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Towards the topological recursion for double Hurwitz numbers

Norman Do and Maksim Karev

Single Hurwitz numbers enumerate branched covers of the Riemann sphere with specified genus, pre-

scribed ramification over infinity, and simple branching elsewhere. They exhibit a remarkably rich struc-

ture. In particular, they arise as intersection numbers on moduli spaces of curves and are governed by

the topological recursion of Chekhov, Eynard and Orantin. Double Hurwitz numbers are defined anal-

ogously, but with prescribed ramification over both zero and infinity. Goulden, Jackson and Vakil have

conjectured that double Hurwitz numbers also arise as intersection numbers on moduli spaces.

In this paper, we repackage double Hurwitz numbers as enumerations of branched covers weighted by

certain monomials and conjecture that they are governed by the topological recursion. Evidence is pro-

vided in the form of the associated quantum curve and low genus calculations. We furthermore reduce

the conjecture to a weaker one, concerning a certain polynomial structure of double Hurwitz numbers.

Via the topological recursion framework, our main conjecture should lead to a direct connection to enu-

merative geometry, thus shedding light on the aforementioned conjecture of Goulden, Jackson and Vakil.
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1 Introduction

1.1 Double Hurwitz numbers

Single Hurwitz numbers — also known as simple Hurwitz numbers — enumerate branched covers of

the Riemann sphere with specified genus, prescribed ramification over infinity, and simple branching

2010 Mathematics Subject Classification: 14N10; 05A15; 32G15; 14N35.

Date: 14 November 2018

The first author was supported by the Australian Research Council grant DE130100650.

1

http://arxiv.org/abs/1811.05107v1


elsewhere. Although first studied by Hurwitz towards the end of the nineteenth century [29], the extent

of their remarkably rich structure only became apparent towards the end of the twentieth. The revival

of interest in Hurwitz numbers was in part sparked by the empirical observation of Goulden, Jackson

and Vainshtein that they possess a certain polynomial structure [26]. This was later proved by Ekedahl,

Lando, Shapiro and Vainshtein, who showed that single Hurwitz numbers are equal to Hodge integrals

over the Deligne–Mumford compactification of the moduli space of curves [19]. Their so-called ELSV

formula not only makes the polynomial structure of Hurwitz numbers apparent, but connects them to

the realms of enumerative geometry and mathematical physics. More recently, work motivated by topo-

logical string theory led Bouchard and Mariño to conjecture that single Hurwitz numbers are governed

by the topological recursion of Chekhov, Eynard and Orantin [7]. This was subsequently proven [21]

and it has furthermore been demonstrated that the ELSV formula and the Bouchard–Mariño conjecture

are in some sense equivalent [16].

Double Hurwitz numbers enumerate branched covers of the Riemann sphere with specified genus, pre-

scribed ramification over both zero and infinity, and simple branching elsewhere. Okounkov showed

that they arise naturally as coefficients of a certain tau-function of the Toda integrable hierarchy [33].

Goulden, Jackson and Vakil demonstrated that double Hurwitz numbers possess a certain piecewise

polynomial structure. Moreover, they presented evidence to suggest that double Hurwitz numbers are

equal to integrals over moduli spaces of curves equipped with a line bundle [27]. However, to this date,

a rigorous definition of these moduli spaces and their intersection theory is yet to be determined.

In this paper, we interpret double Hurwitz numbers as enumerations of branched covers weighted by

monomials in the following way.

Definition 1. Fix a positive integer d and weights s, q1, q2, . . . , qd ∈ C. Define the double Hurwitz number

DHg,n(µ1, . . . , µn) to be the weighted count of connected genus g branched covers of the Riemann sphere

f : (Σ; p1, . . . , pn) → (CP1; ∞) such that

all branching away from 0 and ∞ is simple and occurs at some number m of fixed points;

f−1(∞) = µ1 p1 + · · ·+ µn pn; and

no preimage of 0 has ramification index larger than d.

If such a branched cover has ramification profile (λ1, λ2, . . . , λℓ) over 0, then we assign it the weight

qλ1
qλ2

· · · qλℓ

|Aut f |

sm

m!
.

Here, the automorphism group Aut f consists of Riemann surface automorphisms φ : Σ → Σ that

preserve the marked points p1, . . . , pn and satisfy f ◦ φ = f .

Remark 2. We make note of the following initial remarks concerning Definition 1.

The Riemann–Hurwitz formula asserts that the number of simple branch points must satisfy m =

2g − 2 + n + ℓ, where ℓ is the number of preimages of 0.

Each double Hurwitz number is a weighted homogeneous polynomial in q1, q2, . . . , qd with posi-

tive rational coefficients.

The double Hurwitz numbers H
g
λ,µ defined by Goulden, Jackson and Vakil [27] may be recov-

ered as a combinatorial factor multiplied by the coefficient of qλ1
qλ2

· · · qλℓ
in the polynomial

DHg,n(µ1, . . . , µn), as long as we fix d ≥ max(λ1, λ2, . . . , λℓ).

The parameter s is redundant in the sense that its exponent in each monomial of a double Hur-

witz number can be recovered via the Riemann–Hurwitz formula. However, the advantages of

retaining it should become apparent in the following.
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The single Hurwitz numbers are recovered by taking q1 = 1 and qi = 0 for i 6= 1. More generally,

one recovers a-orbifold Hurwitz numbers by taking qa = 1 and qi = 0 for i 6= a [12, 5].

See Appendix A for a table of double Hurwitz numbers.

1.2 The main conjecture

The particular way in which we have assembled the double Hurwitz numbers allows us to consider

potential analogues of results pertaining to single Hurwitz numbers. As an example, we propose a vast

generalisation of the Bouchard–Mariño conjecture, namely that the double Hurwitz numbers defined

above are governed by the topological recursion.

The topological recursion of Chekhov, Eynard and Orantin arose from the theory of matrix models and

has subsequently found widespread applications to various areas of mathematics and physics [8, 22].

Beyond the realm of matrix models, it is now either known or conjectured to govern the following

problems: the enumeration of ribbon graphs and hypermaps [15, 13, 17]; Hurwitz numbers of various

flavours [7, 21, 12, 5, 10, 11]; Gromov–Witten invariants of CP1 [32, 18]; Gromov–Witten invariants of

toric Calabi–Yau threefolds [6, 23, 24]; and asymptotics of coloured Jones polynomials of knots [9, 2].

Let us first state our main conjecture relating double Hurwitz numbers to the topological recursion

before presenting a rigorous treatment of the topological recursion itself.

Conjecture 3. Let P(z) = q1z + q2z2 + · · ·+ qdzd. Topological recursion applied to the rational spectral curve

x(z) = z exp(−sP(z)) and y(z) = P(z) (1)

produces correlation differentials whose expansions at xi = 0 satisfy

ωg,n =
∞

∑
µ1,...,µn=1

DHg,n(µ1, . . . , µn)
n

∏
i=1

µix
µi−1
i dxi, for (g, n) 6= (0, 2).

In general, the topological recursion takes as input the data of a spectral curve and outputs correlation

differentials ωg,n for integers g ≥ 0 and n ≥ 1. We now describe explicitly the topological recursion in

the context of Conjecture 3; for an exposition of the topological recursion in greater generality, the reader

may consult the literature [22].

First, let a1, a2, . . . , ad be the branch points of the spectral curve — in other words, the zeroes of

dx(z) = 0 ⇔ szP′(z)− 1 = 0.

For the following discussion, we will require the mild assumption that these zeroes are distinct and

hence simple.1 It follows that there exists a local involution σi : Ui → Ui defined on a small open

neighbourhood of the branch point z = ai on the spectral curve, such that σi is meromorphic and satisfies

the equation x(σi(z)) = x(z), but is not the identity on Ui.

Define the base cases2

ω0,1(z1) =
y(z1) dx(z1)

x(z1)
and ω0,2(z1, z2) =

dz1 ⊗ dz2

(z1 − z2)2
. (2)

Next, define the recursion kernel

Ki(z1, z) =

∫ z
o ω0,2(z1, · )

ω0,1(z)− ω0,1(σi(z))
=

dz1

z1 − z

1

ω0,1(z)− ω0,1(σi(z))
, (3)

1One can also state the conjecture in the case of higher order zeroes by invoking the global topological recursion of Bouchard and

Eynard [4]. We consider only the generic case in order to streamline the presentation. Indeed, Bouchard and Eynard demonstrate

that non-simple spectral curves and their correlation differentials can be obtained in the limit of simple spectral curves.
2In the original formulation of the topological recursion, one usually defines ω0,1(z1) = −y(z1)dx(z1). The modification here as-

sumes the opposing sign convention and uses y(z1)d log x(z1) instead, which applies in various settings, such as the Bouchard–

Mariño conjecture concerning single Hurwitz numbers. In such cases, it is common in the literature to refer to x as a C∗-

coordinate, rather than a C-coordinate. Thus, equation (1) describes what is known as a C∗ × C spectral curve.

3



which exists only on the small open neighbourhood Ui of the branch point z = ai. The topological

recursion is not sensitive to the choice of basepoint o on the spectral curve, so we have taken it to be

z = ∞ for convenience.

For 2g − 2 + n > 0, let

ωg,n(z1, . . . , zn) =
d

∑
i=1

Res
z=ai

Ki(z1, z)

[
ωg−1,n+1(z, σi(z), zS) +

◦

∑
g1+g2=g

I⊔J=S\{1}

ωg1,|I|+1(z, zI) ωg2,|J|+1(σi(z), z J)

]
.

Here, we let S = {1, 2, . . . , n} and let zI = {zi1 , zi2, . . . , zik
} for I = {i1, i2, . . . , ik}. The symbol ◦ over the

inner summation means that we exclude terms involving ω0,1.

The correlation differential ωg,n is a multidifferential on the spectral curve C rather than a differential

form. More precisely, ωg,n is a meromorphic section of the line bundle π∗
1 (T∗C) ⊗ π∗

2 (T∗C) ⊗ · · · ⊗

π∗
n(T∗C), on the Cartesian product Cn, where πi : Cn → C denotes projection onto the ith factor. For no-

tational convenience, we will subsequently drop the ⊗ symbol when writing multidifferentials. Despite

the fact that the topological recursion is asymmetric in nature, the resulting correlation differentials

are indeed symmetric. Furthermore, for 2g − 2 + n > 0, it is known that the correlation differential

ωg,n(z1, . . . , zn) has poles only at the branch points a1, a2, . . . , ad of the spectral scurve.

Finally, to interpret the statement of Conjecture 3, one is required to expand the correlation differentials

ωg,n(z1, . . . , zn) at xi = 0. We do this by setting xi = x(zi). This notation and the analogous notation

yi = y(zi) will be used throughout the paper.

1.3 Evidence for the conjecture

There is substantial evidence to support our main conjecture. The cut-and-join recursion, stated below

as Proposition 4, allows one to compute double Hurwitz numbers recursively. It is natural to present

this at the level of generating functions Fg,n known as free energies, which store all double Hurwitz

numbers of the form DHg,n(µ1, . . . , µn). In particular, we obtain a relation between the free energies,

stated below as Corollary 11, that superficially resembles the topological recursion. In particular, it

expresses Fg,n in terms of Fg−1,n+1 and products Fg1,n1 × Fg2,n2 that do not involve F0,1, where g1 + g2 = g

and n1 + n2 = n + 1.

In many instances of the topological recursion on a spectral curve, there is an associated quantum curve

that underlies it. In short, a quantum curve is a differential operator that annihilates a wave function

constructed from the correlation differentials of the topological recursion. One can consider the semi-

classical limit of the quantum curve, which is a plane curve that coincides with the original spectral

curve in many cases. The quantum curve for double Hurwitz numbers was previously computed by

Alexandrov, Lewanski and Shadrin [1] and its semi-classical limit is y = P(x exp(sy)), which recovers

the spectral curve of equation (1). It has been proposed that the existence of a quantum curve can be

used to predict the structure of topological recursion and the associated spectral curve [31].

Finally, one can attempt to verify the main conjecture via direct computation in low genus. We carry this

out in the cases (g, n) = (0, 1), (0, 3) and (1, 1).

1.4 Ramifications and applications

Our main conjecture subsumes some existing results and conjectures in the literature, which can be ob-

tained by specialising the weights s, q1, q2, . . .. It is inspired by the Bouchard–Mariño conjecture, which

is recovered by considering the case P(z) = z. More generally, one can consider P(z) = za for a positive

integer a and recover the fact that the topological recursion governs orbifold Hurwitz numbers [12, 5].

Alexandrov, Lewanski and Shadrin propose a 1-parameter deformation of single Hurwitz numbers, via

the enumeration of double Hurwitz numbers, weighted by c to the power of the colength of the rami-

fication profile over 0 [1]. Our main conjecture recovers theirs by specialising the weights to qi = ici−1

and sending d to infinity or, equivalently, by considering the case P(z) = z
(1−cz)2 .
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Our strategy of repackaging double Hurwitz numbers as enumerations of branched covers weighted by

monomials allows us to generalise results concerning single Hurwitz numbers to their double counter-

parts. This approach may also be employed in the context of other problems of a similar nature, such as

double montone Hurwitz numbers, though we do not pursue that line of reasoning here [10, 11].

Our main conjecture, stated above as Conjecture 3, leads to certain previously unidentified structure

for double Hurwitz numbers. For instance, it implies that the free energy generating functions for dou-

ble Hurwitz numbers defined below in equation (5) are actually rational, with poles only at the branch

points of the spectral curve satisfying a certain symmetry with respect to the local involution. We state

this conjecture explicitly below as Conjecture 19. At the level of the double Hurwitz numbers them-

selves, this manifests as a particular polynomial-like structure, which we state explicitly below as Con-

jecture 24. Perhaps the main consequence of this paper is that these three conjectures are all equivalent.

We foresee that the main application of our conjecture is towards the geometry of double Hurwitz num-

bers. The general theory of topological recursion has been motivated in part by its connections to enu-

merative geometry. A rather simple statement is that spectral curves are locally modelled on the Airy

curve x(z) = 1
2 z2 and y(z) = z at their branch points. A deeper statement is that correlation differentials

of arbitrary spectral curves are also locally modelled on those of the Airy curve. Furthermore, the Airy

correlation differentials are known to store psi-class intersection numbers on the moduli space of curves,

the main objects of the celebrated Witten–Kontsevich theorem [22]. Eynard managed to push this result

further and show that the lower order terms of correlation differentials can also be related to intersection

numbers on moduli spaces [20]. More recently, Dunin-Barkowski, Orantin, Shadrin and Spitz made a

connection between topological recursion and the Givental formalism, proving that correlation differen-

tials store ancestor invariants of a cohomological field theory [18].

From the previous discussion, a consequence of our main conjecture is a direct relation between double

Hurwitz numbers and intersection theory on moduli spaces of curves. Such a connection should shed

light on the conjecture of Goulden, Jackson and Vakil, which asserts that double Hurwitz numbers arise

as intersection numbers on certain moduli spaces of curves equipped with a line bundle [27].

In Section 2, we state the cut-and-join recursion for double Hurwitz numbers, which previously

appeared in the work of Zhu [35]. We write these at the level of the generating functions known as

free energies. Finally, we discuss the notion of pruned double Hurwitz numbers, which previously

appeared in the work of Hahn [28], and their relation to the free energies.

In Section 3, we give evidence to support our main conjecture. First, we present the quantum curve

for double Hurwitz numbers, which was first deduced by Alexandrov, Lewanski and Shadrin [1],

and show that its semi-classical limit does indeed recover the spectral curve of equation (1). We

then provide low genus evidence by calculating the free energies F0,3 and F1,1 and demonstrating

that they are consistent with our main conjecture.

In Section 4, we outline a possible proof of our main conjecture. In particular, we show that the con-

jecture can be reduced to proving that the free energies satisfy so-called linear loop equations. We

furthermore show that these constraints are equivalent to a polynomial-like structure for double

Hurwitz numbers.

2 Combinatorics of double Hurwitz numbers

2.1 Cut-and-join recursion

A natural way to compute Hurwitz numbers is via the cut-and-join recursion. It was originally for-

mulated by Goulden and Jackson in the case of genus 0 single Hurwitz numbers [25], but has much

broader applicability. At the level of branched covers, the cut-and-join recursion arises by examining

the behaviour of the ramification profile over infinity as one of the simple branch points approaches

5



infinity. Otherwise, one may interpret Hurwitz numbers as an enumeration of transitive factorisations

τ0τ1τ2 · · · τm = ρ (4)

in symmetric groups, by passing to the monodromy representation of a branched cover and appeal-

ing to the Riemann existence theorem. Here, τ0 represents the monodromy over 0, the transpositions

τ1, τ2, . . . , τm represent the monodromy of the simple branch points, and ρ represents the inverse of the

monodromy over ∞. The cut-and-join recursion then arises simply by considering the result of multi-

plying both sides of equation (4) on the right by the transposition τm.

The cut-and-join recursion for double Hurwitz numbers appears in the work of Zhu [35]. The statement

below paraphrases the result using our particular definition of double Hurwitz numbers.

Proposition 4 (Cut-and-join recursion). The double Hurwitz numbers satisfy the equation

(
2g − 2 + n +

d

∑
i=1

qi
∂

∂qi

)
DHg,n(µ1, . . . , µn) = s ∑

i<j

(µi + µj) DHg,n−1(µS\{i,j}, µi + µj)

+
s

2

n

∑
i=1

∑
α+β=µi

αβ

[
DHg−1,n+1(α, β,µS\{i}) + ∑

g1+g2=g

I⊔J=S\{i}

DHg1,|I|+1(α,µI) DHg2,|J|+1(β,µJ)

]
.

Here, we let S = {1, 2, . . . , n} and let µI = {µi1 , µi2 , . . . , µik
} for I = {i1, i2, . . . , ik}. Furthermore, all double

Hurwitz numbers can be calculated from this recursion along with the base cases

DH0,1(µ)|s=0 =
1

µ
qµ and DHg,n(µ1, . . . , µn)

∣∣
s=0

= 0 for (g, n) 6= (0, 1).

Recall the introduction of the parameter s, which records the number of simple branch points, in our

definition of the double Hurwitz numbers. One advantage of retaining the parameter is the following

slightly more compact form of the cut-and-join recursion.

Corollary 5. The double Hurwitz numbers satisfy the equation

∂

∂s
DHg,n(µ1, . . . , µn) = ∑

i<j

(µi + µj) DHg,n−1(µS\{i,j}, µi + µj)

+
1

2

n

∑
i=1

∑
α+β=µi

αβ

[
DHg−1,n+1(α, β,µS\{i}) + ∑

g1+g2=g

I⊔J=S\{i}

DHg1,|I|+1(α,µI) DHg2,|J|+1(β,µJ)

]
.

Remark 6. Observe that the mechanism behind the cut-and-join recursion is in some sense local. In

the interpretation of Hurwitz numbers as enumerations of transitive factorisations, the recursion is not

sensitive to the permutation τ0 in equation (4). So using the parameter s allows us to express the cut-and-

join recursion identically in the case of simple Hurwitz numbers [25], orbifold Hurwitz numbers [12, 5],

as well as double Hurwitz numbers [35]. In fact, we remark that the local nature of the cut-and-join

recursion implies that it is not even sensitive to the topology of the base curve. Thus, it can also be

expressed in the same way for Hurwitz numbers on base curves of higher genus, though with a different

set of base cases [30].

2.2 Generating functions

It is natural to define the following generating functions for the double Hurwitz numbers. In the context

of the topological recursion, such generating functions are commonly referred to as free energies.

Fg,n(x1, . . . , xn) =
∞

∑
µ1,...,µn=1

DHg,n(µ1, . . . , µn)
n

∏
i=1

x
µi
i (5)
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We also define the following formal multidifferentials, where di denotes the exterior derivative with

respect to the ith slot.

Ωg,n(x1, . . . , xn) = d1 · · ·dnFg,n(x1, . . . , xn)

=
∞

∑
µ1,...,µn=1

DHg,n(µ1, . . . , µn)
n

∏
i=1

µix
µi−1
i dxi

Note that our main conjecture implies that when 2g − 2 + n > 0, these are in fact expansions of rational

multidifferentials on the spectral curve of equation (1) and coincide with the correlation differentials

generated by the topological recursion applied to the spectral curve.

Proposition 7. The free energies satisfy the equation

∂

∂s
Fg,n(x1, . . . , xn) = ∑

i<j

xixj

xi − xj

[
∂

∂xi
Fg,n−1(xS\{j})−

∂

∂j
Fg,n−1(xS\{i})

]

+
1

2

n

∑
i=1

[
u1u2

∂2

∂u1 ∂u2
Fg−1,n+1(u1, u2, xS\{i})

]

u1=xi
u2=xi

+
1

2

n

∑
i=1

∑
g1+g2=g

I⊔J=S\{i}

[
xi

∂

∂xi
Fg1,|I|+1(xi, xI)

][
xi

∂

∂xi
Fg2,|J|+1(xi, x J)

]
.

Here, we let S = {1, 2, . . . , n} and let xI = {xi1 , xi2 , . . . , xik
} for I = {i1, i2, . . . , ik}. Furthermore, all free

energies can be calculated from the initial conditions

F0,1(x1)|s=0 =
d

∑
i=1

1

i
qix

i
1 and Fg,n(x1, . . . , xn)

∣∣
s=0

= 0 for (g, n) 6= (0, 1).

Proof. The strategy is to multiply both sides of the cut-and-join recursion of Corollary 5 by x
µ1
1 · · · x

µn
n

and to sum over all µ1, . . . , µn. The left side of the equation becomes

∞

∑
µ1,...,µn=1

∂

∂s
DHg,n(µ1, . . . , µn)

n

∏
i=1

x
µi
i =

∂

∂s
Fg,n(x1, . . . , xn).

To calculate the first line on the right side of the equation, we use

∞

∑
µi,µ j=1

(µi + µj) DH(µi + µj) x
µi
i x

µ j

j =
∞

∑
µ=1

µ DH(µ) ∑
α+β=µ

xα
i x

β
j

=
∞

∑
µ=1

µ DH(µ) xixj

x
µ−1
i − x

µ−1
j

xi − xj
=

xixj

xi − xj

[
∂

∂xi
F(xi)−

∂

∂xj
F(xj)

]
.

To calculate the second and third lines on the right side of the equation, we use

∞

∑
µ=1

∑
α+β=µ

αβ DH(α, β) xµ =
∞

∑
α,β=1

αβ DH(α, β) xα+β =

[
u1u2

∂2

∂u1∂u2
F(u1, u2)

]

u1=x
u2=x

Note that we have dropped extraneous subscripts in the previous two equations. Finally, the initial

conditions precisely capture the base cases of Proposition 4.

In this particular form, the cut-and-join recursion can be used to determine the free energies uniquely.

For instance, let us apply this to the case (g, n) = (0, 1).

It will be useful to consider the change of variables

x(z, s′) = z exp
(
−s′P(z)

)
and s(z, s′) = s′, (6)

which we will be using throughout the remainder of the paper. Here, we introduce s′ in order to specify

the system of variables in which we are working, as this distinction turns out to be important later.

7



Proposition 8. The following equation holds.

x
∂

∂x
F0,1(x) = P(z)

Proof. With the change of variables of equation (6), we have x ∂
∂x = z

1−s′zP′(z)
∂
∂z and ∂

∂s = ∂
∂s′

+ zP(z)
1−s′zP′(z)

∂
∂z .

Following Proposition 7, the differential equation satisfied by F0,1(x) is

∂

∂s
F0,1(x) =

1

2

[
x

∂

∂x
F0,1(x)

]2

.

Apply the operator x ∂
∂x to both sides and switch to the variables (z, s′) to obtain the equation

(
∂

∂s′
+

zP(z)

1 − s′zP′(z)

∂

∂z

)
x

∂

∂x
F0,1(x) =

(
x

∂

∂x
F0,1(x)

)
z

1 − s′zP′(z)

∂

∂z

(
x

∂

∂x
F0,1(x)

)
.

We have the initial condition x ∂
∂x F0,1(x)

∣∣∣
s′=0

= P
(

x(z, s′)|s′=0

)
= P(z). So one can solve the equation

perturbatively by introducing an expansion of the form

x
∂

∂x
F0,1(x) = P(z) + P1(z)s

′ + P2(z)s
′2 + · · · .

Substituting the perturbative expansion into the equation produces a system of equations, allowing one

to explicitly determine the coefficients. Solving the system, we conclude that Pi(z) = 0 for every positive

integer i.

Corollary 9. From the previous proposition, we immediately deduce that Ω0,1(x1) =
y(z1) dx(z1)

x(z1)
. Due to equa-

tion (2), this verifies the (g, n) = (0, 1) case of our main conjecture.

Next, we use the cut-and-recursion in the case (g, n) = (0, 2).

Proposition 10. The following equations hold.

Ω0,2(x1, x2) =
dz1 dz2

(z1 − z2)2
−

dx1 dx2

(x1 − x2)2

x1
∂

∂x1
F0,2(x1, x2) = −

x2

x1 − x2
+

z2

(z1 − z2)(1 − s′z1P′(z1))

Proof. The cut-and-join recursion of Proposition 7 in the case (g, n) = (0, 2) states the following.

∂

∂s
F0,2(x1, x2) =

2

∑
i=1

[
xi

∂

∂xi
F0,1(xi)

][
xi

∂

∂xi
F0,2(x1, x2)

]
+

x1x2

x1 − x2

[
∂

∂x1
F0,1(x1)−

∂

∂x2
F0,1(x2)

]
.

From the change of variables of equation (6)

xi = zi exp
(
−s′P(zi)

)
and s = s′,

we have xi
∂

∂xi
= zi

1−s′ziP
′(zi)

∂
∂zi

and ∂
∂s = ∂

∂s′ +
z1P(z1)

1−s′z1P′(z1)
∂

∂z1
+ z2P(z2)

1−s′z2P′(z2)
∂

∂z2
. If we furthermore substitute

xi
∂

∂xi
F0,1(xi) = P(zi) from Proposition 8 and simplify, we obtain

∂

∂s′
F0,2(x1, x2) =

x2P(z1)− x1P(z2)

x1 − x2
.

Now integrate and use the fact that F0,2(x1, x2)|s=s′=0 = 0 to obtain

F0,2(x1, x2) = − log

(
x1 − x2

z1 − z2

)
− s′P(z1)− s′P(z2).

One deduces the first equation of the proposition by applying d1d2 directly to both sides and the second

by applying x1
∂

∂x1
.
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We may now substitute the calculations of F0,1 and F0,2 from Propositions 8 and 10, respectively, into

the cut-and-join recursion. We obtain the following result, which bears a similar structure to that of the

topological recursion.

Corollary 11. The free energies satisfy the following equation for 2g − 2 + n > 0.
[

∂

∂s
−

n

∑
i=1

P(zi)xi
∂

∂xi

]
Fg,n(x1, . . . , xn) =

1

2

n

∑
i=1

[
u1u2

∂2

∂u1 ∂u2
Fg−1,n+1(u1, u2, xS\{i})

]

u1=xi,u2=xi

+
1

2

n

∑
i=1

stable

∑
g1+g2=g

I⊔J=S\{i}

[
xi

∂

∂xi
Fg1,|I|+1(xi, xI)

][
xi

∂

∂xi
Fg2,|J|+1(xi, x J)

]

+ ∑
i 6=j

zj

(zi − zj)(1 − s′ziP′(zi))
xi

∂

∂xi
Fg,n−1(xS\{j})

The word “stable” over the inner summation on the second line means that we exclude terms involving F0,1 or F0,2.

Equivalently, using the change of variables xi = zi exp (−s′P(zi)) and s = s′, we have xi
∂

∂xi
= zi

1−s′ziP
′(zi)

∂
∂zi

and ∂
∂s =

∂
∂s′

+ ∑ P(zi)xi
∂

∂xi
. So the free energies satisfy the following equation for 2g − 2 + n > 0.

∂

∂s′
Fg,n(x1, . . . , xn) =

1

2

n

∑
i=1

z2
i

(1 − s′ziP′(zi))2

[
∂2

∂v1 ∂v2
Fg−1,n+1(u1, u2, xS\{i})

]

u1=u2=xi
v1=v2=z1

+
1

2

n

∑
i=1

stable

∑
g1+g2=g

I⊔J=S\{i}

z2
i

(1 − s′ziP′(zi))2

[
∂

∂zi
Fg1,|I|+1(xi, xI)

][
∂

∂zi
Fg2,|J|+1(xi, x J)

]

+ ∑
i 6=j

zizj

(zi − zj)(1 − s′ziP′(zi))2

∂

∂zi
Fg,n−1(xS\{j})

2.3 Pruned double Hurwitz numbers

The notion of pruned Hurwitz numbers was introduced by Norbury and the first author [14]. The

general idea is to interpret Hurwitz numbers as an enumeration of branching graphs and then to restrict

the enumeration to those branching graphs without leaves. The upshot is that pruned Hurwitz numbers

store the same information as Hurwitz numbers but are in some sense better behaved. Similar to their

unpruned counterparts, pruned Hurwitz numbers also satisfy a cut-and-join recursion and exhibit a

polynomial structure.

Okounkov and Pandharipande demonstrated how to associate a branching graph to a branched cover

f : (Σ; p1, . . . , pn) → (CP1; ∞) [34]. It is essentially the graph embedded on Σ formed by the preimage

of the star graph on CP1. To construct the star graph on CP1, fix the branch points at the mth roots of

unity and consider half-edges connecting a vertex at 0 to the mth roots of unity by line segments. The

branching graph is endowed with extra labels — the faces are labelled with the point pi that they contain,

while the half-edges are labelled by the corresponding root of unity. Note that two half-edges meet to

create a full-edge precisely at the m simple ramification points on Σ. These considerations lead naturally

to the following definition.

Definition 12. A branching graph of type (g, n) is a graph comprising half-edges and full-edges meeting

at vertices, embedded on a genus g oriented surface Σ such that the complement consists of n disks

labelled from 1 up to n. We furthermore require that

the half-edges adjacent to a vertex are cyclically labelled 1, 2, . . . , m; 1, 2, . . . , m; . . . ; 1, 2, . . . , m; and

there are precisely m full-edges, which are labelled 1, 2, . . . , m.

Define the perimeter of a face and the degree of a vertex to be the number of times each label appears on

an adjacent half-edge. We consider two branching graphs to be equivalent if there is an orientation-

preserving diffeomorphism of their underlying surfaces that maps one branching graph to the other,

while preserving all of the labels.
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Proposition 13. The double Hurwitz number DHg,n(µ1, . . . µn) is the weighted count of branching graphs of

type (g, n) such that the face labelled i has perimeter µi. The weight of such a branching graph is

qλ1
qλ2

· · · qλℓ

|Aut Γ|

sm

m!
,

where m is the number of full-edges, Aut Γ is the automorphism group of the branching graph, and λ1, λ2, . . . , λℓ

denote the degrees of the vertices.

Definition 14. A leaf of a branching graph is a vertex that is adjacent to exactly one full-edge, where

that full-edge is not a loop. Define the pruned double Hurwitz number PHg,n(µ1, . . . µn) to be the weighted

count of Proposition 13, restricted to those branching graphs without leaves.

A table of pruned double Hurwitz numbers appears in Appendix B.

The pruned viewpoint was applied to double Hurwitz numbers in the recent work of Hahn [28]. Hahn

derived a cut-and-join recursion for pruned double Hurwitz numbers, using a different notation and

normalisation convention to the one we have adopted in this paper. He furthermore demonstrated that

they exhibit piecewise polynomial behaviour and derived a pruning correspondence that relates double

Hurwitz numbers to their pruned counterparts. We state the pruning correspondence without proof,

since it is a restatement of the pruning correspondence in Hahn’s paper [28, Theorem 3.4]. However, we

wish to draw attention to the fact that it is expressed very naturally using our packaging of the double

Hurwitz numbers.

Proposition 15 (Pruning correspondence, version 1). For (g, n) 6= (0, 1), we have the following equations.

DHg,n(µ1, . . . , µn) =
µ1,...,µn

∑
ν1,...,νn=1

PHg,n(ν1, . . . , νn)
n

∏
i=1

C(µi, νi), where C(µ, ν) =
ν

µ
[zµ−ν] exp(µsP(z))

PHg,n(ν1, . . . , νn) =
ν1,...,νn

∑
µ1,...,µn=1

DHg,n(µ1, . . . , µn)
n

∏
i=1

Ĉ(νi, µi), where Ĉ(ν, µ) =
µ

ν
[zν−µ]

1 − szP′(z)

exp(µsP(z))

Note that C(µ, ν) is a weighted homogeneous polynomial in sq1, sq2, . . . with positive rational coeffi-

cients, while Ĉ(ν, µ) is a weighted homogeneous polynomial in sq1, sq2, . . . with rational coefficients.

In fact, the pruning correspondence can be even more succinctly stated in the language of the free en-

ergies. In particular, the pruned double Hurwitz numbers arise as coefficients in the expansion with

respect to the rational parameters z1, . . . , zn.

Corollary 16 (Pruning correspondence, version 2). For (g, n) 6= (0, 1), we have the following equations.

Fg,n =
∞

∑
ν1,...,νn=1

PHg,n(ν1, . . . , νn)
n

∏
i=1

z
νi
i

Ωg,n =
∞

∑
ν1,...,νn=1

PHg,n(ν1, . . . , νn)
n

∏
i=1

νiz
νi−1
i dzi

Proof. We simply compute the coefficients of Ωg,n in the zi-expansion.

Res
z1=0

· · · Res
zn=0

Ωg,n

n

∏
i=1

z
−νi
i = Res

z1=0
· · · Res

zn=0

∞

∑
µ1,...,µn=1

DHg,n(µ1, . . . , µn)
n

∏
i=1

µiz
−νi
i x

µi−1
i dxi

=
∞

∑
µ1,...,µn=1

DHg,n(µ1, . . . , µn)
n

∏
i=1

µi[z
νi−1
i ]x

µi−1
i

dxi

dzi

=
∞

∑
µ1,...,µn=1

DHg,n(µ1, . . . , µn)
n

∏
i=1

µi[z
νi−µi
i ]

1 − sziP
′(zi)

exp(µisP(zi))

=
ν1,...,νn

∑
µ1,...,µn=1

DHg,n(µ1, . . . , µn)
n

∏
i=1

νiĈ(νi, µi) = PHg,n(ν1, . . . , νn)
n

∏
i=1

νi
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The desired statement for the multidifferentials Ωg,n follows immediately, while the desired statement

for the free energies Fg,n can be obtained by integrating.

We do not state here the cut-and-join recursion for pruned double Hurwitz numbers. However, we

remark that it can be obtained either combinatorially, as performed by Hahn [28], or equivalently by

expressing Corollary 11 at the level of coefficients in the zi-expansion.

In Section 4, we will reduce our main conjecture to a weaker conjecture concerning the structure of

double Hurwitz numbers. We have introduced pruned double Hurwitz numbers since enumeration of

pruned objects in general can help to reveal structure of the underlying enumeration [14].

3 Evidence for the conjecture

3.1 The quantum curve

It is known that there is a quantum curve underlying many instances of the topological recursion and

conversely, the existence of a quantum curve can predict spectral curves and topological recursion [31].

We now consider the quantum curve for double Hurwitz numbers and propose it as evidence towards

the main conjecture.

Informally, a quantum curve for a spectral curve P(x, y) = 0 is a certain operator that can be expressed in

terms of a non-commutative polynomial P̂(x̂, ŷ) in the multiplication operator x̂ = x and the differential

operator ŷ = h̄x ∂
∂x such that3

the semi-classical limit of P̂(x̂, ŷ) recovers P(x, y); and

P̂(x̂, ŷ) annihilates the wave function.

The semi-classical limit is obtained by sending x̂ and ŷ to the commuting variables x and y, while also

sending h̄ to 0. The wave function is a certain generating function constructed from the coefficients

of the correlation differentials obtained from topological recursion. We define the wave function only

in the case of double Hurwitz numbers and point the reader to the literature for more information on

quantum curves [31].

In the case of double Hurwitz numbers, the partition function and wave function are generating functions

defined by the following formulas, respectively.

Z(p1, p2, . . . ; h̄) = exp

[ ∞

∑
g=0

∞

∑
n=1

∞

∑
µ1,...,µn=1

DHg,n(µ1, . . . , µn)
h̄2g−2+n

n!
pµ1 · · · pµn

]

ψ(x, h̄) = Z(p1, p2, . . . ; h̄)|pi=xi

Proposition 17 (Alexandrov–Lewanski–Shadrin [1]). The wave function ψ(x, h̄) for the double Hurwitz num-

bers satisfies the quantum curve equation Q ψ(x, h̄) = 0, where

Q = ŷ −
d

∑
k=1

qk exp
(

1
2 sh̄k(k − 1)

)
x̂k exp(skŷ).

One can immediately observe that the semi-classical limit of the operator Q is simply y − P(x exp(sy)),

for which we have the rational parametrisation of equation (1). The existence of the quantum curve

lends strong support to Conjecture 3.

Remark 18. As previously mentioned, the quantum curve may be used to predict the spectral curve for

a topological recursion. It is also often the case that the (0, 1) information of a problem may be used to

3The choice of polarisation — in other words, the operators x̂ and ŷ — relates to the fact that we are dealing with a C∗ ×C spectral

curve. For a C × C spectral curve, it is common to use ŷ = h̄ ∂
∂x . In both cases though, we have the canonical commutation

relation [x̂, ŷ] = −h̄.
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predict the spectral curve for a topological recursion [15]. We remark here that the quantum curve may

be used to pass directly to the (0, 1) information. In the following, we use the quantum curve to provide

another proof of Proposition 8, which states that x ∂
∂x F0,1(x) = P(z).

We begin with the two observations

ψ(x, h̄) = exp

(
1

h̄
F0,1(x) +O(1)

)
and ŷψ(x, h̄) =

(
x

∂

∂x
F0,1(x) +O(h̄)

)
ψ(x, h̄),

which follow directly from the definition of the wave function. Therefore, we have the equation

exp

(
1

2
sh̄k(k − 1)

)
x̂k exp(skŷ)ψ(x, h̄) = (1 + O(h̄))xk

(
eskx ∂

∂x F0,1(x) + O(h̄)

)
ψ(x, h̄).

The vanishing of Q ψ(x, h̄) implies the following equation on x ∂
∂x F0,1(x).

x
∂

∂x
F0,1(x)−

d

∑
k=1

qkxkeskx ∂
∂x F0,1(x) = 0

Now use the substitution x = z exp
(
− sx ∂

∂x F0,1(x)
)
, where z is a new variable and x ∂

∂x F0,1(x) in the

exponent is considered as a function of z. Then the previous equation recovers Proposition 8, namely

x
∂

∂x
F0,1(x) =

d

∑
k=1

qkzk.

3.2 Low genus evidence

One can attempt to verify the main conjecture via direct computation in low genus. We include below

the calculations in the case (g, n) = (0, 3) and (1, 1).

Calculation of F0,3

The cut-and-join recursion of Corollary 11 in the case (g, n) = (0, 3) reads

∂

∂s′
F0,3 = ∑

cyclic

x1x2

x1 − x2

[
∂

∂x1
F0,2(x1, x3)−

∂

∂x2
F0,2(x2, x3)

]
+ ∑

cyclic

[
x1

∂

∂x1
F0,2(x1, x2)

][
x1

∂

∂x1
F0,2(x1, x3)

]
.

Substituting the formula of Proposition 10 yields great simplification and we are ultimately left with

∂

∂s′
F0,3 = −1 + ∑

cyclic

z2z3

(z1 − z2)(z1 − z3)

1

(1 − s′z1P′(z1))2
.

One can integrate this equation, using the initial conditions to deduce the constant of integration, in

order to obtain

F0,3(x1, x2, x3) = −s′ + ∑
cyclic

s′z2z3

(z1 − z2)(z1 − z3)(1 − s′z1P′(z1))
. (7)

From the previous equation, F0,3 can be expressed as follows.

F0,3(x1, x2, x3) =

s′ det




s′z1P′(z1) s′z2P′(z2) s′z3P′(z3)

z1(1 − s′z1P′(z1)) z2(1 − s′z2P′(z2)) z3(1 − s′z3P′(z3))

z2
1(1 − s′z1P′(z1)) z2

2(1 − s′z2P′(z2)) z2
3(1 − s′z3P′(z3))




(1 − s′z1P′(z1))(1− s′z2P′(z2))(1 − s′z3P′(z3))(z1 − z2)(z2 − z3)(z3 − z1)

Observe that the determinant in the numerator is divisible by (z1 − z2)(z2 − z3)(z3 − z1), so that F0,3(x1, x2, x3)

does not have poles along the diagonals zi − zj. Now consider the expression

F0,3(x1, x2, x3)
3

∏
i=1

(1 − s′ziP
′(zi)) =

Pol(z1, z2, z3, s)

(z1 − z2)(z2 − z3)(z3 − z1)
.
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We see that the degree of z1 in Pol(z1, z2, z3, s) is d + 2. However, we have already deduced that

Pol(z1, z2, z3) is divisible by (z1 − z2)(z2 − z3)(z3 − z1). It follows that the entire expression is in fact

a polynomial of degree d in z1. Similarly, one can deduce that the entire expression has degree d in

z2 and z3. Now as the determinant in the numerator is divisible by z1z2z3, there must exist Ci1,i2,i3 ∈

Q[s, q1, q2, . . .] such that

F0,3(x1, x2, x3) =
3

∏
i=1

1

1 − s′ziP′(zi)
×

d

∑
i1,i2,i3=1

Ci1,i2,i3z
i1
1 zi2

2 z
i3
3 . (8)

Note in particular that F0,3(x1, x2, x3) is a rational function in z1, z2, z3 with poles only at the branch

points of the spectral curve of equation (1). We may now check that the topological recursion recovers

the correct correlation differential ω0,3 predicted by our main conjecture. We start with the following

formula for ω0,3 [22].

ω0,3(z1, z2, z3) = −
d

∑
i=1

Res
z=ai

ω0,2(z, z1) ω0,2(z, z2) ω0,2(z, z3) x(z)

dx(z) dy(z)

= dz1 dz2 dz3

d

∑
i=1

−sa3
i

(z1 − ai)2 (z2 − ai)2 (z3 − ai)2 (1 + sa2
i P′′(ai))

(9)

Observe that this equation decomposes ω0,3(z1, z2, z3) into a sum of its principal parts with respect to

the variable z1 [12, Proposition 16]. Recall that the principal part of a meromorphic form may be defined

via the formula

[ω(z1)]a = Res
z=a

dz1

z1 − z
ω(z). (10)

Now we use this formula to evaluate the principal part of Ω0,3(x1, x2, x3) = d1d2d3F0,3(x1, x2, x3) at the

branch point ai.

[Ω0,3(x1, x2, x3)]ai

dz1 dz2 dz3
=

1

dz1 dz2 dz3
Res
z=ai

dz1

z1 − z
dd2d3F0,3(x, x2, x3)

=
∂

∂z1

∂

∂z2

∂

∂z3
Res
z=ai

dz

z1 − z
F0,3(x, x2, x3)

=
∂

∂z1

∂

∂z2

∂

∂z3
Res
z=ai

dz

z1 − z

[
s′z2z3

(z − z2)(z − z3)(1 − s′zP′(z))

]

The first equality uses the definition of the principal part, the second exchanges the order of taking the

residue and the derivative, while the third uses equation (7). Note that we have only kept the summand

in equation (7) that will contribute to the residue. We may now evaluate the residue and derivatives

explicitly, noting that the expression has a simple pole at ai.

[Ω0,3(x1, x2, x3)]ai

dz1 dz2 dz3
=

∂

∂z1

∂

∂z2

∂

∂z3
lim
z→ai

1

z1 − z

[
s′z2z3(z − ai)

(z − z2)(z − z3)(1 − s′zP′(z))

]

=
∂

∂z1

∂

∂z2

∂

∂z3

z2z3

(z1 − ai)(z2 − ai)(z3 − ai)(aiP′′(ai) + P′(ai))

= −
sa3

i

(z1 − ai)2(z2 − ai)2(z3 − ai)2(1 + sa2
i P′′(ai))

(11)

The first equality evaluates the residue via limit, the second is an application of L’Hôpital’s rule, while

the third evaluates the derivatives explicitly and uses the fact that 1 − saiP
′(ai) = 0.

Comparing equations (9) and (11), we see that the principal parts of ω0,3 and Ω0,3 match precisely at the

branch points. Furthermore, we know that they are both rational multidifferentials with poles only at

the branch points, so we may conclude that they are equal. It follows that Conjecture 3 holds in the case

(g, n) = (0, 3).
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Calculation of F1,1

The cut-and-join recursion of Corollary 11 in the case (g, n) = (1, 1) reads

[
∂

∂s
− P(z)x

∂

∂x

]
F1,1(x) =

1

2

[
u1u2

∂2

∂u1∂u2
F0,2(u1, u2)

]

u1=x
u2=x

.

Passing to (z, s′) coordinates and substituting the explicit expression for ∂2

∂z1∂z2
F0,2 from Proposition 10

yields

∂

∂s′
F1,1(x) =

1

2

[
z1

1 − s′z1P′(z1)

z2

1 − s′z2P′(z2)

(x(z1)− x(z2))
2 − (z1 − z2)

2x′(z1)x′(z2)

(z1 − z2)2 (x(z1)− x(z2))2

]

z1=z2=z

.

One can evaluate the right side of this equation using L’Hôpital’s rule to obtain

∂

∂s′
F1,1(x) =

z2
(
3x′′(z)2 − 2x′(z)x′′′(z)

)

24 (1 − s′zP′(z))2 x′(z)2
.

Now integrate this equation, using the initial conditions to deduce the constant of integration.

F1,1(x) =
s′2z2

(
3P′′ + zP′′′ + 3s′P′2 − s′P′2 − s′zP′P′′ + s′z2P′′2 − s′z2P′P′′′ − s′2zP′3

)

24(1 − s′zP′)3
.

One can explicitly verify that

F1,1(x) =
s′2

24

(
z

1 − s′zP′(z)

∂

∂z

)2

[zP′(z)]−
s′2

24

(
z

1 − s′zP′(z)

∂

∂z

)
[P(z)]. (12)

Note that F1,1(x) is a rational function in z with poles only at the branch points of the spectral curve

of equation (1). Rather than verify that Ω1,1(x) = dF1,1(x) coincides with the correlation differential

ω1,1(z), we propose a more general approach in the next section. We will prove that our main conjecture

follows if the free energies satisfy so-called linear loop equations.

4 Towards a proof of the conjecture

4.1 The structure of double Hurwitz numbers

There is a certain technique for starting with a combinatorial recursion of cut-and-join type and de-

ducing the topological recursion that works in several known cases. For instance, it was successfully

employed in the case of single Hurwitz numbers [21], orbifold Hurwitz numbers [12, 5] and monotone

Hurwitz numbers [10]. One further ingredient usually enters into these proofs and that is a polynomial

structure theorem for the enumerative problem. However, such a result is not known in the case of

double Hurwitz numbers. In this section, we present a conjecture on the structure of double Hurwitz

numbers and then proceed to show that it can be used to deduce our main conjecture.

It is known that the correlation differentials produced by the topological recursion satisfy so-called linear

loop equations [3]. These assert that at a branch point a of the spectral curve with associated involution σ,

the correlation differentials ωg,n for 2g − 2 + n > 0 satisfy the following condition: the sum

ωg,n(z1, z2, . . . , zn) + ωg,n(σ(z1), z2, . . . , zn)

is analytic at z1 = a. The linear loop equations imply structure to the underlying coefficients of the

correlation differentials. For example, in the case of single Hurwitz numbers, they are equivalent to the

fact that

Hg,n(µ1, . . . , µn) =
n

∏
i=1

µ
µi
i

µi!
Pg,n(µ1, . . . , µn),
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where Pg,n is a symmetric polynomial, a fact that follows from the ELSV formula. The linear loop equa-

tions are equivalent to an analogous quasi-polynomial structure in the case of orbifold Hurwitz numbers.

As previously mentioned, an analogous result is not known in the case of double Hurwitz numbers.

However, given our main conjecture, it is natural to posit that the following is true.

Conjecture 19. For 2g − 2 + n > 0,

Fg,n(z1, . . . , zn) is a rational function with poles only at zi = aj for i = 1, 2, . . . , n and j = 1, 2, . . . , d; and

Fg,n(z1, z2, . . . , zn) + Fg,n(σi(z1), z2, . . . , zn) is analytic at z1 = ai for i = 1, 2, . . . , d.

We will subsequently refer to these constraints as linear loop equations.

From the general theory of topological recursion, we know that Conjecture 3 implies Conjecture 19. In

fact, we will prove in Theorem 26 that the converse is also true. Therefore, the linear loop equations are

equivalent to the statement that topological recursion governs the double Hurwitz numbers.

Definition 20. Define the C(s)-vector space V(z), whose elements are rational functions p(z) such that

p(z) has poles only at the branch points a1, a2, . . . , ad; and

p(z) + p(σi(z)) is analytic at z = ai for i = 1, 2, . . . , d.

Lemma 21. A basis for V(z) is formed by φi
k(z) for i = 1, 2, . . . , d and k = 0, 1, 2, . . ., where we define φi

−1(z) =

zi and

φi
k+1 =

z

1 − szP′(z)

∂

∂z
φi

k(z).

One can find a short proof of the lemma in the literature [12, Lemma 14]. Given the fact that Fg,n(z1, . . . , zn)

is symmetric in its arguments, it satisfies the linear loop equations if and only if

Fg,n(z1, . . . , zn) ∈ V(z1)⊗ V(z2)⊗ · · · ⊗ V(zn).

Proposition 22. The linear loop equations hold for (g, n) = (0, 3) and (1, 1).

Proof. From equation (8), we have

F0,3(x1, x2, x3) =
d

∑
i1,i2,i3=1

Ci1,i2,i3

i1i2i3
φ

i1
0 (z1) φ

i2
0 (z2) φ

i3
0 (z3) ∈ V(z1)⊗ V(z2)⊗ V(z3).

From equation (12), we have

F1,1(x) =
s2

24

d

∑
i=1

[
iqiφ

i
1(z)− qiφ

i
0(z)

]
∈ V(z).

Remark 23. By Lemma 21, we know that x ∂
∂x = z

1−s′zP′(z)
∂
∂z preserves V(z) in the sense that for any

p(z) ∈ V(z), we also have x ∂
∂x p(z) ∈ V(z). Since x and s are commuting variables, we also know that

∂
∂s =

∂
∂s′ +

zP(z)
(1−s′zP′(z)

∂
∂z preserves V(z). This seemingly trivial remark will prove to be useful later.

The linear loop equations imply structure on the free energies and hence, also on the double Hurwitz

numbers themselves. We have Fg,n(z1, . . . , zn) ∈ V(z1)⊗ V(z2)⊗ · · · ⊗ V(zn), supposing that the linear

loop equations hold. So there exist Cg,n
(

i1,...,in
m1,...,mn

)
that depend on s, q1, q2, . . . for 1 ≤ i1, . . . , in ≤ d and

m1, . . . , mn ≥ 0 such that the following is true.

Fg,n(z1, . . . , zn) =
d

∑
i1,...,in=1

finite

∑
m1,...,mn=0

Cg,n

(
i1,...,in

m1,...,mn

) n

∏
k=1

φ
ik
mk
(zk)

=
d

∑
i1,...,in=1

finite

∑
m1,...,mn=0

Cg,n
(

i1,...,in
m1,...,mn

) n

∏
k=1

(
xk

∂

∂xk

)mk+1

z
ik
k
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Write zi = ∑
∞
µ=0 Ai

µxµ and observe that one can deduce the coefficients Ai
µ via the Lagrange inversion

formula. This then leads to the following conjectural expression for the double Hurwitz numbers, which

is in fact equivalent to Conjecture 19.

Conjecture 24. For 2g − 2 + n > 0, there exist Cg,n
(

i1,...,in
m1,...,mn

)
independent of µ1, . . . , µn such that the double

Hurwitz numbers may be expressed as

DHg,n(µ1, . . . , µn) =
d

∑
i1,...,in=1

n

∏
k=1

A
ik
µk

finite

∑
m1,...,mn=0

Cg,n

(
i1,...,in

m1,...,mn

) n

∏
k=1

µ
mk+1
k ,

where

Ai
µ = i ∑

|λ|=µ−i

µℓ(λ)−1

|Aut λ|
qλ1

qλ2
· · · qλℓ(λ)

sℓ(λ).

Here, λ represents an integer partition with ℓ(λ) parts and Aut λ is the set of permutations of the tuple (λ1, λ2, . . . , λℓ(λ))

that leave it invariant.

Remark 25. The previous conjecture reduces to the polynomial structure of single Hurwitz numbers in

the case P(z) = z and the quasi-polynomial structure of orbifold Hurwitz numbers in the case P(z) = za.

We remark that the proof of polynomiality for single Hurwitz numbers was originally achieved via the

ELSV formula, a rather deep result from algebraic geometry [19]. A second proof arose via a thorough

analysis of the infinite wedge space expression for single Hurwitz numbers [16]. In the context of double

Hurwitz numbers, the previously mentioned conjecture of Goulden, Jackson and Vakil may play the

role of the ELSV formula, although the underlying algebraic geometry is unclear at present. Thus, one

may hope that the infinite wedge space technology may lead to progress the combinatorial structure of

double Hurwitz numbers and thence towards the geometry of double Hurwitz numbers.

4.2 From cut-and-join recursion to topological recursion

At the start of the section, we alluded to a certain technique for starting with a combinatorial recursion

of cut-and-join type and deducing the topological recursion. We now carry this out in the context of

double Hurwitz numbers, using the linear loop equations as an unproven assumption. In other words,

the rest of the paper is dedicated to proving the following result.

Theorem 26. Conjecture 19 implies Conjecture 3.

Proof of Theorem 26. Consider the cut-and-join recursion of Corollary 11 for 2g − 2 + n > 1. We will use

the inductive hypothesis that Ωg′,n′ = ωg′,n′ for 2g′ − 2 + n′ < 2g − 2 + n. We will adopt a gentle abuse

of notation and write Fg,n(z1, . . . , zn) for the rational function obtained by taking Fg,n(x1, . . . , xn) and

changing coordinates to the z variables. Recall that it is rational due to the assumption of the linear loop

equations of Conjecture 19.

∂

∂s′
Fg,n(z1, . . . , zn) =

1

2

n

∑
i=1

z2
i

(1 − s′ziP′(zi))2

[
∂2

∂u1 ∂u2
Fg−1,n+1(u1, u2, zS\{i})

]

u1=zi,u2=zi

+
1

2

n

∑
i=1

stable

∑
g1+g2=g

I⊔J=S\{i}

z2
i

(1 − s′ziP′(zi))2

[
∂

∂zi
Fg1,|I|+1(zi, zI)

][
∂

∂zi
Fg2,|J|+1(zi, z J)

]

+ ∑
i 6=j

zizj

(zi − zj)(1 − s′ziP′(zi))2

∂

∂zi
Fg,n−1(zS\{j})

Pick a branch point ai of the spectral curve with associated local involution σi. The general strategy is to

take the principal part of both sides at z1 = ai. As we have done previously, denote the principal part

by the notation [ · ]ai
. We take the result, apply σi to z1 to both sides of the equation, then add it to the
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original. We denote this procedure by the notation Symi[ f (z1)] = f (z1) + f (σi(z1)). Note that applying

Symi[ · ]ai
kills all terms that satisfy the linear loop equations with respect to z1. Thus, we obtain the

following equation.

Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]

ai

=
1

2
Symi

[
z2

1

(1 − s′z1P′(z1))2

[
∂2

∂u1 ∂u2
Fg−1,n+1(u1, u2, zS\{1})

]

u1=z1,u2=z1

]

ai

+
1

2

stable

∑
g1+g2=g

I⊔J=S\{1}

Symi

[
z2

1

(1 − s′z1P′(z1))2

[
∂

∂z1
Fg1,|I|+1(z1, zI)

][
∂

∂z1
Fg2,|J|+1(z1, z J)

]]

ai

+
n

∑
j=2

Symi

[
z1zj

z1 − zj

[
1

(1 − z1s′P′(z1))2

∂

∂z1
Fg,n−1(zS\{j})−

1

(1 − zjs′P′(zj))2

∂

∂zj
Fg,n−1(zS\{1})

]]

ai

Now if fi(z1) and g(z1) satisfy the linear loop equation, then f (z1) + f (σ(z1)) and g(z1) + g(σ(z1)) are

analytic at ai, so their product is as well. So we have the following equations.

∑
k

[ fk(z1)gk(z1) + fk(σ(z1))gk(z1) + fk(z1)gk(σ(z1)) + fk(σ(z1))gk(σ(z1))]ai
= 0

∑
k

[ fk(z1)gk(z1) + fk(σ(z1))gk(σ(z1))]ai
= −∑

k

[ fk(σ(z1))gk(z1) + fk(z1)gk(σ(z1))]ai

Symi

[
∑
k

fk(z1)gk(z1))
]

ai

= −Symi

[
∑
k

fk(σ(z1))gk(z1)
]

ai

Use this on the first and second lines of the right side, keeping in mind that if f (z) satisfies the linear

loop equation, then so does x ∂
∂x f (z). We also rewrite the third line in a more convenient form.

Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]

ai

= −
1

2
Symi

[
x2

1

[
∂2

∂u1 ∂u2
Fg−1,n+1(z(u1), σ(z(u2)), zS\{1})

]

u1=x1,u2=x1

]

ai

−
1

2

stable

∑
g1+g2=g

I⊔J=S\{1}

Symi

[
x2

1

[
∂

∂x1
Fg1,|I|+1(z1, zI)

][
∂

∂x1
Fg2,|J|+1(σ(z1), z J)

]]

ai

+
n

∑
j=2

Symi

[
zj

z1 − zj

x1
∂

∂x1
Fg,n−1(zS\{j})

1 − z1s′P′(z1)
−

z1

z1 − zj

xj
∂

∂x j
Fg,n−1(zS\{1})

1 − zjs′P′(zj)

]

ai

Now apply the derivative operator d2 · · ·dn to both sides. The third line transforms in the following way,

due to Lemma 27, whose statement and proof we postpone in order to declutter the present argument.

Note that we do indeed require ω0,2 in the third line, which is not equal to Ω0,2.

d2 · · ·dn Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]

ai

= −
1

2
Symi

[
x2

1

(dx1)2
Ωg−1,n+1(z1, σ(z1), zS\{1})

]

ai

−
1

2

stable

∑
g1+g2=g

I⊔J=S\{1}

Symi

[
x2

1

(dx1)2
Ωg1,|I|+1(z1, zI) Ωg2,|J|+1(σ(z1), z J)

]

ai

−
n

∑
j=2

Symi

[
x2

1

(dx1)2
ω0,2(z1, zj) Ωg,n−1(zS\{j})

]

ai

Use the inductive hypothesis to replace the occurrences of Ωg′,n′ on the right side with ωg′,n′ . Further-

more, gather together the second and third lines and use the symmetry of the situation to obtain the
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following.

d2 · · ·dn Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]

ai

= −

[
x2

1

(dx1)2

[
ωg−1,n+1(z1, σ(z1), zS\{1}) +

◦

∑
g1+g2=g

I⊔J=S\{1}

ωg1,|I|+1(z1, zI) ωg2,|J|+1(σ(z1), z J)

]]

ai

Multiply both sides by −dx1
x1

1
y1−σ(y1)

and take the principal part at ai again. Since the expression we are

multiplying by is analytic at ai, this just moves the expression inside the principal part.

−

[
dx1

x1

1

(y1 − σ(y1))
d2 · · ·dn Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]]

ai

=

[
x1

(y1 − σ(y1)) dx1

[
ωg−1,n+1(z1, σ(z1), zS\{1}) +

◦

∑
g1+g2=g

I⊔J=S\{1}

ωg1,|I|+1(z1, zI) ωg2,|J|+1(σ(z1), z J)

]]

ai

Now use equation (10) to evaluate the principal part and recall the definition of the recursion kernel

from equation (3).

−

[
dx1

x1

1

(y1 − σ(y1))
d2 · · ·dn Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]]

ai

= Res
z=a

K(z1, z)

[
ωg−1,n+1(z, σ(z), zS\{1}) +

◦

∑
g1+g2=g

I⊔J=S\{1}

ωg1,|I|+1(z, zI) ωg2,|J|+1(σ(z), z J)

]

Finally, sum over all branch points.

−
d

∑
i=1

[
dx1

x1

1

(y1 − σi(y1))
d2 · · ·dn Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]]

ai

=
d

∑
i=1

Res
z=ai

Ki(z1, z)

[
ωg−1,n+1(z, σi(z), zS\{1}) +

◦

∑
g1+g2=g

I⊔J=S\{1}

ωg1,|I|+1(z, zI) ωg2,|J|+1(σi(z), z J)

]

The left side is simply Ωg,n(z1, . . . , zn) by Lemma 28, whose statement and proof we postpone in order

to declutter the present argument. On the other hand, the right side is simply ωg,n(z1, . . . , zn) by the

definition of the topological recursion. This completes the inductive argument.

All that is left to check are the base cases Ω0,3 = ω0,3 and Ω1,1 = ω1,1. The former statement appears

in Subsection 3.2. For the latter, we can track through the arguments of the current proof using (g, n) =

(1, 1) to find that

[Ω1,1(z1)]ai
=

[
1

y1 − σi(y1)

x1

dx1
ω0,2(z1, σi(z1)]ai

]

ai

Now sum over all branch points to obtain Ω1,1 on the left side and the expression for ω1,1 given by the

topological recursion on the right side.

The proof of Theorem 26 required two lemmas, whose statements and proofs we presently discuss.

Lemma 27. If F (z) satisfies the linear loop equations and Ω = dx1
x1

F (z), then

d2 Symi

[
z2

z1 − z2

F (z1)

1 − s′z1P′(z1)
−

z1

z1 − z2

F (z2)

1 − s′z2P′(z2)

]

ai

= − Symi

[
x2

1

(dx1)2
ω0,2(z1, z2) Ω(σ(z1))

]

ai

.
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Proof. The proof is by direct calculation.

d2 Symi

[
z2

z1 − z2

F (z1)

1 − s′z1P′(z1)
−

z1

z1 − z2

F (z2)

1 − s′z2P′(z2)

]

ai

= d2 Symi

[
z1

z1 − z2

F (z1)

1 − s′z1P′(z1)
−

F (z1)

1 − s′z1P′(z1)
−

z2

z1 − z2

F (z2)

1 − s′z2P′(z2)
−

F (z2)

1 − s′z2P′(z2)

]

ai

= d2 Symi

[
z1

z1 − z2

F (z1)

1 − s′z1P′(z1)

]

ai

= − d2 Symi

[
z1

z1 − z2

F (σ(z1))

1 − s′z1P′(z1)

]

ai

= − Symi

[
dz1 dz2

(z1 − z2)2

x2
1

(dx1)2
Ω(σ(z1))

]

ai

= − Symi

[
ω0,2(z1, z2)

x2
1

(dx1)2
Ω(σ(z1))

]

ai

The first equality is a straightforward algebraic manipulation. The second equality uses the fact that

the second term is annihilated by d2 as well as the fact that the third and fourth terms have no pole

at z1 = ai. To obtain the third equality, write G(z) = z
z−z2

1
1−s′zP′(z)

and observe that we have the

relation [(F (z1) +F (σ(z1))(G(z1) + G(σ(z1))]ai
= 0, since both parentheses are analytic at z1 = ai. The

fourth equality evaluates the derivative and uses z1
1−s′z1P′(z1)

= dz1
dx1

. Finally, the fifth inequality simply

substitutes the definition of ω0,2.

Lemma 28. Assuming the linear loop equations of Conjecture 19, the following is true for 2g − 2 + n > 0.

Ωg,n(z1, . . . , zn) = −d2 · · ·dn

d

∑
i=1

[
dx1

x1

1

(y1 − σi(y1))
Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]]

ai

Proof. Given that Fg,n(z1, . . . , zn) ∈ V(z1)⊗ V(z2)⊗ · · · ⊗ V(zn), we deduce that

Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]

ai

= Symi

[
− y1x1

∂

∂x1
Fg,n(z1, . . . , zn)

]

ai

=

[
−(y1 − σi(y1))x1

∂

∂x1
Fg,n(z1, . . . , zn)

]

ai

for all i = 1, 2, . . . , d.

The first equality holds due to the inclusion ∂
∂s V(z1) ⊂ V(z1) discussed in Remark 23 and the second

since x1
∂

∂x1
Fg,n(z1, . . . , zn) ∈ V(z1)⊗ V(z2)⊗ · · · ⊗ V(zn). Multiply both sides by −dx1

x1

1
y1−σi(y1)

, which

is analytic at z1 = ai, and take the principal part of both sides again to obtain

[
d1Fg,n(z1, . . . , zn)

]
ai
=

[
−

dx1

x1

1

(y1 − σi(y1))
Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]]

ai

for all i = 1, 2, . . . , d.

Since a rational meromorphic form is the sum of its principal parts, summing over i = 1, 2, . . . , d yields

d1Fg,n(z1, . . . , zn) = −
d

∑
i=1

[
dx1

x1

1

(y1 − σi(y1))
Symi

[
∂

∂s′
Fg,n(z1, . . . , zn)

]]

ai

.

The desired result then follows by applying d2 · · ·dn to both sides.
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A Table of double Hurwitz numbers

g (µ1, . . . , µn) DHg,n(µ1, . . . , µn) evaluated at s = 1

0 (1) q1

0 (2) 1
2 q2 +

1
2 q2

1

0 (3) 1
3 q3 + q2q1 +

1
2 q3

1

0 (4) 1
4 q4 + q3q1 +

1
2 q2

2 + 2q2q2
1 +

2
3 q4

1

0 (5) 1
5 q5 + q4q1 + q3q2 +

5
2 q3q2

1 +
5
2 q2

2q1 +
25
6 q2q3

1 +
25
24 q5

1

0 (11) q2 +
1
2 q2

1

0 (21) q3 + 2q2q1 +
2
3 q3

1

0 (31) q4 + 3q3q1 +
3
2 q2

2 +
9
2 q2q2

1 +
9
8 q4

1

0 (22) q4 + 3q3q1 + q2
2 + 4q2q2

1 + q4
1

0 (41) q5 + 4q4q1 + 4q3q2 + 8q3q2
1 + 8q2

2q1 +
32
3 q2q3

1 +
32
15 q5

1

0 (32) q5 + 4q4q1 + 3q3q2 +
15
2 q3q2

1 + 6q2
2q1 + 9q2q3

1 +
9
5 q5

1

0 (111) 3q3 + 4q2q1 + q3
1

0 (211) 4q4 + 9q3q1 + 4q2
2 + 10q2q2

1 + 2q4
1

0 (311) 5q5 + 16q4q1 + 15q3q2 +
51
2 q3q2

1 + 24q2
2q1 + 27q2q3

1 +
9
2 q5

1

0 (221) 5q5 + 16q4q1 + 12q3q2 + 24q3q2
1 + 20q2

2q1 + 24q2q3
1 + 4q5

1

0 (1111) 16q4 + 27q3q1 + 12q2
2 + 24q2q2

1 + 4q4
1

0 (2111) 25q5 + 64q4q1 + 54q3q2 + 81q3q2
1 + 72q2

2q1 + 70q2q3
1 + 10q5

1

1 (2) 1
4 q2 +

1
12 q2

1

1 (3) q3 +
3
2 q2q1 +

3
8 q3

1

1 (4) 5
2 q4 + 6q3q1 +

7
3 q2

2 +
20
3 q2q2

1 +
4
3 q4

1

1 (5) 5q5 +
50
3 q4q1 +

25
2 q3q2 +

625
24 q3q2

1 +
125

6 q2
2q1 +

625
24 q2q3

1 +
625
144 q5

1

1 (11) 1
6 q2 +

1
24 q2

1

1 (21) 3
2 q3 +

5
3 q2q1 +

1
3 q3

1

1 (31) 6q4 +
45
4 q3q1 +

9
2 q2

2 +
81
8 q2q2

1 +
27
16 q4

1

1 (22) 14
3 q4 + 9q3q1 +

10
3 q2

2 + 8q2q2
1 +

4
3 q4

1

1 (41) 50
3 q5 +

136
3 q4q1 +

104
3 q3q2 +

176
3 q3q2

1 + 48q2
2q1 +

448
9 q2q3

1 +
64
9 q5

1

1 (32) 25
2 q5 +

104
3 q4q1 + 24q3q2 +

355
8 q3q2

1 + 34q2
2q1 +

147
4 q2q3

1 +
21
4 q5

1

1 (111) 9
4 q3 + 2q2q1 +

1
3 q3

1

1 (211) 40
3 q4 +

81
4 q3q1 + 8q2

2 +
91
6 q2q2

1 +
13
6 q4

1

1 (311) 625
12 q5 +

352
3 q4q1 +

355
4 q3q2 +

511
4 q3q2

1 + 104q2
2q1 + 93q2q3

1 +
93
8 q5

1

1 (221) 125
3 q5 + 96q4q1 + 68q3q2 + 104q3q2

1 +
244

3 q2
2q1 +

224
3 q2q3

1 +
28
3 q5

1

2 (2) 1
48 q2 +

1
240 q2

1

2 (3) 3
4 q3 +

27
40 q2q1 +

9
80 q3

1

2 (4) 41
6 q4 +

54
5 q3q1 +

61
15 q2

2 +
364
45 q2q2

1 +
52
45 q4

1

2 (5) 425
12 q5 +

250
3 q4q1 +

1375
24 q3q2 +

4375
48 q3q2

1 +
625

9 q2
2q1 +

3125
48 q2q3

1 +
3125
384 q5

1

2 (11) 1
120 q2 +

1
720 q2

1

2 (21) 27
40 q3 +

91
180 q2q1 +

13
180 q3

1

2 (31) 54
5 q4 +

567
40 q3q1 +

27
5 q2

2 +
729
80 q2q2

1 +
729
640 q4

1

2 (22) 122
15 q4 +

54
5 q3q1 +

182
45 q2

2 +
104
15 q2q2

1 +
13
15 q4

1

2 (41) 250
3 q5 +

7448
45 q4q1 +

1736
15 q3q2 +

7024
45 q3q2

1 +
1808
15 q2

2q1 +
1472

15 q2q3
1 +

1472
135 q5

1

2 (32) 1375
24 q5 +

1736
15 q4q1 +

1561
20 q3q2 +

1747
16 q3q2

1 +
412

5 q2
2q1 +

2727
40 q2q3

1 +
303
40 q5

1

3 (2) 1
1440 q2 +

1
10080 q2

1

3 (3) 9
40 q3 +

81
560 q2q1 +

81
4480 q3

1

3 (4) 73
9 q4 +

324
35 q3q1 +

1094
315 q2

2 +
328
63 q2q2

1 +
328
567 q4

1

3 (5) 8125
72 q5 +

15200
63 q4q1 +

134375
1008 q3q2 +

1328125
8064 q3q2

1 +
15625
126 q2

2q1 +
6640625

72576 q2q3
1 +

1328125
145152 q5

1
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B Table of pruned double Hurwitz numbers

g (µ1, . . . , µn) PHg,n(µ1, . . . , µn) evaluated at s = 1

0 (11) q2 +
1
2 q2

1

0 (21) q3 + q2q1 +
1
6 q3

1

0 (31) q4 + q3q1 +
1
2 q2

2 +
1
2 q2q2

1 +
1

24 q4
1

0 (22) q4 + q3q1 + q2
2 + q2q2

1 +
1
6 q4

1

0 (41) q5 + q4q1 + q3q2 +
1
2 q3q2

1 +
1
2 q2

2q1 +
1
6 q2q3

1 +
1

120 q5
1

0 (32) q5 + q4q1 + 2q3q2 + q3q2
1 +

3
2 q2

2q1 +
5
6 q2q3

1 +
11

120 q5
1

0 (111) 3q3 + 4q2q1 + q3
1

0 (211) 4q4 + 6q3q1 + 4q2
2 + 6q2q2

1 + q4
1

0 (311) 5q5 + 8q4q1 + 12q3q2 + 9q3q2
1 + 12q2

2q1 + 8q2q3
1 + q5

1

0 (221) 5q5 + 8q4q1 + 12q3q2 + 9q3q2
1 + 12q2

2q1 + 8q2q3
1 + q5

1

0 (1111) 16q4 + 27q3q1 + 12q2
2 + 24q2q2

1 + 4q4
1

0 (2111) 25q5 + 48q4q1 + 54q3q2 + 54q3q2
1 + 60q2

2q1 + 46q2q3
1 + 6q5

1

1 (2) 1
4 q2 +

1
12 q2

1

1 (3) q3 + q2q1 +
5
24 q3

1

1 (4) 5
2 q4 + 3q3q1 +

11
6 q2

2 +
5
2 q2q2

1 +
3
8 q4

1

1 (5) 5q5 +
20
3 q4q1 + 9q3q2 +

51
8 q3q2

1 + 8q2
2q1 + 5q2q3

1 +
7

12 q5
1

1 (11) 1
6 q2 +

1
24 q2

1

1 (21) 3
2 q3 +

3
2 q2q1 +

7
24 q3

1

1 (31) 6q4 +
33
4 q3q1 +

13
3 q2

2 +
41
6 q2q2

1 +
25
24 q4

1

1 (22) 14
3 q4 + 6q3q1 +

10
3 q2

2 +
29
6 q2q2

1 +
17
24 q4

1

1 (41) 50
3 q5 +

82
3 q4q1 +

63
2 q3q2 +

223
8 q3q2

1 +
94
3 q2

2q1 +
265
12 q2q3

1 +
65
24 q5

1

1 (32) 25
2 q5 +

58
3 q4q1 +

45
2 q3q2 +

151
8 q3q2

1 +
64
3 q2

2q1 +
173
12 q2q3

1 +
41
24 q5

1

1 (111) 9
4 q3 + 2q2q1 +

1
3 q3

1

1 (211) 40
3 q4 + 18q3q1 + 8q2

2 +
79
6 q2q2

1 +
11
6 q4

1

1 (311) 625
12 q5 +

272
3 q4q1 +

173
2 q3q2 +

707
8 q3q2

1 + 86q2
2q1 +

190
3 q2q3

1 +
179
24 q5

1

1 (221) 125
3 q5 +

208
3 q4q1 + 68q3q2 +

263
4 q3q2

1 +
196

3 q2
2q1 +

139
3 q2q3

1 +
16
3 q5

1

2 (2) 1
48 q2 +

1
240 q2

1

2 (3) 3
4 q3 +

19
30 q2q1 +

5
48 q3

1

2 (4) 41
6 q4 +

171
20 q3q1 +

161
40 q2

2 +
439
72 q2q2

1 +
119
144 q4

1

2 (5) 425
12 q5 + 56q4q1 + 55q3q2 +

821
16 q3q2

1 +
3689
72 q2

2q1 +
567
16 q2q3

1 +
4627
1152 q5

1

2 (11) 1
120 q2 +

1
720 q2

1

2 (21) 27
40 q3 +

179
360 q2q1 +

17
240 q3

1

2 (31) 54
5 q4 +

513
40 q3q1 +

647
120 q2

2 +
389
48 q2q2

1 +
637
640 q4

1

2 (22) 122
15 q4 +

189
20 q3q1 +

182
45 q2

2 +
427
72 q2q2

1 +
521
720 q4

1

2 (41) 250
3 q5 +

1198
9 q4q1 +

915
8 q3q2 +

9193
80 q3q2

1 +
37199

360 q2
2q1 +

5733
80 q2q3

1 +
14651
1920 q5

1

2 (32) 1375
24 q5 +

266
3 q4q1 +

619
8 q3q2 +

751
10 q3q2

1 +
24629
360 q2

2q1 +
33397

720 q2q3
1 +

28123
5760 q5

1

3 (2) 1
1440 q2 +

1
10080q2

1

3 (3) 9
40 q3 +

361
2520 q2q1 +

103
5760 q3

1

3 (4) 73
9 q4 +

2403
280 q3q1 +

17497
5040 q2

2 +
3437
720 q2q2

1 +
27187
51840 q4

1

3 (5) 8125
72 q5 +

10456
63 q4q1 +

37137
280 q3q2 +

247069
1920 q3q2

1 +
78973

720 q2
2q1 +

1847309
25920 q2q3

1 +
4427
640 q5

1
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