams on a circle with 2b vertices
and b− a “out” labels, together with a choice of decorated marked point on the inner circle. Clearly the
latter set has cardinality a( 2b

b−a).

This bijection is constructed as follows. Starting from a cuff diagram D, observe that there are b− a edges
of D with both endpoints on the outer boundary F1. Orient these edges in an anticlockwise direction.
(Note this orientation may disagree with the orientation induced from polygon boundaries.) Label the
b vertices on F1 from 1 to b starting from the decorated marked point. Taking a slightly smaller outer
circle F′1 close to F1, the edges of D intersect F′1 in 2b vertices, say 1, 1′, 2, 2′, . . . , b, b′. Label each of these
2b vertices “out” if it is a starting point of one of the oriented edges. We then have b− a “out” labels, and
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Figure 4: Reconstructing a cuff diagram from a partial arrow diagram.

hence a partial arrow diagram of the required type. The decorated marked point on the inner circle is
given by the cuff diagram.

Conversely, starting from a partial arrow diagram, there is a unique way to reconstruct the edges of
the cuff diagram D so that they do not intersect. Regard the circle with 2b vertices of the partial arrow
diagram as the outer boundary F1, with the 2b vertices lying in pairs close to each marked point of the
original annulus, and with the pair close to marked point i labelled i, i′. Since there are both labelled and
unlabelled vertices among the 2b vertices, there is an “out” vertex on F1 followed by an unlabelled vertex
in a anticlockwise direction. The edge starting from this “out” vertex must end at that neighbouring
unlabelled vertex (otherwise edges ending at those two vertices would intersect). Next we remove those
two matched vertices and repeat the argument. Eventually all b− a “out” vertices are matched with
unlabelled vertices by b− a oriented edges. The remaining 2a unlabelled vertices are joined to 2a vertices
on the inner circle F2. These 2a edges divide the annulus into 2a sectors, which are further subdivided
into a number of disc regions by the oriented edges. Since 2a is even, the disc regions can be alternately
coloured black and white. Each pair of vertices on F1 is then pinched into the original marked point; the
colouring can be chosen so that the pinched vertices are corners of black polygons near F1. The vertices
of F2 can then be pinched in pairs in a unique way to produce a polygon diagram D, where the polygons
are the black regions. This D has b vertices on F1 and a vertices on F2. Finally, each vertex on F2 belongs
to a separate polygon with all other vertices on the outer circle. Placing the decorated marked point on F2

at each vertex gives a distinct cuff diagram of the required type. See figure 44.

If a = 0 then the bijection fails. From the cuff diagram we can still construct a partial arrow diagram. But
when the cuff diagram is being reconstructed from a partial arrow diagram, there is a single non-disc
region, so not every partial arrow diagram gives rise to a cuff diagram. Call a partial arrow diagram
compatible if it yields a cuff diagram. Since each edge is now separating, the regions divided by the edges
can still be alternately coloured black and white. All regions are discs except one which is an annulus.
Again choose the colouring so that the pairs of vertices labelled i, i′ on F1 are pinched into corners of black
regions. The partial arrow diagram is then compatible if and only if the annulus region is white. However,
when the partial arrow diagram is not compatible, pinching instead the corners of white regions will then
result in a cuff diagram. In other words, if we rotate all the “out” labels by one spot counterclockwise,
the new partial arrow diagram will be compatible. Conversely, if a partial arrow diagram is compatible,
then rotating its labels one spot clockwise will result in an incompatible partial arrow diagram. Hence
there is a bijection between compatible and incompatible partial arrow diagrams, and the number of cuff
diagram is exactly half of the number of partial arrow diagrams, or 1

2 (
2b
b ).

When a = b = 0, there is the unique empty cuff diagram.
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3.3 Annulus enumeration

Proposition 12.

P0,2(µ1, µ2) =

(2µ1−1
µ1

)(2µ2−1
µ2

)
(

2µ1µ2
µ1+µ2

+ 1
)

, µ1, µ2 > 0

(2µ1−1
µ1

), µ2 = 0

Proof. If µ2 = 0 then a polygon diagram is just a cuff diagram, hence by proposition 1111

P0,2(µ1, 0) = L(µ1, 0) =
1
2

(
2µ1

µ1

)
=

(
2µ1 − 1

µ1

)
.

Note that taking (−1
0 ) = 1, this works even when µ1 = 0.

If µ1, µ2 > 0, then as we saw in the introduction, from [1616] the number of connected polygon diagrams
(i.e. with at least one edge from F1 to F2) is(

2µ1 − 1
µ1

)(
2µ2 − 1

µ2

)
2µ1µ2

µ1 + µ2
.

If there are no edges between the two boundaries, then the polygon diagram is a union of two cuff
diagrams, hence

P0,2(µ1, µ2) =

(
2µ1 − 1

µ1

)(
2µ2 − 1

µ2

)
2µ1µ2

µ1 + µ2
+

1
2

(
2µ1

µ1

)
· 1

2

(
2µ2

µ2

)
=

(
2µ1 − 1

µ1

)(
2µ2 − 1

µ2

)(
2µ1µ2

µ1 + µ2
+ 1
)

as required.

3.4 Decomposition of polygon diagrams

Suppose S is not a disc or an annulus. Then any polygon diagram on S can be decomposed into a
pruned polygon diagram on S together with n cuff diagrams, one for each boundary component of S.
Take an annular collar of each boundary component of S, and isotope all boundary parallel edges to
be inside the union of these annuli. The inner circle of each annulus intersects the polygons in νi ≥ 0
arcs. Pinch each arc into a vertex, choose one vertex on each inner circle with νi > 0 as a decorated
marked point, and cut along each inner circle. This produces a cuff diagram on each annular collar and a
pruned polygon diagram on the shrunken surface. This decomposition is essentially unique except for
the choice of decorated marked points on the inner circles, i.e., a single polygon diagram will give rise to
∏n

i=1 νi distinct decompositions. See figure 55. Conversely, starting from such a decomposition, we can
reconstruct the unique polygon diagram by attaching the cuff diagrams to the pruned polygon diagram
by identifying the corresponding decorated marked points along the gluing circles, and unpinching all
the vertices on the gluing circles into arcs. Therefore we have the relationship between Pg,n and Qg,n,
corresponding to the “local decomposition” of arc diagrams in [66].

Proposition 13. For (g, n) 6= (0, 1) or (0, 2),

Pg,n(µ1, . . . , µn) = ∑
0≤νi≤µi

(
Qg,n(ν1, . . . , νn)

n

∏
i=1

1
νi

L(µi, νi)

)
(10)

It turns out that dividing by a power of 2 for each of the µi that is zero, we obtain a nicer form of this
result, eliminating the piecewise nature of L(µi, νi). The number of µi that are zero is given by ∑n

i=1 δµi ,0.
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Figure 5: The decomposition of a polygon diagram.

Defining

P′g,n(µ1, . . . , µn) =
1

2∑n
1 δµi ,0

Pg,n(µ1, . . . , µn) and Q′g,n(ν1, . . . , νn) =
1

2∑n
1 δνi ,0

Qg,n(ν1, . . . , νn),

and applying proposition 1111, equation (1010) becomes

P′g,n(µ1, . . . , µn) = ∑
0≤νi≤µi

(
Q′g,n(ν1, . . . , νn)

n

∏
i=1

(
2µi

µi − νi

))
. (11)

3.5 Pants enumeration

Proposition 14.

P0,3(µ1, µ2, µ3) =

(
2µ1 − 1

µ1

)(
2µ2 − 1

µ2

)(
2µ3 − 1

µ3

)(
2µ1µ2µ3 + ∑

i 6=j
µiµj +

3

∑
i=1

µ2
i − µi

2µi − 1
+ 1

)

Proof. It is easier to work with P′ and Q′. We split the sum from (1111)

P′0,3(µ1, µ2, µ3) = ∑
0≤νi≤µi

(
Q′0,3(ν1, ν2, ν3)

3

∏
i=1

(
2µi

µi − νi

))

into separate sums depending on how many of the νi are positive. Using proposition 1010, the sum over νi
all being positive is given by

∑
0≤νi≤µi

all νi positive

Q′0,3(ν1, ν2, ν3)
3

∏
i=1

(
2µi

µi − νi

)
= ∑

0≤νi≤µi
all µi positive

2ν1ν2ν3

3

∏
i=1

(
2µi

µi − νi

)
= 2

3

∏
i=1

µi

∑
1

νi

(
2µi

µi − νi

)
.

Proposition 66 then gives this expression as

2
3

∏
i=1

(2µi
µi
)

2µi − 1
(P0(µi) + Q0(µi)) = 2

3

∏
i=1

(2µi
µi
)

2µi − 1
2µ2

i − µi

2
=

(2µ1
µ1
)

2
·
(2µ2

µ2
)

2
·
(2µ3

µ3
)

2
· (2µ1µ2µ3).

Similarly, when ν1 = 0 and ν2, ν3 are positive we obtain

∑
0≤νi≤µi

ν1=0,ν2,ν3>0

(
Q′0,3(ν1, ν2, ν3)

3

∏
i=1

(
2µi

µi − νi

))
=

(
2µ1

µ1

)
·

 ∑
0≤νi≤µi
ν2,ν3>0

(
1
2

ν2ν3

3

∏
i=2

(
2µi

µi − νi

))
=
(2µ1

µ1
)

2
·
(2µ2

µ2
)

2
·
(2µ3

µ3
)

2
· (µ2µ3) .
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The sum over two νi being positive is given by repeating the above calculation with for ν2 = 0 and ν3 = 0.
Continuing, when ν1 = ν2 = 0 and ν3 > 0 we obtain

∑
0≤νi≤µi

ν1=ν2=0,ν3>0

(
Q′0,3(ν1, ν2, ν3)

3

∏
i=1

(
2µi

µi − νi

))
=

(
2µ1

µ1

)
·
(

2µ2

µ2

)
·
(

∑
0<ν3≤µ3,ν3 even

1
4

ν3

(
2µ3

µ3 − ν3

))

=
(2µ1

µ1
)

2
·
(2µ2

µ2
)

2
·
(2µ3

µ3
)

2
·
(

µ2
3 − µ3

2µ3 − 1

)
.

The sum over one νi being positive is given by repeating the above calculation interchanging the roles of
ν1, ν2, ν3. Finally when all νi are zero we have

∑
0≤νi≤µi

ν1=ν2=ν3=0

(
Q′0,3(ν1, ν2, ν3)

3

∏
i=1

(
2µi

µi − νi

))
=
(2µ1

µ1
)

2
·
(2µ2

µ2
)

2
·
(2µ3

µ3
)

2

Note that with our convention of (−1
0 ) = 1, (2µi

µi
) = 2δµi ,0(2µi−1

µi
). Summing the above terms, P0,3 =

2∑n
i=1 δµi ,0 P′0,3 is given as claimed.

4 Recursions

In this section we will prove recursion relations for both the polygon diagram counts Pg,n and the pruned
polygon diagrams counts Qg,n. The recursion for Pg,n is similar to that obeyed by the arc diagram counts
Gg,n in [66]. The recursion for Qg,n, appears messy at first sight, but if we only consider the dominant
part, it actually differs very little from the recursion of non-boundary-parallel arc diagram count Ng,n in
[66]. The top degree component of Ng,n in turn agrees with the lattice count polynomials of Norbury, the
volume polynomial of Kontsevich, and the Weil-Petersson volume polynomials of Mirzakhani.

We orient each boundary component Fi as the boundary of S. This induces a cyclic order on the µi
vertices on Fi, and we denote by σ(v) the next vertex to v along Fi. If µi ≥ 2 then σ(v) 6= v. For any
polygon diagram D, orient the edges of D by choosing the orientation on each polygon to agree with the
orientation on S.

4.1 Polygon counts

We now prove theorem 33, the recursion on Pg,n, which states that for g ≥ 0 and µ1 > 0, equation (55) holds:

Pg,n(µ1, . . . , µn) = Pg,n(µ1 − 1,µX\{1}) +
n

∑
k=2

µkPg,n−1(µ1 + µk − 1,µX\{1,k})

+ ∑
i+j=µ1−1

j>0

[
Pg−1,n+1(i, j,µX\{1}) + ∑

g1+g2=g
ItJ=X\{1}

Pg1,|I|+1(i,µI) Pg2,|J|+1(j,µj)

]
.

Proof of theorem 33. Consider the decorated marked point m1 on the boundary component F1. Suppose it
is a vertex of the polygon K of the diagram D. Let γ be the outgoing edge from m1. If the other endpoint
of γ is also m1, then K is a 1-gon, and we obtain a new polygon diagram D′ by removing K entirely
(including m1), and then if µ1 ≥ 2, selecting the new decorated marked point on F1 to be σ(m1) (if µ1 = 1
then there will be no vertices on F1 in D′, so we do not need a decorated marked point). Conversely,
starting with a polygon diagram D′ on Sg,n with (µ1 − 1, µ2, . . . , µn) boundary vertices, we can insert
a 1-gon on F1 just before the decorated marked point m′1 (if there are no vertices on F1, simply insert a
1-gon), and then move the decorated marked point to the vertex of the new 1-gon. These two operations
are inverses of each other. This bijection gives the term Pg,n(µ1 − 1,µX\{1}) in (55).
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If the other endpoint v of γ is different from m1, there are several cases.

(A) γ has both endpoints on F1 and is non-separating.
We cut S = Sg,n along γ into S′ = S′g−1,n+1, by removing a regular strip γ× (0, ε) from S, where
γ = γ× {0} and {m1} × [0, ε] ⊂ F1 is a small sub-interval of [m1, σ(m1)). Then F1 splits into two
arcs, which together with γ and a parallel copy γ× {ε}, form two boundary components F′0 and
F′1 on S′, with γ part of F′1. If σ(m1) = v on F1, then F′0 contains no vertices. We obtain a polygon
diagram D′ on S′ by collapsing γ into a single vertex m′1 which is the decorated marked point on
F′1, and setting σ(m1) as the decorated marked point on F′0 (if there is at least one vertex on F′0). The
new diagram D′ has i ≥ 0 vertices on F′0 and j ≥ 1 vertices on F′1 with i + j = µ1 − 1. Conversely
starting with such a polygon diagram D′ on Sg−1,n+1 with (i, j, µ2, . . . , µn) boundary vertices, we can
reconstruct D. First expand the decorated marked point m′1 on F′1 into an interval. Then glue a strip
joining this interval on F′1 to an interval just before the decorated marked point on F′0. (If i = 0, we
can glue to any interval on on F′0.) This bijection gives the term ∑i+j=µ1−1, j>0 Pg−1,n+1(i, j,µX\{1})

in (55).
(B) γ has both endpoints on F1 and is separating.

This is almost the same as the previous case. As before, we cut Sg,n along γ into two surfaces S′1
and S′2 with polygon diagrams D′1 and D′2, such that the new vertex m′1 obtained from collapsing γ

is on S′2. The polygon diagram D can be uniquely reconstructed from such a pair (D′1, D′2). This
bijection gives the term ∑i+j=µ1−1, j>0 ∑g1+g2=g, ItJ=X\{1} Pg1,|I|+1(i,µI) Pg2,|J|+1(j,µj) of (55).

(C) γ has endpoints m1 on F1 and v on Fk, k > 1.
In this case γ is necessarily non-separating. Cutting Sg,n along γ and collapsing γ following a
similar procedure results in a polygon diagram D′ on a surface S′g,n−1 with µ1 + µk − 1 vertices on
its new boundary component F′1, and the collapsed vertex m′1 as the decorated marked point on
F′1. However this is not a bijection since the information about original location of the decorated
marked point on Fk (relative to v) is forgotten in D′. In fact the map D → D′ is µk-to-1. The
decorated marked point mk can be placed in any of the µk locations (relative to v). All µk such
polygon diagrams will give rise to the same D′ after cutting along γ. Taking the multiplicity µk into
account gives the term ∑n

k=2 µkPg,n−1(µ1 + µk − 1,µX\{1,k}) of (55).

4.2 Pruned polygon counts

The recursion for pruned polygon diagrams follows from a similar analysis. It is more tedious due to the
fact that after cutting along an edge γ, some other edges may become boundary parallel, so more care is
required.

We previously referred to n as n = n if n is a positive integer, and 0 = 1, following [66]. We now introduce
another notation of a similar nature.

Definition 15. For an integer µ, let µ̃ = µ if µ is a positive even integer, and 0 otherwise.

Theorem 16. For (g, n) 6= (0, 1), (0, 2), (0, 3), the number of pruned polygon diagrams satisfies the following
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recursion:

Qg,n(µ1, . . . , µn) = ∑
i+j+m=µ1
i≥1,j,m≥0

mQg−1,n+1(i, j,µX\{1}) +
µ̃1

2
Qg−1,n+1(0, 0,µX\{1})

+ ∑
µk>0

2≤k≤n

 ∑
i+m=µ1+µk

i≥1,m≥0

mµkQg,n−1(i,µX\{1,k}) + ∑̃
i+x=µ1−µk

i≥1,x≥0

xµkQg,n−1(i,µX\{1,k}) + µ1µkQg,n−1(0,µX\{1,k})



+ ∑
µk=0

2≤k≤n

 ∑
i+m=µ1
i≥1,m≥0

mQg,n−1(i,µX\{1,k}) + µ̃1Qg,n−1(0,µX\{1,k})



+ ∑
g1+g2=g

ItJ=X\{1}
No discs or annuli

 ∑
i+j+m=µ1
i≥1,j,m≥0

mQg1,|I|+1(i,µI)Qg2,|J|+1(j,µJ) +
µ̃1

2
Qg1,|I|+1(0,µI)Qg2,|J|+1(0,µJ)

 (12)

Here “no discs or annuli” means (g1, |I|+ 1) and (g2, |J|+ 1) cannot be (0, 1) or (0, 2). The tilde summa-
tion ∑̃ is defined to be

∑̃
i+x=µ1−µk

i≥1,x≥0

xµkQg,n−1(i,µX\{1,k}) = ∑
i+x=µ1−µk

i≥1,x≥0

xµkQg,n−1(i,µX\{1,k})− ∑
i+x=µk−µ1

i≥1,x≥0

xµkQg,n−1(i,µX\{1,k})

Note that when µ1 ≥ µk the second sum vanishes, otherwise the first sum vanishes.

Proof. Suppose D is a pruned polygon diagram on S. Let γ be the outgoing edge at the decorated
marked point m1 on F1. Since there is no 1-gon in D (they are boundary parallel), the other endpoint
v of γ is distinct from m1. As in [66], there are three cases for γ: (A) it has both endpoints on F1 and is
non-separating; (B) it has endpoints on F1 and some other Fk, or has both endpoints on F1 and cuts off an
annulus parallel to Fk; or (C) it has both ends on F1, is separating, and does not cut off an annulus. Each
of these cases, especially case (B), has numerous sub-cases, which we now consider in detail.

(A) γ has both endpoints on F1 and is non-separating.
If an edge becomes boundary parallel after cutting S along γ, then it must be parallel to γ on S
(relative to endpoints) to begin with. Given two edges β1 and β2, both parallel to γ, let I be a strip
bounded by β1, β2 and portions of F1. This strip I is unique, because after we cut open along I, β

and β′ belong to different boundary components, so they cannot bound any other strips. There
is a unique minimal strip A : [0, 1]2 → S containing all edges parallel to γ, given by the union of
connecting strips between all pairs of edges parallel to γ. The left (resp. right) boundary of A is
an edge γL (resp. γR) joining two vertices pL and qL (resp. pR and qR), and the bottom (resp. top)
boundary of A is an interval on F1 from pL to pR (resp. qR to qL). Note that A may be degenerate,
i.e. γL and γR may have one or both of their endpoints in common, or they are the same edge γ.
Observe that all the edges in A, with the possible exception of γL and γR, form a block of consecutive
parallel bigons inside A. Let there be m ≥ 1 polygons with at least one edge parallel to γ. See figure
66. There are four cases.

(1) All m such polygons are bigons. In this case the µ1 vertices along F1 are divided into 4 cyclic
blocks of consecutive vertices: there is a block of m vertices (p1, . . . , pm) followed by j ≥ 0
vertices, followed by another block of m consecutive vertices (qm, . . . , q1), followed by i ≥ 0
vertices, such that there is a bigon between each pair of vertices {pi, qi}, and m1 ∈ {p1, . . . , pm}.
Remove all m bigons from the pruned polygon diagram D and cut S along γ. If j > 0 then
let σ(pm) be the decorated marked point on the new boundary component F′1. If i > 0 then
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Figure 6: Possible configurations of polygons in case (A).

let σ(q1) be the decorated marked point on that new boundary component F′0. This produces
a pruned polygon diagram D′ on S′g−1,n+1 with (i, j, µ2, . . . , µn) boundary vertices. The map
D → D′ is m-to-1, since m1 can be any one of {p1, . . . , pm} and still produce the same pruned
polygon diagram D′. Conversely D can be reconstructed for D′ up to the possible location of
m1 as one of {p1, . . . , pm}. Therefore we have the following contribution to (1212):

∑
i+j+2m=µ1
m≥1,i,j≥0

mQg−1,n+1(i, j,µX\{1}). (13)

(2) γL is part of a polygon K which is not a bigon, all other polygons are bigons. If γL 6= γR then
K and A lie on the opposite sides of γL (otherwise K ⊆ A, so must be a bigon), and there are
m− 1 bigons in A. Remove all bigons, cut S along γL, collapse γL to a single vertex m′0 which
we take to be the decorated marked point on the new boundary component F′0, and let σ(pR)

be the decorated marked point on F′1. This produces a pruned polygon diagram D′. Similar to
the previous case, the map D → D′ is m-to-1, as m1 can any one of the m vertices between pL

and pR. Therefore we have the following contribution to (1212):

∑
i+j+2m=µ1
m≥1,i,j≥0

mQg−1,n+1(i + 1, j,µX\{1}) = ∑
i+j+2m−1=µ1

i,m≥1,j≥0

mQg−1,n+1(i, j,µX\{1}). (14)

Note that this formula includes the contribution from the special case γL = γR = γ, where
m = 1.

(3) γR is part of a polygon K which is not a bigon, and all other polygons are bigons. This is
almost identical to the previous case, except now γ cannot be the edge γR. (If we had γ = γR

then, since γ is the outgoing edge from m1, the polygon containing γ would have to be on the
same side of γ as A.) The map D 7→ D′ is now (m− 1)-to-1, as m1 cannot be pR. Therefore we
have the following contribution to (1212):

∑
i+j+2m=µ1
m≥1,i,j≥0

(m− 1)Qg−1,n+1(i, j + 1,µX\{1}) = ∑
i+j+2m−1=µ1

j,m≥1,i≥0

(m− 1)Qg−1,n+1(i, j,µX\{1}). (15)

Note that this formula correctly excludes the special case γL = γR = γ, where (m− 1) = 0
and the formula vanishes.

(4) γL and γR are each part of some polygon which is not a bigon, all other polygons are bigons.
We allow γL and γR to be different edges of the same polygon. We obtain a pruned polygon
diagram D′ by removing the (m− 2) bigons and collapsing γL and γR to decorated marked
points m′0 and m′1. For the same reason as the previous case, γ cannot be the edge γR, so the
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map D → D′ is only (m− 1)-to-1. Therefore the contribution to (1212) is

∑
i+j+2m=µ1
m≥1,i,j≥0

(m− 1)Qg−1,n+1(i + 1, j + 1,µX\{1}) = ∑
i+j+2m=µ1
i,j≥1,m≥0

mQg−1,n+1(i, j,µX\{1}). (16)

Now we compute the total contribution from cases (A)(1)–(4). We drop the subscripts g− 1, n + 1
from Qg−1,n+1 and X\{1} from µX\{1} for convenience. Summing expressions (1313) and (1616) and
separating the terms according to where i, j are zero or nonzero, we obtain ∑

i+j+2m=µ1
m≥1,i,j≥0

+ ∑
i+j+2m=µ1
i,j≥1,m≥0

mQ(i, j,µ)

= ∑
i+j+2m=µ1

i,j,m≥1

2mQ(i, j,µ) + ∑
j+2m=µ1

j,m≥1

mQ(0, j,µ) + ∑
i+2m=µ1

i,m≥1

mQ(i, 0,µ) +
µ̃1

2
Q(0, 0,µ)

= ∑
i+j+2m=µ1
i,m≥1,j≥0

2mQ(i, j,µ) +
µ̃1

2
Q(0, 0,µ) (17)

Similarly for expressions (1414) and (1515),

∑
i+j+2m−1=µ1

i,m≥1,j≥0

mQ(i, j,µ) + ∑
i+j+2m−1=µ1

j,m≥1,i≥0

(m− 1)Q(i, j,µ)

= ∑
i+j+2m−1=µ1

i,j,m≥1

(2m− 1)Q(i, j,µ) + ∑
i+2m−1=µ1

i,m≥1

mQ(i, 0,µ) + ∑
j+2m−1=µ1

j,m≥1

(m− 1)Q(0, j,µ)

= ∑
i+j+2m−1=µ1

i,m≥1,j≥0

(2m− 1)Q(i, j,µ) (18)

Adding (1717) and (1818) we have the first line of (1212).
(B) γ has endpoints on F1 and Fk, or has both endpoints on F1 and cuts off an annulus parallel to Fk.

Here k 6= 1. Note that since (g, n) 6= (0, 3), if γ cuts off an annulus parallel to Fk, the remaining
surface is not an annulus. Hence different values of k give different pruned polygon diagrams.
There is no double counting when we sum over k.
To standardise the possibilities for γ, we define a path α from F1 to Fk as follows; ᾱ denotes α with
reversed orientation. If γ has endpoints on F1 and Fk, then let α = γ. In this case, the edges that
become parallel after S is cut along γ are precisely three types of curves: those parallel to the
concatenated paths α, αFkᾱ, and ᾱF1α. On the other hand, if γ has both endpoints on F1 and cuts off
an annulus parallel to Fk, then let α be a curve inside that annulus, connecting F1 to Fk. In this case,
the curves that become boundary parallel after S is cut along γ must be parallel to γ. See figure 77.
Since S is not an annulus, there is a unique minimal strip A1 containing all edges parallel to α,
bounded by edges γ1

L (resp. γ1
R) joining two vertices p1

L ∈ F1 and q1
L ∈ Fk (resp. p1

R and q1
R).

The top (resp. bottom) boundary of A1 is an interval on F1 (resp. Fk) from p1
L to p1

R (resp. q1
R to

q1
L). Similarly there are unique minimal strips A2 and A3 containing all edges of the second and

third type respectively, with analogous notations. Note that edges of the second and third types
cannot appear simultaneously, so A2 and A3 cannot both be non-empty. All three strips Ai may be
degenerate. See figure 88.
Call a polygon partially boundary parallel if at least one of its edges is of the three types α, αFkᾱ, ᾱF1α.
Call a polygon totally boundary parallel if all of its edges are of these three types, and mixed if it is
partially boundary parallel but not totally boundary parallel. A totally boundary parallel polygon is
either a bigon, or a triangle with two edges parallel to α and the third edge parallel to αFkᾱ or ᾱF1α.
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Figure 7: The paths α and related paths in case (B).

Figure 8: The configurations of the strips Ai. In this figure A1, A2 are nonempty.

18



Figure 9: Configuration of polygons in case (B)(1)(b).

Furthermore there can be at most one totally boundary parallel triangle. Let there be m partially
boundary parallel polygons. Note m ≥ 1, since γ lies in a partially boundary parallel polygon.
Assume µk > 0. We split into the following sub-cases: all m partially boundary parallel polygons
are bigons; m− 1 bigons and one totally boundary parallel triangle; there is a total boundary parallel
triangle and a mixed polygon; there is a mixed polygon but no totally boundary parallel triangle.

(1) All m partially boundary parallel polygons are bigons. We then split further into sub-cases
accordingly as there are bigons parallel to αFkᾱ or ᾱF1α, or not.
(a) There are no bigons parallel to αFkᾱ or ᾱF1α. Then there are m consecutive bigons between

F1 and Fk. Removing all m bigons and cutting S along γ gives a pruned polygon diagram
D′ with i = µ1 + µk − 2m vertices on the new boundary component F′1. When i > 0, the
decorated marked point on F′1 is set to be σ(p1

R) if µ1 > m, and σ(q1
L) if µ1 = m. The map

D 7→ D′ is mµk-to-1, since m1 can be any of m vertices of the bigons on F1, and mk can be
any of the µk vertices on Fk. Therefore we have the contribution

∑
i+2m=µ1+µk

1≤m≤min(µ1,µk),i≥0

mµkQg,n−1(i,µX\{1,k}). (19)

(b) There are x ≥ 1 bigons parallel to αFkᾱ. See figure 99. Since αFkᾱ cuts off an annulus
parallel to Fk, the µk vertices on Fk belong to µk bigons between F1 and Fk. Removing
all m = x + µk bigons and cutting along γ gives a pruned polygon diagram D′ with
i = µ1 −m− x vertices on the new boundary component F′1. The decorated marked point
on F′1 is set to be σ(q1

L) if i > 0. The map D 7→ D′ is (2x + µk)µk-to-1, since m1 can be any
of the (2x + µk) vertices of the bigons on F1. Therefore we have the contribution

∑
i+2x=µ1−µk

x≥1,i≥0

(2x + µk)µkQg,n−1(i,µX\{1,k}).

Splitting the sum in by writing 2x + µk as (x + µk) + x and setting m = x + µk, we note
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that i + 2x = µ1 − µk becomes i + 2m = µ1 + µk and obtain

∑
i+2m=µ1+µk
m≥µk+1,i≥0

mµkQg,n−1(i,µX\{1,k}) + ∑
i+2x=µ1−µk

x≥1,i≥0

xµkQg,n−1(i,µX\{1,k}). (20)

(c) There are x ≥ 1 bigons parallel to ᾱF1α. This is same as the previous case with F1 and Fk
interchanged. The map D 7→ D′ is µ1µk-to-1, since the bigons now have µ1 vertices on F1.
Therefore we have the contribution:

∑
i+2x=µk−µ1

x≥1,i≥0

µ1µkQg,n−1(i,µX\{1,k}).

Writing µ1 as (x + µ1)− x and setting m = x + µ1, we note that i + 2x = µk − µ1 becomes
i + 2m = µ1 + µk, and obtain

∑
i+2m=µ1+µk
m≥µ1+1,i≥0

mµkQg,n−1(i,µX\{1,k})− ∑
i+2x=µk−µ1

x≥1,i≥0

xµkQg,n−1(i,µX\{1,k}). (21)

Observe that the index set {i + 2m = µ1 + µk, m ≥ 1, i ≥ 0} is the disjoint union of index
sets {i + 2m = µ1 + µk, 1 ≤ m ≤ min(µ1, µk), i ≥ 0}, {i + 2m = µ1 + µk, m ≥ µk + 1, i ≥ 0},
and {i + 2m = µ1 + µk, m ≥ µi + 1, i ≥ 0}. (If m ≥ µk + 1 then µ1 + µk = i + 2m ≥ 2µk + 2,
hence µ1 ≥ µk + 2; similarly if m ≥ µ1 + 1 then µk ≥ µ1 + 2. So the second and third sets are
disjoint.)
Dropping the subscript g, n− 1 from Q and X \ {1, k} from µ for convenience, we find the
sum of (1919), (2020), (2121) is

∑
i+2m=µ1+µk

m≥1,i≥0

mµkQ(i,µ) + ∑
i+2x=µ1−µk

x≥1,i≥0

xµkQ(i,µ)− ∑
i+2x=µk−µ1

x≥1,i≥0

xµkQ(i,µ). (22)

(2) There is one totally boundary parallel triangle and m− 1 bigons.
(a) The triangle has two edges parallel to α and the third edge parallel to αFkᾱ. See figure

1010. The configuration of bigons and triangle is very similar to that of case (B)(1)(b), the
only difference is the innermost bigon parallel to αFkᾱ now becomes the totally boundary
parallel triangle. There are x − 1 bigons parallel to αFkᾱ, 1 totally boundary parallel
triangle, and µk − 1 bigons parallel to α. An analogous calculation shows we have the
contribution

∑
i+2m+1=µ1+µk

m≥µk ,i≥0

mµkQg,n−1(i,µX\{1,k}) + ∑
i+2x−1=µ1−µk

x≥1,i≥0

xµkQg,n−1(i,µX\{1,k}). (23)

(b) The triangle has two edges parallel to α and the third edge parallel to ᾱF1α. This is very
similar to case (B)(1)(c). An analogous calculation shows we have the contribution

∑
i+2m+1=µ1+µk

m≥µ1,i≥0

mµkQg,n−1(i,µX\{1,k})− ∑
i+2x−1=µk−µ1

x≥1,i≥0

(x− 1)µkQg,n−1(i,µX\{1,k}). (24)

(3) There are some mixed polygons and a totally boundary parallel triangle. The edge of the
triangle not parallel to α is then parallel to either αFkᾱ or ᾱF1α; we consider the two possibilities
separately.
(a) The third edge of the triangle is parallel to αFkᾱ. If we view Fk as on the “inside” of an

edge parallel to αFkᾱ, it is easy to see that only the “outermost” edge , γ2
L on the minimal
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Figure 10: Configuration of polygons in case (B)(2)(a).
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strip A2, can be an edge of a mixed polygon. Hence there is only one mixed polygon, an
it is on the outside of γ2

L. On the inside of γ2
L we have exactly the same configuration

of totally boundary parallel polygons as Case (B)(2)(a) and figure 1010. There are µk − 1
bigons parallel to α. Let there be x− 1 bigons parallel to αFkᾱ, and i vertices on F1 outside
γ2

L. Then µ1 = i + 2x + µk + 1 and m = x + µk. We obtain a pruned polygon diagram
D′ by removing all totally boundary parallel bigons and triangle, cutting S along γ2

L and
collapsing γ2

L into a new vertex on the new boundary component F′1 of S′, which we set to
be the decorated marked point m′1. Consider the possible locations of m1. It can be a vertex
on F1 of any of the [(x − 1) + (µk − 1)] bigons, of which there are 2(x − 1) + (µk − 1).
It can be either of the two vertices of the triangle on F1. Or it could be the vertex p2

L,
but not q2

L, once again due to γ being an outgoing edge from m1. (If q2
L is m1, then γ is

γ2
L. If γ2

L is outgoing, then the polygon containing γ2
L is on the inside of γ2

L, making it
totally boundary parallel, a contradiction.) Hence the multiplicity of the map D 7→ D′ is
(2(x− 1) + (µk − 1) + 2 + 1)µk = (2x + µk)µk. An analogous calculation shows we have
the contribution

∑
i+2m+1=µ1+µk

m≥µk+1,i≥0

mµkQg,n−1(i + 1,µX\{1,k}) + ∑
i+2x+1=µ1−µk

x≥1,i≥0

xµkQg,n−1(i + 1,µX\{1,k}). (25)

(b) The third edge of the triangle is parallel to ᾱF1α. This is the same as the previous case with
F1 and Fk interchanged. The map D 7→ D′ is µ1µk-to-1. An analogous calculation shows
we have the contribution.

∑
i+2m+1=µ1+µk

m≥µ1+1,i≥0

mµkQg,n−1(i + 1,µX\{1,k})− ∑
i+2x+1=µk−µ1

x≥1,i≥0

xµkQg,n−1(i + 1,µX\{1,k}). (26)

(4) There are some mixed polygons but no totally boundary parallel triangle. We now split into
cases accordingly as there are edges parallel to αFkᾱ or ᾱFaα or not. There cannot be edges
parallel to both, so we have 3 sub-cases.
(a) There are no edges parallel to αFkᾱ or ᾱF1α. Consider the minimal strip A1 containing all

edges parallel to α. We now consider the leftmost and rightmost edges of this strip γ1
L

and γ1
R, and to what extent they coincide. They may (i) be the same edge; or (ii) they may

share both endpoints but be distinct edges; or they may share a vertex on (iii) Fk or (iv) F1

only; or they may be disjoint. When they are disjoint, (v) γ1
L or (vi) γ1

R or (vii) both may
belong to mixed polygons. This leads to the 7 sub-cases below.
(i) γ1

L = γ1
R = γ. Then there are no other edges parallel to γ and thus no bigons.

Since γ is an outgoing edge by assumption, it bounds a mixed polygon to the left.
This configuration will be covered in Case (B)(4)(a)(v) and we do not include the
contribution here.

(ii) γ1
L and γ1

R are distinct edges with the same endpoints. Then γ1
L and γ1

R bound the
bigon A1 and there are no other edges parallel to γ. This means there are no mixed
polygons, contrary to assumption. Therefore the contribution vanishes in this case.

(iii) γ1
L and γ1

R share a common vertex q1 on Fk but not on F1. See figure 1111. Consider the
boundary of A1 on Fk, [q1

R, q1
L]. This interval could either be a single point q1, or the

entire boundary Fk. If it is a single point, then the polygon containing γ1
L and γ1

R has to
be inside A1, so the diagonal joining p1

L and p1
R is boundary parallel, contradicting the

assumption of a pruned diagram. In the case [q1
R, q1

L] is all of Fk, γ1
L and γ1

R belong to a
single “outermost” mixed polygon, and there are m− 1 bigons between F1 and Fk. Let
i ≥ 0 be the number of remaining vertices on F1 outside A1. Then i + µk + 1 = µ1 and
we also have m = µk. We obtain a pruned polygon diagram by removing all m− 1
bigons, cutting along the concatenated edge γ1

Lγ̄1
R and collapsing γ1

Lγ̄1
R into a new
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Figure 11: Configuration of polygons in case (B)(4)(a)(iii).

vertex. The multiplicity of the map D 7→ D′ is mµk, as m1 can be a vertex of the m− 1
bigons or p1

L. Therefore we have the contribution

∑
i+2m+1=µ1+µk

m=µk ,i≥0

mµkQg,n−1(i + 1,µX\{1,k}). (27)

(iv) γ1
L and γ1

R share a common vertex p1 on F1 but not on Fk. This is the same as the
previous case with F1 and Fk interchanged. The map D 7→ D′ is µ1µk-to-1. An
analogous calculation shows we have the contribution

∑
i+2m+1=µ1+µk

m=µ1,i≥0

mµkQg,n−1(i + 1,µX\{1,k}). (28)

(v) γ1
L and γ1

R do not share any vertex, and γ1
L belongs to a mixed polygon but γ1

R does
not. There are m− 1 ≥ 1 bigons parallel to α. Let i = µi + µk − 2m be the total number
of remaining vertices on F1 and Fk outside A1. We obtain a pruned polygon diagram
D′ by removing all m− 1 bigons, cutting along γ1

L and collapsing γ1
L into a new vertex.

The map D 7→ D′ is mµk-to-1. Note that if we allow m = 1, this exactly covers the
configuration in case (B)(4)(a)(i). Therefore we have the contribution

∑
i+2m=µ1+µk

1≤m≤min(µ1,µk),i≥0

mµkQg,n−1(i + 1,µX\{1,k}). (29)

(vi) γ1
L and γ1

R do not share any vertex, and γ1
R belongs to a mixed polygon but γ1

L does
not. This is almost exactly the same as the previous case, except γ1

R bounds a mixed
polygon to the right, so it cannot be γ. It follows that m1 cannot be p2

R and the map
D 7→ D′ is (m− 1)µk-to-1. Therefore we have the contribution:

∑
i+2m=µ1+µk

1≤m≤min(µ1,µk),i≥0

(m− 1)µkQg,n−1(i + 1,µX\{1,k}) (30)
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Note that we allow m = 1 in the summation index because the summand vanishes for
m = 1 anyway.

(vii) γ1
L and γ1

R do not share any vertex, and both belong to mixed polygons (possibly the
same one). Since there could be 1 or 2 mixed polygons, we instead define m ≥ 2 to
be 2 plus the number of bigons in A1. We obtain a pruned polygon diagram D′ by
removing all m− 2 bigons, cutting the strip A1 from S along γ1

L and γ1
R, and collapsing

γ1
L and γ1

R into two new vertices. Set the decorated marked point to be the new vertex
from collapsing γ1

L. Again since γ cannot be γ1
R, the map D 7→ D′ is (m− 1)µk-to-1.

Therefore we have the contribution (again we trivially include m = 1 in the summation
index)

∑
i+2m=µ1+µk

1≤m≤min(µ1,µk),i≥0

(m− 1)µkQg,n−1(i + 2,µX\{1,k}). (31)

(b) There are some edges parallel to αFkᾱ. This is the same configuration as case (B)(3)(a), just
without the single totally boundary parallel triangle. An analogous calculation shows we
have the contribution

∑
i+2m=µ1+µk
m≥µk+1,i≥0

mµkQg,n−1(i + 1,µX\{1,k}) + ∑
i+2x+2=µ1−µk

x≥0,i≥0

xµkQg,n−1(i + 1,µX\{1,k}). (32)

(c) There are some edges parallel to ᾱF1α. This is the same configuration as case (B)(3)(b), just
without the single totally boundary parallel triangle. An analogous calculation shows we
have the contribution

∑
i+2m=µ1+µk
m≥µ1+1,i≥0

mµkQg,n−1(i + 1,µX\{1,k})− ∑
i+2x+2=µk−µ1

x≥0,i≥0

(x + 1)µkQg,n−1(i + 1,µX\{1,k}).

(33)

We have exhausted all possibilities in case (B). The total contribution is the sum of all the expressions
(2222)–(3333), which we now sum. We drop subscripts g, n − 1 from Q and X \ {1, k} from µ for
convenience.
We first calculate the sum of terms with summation over m. The m-summation terms in (2525) and
(2727), (2626) and (2828) combine to give

∑
i+2m+1=µ1+µk

m≥µk ,i≥0

mµkQ(i + 1,µ) + ∑
i+2m+1=µ1+µk

m≥µ1,i≥0

mµkQ(i + 1,µ)

= ∑
i+2m=µ1+µk

m≥µk ,i≥1

mµkQ(i,µ) + ∑
i+2m=µ1+µk

m≥µ1,i≥1

mµkQ(i,µ). (34)

We rewrite the m-summation term in (3131), using the substitution (m′, i′) = (m− 1, i + 2), and then
adding a vacuous summation index i = 1, since 1 + 2m = µ1 + µk and m ≤ min(µ1, µk)− 1 cannot
hold simultaneously. We obtain

∑
i+2m=µ1+µk

0≤m≤min(µ1,µk)−1,i≥1

mµkQ(i,µ). (35)

Since the index set {i + 2m = µ1 + µk, m ≥ 0, i ≥ 1} is the disjoint union of index sets {i + 2m =

µ1 + µk, 0 ≤ m ≤ min(µ1, µk) − 1, i ≥ 1}, {i + 2m = µ1 + µk, m ≥ µk, i ≥ 1}, and {i + 2m =
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µ1 + µk, m ≥ µi, i ≥ 1}, (3434) and (3535) sum to

∑
i+2m=µ1+µk

m≥0,i≥1

mµkQ(i,µ) = ∑
i+2m=µ1+µk

m≥1,i≥1

mµkQ(i,µ), (36)

which is the sum of all m-summation terms in (2525), (2626), (2727), (2828) and (3131).
The m-summation terms in (2222) and (3636) combine to give ∑

i+2m=µ1+µk
m≥1,i≥0

+ ∑
i+2m=µ1+µk

m≥1,i≥1

mµkQ(i,µ) = ∑
i+2m=µ1+µk

m≥1,i≥1

2mµkQ(i,µ) + ∑
i+2m=µ1+µk

m≥1,i=0

mµkQ(i,µ)

= ∑
i+2m=µ1+µk

m≥0,i≥1

2mµkQ(i,µ) +
˜(µ1 + µk)

2
µkQ(0,µ), (37)

where we use the µ̃ notation of definition 1515 in the final term. This is the sum of all m-summation
terms in (2222), (2525), (2626), (2727), (2828), (3131).
We next rewrite the m-summation terms from (2929) and (3030) with the substitution (m′, i′) = (m−
1, i + 1) to obtain

∑
i+2m=µ1+µk

1≤m≤min(µ1,µk),i≥0

mµkQ(i + 1,µ) + ∑
i+2m=µ1+µk

1≤m≤min(µ1,µk),i≥0

(m− 1)µkQ(i + 1,µ)

= ∑
i+2m+1=µ1+µk

0≤m≤min(µ1,µk)−1,i≥1

(2m + 1)µkQ(i,µ), (38)

and similarly with (3232), and (3333) to obtain

∑
i+2m=µ1+µk
m≥µk+1,i≥0

mµkQ(i + 1,µ) + ∑
i+2m=µ1+µk
m≥µ1+1,i≥0

mµkQ(i + 1,µ)

=

 ∑
i+2m+1=µ1+µk

m≥µk ,i≥1

+ ∑
i+2m+1=µ1+µk

m≥µ1,i≥1

 (m + 1)µkQ(i,µ). (39)

Now combining the m-summation terms in (2323), (2424), (3838), (3939) we obtain

∑
i+2m+1=µ1+µk

m≥µk ,i≥0

mµkQ(i,µ) + ∑
i+2m+1=µ1+µk

m≥µ1,i≥0

mµkQ(i,µ) + ∑
i+2m+1=µ1+µk

0≤m≤min(µ1,µk)−1,i≥1

(2m + 1)µkQ(i,µ)

+

 ∑
i+2m+1=µ1+µk

m≥µk ,i≥1

+ ∑
i+2m+1=µ1+µk

m≥µ1,i≥1

 (m + 1)µkQ(i,µ)

= ∑
i+2m+1=µ1+µk

m≥0,i≥1

(2m + 1)µkQ(i,µ) +

 ∑
2m+1=µ1+µk

m≥µk

+ ∑
2m+1=µ1+µk

m≥µ1

mµkQ(0,µ)

= ∑
i+2m+1=µ1+µk

m≥0,i≥1

(2m + 1)µkQ(i,µ) +
˜(µ1 + µk − 1)

2
µkQ(0,µ). (40)

This is the sum of all m-summation terms in (2323), (2424), (2929), (3030), (3232), and (3333).
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Adding (3737) and (4040), we have the total of all m-summation terms:

∑
i+m=µ1+µk

i≥1,m≥0

mµkQ(i,µ) +
˜(µ1 + µk)

2
µkQ(0,µ) +

˜(µ1 + µk − 1)
2

µkQ(0,µ) (41)

Now we sum the terms with summation over x. These arise in expressions (2222), (2323), (2424), (2525), (2626),
(3232) and (3333). The total is

∑
i+2x=µ1−µk

x≥1,i≥0

xµkQ(i,µ)− ∑
i+2x=µk−µ1

x≥1,i≥0

xµkQ(i,µ) + ∑
i+2x−1=µ1−µk

x≥1,i≥0

xµkQ(i,µ)

− ∑
i+2x−1=µk−µ1

x≥1,i≥0

(x− 1)µkQ(i,µ) + ∑
i+2x+1=µ1−µk

x≥1,i≥0

xµkQ(i + 1,µ)− ∑
i+2x+1=µk−µ1

x≥1,i≥0

xµkQ(i + 1,µ)

+ ∑
i+2x+2=µ1−µk

x≥0,i≥0

xµkQ(i + 1,µ)− ∑
i+2x+2=µk−µ1

x≥0,i≥0

(x + 1)µkQ(i + 1,µ)

= ∑
i+2x=µ1−µk

x≥0,i≥0

xµkQ(i,µ)− ∑
i+2x=µk−µ1

x≥0,i≥0

xµkQ(i,µ) + ∑
i+2x+1=µ1−µk

x≥0,i≥0

(x + 1)µkQ(i,µ)

− ∑
i+2x+1=µk−µ1

x≥0,i≥0

xµkQ(i,µ) + ∑
i+2x=µ1−µk

x≥0,i≥1

xµkQ(i,µ)− ∑
i+2x=µk−µ1

x≥0,i≥1

xµkQ(i,µ)

+ ∑
i+2x+1=µ1−µk

x≥0,i≥1

xµkQ(i,µ)− ∑
i+2x+1=µk−µ1

x≥0,i≥1

(x + 1)µkQ(i,µ)

= ∑
i+2x=µ1−µk

x≥0,i≥1

2xµkQ(i,µ) +
˜(µ1 − µk)

2
µkQ(0,µ)

+ ∑
i+2x+1=µ1−µk

x≥0,i≥1

(2x + 1)µkQ(i,µ) +
˜(µ1 − µk + 1)

2
µkQ(0,µ)

− ∑
i+2x=µk−µ1

x≥0,i≥1

2xµkQ(i,µ)−
˜(µk − µ1)

2
µkQ(0,µ)

− ∑
i+2x+1=µk−µ1

x≥0,i≥1

(2x + 1)µkQ(i,µ)−
˜(µk − µ1 − 1)

2
µkQ(0,µ)

= ∑
i+x=µ1−µk

x≥0,i≥1

xµkQ(i,µ)− ∑
i+x=µk−µ1

x≥0,i≥1

xµkQ(i,µ)

+

(
˜(µ1 − µk)

2
+

˜(µ1 − µk + 1)
2

−
˜(µk − µ1)

2
−

˜(µk − µ1 − 1)
2

)
µkQ(0,µ) (42)

It is not hard to verify that for µ1, µk ≥ 1,

µ1 =
˜(µ1 + µk)

2
+

˜(µ1 + µk − 1)
2

+
˜(µ1 − µk)

2
+

˜(µ1 − µk + 1)
2

−
˜(µk − µ1)

2
−

˜(µk − µ1 − 1)
2

Hence combining (4141) and (4242) we have the second line of (1212).
If µk = 0, then there are only two possible configuration of partially boundary parallel polygons.
Either they form m bigons parallel to αFkᾱ, or they form m− 1 bigons and the outermost edge is
parallel to αFkᾱ belongs to a mixed polygon. These two configurations respectively contribute the
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two terms of

∑
i+2m=µ1
i≥0,m≥1

2mQg,n−1(i,µX\{1,k}) + ∑
i+2m=µ1
i≥0,m≥1

(2m− 1)Qg,n−1(i + 1,µX\{1,k}).

Adding a zero term to the first sum and reparametrising the second, this expression becomes

∑
i+2m=µ1
i≥0,m≥0

2mQg,n−1(i,µX\{1,k}) + ∑
i+2m+1=µ1

i≥1,m≥0

(2m + 1)Qg,n−1(i,µX\{1,k})

= ∑
i+m=µ1
i≥1,m≥0

mQg,n−1(i,µX\{1,k}) + µ̃1Qg,n−1(0,µX\{1,k})

This gives the third line of (1212).
(C) γ has both ends on S1, is separating, and does not cut off an annulus.

The configurations in this case are almost identical to those in case (A), where γ is non-separating.
The calculation is formally identical, we simply substitute Qg1,|I|+1(4,µI)Qg2,|J|+1(�,µJ) in place
of Qg−1,n+1(4,�,µX\{1}) everywhere. We obtain the last line of (1212).

4.3 Counts for punctured tori

With the recursion (1212) of theorem 1616 in hand, we now obtain the count of pruned polygon diagrams on
punctured tori, using the established count for annuli in proposition 1010. Then, using proposition 1313, we
obtain the count of general polygon diagrams.

Proposition 17.

Q1,1(µ1) =


µ3

1−µ1
24 , µ1 > 0 odd

µ3
1+8µ1

24 , µ1 > 0 even

1, µ1 = 0

Proof. For (g, n) = (1, 1) the recursion (1212) reduces to

Q1,1(µ1) = ∑
i+j+m=µ1
i≥1,j,m≥0

mQ0,2(i, j) +
µ̃1

2
Q0,2(0, 0)

By Proposition 1010, Q0,2(i, j) = iδi,j. If µ1 > 0 is odd, then we have

Q1,1(µ1) = ∑
2i+m=µ1

i,m≥1

mi =
1
2 ∑

0≤m≤µ1−2
m odd

m(µ1 −m) =
µ1

2 ∑
0≤m≤µ1−2

m odd

m− 1
2 ∑

0≤m≤µ1−2
m odd

m2.

Lemma 99 gives the two sums immediately, and we obtain

Q1,1(µ1) =
µ1

2
(µ1 − 1)2

4
− 1

2
(µ1 − 2)(µ2 − 1)µ2

6
=

µ3
1 − µ1

24
.

If µ1 > 0 is even, then similarly we have

Q1,1(µ1) = ∑
2i+m=µ1

i,m≥1

mi +
µ1

2
=

1
2 ∑

0≤m≤µ1−2
m even

m(µ1 −m) +
µ1

2
=

µ1

2 ∑
0≤m≤µ1−2

m even

m− 1
2 ∑

0≤m≤µ1−2
meven

m2 +
µ1

2
,
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and lemma 99 then yields

Q1,1(µ1) =
µ1

2
(µ1 − 2)µ1

4
− 1

2
(µ1 − 2)(µ1 − 1)µ1

6
+

µ1

2
=

µ3
1 + 8µ1

24
.

Proposition 18.

P1,1(µ1) =

(
2µ− 1

µ

)
1

2µ− 1
µ3 + 3µ2 + 20µ− 12

12

Proof. By Proposition 1313, for µ1 > 0, and then by proposition 1717,

P1,1(µ1) = ∑
ν1≤µ1,ν1 odd

Q1,1(ν1)

(
2µ1

µ1 − ν1

)
+ ∑

ν1≤µ1,ν1 even
Q1,1(ν1)

(
2µ1

µ1 − ν1

)

= ∑
ν1≤µ1,ν1 odd

ν3
1 − ν1

24

(
2µ1

µ1 − ν1

)
+ ∑

ν1≤µ1,ν1 even

ν3
1 + 8ν1

24

(
2µ1

µ1 − ν1

)

Using the combinatorial identities (77)–(99), this simplifies to (2µ−1
µ ) 1

2µ−1
µ3+3µ2+20µ−12

12 .

We have now proved proposition 11, with equations (11)–(44) proved in the introduction and propositions
1212, 1414, and 1818 respectively.

5 Polynomiality

We now prove theorem 44, that Qg,n(µ1, . . . , µn) is an odd quasi-polynomial for (g, n) 6= (0, 1), (0, 2). The
proof follows in the same fashion as proposition 1717.

Proof of theorem 44. We use induction on the negative Euler characteristic −χ = 2g− 2 + n. When 2g− 2 +
n = −1, (g, n) = (0, 3) or (1, 1), theorem holds by propositions 1010 and 1717. Fix the parities/vanishings
of (µ1, . . . , µn). We split the right hand side of the recursion equation (1212) for Qg,n into 9 partial sums
depending on the parities/vanishings of (i, j). We will show that each partial sum is a polynomial. Within
each partial sum, since the parities/vanishings of (i, j, µ1, . . . , µn) are fixed, Qg−1,n+1, Qg,n−1, Qg1,|I|+1
and Qg2,|J|+1 are polynomials by the induction assumption. Split each polynomial into monomials
in (i, j, µ1, . . . , µn). To show odd quasi-polynomiality it is sufficient to show that for (i, j) with fixed
parities/vanishings, and for odd positive integers K and L, the following statements hold. (The degrees
K and L remain odd by assumption.)

1. A(µ1) = ∑i+j+m=µ1
i≥1,j,m≥0

miK jL is an odd polynomial in µ1,

2. B(µ1, µk) =

(
∑i+m=µ1+µk

i≥1,m≥0
mµkiK + ˜∑i+x=µ1−µk

i≥1,x≥0
xµkiK

)
is an odd polynomial in µ1 and µk,

3. C(µ1) = ∑ i+m=µ1
i≥1,m≥0

miK is an odd polynomial in µ1.

For the first statement, we have

A(µ1) = ∑
i+j+m=µ1
i≥1,j,m≥0

miK jL = ∑
i+j+m=µ1

i,j,m≥1

miK jL = ∑
i+j+m=µ1

i,j,m≥1,m even

miK jL + ∑
i+j+m=µ1

i,j,m≥1,m odd

miK jL

Since (i, j) have fixed parities and K, L are odd, it follows from proposition 88 that A(µ1) an odd polynomial
in µ1. A similar argument show C(µ1) is an odd polynomial in µ1. As for B(µ1, µ2), another application
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of proposition 88 that for some odd polynomial P(x), polynomial P(x),

B(µ1, µk) = ∑
i+m=µ1+µk

i≥1,m≥0

mµkiK + ∑̃
i+x=µ1−µk

i≥1,x≥0

xµkiK =

{
µkP(µ1 + µk) + µkP(µ1 − µk), µ1 ≥ µk

µkP(µ1 + µk)− µkP(µk − µ1), µ1 < µk

= µk[P(µ1 + µk) + P(µ1 − µk)]

That P is odd then implies that B(µ1, µk) is odd with respect to both µ1 and µk.

If we keep track of the degrees of the polynomials in Proposition 88, we see from the recursion (1212) only
the top degree terms in Qg,n−1, Qg1,|I|+1 and Qg2,|J|+1 can contribute to the top degree component of

Q(Xe ,Xo ,X∅)
g,n . Going through each term on the right hand side of (1212), it is easy to verify by induction that

the degree of Q(Xe ,Xo ,∅)
g,n is 6g− 6 + 3n (i.e. when X∅ = ∅ and all variables µ1, . . . , µn are nonzero),

the degree of Q(Xe ,Xo ,X∅)
g,n is at most 6g− 6 + 3n− |X0| if X0 is non-empty,

Furthermore, since the leading coefficient of the resultant odd polynomial in Proposition 88 is indepen-
dent of parities, it again follows by induction that for µ1, . . . , µn ≥ 1, the top degree component of
Qg,n(µ1, . . . , µn) is independent of the choice of parities of the µi’s.

Let [Qg,n(µ1, . . . , µn)]top denote this common top degree component of the quasi-polynomial Qg,n. Then
for positive µi’s the recursion (1212) truncates to

[Qg,n(µ1, . . . , µn)]
top =

 ∑
i+j+m=µ1

i,j,m≥1

m[Qg−1,n+1(i, j,µX\{1})]
top


top

+

 ∑
2≤j≤n

 ∑
i+m=µ1+µk

i,m≥1

mµk[Qg,n−1(i,µX\{1,k})]
top + ∑̃

i+x=µ1−µk
i,x≥1

xµk[Qg,n−1(i,µX\{1,k})]
top




top

+

 ∑
g1+g2=g

ItJ={2,...,n}
No discs or annuli

 ∑
i+j+m=µ1

i,j,m≥1

m[Qg1,|I|+1(i,µI)]
top[Qg2,|J|+1(j,µJ)]

top




top

(43)

We now compare the pruned polygon diagram counts Qg,n to the non-boundary-parallel (i.e. pruned) arc
diagram counts Ng,n of [66]. We observe from the following two theorems that Ng,n satisfies some initial
conditions and recursion similar to those of Qg,n.

Proposition 19 ([66] prop. 1.5).

N0,3(µ1, µ2, µ3) =

{
µ̄1µ̄2µ̄2, µ1 + µ2 + µ3 even

0, µ1 + µ2 + µ3 odd
and N1,1(µ1) =


µ3

1+20µ1
48 , µ1 > 0 even

0, µ1 > 0 odd

1, µ1 = 0.

29



Proposition 20 ([66] prop. 6.1). For (g, n) 6= (0, 1), (0, 2), (0, 3) and integers µ1 > 0, µ2, . . . , µn ≥ 0,

Ng,n(µ1, . . . , µn) = ∑
i,j,m≥0

i+j+m=µ1
m even

m
2

Ng−1,n+1(i, j,µX\{1})

+ ∑
µk>0

2≤j≤n

 ∑
i,m≥0

i+m=µ1+µk
m even

m
2

µk Ng,n−1(i,µX\{1,k}) + ∑̃
i,m≥0

i+m=µ1−µk
m even

m
2

µk Ng,n−1(i,µX\{1,k})



+ ∑
µk=0

2≤j≤n

 ∑
i,m≥0

i+m=µ1
m even

m
2

Ng,n−1(i,µX\{1,k})


+ ∑

g1+g2=g
ItJ={2,...,n}

No discs or annuli

∑
i,j,m≥0

i+j+m=µ1
m even

m
2

Ng1,|I|+1(i,µI) Ng2,|J|+1(j,µJ)

Using the same argument as for Qg,n, the first and third authors with Koyama showed that Ng,n is an
odd quasi-polynomial such that

if ∑n
i=1 µi is odd, then Ng,n(µ1, . . . , µn) = 0,

if ∑n
i=1 µi is even, then the degree of N(Xe ,Xo ,∅)

g,n (µ1, . . . , µn) is 6g − 6 + 3n (i.e. when all µi are
nonzero),
the degree of N(Xe ,Xo ,X0)

g,n is at most 6g− 6 + 3n− |X0| if X0 is non-empty.

Furthermore the leading coefficients of Ng,n encode the intersection numbers on the compactified moduli
spaceMg,n.

Theorem 21 ([66] thm. 1.9). For (g, n) 6= (0, 1) or (0, 2), and µ1, . . . , µn ≥ 1 such that ∑ µi is even, the
polynomial N(Xe ,Xo ,∅)

g,n (µ1, . . . , µn) has degree 6g− 6 + 3n. The coefficient cd1,...,dn of the highest degree monomial
µ2d1+1

1 · · · µ2dn+1
n is independent of the partition (Xe, Xo), and

cd1,...,dn =
1

25g−6+2nd1! · · · dn!

∫
Mg,n

ψd1
1 · · ·ψ

dn
n .

By comparing the recursions on top-degree terms, we show they are equal up to a constant factor.

Proposition 22. For (g, n) 6= (0, 1) or (0, 2), and µ1, . . . , µn ≥ 1 such that ∑ µi is even,

[Qg,n(µ1, . . . , µn)]
top = 24g+2n−5[Ng,n(µ1, . . . , µn)]

top.
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Proof. The top degree component of Ng,n satisfies the recursion

[Ng,n(µ1, . . . , µn)]
top =

 ∑
i,j,m≥1

i+j+m=µ1
m even

m
2

[Ng−1,n+1(i, j,µX\{1})]
top


top

+

 ∑
µk>0

2≤j≤n

 ∑
i,m≥1

i+m=µ1+µk
m even

m
2

µk [Ng,n−1(i,µX\{1,k})]
top + ∑̃

i,m≥1
i+m=µ1−µk

m even

m
2

µk [Ng,n−1(i,µX\{1,k})]
top




top

+

 ∑
g1+g2=g

ItJ={2,...,n}
No discs or annuli

∑
i,j,m≥1

i+j+m=µ1
m even

m
2

[Ng1,|I|+1(i,µI)]
top [Ng2,|J|+1(j,µJ)]

top


top

(44)

Since both [Ng,n(µ1, . . . , µn)]top and [Qg,n(µ1, . . . , µn)]top are independent of parities, we may assume
all µi to be even, so that none of Ng−1,n+1(i, j,µX\{1}), Ng,n−1(i,µX\{1,k}), Ng1,|I|+1(i,µI), Ng2,|J|+1(j,µJ)

vanish due to parity issues.

Compare the right hands sides of equations (4343) and (4444). They are identical except for factors of 2, and
that Ng,n sums over even m, while Qg,n sums over both even and odd m. Proposition 88 implies that for
Qg,n, the top degree component of the sum over even m in (4343) is the same as that over odd m. This
introduces another factor of 2. Comparing the base cases (proposition 1919 for Ng,n, propositions 1010 and 1717
for Qg,n) and recursions on top degree terms ((4444) for Ng,n and 4343 for Qg,n), we obtain by induction the
desired result.

We now prove the remaining theorems from the introduction.

Proof of theorem 55. This follows immediately from theorem 2121 and proposition 2222.

Proof of theorem 22. This follows the same argument as proposition 1414. Recall

Q′g,n(µ1, . . . , µn) :=
1

2∑n
1 δµi ,0(µ1,...,µn)

Qg,n(µ1, . . . , µn).

Since Qg,n is a quasi-polynomial, so is Q′g,n. Separating Q′g,n into monomials we see that the right hand
side of equation (1111)

P′g,n(µ1, . . . , µn) = ∑
0≤νi≤µi

(
Q′(ν1, . . . , νn)

n

∏
i=1

(
2µi

µi − νi

))

is a sum of terms of the form

∏
i∈Xe

 ∑
0≤νi≤µi
νi even

ν
2ni+1
i

(
2µi

µi − νi

) · ∏
i∈Xo

 ∑
0≤νi≤µi

νi odd

ν
2ni+1
i

(
2µi

µi − νi

) · ∏
i∈X∅

(
2µi
µi

)

where ni ≤ 3g− 3 + n as the degree of degree of Q(Xe ,Xo ,X0)
g,n is at most 6g− 6 + 3n− |X0|. By Proposition
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66, each

∑
1≤νi≤µi

νi fixed parity

ν
2ni+1
i

(
2µi

µi − νi

)

is of the form
(2µi

µi
)

(2µi − 1)(2µi − 3) . . . (2n− 2ni − 1)
Pni (µi)

for polynomials Pni . Hence taking a common denominator,

P′g,n(µ1, . . . , µn) =

(
n

∏
1

(2µi
µi
)

(2µi − 1)(2µi − 3) . . . (2n− 2(3g− 3 + n)− 1)

)
Fg,n(µ1, . . . , µn)

for some polynomial Fg,n. Since (2µi
µi
) = 2δµi ,0(2µi−1

µi
), Pg,n has the required form.

A nice way to express the relationship (1111) is to package Pg,n and Qg,n into generating differentials. For
g ≥ 0 and n ≥ 1 let

ωP
g,n(x1, . . . , xn) = ∑

µ1,...,µn≥0
P′g,n(µ1, . . . , µn)x−µ1−1

1 · · · x−µn−1
n dx1 · · · dxn

ωQ
g,n(z1, . . . , zn) = ∑

ν1,...,νn≥0
Q′g,n(ν1, . . . , νn)z

ν1−1
1 · · · zνn−1

n dz1 · · · dzn.

Following [66] and [88], for any quasi-polynomial f ,

ω f (z1, . . . , zn) = ∑
ν1,...,νn≥0

f (ν1, . . . , νn)z
ν1−1
1 · · · zνn−1

n dz1 · · · dzn

is a meromorphic differential, hence ωQ
g,n is a meromorphic differential. Using techniques from that

previous work, one can show the following.

Proposition 23. ωQ
g,n is the pullback of ωP

g,n under the map xi =
(1+zi)

2

zi
.

A Proofs of combinatorial identities

We now give elementary proofs of the statements from section 22

Recall proposition 66 states that there are polynomials Pα, Qα such that

∑
0≤i≤n even

i2α+1
(

2n
n− i

)
=

(2n
n )

(2n− 1)(2n− 3) . . . (2n− 2α− 1)
Pα(n)

∑
0≤i≤n odd

i2α+1
(

2n
n− i

)
=

(2n
n )

(2n− 1)(2n− 3) . . . (2n− 2α− 1)
Qα(n)

Proof of proposition 66. For α = 0, we have

i
(

2n
n− i

)
=

(2n− 1)[(2n− 1)− (2n− 2i− 1)]
2(2n− 1)

(
2n

n− i

)
=

[((2n− 1)− (n− i− 1))((2n− 1)− (n− i))− (n− i)(n− i− 1)]
2(2n− 1)

(
2n

n− i

)
=

1
2(2n− 1)

[
(n− i + 2)(n− i + 1)

(
2n

n− i + 2

)
− (n− i)(n− i− 1)

(
2n

n− i

)]
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Therefore both sums telescope and

∑
0≤i≤n even

i
(

2n
n− i

)
=

1
2(2n− 1)

(n + 2)(n + 1)
(

2n
n + 2

)
=

n(n− 1)
2(2n− 1)

(
2n
n

)

∑
0≤i≤n odd

i
(

2n
n− i

)
=

1
2(2n− 1)

(n + 1)(n)
(

2n
n + 1

)
=

n2

2(2n− 1)

(
2n
n

)

It follows that P0(n) = n2−n
2 , Q0(n) = n2

2 . For α > 0, we have

i2α+3
(

2n
n− i

)
= n2i2α+1

(
2n

n− i

)
− (n + i)(n− i)i2α+1

(
2n

n− i

)
= n2i2α+1

(
2n

n− i

)
− 2n(2n− 1)i2α+1

(
2n− 2

(n− 1)− i

)
By induction

∑
0≤i≤n even

i2α+3
(

2n
n− i

)
=n2 (2n

n )

(2n− 1)(2n− 3) . . . (2n− 2α− 1)
Pα(n)

− 2n(2n− 1)
(2n−2

n−1 )

(2n− 3) . . . (2n− 2α− 3)
Pα(n− 1)

It follows that
Pα+1(n) = n2[(2n− 2α− 3)Pα(n)− (2n− 1)Pα(n− 1)] (45)

and similarly
Qα+1(n) = n2[(2n− 2α− 3)Qα(n)− (2n− 1)Qα(n− 1)] (46)

are polynomials in n.

Using P0, Q0 calculated above and the recursions (4545) and (4646), we immediately obtain the identities of
equations (66)–(99).

Recall proposition 77 states that for positive odd k1, k2 and fixed parities of i1, i2, the sum of ik1
1 ik2

2 over
i1, i2 ≥ 1 such that i1 + i2 is an odd polynomial of degree k1 + k2 + 1, with leading coefficient independent
of choice of parities.

Proof of proposition 77. Let Sk(n), Se
k(n), So

k be the k-th power sum, the even and odd k-th power sums:

Sk(n) = ∑
1≤i≤n

ik, Se
k(n) = ∑

1≤i≤n, i even
ik, So

k (n) = ∑
1≤i≤n, i odd

ik.

Let Bi the i-th Bernoulli number. A well known argument gives Faulhaber’s formula

Sk(n) =
1

k + 1 ∑
0≤i≤k

(−1)i
(

k + 1
i

)
Bink+1−i = nk +

1
k + 1 ∑

0≤i≤k

(
k + 1

i

)
Bink+1−i, (47)

and a similar generating functions argument shows that

Se
k(n) = nk +

1
2(k + 1) ∑

0≤i≤k
2i
(

k + 1
i

)
Bink+1−i, if n is even, (48)

So
k (n) = nk +

1
2(k + 1) ∑

0≤i≤k
2i
(

k + 1
i

)
Bi(nk+1−i − 1), if n is odd. (49)

Since the odd Bernoulli numbers are zero except B1 = − 1
2 , Equations (4747), (4848), and (4949) imply that Se

k(n)
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and So
k (n) are even or odd polynomials depending on the parity of (k + 1), with the possible exception

of the constant term and nk term. The coefficient of nk in Se
k(n) is 1

2 if n is even and 0 otherwise. The
coefficient of nk in So

k (n) is 1
2 if n is odd and 0 otherwise. If n is even, then the constant terms in Se

k(n)
and So

k (n) are both 0. If n is odd, then the constant terms in Se
k(n) and So

k (n) are

±Ck := ± 1
2(k + 1) ∑

0≤i≤k
2i
(

k + 1
i

)
Bi.

Observe that Ck/k! is the coefficient of xk in
(

ex−1
2x

) (
2x

e2x−1

)
= 1

ex+1 . Since 1
e2x+1 + 1

e−2x+1 = 1, Ck = 0 for
positive even k.

If the fixed parity of i1 is odd, then

∑
i1,i2≥1, i1+i2=n

{i1,i2} have fixed parities

ik1
1 ik2

2 = ∑
1≤i1≤n,
i1 odd

ik1
1 (n− i1)k2 = ∑

0≤j≤k2

(−1)k2−j
(

k2

j

)
njSo

k1+k2−j(n).

Since (k1 + k2 + 1) is odd, each term (−1)k2−j(k2
j )n

jSo
k1+k2−j(n) is almost an odd polynomial except

for the constant and nk1+k2−j term in So
k1+k2−j(n). The coefficient of nk1+k2−j is 1

2 if n is odd and

0 is n is even. Hence the overall contribution to ∑(−1)k2−j(k2
j )n

jSo
k1+k2−j(n) is 0 in both cases, as

∑0≤j≤k2
(−1)j(k2

j ) = 0. The constant term in So
k1+k2−j(n) is 0 unless (k1 + k2 − j) is odd, i.e., j is odd, so it

contributes an odd degree term (−1)k2−j(k2
j )Ck1+k2−jnj to ∑(−1)k2−j(k2

j )n
jSo

k1+k2−j(n). Therefore overall

∑(−1)k2−j(k2
j )n

jSo
k1+k2−j(n) is an odd polynomial of n.

Similarly if i1 is even, then

∑
i1,i2≥1, i1+i2=n

{i1,i2} have fixed parities

ik1
1 ik2

2 = ∑
1≤i1≤n,
i1 even

ik1
1 (n− i1)k2 = ∑

0≤j≤k2

(−1)k2−j
(

k2

j

)
njSe

k1+k2−j(n)

is also an odd polynomial of n.

Finally, it follows easily from induction that

∑
0≤i≤n

(−1)i

x + i

(
n
i

)
=

n!
x(x + 1) · · · (x + n)

.

Hence by Equations (4747), (4848) and (4949), the leading coefficient of ∑ i1,i2≥1, i1+i2=n
{i1,i2} have fixed parities

ik1
1 ik2

2 , regardless

of the choice of parities, is,

∑
0≤j≤k2

(−1)k2−j

2(k1 + k2 + 1− j)

(
k2

j

)
=

(
2(k2 + 1)

(
k1 + k2 + 1

k2 + 1

))−1
> 0.

Therefore the odd polynomial has degree (k1 + k2 + 1), and the leading coefficient is independent of the
choice of parities.

Lemma 99 simply gives explicit expressions for So
1(n), So

2(n), Se
1(n) and Se

2(n), which follow immediately
from (4747) and (4848).
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