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Abstract

This thesis explores the intersection theory onMg,n, the moduli space of genus g stable curves
with n marked points. Our approach will be via hyperbolic geometry and our starting point
will be the recent work of Mirzakhani.

One of the landmark results concerning the intersection theory onMg,n is Witten’s conjecture.
Kontsevich was the first to provide a proof, the crux of which is a formula involving combi-
natorial objects known as ribbon graphs. A subsequent proof, due to Mirzakhani, arises from
consideringMg,n(L), the moduli space of genus g hyperbolic surfaces with n marked geodesic
boundaries whose lengths are prescribed by L = (L1, L2, . . . , Ln). Through the Weil–Petersson
symplectic structure on this space, one can associate to it a volume Vg,n(L). Mirzakhani pro-
duced a recursion which can be used to effectively calculate these volumes. Furthermore, she
proved that Vg,n(L) is a polynomial whose coefficients store intersection numbers on Mg,n.
Her work allows us to adopt the philosophy that any meaningful statement about the volume
Vg,n(L) gives a meaningful statement about the intersection theory onMg,n, and vice versa.

Two new results, known as the generalised string and dilaton equations, are introduced in
this thesis. These take the form of relations between the Weil–Petersson volumes Vg,n(L) and
Vg,n+1(L, Ln+1). Two distinct proofs are supplied — one arising from algebraic geometry and
the other from Mirzakhani’s recursion. However, the particular form of the generalised string
and dilaton equations is highly suggestive of a third proof, using the geometry of hyperbolic
cone surfaces. We briefly discuss ideas related to such an approach, although this largely re-
mains work in progress. Applications of these relations include fast, effective algorithms to
calculate the Weil–Petersson volumes in genus 0 and 1. We also deduce a formula for the vol-
ume Vg,0, a case not dealt with by Mirzakhani.

In this thesis, we also give a new proof of Kontsevich’s combinatorial formula, relating the inter-
section theory onMg,n to the combinatorics of ribbon graphs. Mirzakhani’s theorem suggests
that the asymptotics of Vg,n(L) store valuable information. We demonstrate that this informa-
tion is precisely Kontsevich’s combinatorial formula. Our proof involves using hyperbolic ge-
ometry to develop a combinatorial model forMg,n(L) and to analyse the asymptotic behaviour
of the Weil–Petersson symplectic form. The key geometric intuition involved is the fact that, as
the boundary lengths of a hyperbolic surface approach infinity, the surface resembles a ribbon
graph after appropriate rescaling of the metric. This work draws together Kontsevich’s combi-
natorial approach and Mirzakhani’s hyperbolic approach to Witten’s conjecture into a coherent
narrative.
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Preface

Chapter 1 is a review of known results concerning moduli spaces of curves, with the appropriate
references to the literature contained therein.

Chapter 2 includes results obtained in collaboration with Paul Norbury. More specifically, Sec-
tion 2.1, Section 2.2 and parts of Section 2.4 contain the basic content of the joint paper [9],
though substantially rewritten and elaborated on, from my own perspective. Section 2.3 and
the remaining parts of Section 2.4 constitute wholly original work.

Chapter 3 is the product of my own research, although some of the ideas have been drawn
from various sources in the literature. In particular, the proof of Theorem 3.9 parallels the work
of Bowditch and Epstein [5]. Furthermore, the concluding arguments in this chapter follow
the structure of Kontsevich’s proof of his combinatorial formula [26]. We note that Section 3.4
essentially reproduces the results appearing in Appendix C of Kontsevich’s paper, though the
exposition is greatly expanded to include more thorough and more elementary proofs.
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Chapter 0

Overview

In this chapter, we provide an overview of the thesis, including a discussion of the most im-
portant results obtained, though without all of the gory details. The exposition is far from
self-contained, so those without the requisite background may wish to skim through the chap-
ter for a taste of what lies ahead. On the other hand, those acquainted with the language and
methodology involved in the study of moduli spaces of curves should be able to ascertain the
scope of this thesis.

A gentle introduction to moduli spaces of curves

In this thesis, we explore the fascinating world of intersection theory on moduli spaces of
curves. The focus will be on the moduli space of genus g stable curves with n marked points, de-
noted byMg,n. These geometric objects possess a rich structure and arise naturally in the study
of algebraic curves and how they vary in families. One of the earliest results in the area dates
back to Riemann, who essentially calculated that the real dimension of Mg,n is 6g − 6 + 2n.
Subsequently, moduli spaces of curves have been studied by analysts, topologists and algebraic
geometers, with each group contributing their own set of tools and techniques. There has been
a recent surge of interest in moduli spaces of curves, catalysed by the discovery of their con-
nection with string theory. As a result, they have become rather important objects of study in
mathematics over the past couple of decades. In fact, moduli spaces of curves now lie at the cen-
tre of a rich confluence of somewhat disparate areas such as geometry, topology, combinatorics,
integrable systems, matrix models and theoretical physics.

A natural approach to understanding the structure of geometric objects is through algebraic
invariants, such as homology and cohomology. To this end, a great deal of research has been
dedicated to the tautological ring ofMg,n. This is a subset of the cohomology ring H∗(Mg,n, Q)
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2 0. Overview

which is far more tractable, yet retains much of the geometrically valuable information. Of cen-
tral importance in the tautological ring are the psi-classes ψ1, ψ2, . . . , ψn ∈ H2(Mg,n, Q), which
are defined as the Chern classes of certain natural complex line bundles overMg,n. Taking cup
products of the psi-classes and evaluating against the fundamental class, one obtains intersec-
tion numbers of the form

〈τα1 τα2 . . . ταn〉 =
∫
Mg,n

ψα1
1 ψα2

2 . . . ψαn
n ∈ Q.

There is reason to believe that these psi-class intersection numbers, in some precise sense, store
all of the information of the tautological ring. Therefore, their calculation is of tremendous
significance to understanding the moduli spaceMg,n.

One of the landmark results concerning the intersection theory on moduli spaces of curves is
Witten’s conjecture, now Kontsevich’s theorem. In his foundational paper [57], Witten posited
that a particular generating function for the psi-class intersection numbers is governed by the
KdV hierarchy. There are two rather striking aspects of Witten’s conjecture. The first is the fact
that it arose from the analysis of a model of two-dimensional quantum gravity. This highlights
the amazing interplay between pure mathematics and theoretical physics that emerges from the
study of moduli spaces of curves. The second is the appearance of the KdV hierarchy, an infinite
sequence of non-linear partial differential equations which begins with the KdV equation, the
prototypical example of an exactly solvable model. This hints at an extraordinary amount of
structure underlying moduli spaces of curves.

The year after Witten stated his conjecture, Kontsevich produced a proof as part of his doctoral
thesis [26]. One of the main tools used was a cell decomposition of the decorated uncompacti-
fied moduli spaceMg,n ×Rn

+, where the cells are indexed by combinatorial objects known as
ribbon graphs.1 This allowed him to deduce a formula which combinatorialises the psi-class in-
tersection numbers into an unconventional enumeration of trivalent ribbon graphs. From this
point, Kontsevich was able to use Feynman diagram techniques and a particular matrix model
to show that Witten’s conjecture follows as a corollary.

Subsequently, several distinct proofs of Witten’s conjecture have emerged. However, of par-
ticular relevance to this thesis is Mirzakhani’s proof [33, 34], which adopts the approach of
hyperbolic geometry. For an n-tuple of positive real numbers L = (L1, L2, . . . , Ln), letMg,n(L)
denote the moduli space of genus g hyperbolic surfaces with n marked geodesic boundaries
of lengths L1, L2, . . . , Ln. This space possesses a symplectic structure via the Weil–Petersson
symplectic form ω. Therefore, one can endowMg,n(L) with a well-defined volume, which we
denote by Vg,n(L). It is natural to explore the behaviour of the symplectic structure and volume
ofMg,n(L) as one varies the boundary lengths.

1The terms fatgraph and ribbon graph are used interchangeably in the literature. The notion was introduced by
Penner [48] who coined the former, while Kontsevich adopted the latter. Which term to use is largely a matter of taste
or, in the case of this author, a matter of habit.
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The calculation of Vg,n(L) in all generality was first performed by Mirzakhani, who accom-
plished the following.

She produced a scheme for integrating a special class of functions over the moduli space
Mg,n(L) and generalised McShane’s identity, a remarkable formula concerning lengths of
geodesics on a hyperbolic surface. Using these in conjunction, Mirzakhani managed to
deduce a recursive formula from which the Weil–Petersson volumes could be effectively
calculated. One corollary is the fact that Vg,n(L) is an even symmetric polynomial in the
variables L1, L2, . . . , Ln of degree 6g− 6 + 2n.

Mirzakhani used certain results concerning symplectic reduction in order to prove that

Vg,n(L) = ∑
|α|+m=3g−3+n

(2π2)m ∫
Mg,n

ψα1
1 ψα2

2 . . . ψαn
n κm

1

2|α|α!m!
L2α1

1 L2α2
2 . . . L2αn

n .

Here, and subsequently in this thesis, α = (α1, α2, . . . , αn) represents an n-tuple of non-
negative integers. In addition, we will adopt the shorthand |α| = α1 + α2 + · · ·+ αn and
α! = α1!α2! . . . αn!. Note the appearance of κ1 ∈ H2(Mg,n, Q), which denotes the first
Mumford–Morita–Miller class. The upshot of Mirzakhani’s theorem is the fact that the
volume Vg,n(L) is a polynomial whose coefficients store intersection numbers on Mg,n.
In particular, note that the intersection numbers of psi-classes alone are stored in the top
degree part.

Of course, combining these two results yields a recursive procedure for calculating all psi-class
intersection numbers. Therefore, it should come as little surprise that Mirzakhani was able to
prove Witten’s conjecture. What is surprising is that she accomplished this by directly verifying
that Witten’s generating function for the psi-class intersection numbers satisfies certain equa-
tions known as Virasoro constraints. Mirzakhani’s proof was also the first to appear which did
not require the use of a matrix model. But perhaps the most notable aspect of Mirzakhani’s
work is the fact that it is deeply rooted in hyperbolic geometry.

Weil–Petersson volume relations and hyperbolic cone surfaces

The main goal of this thesis is to explore intersection theory on moduli spaces of curves, using
the work of Mirzakhani as a starting point. Her results allow us to adopt the philosophy that
any meaningful statement about the volume Vg,n(L) gives a meaningful statement about the
intersection theory on Mg,n, and vice versa. The guiding viewpoint is that the approach of
hyperbolic geometry has something to contribute to this theory. A particular consequence is
that one may be able to find new relations among the intersection numbers on moduli spaces of
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curves. In this thesis, we introduce two such results, which relate the Weil–Petersson volumes
Vg,n(L) and Vg,n+1(L, Ln+1). For reasons which will hopefully become clear, we refer to these
as the generalised string and dilaton equations.2

Theorem 2.1 (Generalised string equation). For 2g− 2 + n > 0, the Weil–Petersson volumes satisfy
the following relation.

Vg,n+1(L, 2πi) =
n

∑
k=1

∫
LkVg,n(L) dLk

Theorem 2.2 (Generalised dilaton equation). For 2g − 2 + n > 0, the Weil–Petersson volumes
satisfy the following relation.

∂Vg,n+1

∂Ln+1
(L, 2πi) = 2πi(2g− 2 + n)Vg,n(L)

The particular form of these relations suggests various things. For example, their succinct na-
ture is evidence that the volume polynomial Vg,n(L) is a valuable way to package intersection
numbers on Mg,n. Furthermore, it appears that these may be the first two in a sequence of
equations which describe the derivatives of the Weil–Petersson volumes, with one argument
evaluated at 2πi. The appearance of the number 2πi itself indicates that there should be some
interesting geometry underlying these results. In fact, we claim that a hyperbolic geometric ap-
proach is one of three natural strategies with which to prove the generalised string and dilaton
equations.

Algebraic geometry. By Mirzakhani’s theorem, the coefficients of the volume polynomials
Vg,n(L) and Vg,n+1(L, Ln+1) store intersection numbers on moduli spaces of curves. Thus,
we may unravel the string and dilaton equations to obtain equivalent statements involv-
ing the intersection theory onMg,n andMg,n+1. The advantage of the algebro-geometric
approach is that there is a natural way to relate intersection numbers on these two spaces.
Such relations arise from the analysis of cohomology classes under pull-back and push-
forward by the forgetful morphism π : Mg,n+1 → Mg,n, which forgets the last marked
point. We prove the generalised string and dilaton equations in this manner.

Mirzakhani’s recursion. One way to pass from a hyperbolic surface with n + 1 boundary
components to a hyperbolic surface with n boundary components is to remove a pair of
pants. This is essentially the mechanism by which Mirzakhani’s recursive formula in-
ductively reduces the calculation of Vg,n(L). Since it governs all of the Weil–Petersson
volumes, the generalised string and dilaton equations should be encapsulated, in some

2It is quite reasonable to wonder why the first theorem in Chapter 0 has been labelled Theorem 2.1. This is due to
the fact that it also appears as the first theorem in Chapter 2. Indeed, throughout this chapter, all results have been
numbered according to their subsequent appearance in the thesis.
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sense, in her recursion. We show that this is indeed true and, furthermore, that this ap-
proach requires certain interesting relations concerning the Bernoulli numbers.

Hyperbolic cone surfaces. Another way to pass from a hyperbolic surface with n + 1 bound-
ary components to a hyperbolic surface with n boundary components is to degenerate
one of them to a cone point with cone angle 2π. The evaluation Ln+1 = 2πi in the gener-
alised string and dilaton equations is highly suggestive that these relations may be proven
using the geometry of hyperbolic cone surfaces. We briefly discuss these ideas, which
should lead to new proofs and insights, although such an approach largely remains work
in progress.

There are various simple applications of the generalised string and dilaton equations. For ex-
ample, we prove that they uniquely determine V0,n+1(L, Ln+1) from V0,n(L) and V1,n+1(L, Ln+1)
from V1,n(L). Together with the base cases V0,3(L1, L2, L3) and V1,1(L1) = 1

48 (L2
1 + 4π2), this re-

sults in an effective algorithm to compute the Weil–Petersson volumes in genus 0 and genus 1
much faster than implementing Mirzakhani’s recursion. We also prove the following theorem,
which includes a formula for Vg,0, a case not dealt with by Mirzakhani.

Theorem 2.12.

(i) When n = 1, the volume factorises as Vg,1(L) = (L2 + 4π2)Pg(L) for some polynomial Pg.

(ii) For g ≥ 2, we have the following formula.

Vg,0 =
1

4πi(g− 1)
∂Vg,1

∂L
(2πi) =

Pg(2πi)
g− 1

As mentioned earlier, the generalised string and dilaton equations appear to be part of a poten-
tially infinite sequence of relations. The search for these has uncovered the following equation
involving the second derivative of the Weil–Petersson volumes. Of course, the hope is that there
will be more to follow.

Proposition 2.14. For 2g− 2 + n > 0, the Weil–Petersson volumes satisfy the following relation.

∂2Vg,n+1

∂L2
n+1

(L, 2πi) =

[
n

∑
k=1

Lk
∂

∂Lk
− (4g− 4 + n)

]
Vg,n(L)

A new approach to Kontsevich’s combinatorial formula

As mentioned earlier, the crux of Kontsevich’s proof of Witten’s conjecture is a formula which
relates psi-class intersection numbers to combinatorial objects known as ribbon graphs. These
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are defined to be graphs with all vertices of degree at least three such that there is a cyclic
ordering of the half-edges meeting at each vertex. This cyclic ordering allows one to thicken the
graph in a well-defined manner to obtain a surface with boundary. We say that the ribbon graph
is of type (g, n) if this results in a connected surface with genus g and n boundary components
labelled from 1 up to n. For a ribbon graph Γ, there is the notion of its group of automorphisms,
which is denoted by Aut Γ. Let the set of ribbon graphs of type (g, n) be RGg,n and the subset
consisting of trivalent graphs be TRGg,n. With this notation in place, we may state Kontsevich’s
combinatorial formula as follows.

Theorem 3.4 (Kontsevich’s combinatorial formula). The psi-class intersection numbers on Mg,n

satisfy the following formula.

∑
|α|=3g−3+n

〈τα1 τα2 . . . ταn〉
n

∏
k=1

(2αk − 1)!!

s2αk+1
k

= ∑
Γ∈TRGg,n

22g−2+n

|Aut Γ| ∏
e∈E(Γ)

1
s`(e) + sr(e)

Here, E(Γ) denotes the set of edges of Γ and the expression (2α− 1)!! is a shorthand for (2α)!
2αα! . For an

edge e, the terms `(e) and r(e) are the labels of the boundaries on its left and right.

Observe that the left hand side of Kontsevich’s combinatorial formula is a polynomial in the
variables 1

s1
, 1

s2
, . . . , 1

sn
whose coefficients store all psi-class intersection numbers onMg,n. The

right hand side can be considered a particular enumeration of trivalent ribbon graphs of type
(g, n) which, a priori, appears only to be a rational function of s1, s2, . . . , sn. That the two sides
concur is quite a remarkable phenomenon.

In this thesis, we give a new proof of Kontsevich’s combinatorial formula via hyperbolic geom-
etry. Our starting point is Mirzakhani’s theorem, which relates intersection numbers on moduli
spaces of curves to volumes of moduli spaces of hyperbolic surfaces. In particular, we ob-
served earlier that the psi-class intersection numbers onMg,n are stored in the top degree part
of Vg,n(L). This suggests that it may be useful to consider the asymptotics of the Weil–Petersson
volumes. In fact, a directly corollary of Mirzakhani’s theorem is the fact that the Laplace trans-
form of the asymptotics

L
{

lim
N→∞

Vg,n(Nx1, Nx2, . . . , Nxn)
N6g−6+2n

}
is precisely the left hand side of Kontsevich’s combinatorial formula. It practically goes without
saying that we then wish to prove that this expression is also equal to the right hand side. The
proof can be conceptually divided into three main parts.

Part 1: Why do we obtain a sum over trivalent ribbon graphs?

Embedded on a hyperbolic surface with geodesic boundary is a ribbon graph, formed
from the set of points with at least two shortest paths to the boundary. In fact, there is
a way to use the hyperbolic structure to assign a positive real number to every edge so
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that one obtains what is referred to as a metric ribbon graph. We refer to this number
as the length of the edge and the sum of the numbers around a boundary as the length
of the boundary. The space of metric ribbon graphs of type (g, n) with boundary lengths
prescribed by x = (x1, x2, . . . , xn) forms a topological space — in fact, an orbifold — which
we denote byMRGg,n(x). Using an argument analogous to that of Bowditch and Epstein
which appears in [5], we prove the following.

Theorem 3.9. The spacesMg,n(x) andMRGg,n(x) are homeomorphic as orbifolds.

Therefore, one may equivalently considerMRGg,n(x) rather thanMg,n(x). One advan-
tage is that the space of metric ribbon graphs possesses the natural orbifold cell decompo-
sition

MRGg,n(x) =
⋃

Γ∈RGg,n

MRGΓ(x),

where a metric ribbon graph lies in the setMRGΓ(x) if its underlying ribbon graph coin-
cides with Γ. Furthermore,MRGΓ(x) is top-dimensional if and only if the ribbon graph
Γ is trivalent. Since the volume does not care about cells of positive codimension, it can
be expressed as a sum over trivalent ribbon graphs as follows, where VΓ(x) denotes the
Weil–Petersson volume ofMRGΓ(x).

Vg,n(x) = ∑
Γ∈TRGg,n

VΓ(x)

Part 2: Why do we obtain a product over the edges of the trivalent ribbon graph?

Fix a ribbon graph Γ ∈ TRGg,n and an n-tuple of positive real numbers x = (x1, x2, . . . , xn).
Then for every positive real number N, we have the map

f :MRGΓ(x)→MRGΓ(Nx)→Mg,n(Nx),

which is a homeomorphism onto its image. This is the composition of two maps — the
first scales the ribbon graph metric by a factor of N while the second uses the Bowditch–
Epstein construction. Consider the normalised Weil–Petersson symplectic form ω

N2 on
Mg,n(Nx) and note that it pulls back via f to a symplectic form onMRGΓ(x). The be-
haviour of this 2-form as N approaches infinity is described by the theorem below. The
proof of this statement, which relies on a mixture of hyperbolic geometry and combina-
torics, is one of the main technical contributions in this part of the thesis. The key geo-
metric intuition involved is the fact that, as the boundary lengths of a hyperbolic surface
approach infinity, the surface resembles a ribbon graph after appropriate rescaling of the
metric. It has been brought to our attention that this result, with an alternative proof, has
also appeared recently in the work of Mondello [36].

Theorem 3.20. In the N → ∞ limit, f ∗ω
N2 converges pointwise onMRGΓ(x) to a 2-form Ω.
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Note that the space of metric ribbon graphs MRGΓ(x) possesses a tractable system of
coordinates, provided by the edge lengths. In particular, with respect to these coordinates,
Ω is a constant 2-form. Furthermore, MRGΓ(x) has a simple description — it is the
quotient of a polytope by the action of the finite group Aut Γ. Therefore, modulo some
analytical details, we have the equality

lim
N→∞

VΓ(Nx)
N6g−6+2n =

∫
MRGΓ(x)

Ω3g−3+n

(3g− 3 + n)!
.

From the previous discussion, this is essentially the integral of a constant volume form
over a polytope. The integration is most easily evaluated after taking the Laplace trans-
form, which results in the desired product over edges of Γ. Furthermore, the action of the
finite group Aut Γ on this polytope naturally introduces the factor of 1

|Aut Γ| which appears
on the right hand side of Kontsevich’s combinatorial formula.

Part 3: Where does the combinatorial constant come from?

Interestingly, the remaining factor of 22g−2+n on the right hand side of Kontsevich’s com-
binatorial formula is no simple matter to explain. In fact, its appearance boils down to the
following statement.

Theorem 3.22. Let Γ be a trivalent ribbon graph of type (g, n) with n edges coloured white and the
remaining 6g− 6 + 2n edges coloured black. Let A be the n× n adjacency matrix formed between
the faces and the white edges. Let B be the (6g − 6 + 2n) × (6g − 6 + 2n) oriented adjacency
matrix formed between the black edges. Then

det B = 22g−2(det A)2.

Perhaps surprisingly, there does not exist a purely combinatorial proof of this statement
in the literature. Instead, we essentially follow the argument from Appendix C of Kont-
sevich’s paper [26], which uses the torsion of an acyclic chain complex associated to a
trivalent ribbon graph. However, our exposition is greatly expanded to make the proof
both more thorough and more elementary.

Of course, Kontsevich’s combinatorial formula in itself is not a new result. What is novel, in this
part of the thesis, is the hyperbolic geometric approach and the explicit connection between the
work of Kontsevich and Mirzakhani. We believe that this proof of Kontsevich’s combinatorial
formula is rather intuitive in nature, avoids the technical difficulties which are inherent in the
original proof, and may lead to further insights. Indeed, as a part of joint work with Safnuk [10],
we have extended these ideas to produce a recursive formula à la Mirzakhani which computes
the asymptotics of Vg,n(L). The differential version of this formula is the Virasoro constraint
condition, thereby providing a new path to Witten’s conjecture. We also believe that it will not
be difficult to extend these ideas to integration over the combinatorially defined Witten cycles.



Chapter 1

A gentle introduction to moduli

spaces of curves

In this chapter, we introduce the main characters of our story, moduli spaces of curves. The aim
is to provide a concise exposition of the important results and ideas which form the background
to this thesis. Newcomers to the area will hopefully find this chapter a suitable point of entry to
the now vast body of knowledge concerning moduli spaces of curves. However, the selection
of material presented here is necessarily only a small subset, chosen to suit our specific needs
and reflect our particular point of view. For example, a great deal of attention has been paid
to intersection theory on moduli spaces of curves, to the interaction between algebraic and
hyperbolic geometry, and to the recent results of Mirzakhani. Throughout the chapter, details
and proofs have often been omitted for the sake of clarity and space. For those interested in
further information, there are numerous references to the relevant sources in the literature.1

1.1 Moduli spaces of curves

First principles

Informally, the points of a moduli space classify objects of a certain type, while its geometry
reflects the way in which these objects can vary in families. For example, consider the moduli
space

Mg = {C | C is a smooth algebraic curve of genus g}/ ∼
1In particular, we start by mentioning the articles [43, 55, 56] which have influenced our exposition and which are

suitable for those wishing to discover this remarkable area of mathematics for the first time.

9
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where C ∼ D if and only if there exists an isomorphism from C to D.2 Now suppose that
φ : X → B is a family of smooth curves of genus g. (More precisely, φ should be a proper
flat morphism of schemes whose fibres are smooth curves of genus g.) Then we can form the
map f : B → Mg which sends b to the point in Mg that represents the equivalence class of
the fibre over b. One would certainly expect this map to be continuous, and the setMg can be
endowed with a well-defined topology such that this is true. Furthermore, there should be a
family π : Cg → Mg of smooth curves of genus g such that its pull-back via f produces the
original family over B. Such a family is referred to as the universal family overMg.

X Cg

B

φ

∨ f
>Mg

π

∨
X = f ∗Cg

Conversely, every map from B toMg gives rise to a family of smooth curves of genus g over
B by pulling back the universal family. This provides us with an extremely useful dictionary
correspondence which translates statements about families of curves to statements about the
geometry of the corresponding moduli space.3

Unfortunately, if one adopts this somewhat naive point of view, then certain technical issues
arise in the construction of moduli spaces of curves. The root of these evils is the fact that some
algebraic curves possess non-trivial automorphisms. We will address three particular problems
caused by such curves, and these will lead us to develop the more refined notion of the moduli
stackMg,n.

Since there is only one smooth genus 0 curve up to isomorphism, one might expectM0

to be a point. This, in turn, would imply that the pull-back of the universal family over
any base would be trivial. However, it is clear that there exist locally trivial yet globally
non-trivial families with fibre CP1. The discrepancy is due to the fact that CP1 has a large
automorphism group which allows trivial pieces to be glued together in a non-trivial way.
One solution to this problem is to consider curves with sufficiently many marked points to
ensure that their automorphism groups are finite. Therefore, we define the moduli space

Mg,n =

{
(C, p1, p2, . . . , pn)

∣∣∣∣∣ C is a smooth algebraic curve of genus g
with n distinct points p1, p2, . . . , pn

}/
∼

2We decree that all algebraic curves referred to in this thesis are to be complex, connected and complete.
3The informed reader will hopefully be reminded of the relationship between vector bundles and Grassmannians,

whose theory may be considered a paradigm for the theory of moduli spaces of curves. When studying Grassmannians,
one is normally motivated to consider their intersection theory, which has a rich structure relating to combinatorics and
representation theory. In a similar vain, we consider the intersection theory on moduli spaces of curves, which has a
similarly rich structure, but of a very different nature.



1.1. Moduli spaces of curves 11

where (C, p1, p2, . . . , pn) ∼ (D, q1, q2, . . . , qn) if and only if there exists an isomorphism
from C to D which sends pk to qk for all k. The resulting equivalence classes are referred to
as pointed curves. Note that the automorphism group of a pointed curve is finite as long
as there are at least three marked points in the case of genus 0 and at least one marked
point in the case of genus 1. As a result, we will only consider the moduli spaces Mg,n

which satisfy the Euler characteristic condition 2− 2g− n < 0. Pointed curves arise natu-
rally in many geometric situations — for example, given a family of curves with a number
of disjoint sections — so the added effort required to keep track of the marked points is
outweighed by the added benefit.

Later in this chapter, we discuss the construction of the moduli spaceMg,n using an ap-
proach from Teichmüller theory. There are actually a few different constructions, although
there is one common feature underlying them all. They each consider pointed curves en-
dowed with some extra structure, so that the corresponding parameter space is a man-
ifold. Taking the quotient of this space by the relation which identifies the additional
structures then yields the moduli space as the quotient of a manifold by a group action.
In all such constructions, there necessarily exist points where the action is not free, and
these correspond precisely to those curves with non-trivial automorphism group. There-
fore, Mg,n is naturally an orbifold, where the orbifold group at a point is canonically
isomorphic to the automorphism group of the corresponding pointed curve. However,
the situation is not so bad, since the following theorem — due to Boggi and Pikaart [4]
and also to Looijenga [28] — allows one to make sense of calculations on the orbifold by
lifting to a finite cover.

Theorem 1.1. There exists a finite cover M̃g,n →Mg,n such that M̃g,n is a smooth manifold.

The upshot is that many of the techniques and theorems which apply to manifolds can
be carried over to the orbifold setting, with only the obvious modifications required. For
our purposes, note that it is necessary to consider the cohomology ofMg,n with rational
rather than integral coefficients.

There is no universal family Cg,n → Mg,n, at least not in the sense that we have de-
scribed. In fact, the fibre over a point inMg,n corresponding to a pointed curve C with
automorphism group G is C/G. Since curves with non-trivial automorphisms occur nat-
urally in families, this causes a real problem. The crux of the matter is that the universal
family cannot be constructed in the category of schemes, where most algebraic geometers
live. However, the issue disappears as long as one is willing to work in the category of
Deligne–Mumford stacks, first introduced in [8]. This category is ideal in the sense that
it is just large enough to allow for the construction of the universal family while still be-
ing restricted enough to retain geometric concepts such as smoothness, vector bundles,
cohomology, and so on.
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Admittedly, the definition of a Deligne–Mumford stack is rather technical. To present
it here would take us too far afield from our goal and may even obscure the geometric
nature of moduli spaces. However, one will not go too far wrong thinking of a smooth
Deligne–Mumford stack as a complex orbifold. The stack structure takes care of the extra
bookkeeping required to deal with curves with non-trivial automorphisms. Essentially,
this will allow us to treat the moduli space as smooth and ensure that there is a univer-
sal family over it. The reader interested in discovering more on stacks is encouraged to
consult [14] and the references contained therein.

Those troublesome curves with non-trivial automorphisms have led us to consider moduli
stacks of pointed curves. However, there is still one outstanding issue which needs to be ad-
dressed —Mg,n is not compact. To see this, observe that when two marked points on a pointed
curve approach each other, then the corresponding limit does not exist inMg,n. Of course, there
are numerous advantages in working with a compact space. And although there are various
ways to compactify the moduli space, it is becoming increasingly clear that the most profitable
is to use what is known as the Deligne–Mumford compactification. One of its virtues is that it
is modular — in other words, it is a moduli space for a well-behaved, easy to describe, class of
curves. In fact, all we need to do is gently relax our smoothness condition. Thus, we define the
Deligne–Mumford compactification of the moduli space

Mg,n =

{
(C, p1, p2, . . . , pn)

∣∣∣∣∣ C is a stable algebraic curve of genus g with
n distinct smooth points p1, p2, . . . , pn

}/
∼

where (C, p1, p2, . . . , pn) ∼ (D, q1, q2, . . . , qn) if and only if there exists an isomorphism from C
to D which sends pk to qk for all k. Here, an algebraic curve is called stable if it has at worst
nodal singularities and a finite automorphism group. The practical interpretation of this latter
condition is that every rational component of the curve must have at least three special points,
where a special point refers to a node or a marked point. It should be clear thatMg,n ⊆ Mg,n,
and we refer to Mg,n \ Mg,n as the boundary divisor. Theorem 1.1 can be extended to the
compactification as follows.

Theorem 1.2. There exists a finite cover M̃g,n →Mg,n such that M̃g,n is a smooth manifold. Further-
more, the boundary divisor lifts to a union of codimension two submanifolds intersecting transversally.

The question still remains as to which curve arises in the limit when two marked points ap-
proach each other. To see what the correct answer should be, consider a family of genus g
curves with n marked points φ : X → B, where B is smooth and of complex dimension 1. The
marked points give rise to n sections which we denote by σ1, σ2, . . . , σn : B → X. Suppose
that all fibres are stable pointed curves apart from over the point b where the sections σi and
σj intersect. In order to obtain a family of stable curves, one simply needs to blow up the sur-
face X at the point σi(b) = σj(b) to obtain π : X̃ → X. The new family of curves is given by
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φ̃ : X̃ → B where φ̃ = φ ◦ π. Note that the fibres are unchanged away from b, whereas the
new fibre over b consists of the old fibre plus the exceptional divisor obtained from blowing up.
Furthermore, the points σi(b) and σj(b) now lie on the exceptional divisor and are distinct as
long as the sections σi and σj intersected transversally. Therefore, in the limit when two marked
points approach each other, a CP1 bubbles off, containing these two marked points. This is a
particular instance of the more general process known as stable reduction.4

Theorem 1.3 (Stable reduction). Let b be a point on a smooth curve B and suppose that X is a family of
stable curves over B \ {b}. Then after a sequence of blow-ups and blow-downs and passing to a branched
cover of B, one can obtain a new family where all fibres are stable curves. Furthermore, the fibre over b in
this new family is uniquely determined.

More complicated stable pointed curves arise from more complicated limits, such as the exam-
ple shown in the following diagram.5

9
5

6

1

2

4

7

3

8

We note now the important foundational result that

dimRMg,n = 6g− 6 + 2n,

a calculation which dates back to Riemann. Later in this chapter, we will see how the uncom-
pactified moduli space Mg,n actually arises as the quotient of an open ball of real dimension
6g− 6 + 2n by a properly discontinuous group action.

Natural morphisms

One interesting and useful aspect of moduli spaces of pointed curves is the interplay between
them. As a simple example of this phenomenon, note that if g ≤ g′ and n ≤ n′, thenMg,n can
be considered a subvariety ofMg′ ,n′ . The following natural morphisms between moduli spaces
of curves are of particular importance.

4For further details on stable reduction, one need look no further than [22]. In fact, the book is an excellent reference
on the algebraic geometry of moduli spaces of curves in general.

5Recall that the singularities of a stable pointed curve must be nodal and, hence, locally look like xy = 0 at the origin.
In order to represent such a singularity on a two-dimensional page, one usually resorts to drawing the two curves as
pinched or tangent, both of which are misleading.
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Forgetful morphism. Given a stable genus g curve with n + 1 marked points, one can forget
the point labelled n + 1 to obtain a genus g curve with n marked points. Unfortunately,
the resulting curve may not be stable, but gives rise to a well-defined stable curve after
contracting all rational components with only two special points. This gives a map π :
Mg,n+1 →Mg,n, which we refer to as a forgetful morphism.

1 2

3

1 2

1 2

3

1
2

1 3

2

1

2

Gluing morphism I. Given a stable genus g curve with n + 2 marked points, one can glue
together the points labelled n + 1 and n + 2 to obtain a stable genus g curve with n marked
points. This gives a map gl1 :Mg,n+2 →Mg+1,n which we refer to as a gluing morphism.

1 2

3

1

Gluing morphism II. Given a stable genus g1 curve with n1 + 1 marked points and a stable
genus g2 curve with n2 + 1 marked points, one can glue together the last two points to
obtain a stable genus g1 + g2 curve with n1 + n2 marked points. This gives a map gl2 :
Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2 which we also refer to as a gluing morphism.

1

2
3

1
2

1

2

3

Permutation morphism. Given a stable genus g curve with n marked points and a permu-
tation σ ∈ Sn, one can use σ to permute the labels on the marked points. This gives a
map — in fact, an isomorphism — Pσ :Mg,n →Mg,n which we refer to as a permutation
morphism.



1.1. Moduli spaces of curves 15

Note that the forgetful morphism π : Mg,n+1 → Mg,n can be interpreted as the universal
family π : Cg,n → Mg,n. In other words, one can take a stable curve C ∈ Mg,n along with a
point p on C and associate a stable curve C̃ ∈ Mg,n+1 to the pair (C, p).

If p is a smooth unmarked point of C, then let C̃ be the curve C with the point p labelled
n + 1.

If p is the point of C labelled k, then let C̃ be the curve C with a CP1 bubbled off at the
point p, containing points labelled k and n + 1.

If p is a nodal point of C, then let C̃ be the curve C with a CP1 bubbled off at the point p,
containing a point labelled n + 1.

In this way, the point labelled k defines a section σk : Mg,n → Mg,n+1 for k = 1, 2, . . . , n.
Furthermore, the image of σk consists of all curves inMg,n+1 with a CP1 bubbled off, containing
points labelled k and n + 1, and no other marked points.

The forgetful morphism can be used to pull back cohomology classes, but it will also be useful
to push them forward. This is possible via the Gysin map π∗ : H∗(Mg,n+1) → H∗(Mg,n),
which is a homomorphism of graded rings with grading −2. One can interpret the Gysin map
as integrating along fibres but it can be alternatively defined by the following composition of
maps, where d = dim(Mg,n+1) and the outer maps denote Poincaré duality.

π∗ : Hk(Mg,n+1)
PD−→ Hd−k(Mg,n+1)

π∗−→ Hd−k(Mg,n) PD−→ Hk−2(Mg,n)

One of the nice properties enjoyed by the Gysin map is the push-pull formula, which states that
π∗(απ∗β) = π∗(α)β for α ∈ H∗(Mg,n+1) and β ∈ H∗(Mg,n). Another property that we will
make use of is the fact that ∫

Mg,n+1

η =
∫
Mg,n

π∗η.

Small examples

In general, moduli spaces of curves are not only of high dimension, but also possess a very com-
plicated structure. However, there are a handful of cases for which we can provide a concrete
description of their geometry. We conclude this section with some of these small examples,
which are often useful to keep in mind.

Example 1.4 (The moduli space M0,3). The only smooth genus 0 algebraic curve up to iso-
morphism is CP1 and the action of its automorphism group is sharply transitive on triples of
points. In other words, every smooth rational curve with three marked points (C, p1, p2, p3) can
be mapped isomorphically to (CP1, 0, 1, ∞) in a unique manner. It follows thatM0,3 is a point
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and, since there are no stable nodal curves of genus 0 with three marked points, it also follows
thatM0,3 is a point.

Example 1.5 (The moduli spaceM0,4). Similarly, every smooth genus 0 curve with four marked
points (C, p1, p2, p3, p4) can be mapped isomorphically to (CP1, 0, 1, ∞, λ) in a unique man-
ner for some λ /∈ {0, 1, ∞}. In fact, λ can be interpreted as the cross-ratio of the quadruple
(p1, p2, p3, p4) through the equation

λ =
(p1 − p4)(p3 − p2)
(p1 − p2)(p3 − p4)

.

It follows thatM0,4 is equal to CP1 \ {0, 1, ∞}. The boundary divisor consists of three points
which represent the following three nodal curves.

2

3

1

4

1

3

2

4

1

2

3

4

Respectively, these curves correspond to λ = 0, λ = 1 and λ = ∞, soM0,4 is equal to CP1.

Example 1.6 (The moduli space M0,5). Let π : CP1 × CP1 → CP1 be a family of curves,
where π is defined by projection onto the first factor. Consider the four sections σ1(z) = (z, 0),
σ2(z) = (z, 1), σ3(z) = (z, ∞) and σ4(z) = (z, z). Note that the fibre over a point b /∈ {0, 1, ∞} is
a copy of CP1 with four distinct marked points which have cross-ratio equal to b. The section
σ4 meets σ1, σ2 and σ3 transversally on the fibres over 0, 1 and ∞. To remove these intersections,
blow up CP1 ×CP1 at the points (0, 0), (1, 1) and (∞, ∞), creating the exceptional divisors E0,
E1 and E∞, respectively. Now the three fibres over 0, 1 and ∞ are precisely the three nodal
curves corresponding to the boundary divisor ofM0,4.

0 1 ∞

σ1

σ2

σ3

σ4

CP1

CP1 ×CP1

π
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Therefore, the family we have described is precisely the universal family C0,4 → M0,4. How-
ever, as noted earlier, one may interpret this family as the forgetful mapM0,5 → M0,4. So we
may now conclude thatM0,5 is equal to CP1 × CP1 blown up at the three points (0, 0), (1, 1)
and (∞, ∞).

Example 1.7 (The moduli space M1,1). The uncompactified moduli space M1,1 is essentially
the moduli space of complex elliptic curves. Every elliptic curve arises as a 2-fold branched
covering of CP1 doubly ramified over ∞. Topological considerations force such a covering to
have three additional ramification points which we can send to 0, 1 and λ /∈ {0, 1, ∞}. The affine
equation for such a curve is y2 = x(x − 1)(x − λ), and we let the marked point correspond to
the unique point on the curve over ∞. Note that there was some choice in normalising the
ramification points, so we expect an S3 symmetry to appear. Concretely, this manifests as one
of the six transformations given by λ 7→ λ, λ 7→ 1

λ , λ 7→ 1 − λ, λ 7→ 1
1−λ , λ 7→ λ−1

λ and
λ 7→ λ

λ−1 . This symmetry can be dealt with by associating to each curve y2 = x(x− 1)(x− λ)
its j-invariant

j(λ) = 256
(λ2 − λ + 1)3

λ2(λ− 1)2 ,

which satisfies j(λ) = j(λ′) if and only if λ′ ∈ {λ, 1
λ , 1− λ, 1

1−λ , λ−1
λ , λ

λ−1}. Conversely, it is
well-known that the j-invariant distinguishes between elliptic curves which are not isomorphic.
Therefore, we deduce thatM1,1

∼= C.

There is precisely one stable nodal curve of genus 1 with one marked point and this corresponds
precisely to the j → ∞ limit, soM1,1

∼= CP1. Our discussion up to this point has completely
ignored the orbifold — or stack — structure ofM1,1. The case ofM1,1 is exceptional since every
genus 1 curve with one marked point has at least one non-trivial automorphism — namely, the
elliptic involution. Furthermore, the curve with j-invariant 0 actually has an automorphism
group isomorphic to Z6 while the curve with j-invariant 1728 has an automorphism group
isomorphic to Z2 ×Z2. Therefore, every point of M1,1 is an orbifold point of order 2, apart
from one point of order 4 and one point of order 6.

1.2 Intersection theory on moduli spaces

Characteristic classes

Given a space with interesting topological structure, one of the first compulsions of a geometer
is often to calculate associated algebraic invariants. And so it is with moduli spaces of curves,
except for the fact that their homology and cohomology are notoriously intractable in general.
However, a great deal of progress can be made in this direction if one is willing to adopt the
following two simplifications.
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We concentrate on a subset of the cohomology ring known as the tautological ring.

We calculate the intersection theory, rather than the full ring structure, of the tautological
ring with respect to certain characteristic classes.

Later we will see how these simplifications leave us with a much more manageable approach to
understanding the structure ofMg,n without forsaking too much of the interesting geometry.

The characteristic classes that we will consider live in the cohomology ring H∗(Mg,n) as well
as its algebraic analogue, the Chow ring A∗(Mg,n). These are related by the natural map
Ak(Mg,n) → H2k(Mg,n), where the doubling of the index is due to the fact that the grad-
ing of the Chow ring is by complex dimension. However, it is worth noting that the Chow ring
is neither weaker nor stronger than the cohomology ring, since each carries information which
the other does not. For example, although the Chow ring cannot detect odd-graded cohomol-
ogy, it can distinguish between any two points on a smooth elliptic curve. For the remainder
of this thesis, we will generally use the cohomological framework and language, which will be
familiar to a wider audience. Practically all of the questions we consider are equivalent in either
setting.

Many of the cohomology classes onMg,n of geometric interest arise from taking Chern classes
of natural vector bundles. For example, consider the vertical cotangent bundle on Mg,n+1 =
Cg,n with fibre at (C, p) equal to the cotangent line T∗p C. Unfortunately, this definition is nonsen-
sical when p is a singular point of C. Therefore, it is necessary to consider the relative dualising
sheaf, the unique line bundle on Mg,n+1 which extends the vertical cotangent bundle. More
precisely, it can be defined as

L = KX ⊗ π∗K−1
B ,

where KX denotes the canonical line bundle on Mg,n+1 and KB denotes the canonical line
bundle onMg,n. Sections of L along a non-singular fibre correspond precisely to holomorphic
1-forms on that fibre. However, sections of L along a singular fibre correspond to meromorphic
1-forms with at worst simple poles allowed at the nodes as well as an extra residue condition.
This condition states that the two residues at the preimages of each node under normalisation
must sum to zero.

One obtains natural line bundles on Mg,n by pulling back L along the sections σk : Mg,n →
Mg,n+1 for k = 1, 2, . . . , n. Taking Chern classes of these line bundles, we obtain the psi-classes

ψk = c1(σ∗kL) ∈ H2(Mg,n, Q) for k = 1, 2, . . . , n.

It is possible to define the Euler class ẽ = c1(L), but this completely ignores the marked points.
Far more useful is the twisted Euler class given by e = c1 (L (D1 + D2 + · · ·+ Dn)), where
Dk ⊆ Mg,n+1 denotes the image of the section σk : Mg,n → Mg,n+1. In a small and hopefully
excusable abuse of notation, we will use Dk to represent the divisor, the corresponding homol-
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ogy class as well as its Poincaré dual cohomology class. Two important properties of the twisted
Euler class are that 〈e, Σ〉 = −χ(Σ− ∪Dk) on any fibre Σ and that it is actually identical to the
class ψn+1. Taking the push-forward of its powers, one obtains the Mumford–Morita–Miller
classes

κm = π∗(em+1) ∈ H2m(Mg,n) for m = 0, 1, 2, . . . , 3g− 3 + n.

These were first introduced by Mumford [39] in the case n = 0 and are analogous to the char-
acteristic classes of surface bundles dealt with by Miller [32] and Morita [37] in the topologi-
cal setting. With due respect to these great mathematicians, we will subsequently refer to the
Mumford–Morita–Miller classes simply as kappa-classes.

Another important construction on Mg,n is the Hodge bundle Λ. Informally, it is the vector
bundle whose fibre over a point C ∈ Mg,n is the space of holomorphic 1-forms on the curve C.
Once again, this definition is nonsensical over points corresponding to singular curves. A more
precise definition is to express the Hodge bundle as Λ = π∗(L), the direct image of the relative
dualising sheaf under the forgetful morphism. The Chern classes of this rank g vector bundle
are the Hodge classes

λk = ck(Λ) ∈ H2k(Mg,n) for k = 0, 1, 2, . . . , g.

The tautological ring

A great deal of attention has been paid to the subring of the cohomology ring H∗(Mg,n, Q)
known as the tautological ring R∗(Mg,n). This is due to three main reasons.

The tautological ring is much more tractable than the full cohomology ring.

There is an extremely rich combinatorial structure underlying the tautological ring.

The tautological ring, in some sense, captures all classes of geometric interest.

Vakil states in [56] that the tautological ring consists of “all the classes you can easily think of”.
Of course, this is a facetiously informal description but is supported by Vakil’s heuristic argu-
ment that there is no class “that can be explicitly written down, that is provably not tautological,
even though we expect that they exist”. More precisely, consider the following two definitions
for the system of tautological rings R∗(Mg,n) over all g and n.

Definition 1.8. The system of tautological rings R∗(Mg,n) is

the smallest system of Q-algebras closed under push-forwards by the natural morphisms;

the smallest system of Q-vector spaces closed under push-forwards by the natural mor-
phisms, and which includes all monomials in the psi-classes.
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The first definition is due to Faber and Pandharipande [13] and has the advantage of being
more intrinsic. The second is due to Graber and Vakil [18], who prove that the two statements
are equivalent. This latter definition serves to highlight the central part that the psi-classes play
in the tautological ring and, hence, in the geometry ofMg,n.

Of course, one would certainly expect the kappa-classes to lie in the tautological ring. That this
is the case follows from the following elegant and highly combinatorial formula relating the
psi-classes and kappa-classes.

Proposition 1.9. Consider the map πk∗ : H∗(Mg,n+k)→ H∗(Mg,n) obtained by iterating the forgetful
morphism k times. If W is a product of the psi-classes ψ1, ψ2, . . . , ψn, then

πk∗
(

W · ψα1+1
n+1 ψα2+1

n+2 · · ·ψαk+1
n+k

)
= W · ∑

σ∈Sk

κσ(α1, α2, . . . , αk).

Here, we write each permutation as a product of disjoint cycles σ = s1s2 . . . sm, where all 1-cycles are in-
cluded. For each cycle s = (i1i2 . . . ir), we let |s| = αi1 + αi2 + · · ·+ αir and define κσ(α1, α2, . . . , αk) =
κ|s1|κ|s2| . . . κ|sm |.

An example may better illustrate the content of Proposition 1.9.

Example 1.10. Consider the map π3∗ : H∗(Mg,n+3) → H∗(Mg,n). The six permutations in S3,
written as products of disjoint cycles, are: (1)(2)(3), (12)(3), (13)(2), (23)(1), (123) and (132).
Therefore, we have the following.

π3∗
(

W · ψα1+1
n+1 ψα2+1

n+2 ψα3+1
n+3

)
= W · (κα1 κα2 κα3 + κα1+α2 κα3 + κα1+α3 κα2 + κα2+α3 κα1 + 2κα1+α2+α3)

One can easily obtain the following important corollary of Proposition 1.9.

Corollary 1.11. The intersection theory of psi-classes and kappa-classes onMg,n is equivalent to the in-
tersection theory of psi-classes on allMg,n+m for non-negative integers m. In particular, the intersection
theory of kappa-classes onMg,0 is equivalent to the intersection theory of psi-classes on allMg,n.

Similarly, the following formula due to Faber [12] relates Hodge classes with kappa-classes and
demonstrates that the Hodge classes lie in the tautological ring.

Proposition 1.12. The Hodge classes and kappa-classes are related by the following formula, where
B0, B1, B2, . . . are the Bernoulli numbers.

∞

∑
k=0

λktk = exp

(
∞

∑
k=1

B2k κ2k−1
2k(2k− 1)

t2k−1

)

Apart from the actual content of Proposition 1.12, there are two important features of Faber’s
formula — namely, the use of generating functions and the appearance of the Bernoulli num-
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bers. Generating functions are commonly used to encode information about the intersection
theory onMg,n. That this result can be expressed so succinctly using them highlights the com-
binatorial nature of the tautological ring. This fact is reinforced by the presence of the Bernoulli
numbers, which will make another appearance in Chapter 2.

The following statement was first conjectured by Hain and Looijenga [20].

Conjecture 1.13. The tautological ring R∗(Mg,n) is a Poincaré duality ring of dimension 3g− 3 + n.

To understand the content of this conjecture, we break it into three parts.

Vanishing conjecture. For k > 3g− 3 + n, Rk(Mg,n) ∼= 0.

Socle conjecture. R3g−3+n(Mg,n) ∼= Q.

Perfect pairing conjecture. For 0 ≤ k ≤ 3g− 3 + n, the following natural product is a perfect
pairing.

Rk(Mg,n)× R3g−3+n−k(Mg,n)→ R3g−3+n(Mg,n) ∼= Q

In order to appreciate the depth of these statements, one must consider the tautological rings as
subsets of the corresponding Chow rings. For instance, if we were to consider the tautological
ring as a subset of the cohomology ring, then the socle conjecture would be trivially true. On the
other hand, the socle conjecture is neither obvious in the tautological Chow ring nor even true
in the full Chow ring. At present, the conjecture remains unresolved, although there is a fair
amount of low genus evidence. And if the conjecture is true, then one important consequence
would be that it is possible to recover the structure of the entire tautological ring from the top
intersections of tautological classes alone. Furthermore, from Definition 1.8, any top intersec-
tions in the tautological ring can be determined from the top intersections of psi-classes alone.
Therefore, we are motivated to study intersection numbers of the form∫

Mg,n
ψα1

1 ψα2
2 . . . ψαn

n ∈ Q

where |α| = 3g− 3 + n or equivalently, g = 1
3 (|α| − n + 3). It will be convenient to adopt Wit-

ten’s notation for these psi-class intersection numbers, which suppresses the genus and encodes
the symmetry between the psi-classes.

〈τα1 τα2 . . . ταn〉 =
∫
Mg,n

ψα1
1 ψα2

2 . . . ψαn
n

We treat the τ variables as commuting, so that we can write intersection numbers in the form
〈τd0

0 τd1
1 τd2

2 . . .〉 and we set 〈τα1 τα2 . . . ταn〉 = 0 if n = 0 or if the genus g = 1
3 (|α| − n + 3) is

non-integral or negative. In this way, we have defined a linear functional

〈·〉 : Q[τ0, τ1, τ2, . . .]→ Q.
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Example 1.14 (Psi-class intersection numbers onM0,3). The only non-zero intersection number
onM0,3 is 〈τ3

0 〉, which is equal to 1 by definition. This encodes the fact that there is a unique
genus 0 curve with three marked points and that such a curve has trivial automorphism group.

Example 1.15 (Psi-class intersection numbers onM0,4). From Example 1.6, we know thatM0,5

is the blow up of CP1 × CP1 at the three points (0, 0), (1, 1) and (∞, ∞). The forgetful map
π : M0,5 → M0,4 is simply the projection onto the first CP1 factor. The singular fibres occur
over 0, 1 and ∞ and correspond to the three nodal curves illustrated in Example 1.5. The four
sections are given by σ1(z) = (z, 0), σ2(z) = (z, 1), σ3(z) = (z, ∞) and σ4(z) = (z, z).

This concrete description of the universal family overM0,5 allows us to calculate its cohomol-
ogy explicitly. It is generated by the five divisors H, F, E0, E1, E∞, where H = CP1 × {h} for
some h /∈ {0, 1, ∞}, F = { f } × CP1 for some f /∈ {0, 1, ∞} and E0, E1, E∞ are the exceptional
divisors of the blow-ups. For ease of notation, we will use these curves to represent their divisor
classes, homology classes and Poincaré dual cohomology classes. The intersection matrix with
respect to the ordered basis (H, F, E0, E1, E∞) has the following simple form.

0 1 0 0 0
1 0 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


Since this matrix is invertible, we can deduce the value of a cohomology class X from the inter-
section numbers X · H, X · F, X · E0, X · E1 and X · E∞. This allows us to calculate D1 = H− E0.

Now if we denote by T the vertical tangent bundle, then a section of σ∗1 T corresponds to a
choice of vertical vector for each point in D1. This is precisely a section of the normal bundle to
D1 ⊆M0,5. The degree of this normal bundle is the self-intersection of D1 inM0,5, so we have∫

M0,4

c1(σ∗1 T ) = D1 · D1.

Taking the dual gives ∫
M0,4

ψ1 = −D1 · D1 = −(H − E0) · (H − E0) = 1,

from which we conclude that 〈τ3
0 τ1〉 = 1.

Example 1.16 (Psi-class intersection numbers onM1,1). Let f (x, y) and g(x, y) be generic cubic
polynomials and consider the family of cubic curves

F = {(x, y, t) | f (x, y)− tg(x, y) = 0} ⊆ CP2 ×CP1
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over the base B = CP1, parametrised by t. The cubic curves f (x, y) = 0 and g(x, y) = 0 intersect
in nine points p1, p2, . . . , p9 and we may choose the point p1 as the marked point in our family.
This family then induces a map φ : B→M1,1

It turns out that F is the blow-up of CP2 at the points p1, p2, . . . , p9. By a similar reasoning to
the previous example,

∫
M1,1

ψ1 =
1

deg φ

∫
B

φ∗ψ1 = − 1
deg φ

S1 · S1,

where S1 denotes the image of the section associated to the marked point. In this case, S1 is
precisely the exceptional divisor over p1, so S1 · S1 = −1.

Note that the unique singular curve in M1,1 will appear in the family F precisely when the
discriminant vanishes. The discriminant of a cubic curve is a polynomial of degree 12 in its
coefficients, hence a polynomial of degree 12 in t. The singular curve is generic enough to
deduce that the degree of the map φ : B→M1,1 is 12. However, since the generic point inM1,1

is an orbifold point of order two, the true degree of the map φ is actually 2× 12 = 24. Therefore,
we have

〈τ1〉 =
∫
M1,1

ψ1 =
1

24
.

The psi-class intersection numbers contain a great deal of structure, as hinted by the following
fact.

Proposition 1.17 (String equation). For 2g− 2 + n > 0, the psi-class intersection numbers satisfy
the relation

〈τ0τα1 τα2 . . . ταn〉 =
n

∑
k=1
〈τα1 . . . ταk−1 . . . ταn〉.

Observe that the string equation reduces a psi-class intersection number onMg,n+1 which has
a ψk appearing with exponent zero to a sum of psi-class intersection numbers onMg,n. In fact,
from the base case 〈τ3

0 〉 = 1 and the string equation, all psi-class intersection numbers in genus 0
can be uniquely determined. To see this, note that every non-zero psi-class intersection number
onM0,n must be of the form 〈τα1 τα2 . . . ταn〉, where |α| = n− 3. So at least one of α1, α2, . . . , αn

must be equal to 0 and the string equation reduces the calculation to a sum of intersection
numbers onM0,n−1. Therefore, these numbers can be calculated inductively, starting from the
base case 〈τ3

0 〉 = 1. The particularly pleasant case of genus 0 yields a particularly pleasant
answer. In fact, when |α| = n− 3 we have

〈τα1 τα2 . . . ταn〉 =
(n− 3)!

α!
,

which is tantalisingly combinatorial.
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Proposition 1.18 (Dilaton equation). For 2g− 2 + n > 0, the psi-class intersection numbers satisfy
the relation

〈τ1τα1 τα2 . . . ταn〉 = (2g− 2 + n)〈τα1 τα2 . . . ταn〉.

Observe that the dilaton equation reduces a psi-class intersection number onMg,n+1 which has
a ψk appearing with exponent one to a psi-class intersection number on Mg,n. In fact, from
the base case 〈τ1〉 = 1

24 , as well as the string and dilaton equations, all psi-class intersection
numbers in genus 1 can be uniquely determined. To see this, note that every non-zero psi-class
intersection number on M1,n must be of the form 〈τα1 τα2 . . . ταn〉, where |α| = n. So at least
one of α1, α2, . . . , αn must be equal to 0 or 1. In the former case, the string equation reduces
the calculation to a sum of intersection numbers onM1,n−1 while in the latter case, the dilaton
equation reduces the calculation to an intersection number onM1,n−1. Therefore, these num-
bers can be calculated inductively, starting from the base case 〈τ1〉 = 1

24 . Unfortunately — or
perhaps fortunately, depending on one’s outlook — there exists no simple closed formula for
psi-class intersection numbers for the case of genus g ≥ 1.

Witten’s conjecture

One of the landmark results concerning the intersection theory on moduli spaces of curves is
Witten’s conjecture, now Kontsevich’s theorem. In his foundational paper [57], Witten conjec-
tured that a particular generating function for the psi-class intersection numbers satisfies the
Korteweg–de Vries hierarchy, often abbreviated to the KdV hierarchy. This sequence of partial
differential equations begins with the KdV equation, which originally arose in classical physics
to model waves in shallow water. It is now well-known as the prototypical example of an ex-
actly solvable model, whose soliton solutions have attracted tremendous mathematical interest
over the past few decades.

Interestingly, Witten was led to his conjecture from the analysis of a particular model of two-
dimensional quantum gravity, where one encounters infinite-dimensional integrals over the
space of Riemannian metrics on a surface. Arguing on physical grounds, such a calculation can
be reduced to finitely many dimensions in two distinct ways. First, the integral can be localised
to the space of conformal classes of metrics, which leads directly to computations on moduli
spaces of curves. Second, one can produce singular metrics on a surface by tiling it with tri-
angles and declaring them to be equilateral. As the number of triangles tends to infinity, these
singular metrics begin to approximate random metrics and the infinite-dimensional integrals
reduce to asymptotic enumerations of such triangulations. Enumerations of this kind are per-
formed using Feynman diagram and matrix model techniques and are known to be governed
by the KdV hierarchy.

In order to describe Witten’s conjecture explicitly, let t = (t0, t1, t2, . . .) and τ = (τ0, τ1, τ2, . . .)
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and consider the generating function F(t) = 〈exp(t · τ)〉. Here, the expression is to be expanded
as a Taylor series using multilinearity in the variables t0, t1, t2, . . .. Equivalently, define

F(t0, t1, t2, . . .) = ∑
d

∞

∏
k=0

tdk
k

dk!
〈τd0

0 τd1
1 τd2

2 . . .〉

where the summation is over all sequences d = (d0, d1, d2, . . .) of non-negative integers with
finitely many non-zero terms. Witten conjectured that the formal series U = ∂2F

∂t2
0

satisfies
the KdV hierarchy of partial differential equations. More explicitly, Witten’s conjecture can
be stated as follows.

Theorem 1.19 (Witten’s conjecture). The generating function F satisfies the following partial differ-
ential equation for every non-negative integer n.

(2n + 1)
∂3F

∂tn∂t2
0

=
(

∂2F
∂tn−1∂t0

)(
∂3F
∂t3

0

)
+ 2

(
∂3F

∂tn−1∂t2
0

)(
∂2F
∂t2

0

)
+

1
4

∂5F
∂tn−1∂t4

0

Given Witten’s conjecture, the string equation and the base case 〈τ3
0 〉 = 1, every intersection

number of psi-classes can be obtained. The following example demonstrates this via the calcu-
lation of 〈τ1〉.
Example 1.20. Observe that

∂nF
∂tα1 ∂tα2 · · · ∂tαn

∣∣∣∣
t=0

= 〈τα1 τα2 . . . ταn〉,

and consider the equation in Witten’s conjecture with n = 3 evaluated at t = 0. This yields
the equality 7〈τ2

0 τ3〉 = 〈τ0τ2〉〈τ3
0 〉 + 2〈τ2

0 τ2〉〈τ2
0 〉 + 1

4 〈τ4
0 τ2〉. Now use the fact that 〈τ2

0 〉 = 0
and the base case 〈τ3

0 〉 = 1 to reduce the relation to 7〈τ2
0 τ3〉 = 〈τ0τ2〉 + 1

4 〈τ4
0 τ2〉. Applying

the string equation to each term, we obtain 7〈τ1〉 = 〈τ1〉 + 1
4 〈τ3

0 〉 from which it follows that
〈τ1〉 = 1

24 〈τ3
0 〉 = 1

24 . Note that this is in agreement with the calculation of 〈τ1〉 in Example 1.16.

A thorough analysis of the KdV hierarchy allows Witten’s conjecture to be stated in an alterna-
tive way. Define the sequence of Virasoro operators by

V−1 = −1
2

∂

∂t0
+

1
2

∞

∑
k=0

tk+1
∂

∂tk
+

t2
0
4

, V0 = −3
2

∂

∂t1
+

1
2

∞

∑
k=0

(2k + 1)tk
∂

∂tk
+

1
48

,

and for positive integers n,

Vn = − (2n + 3)!!
2

∂

∂tn+1
+

∞

∑
k=0

(2k + 2n + 1)!!
2(2k− 1)!!

tk
∂

∂tk+n
+ ∑

k1+k2=n−1

(2k1 + 1)!!(2k2 + 1)!!
4

∂2

∂tk1 ∂tk2

.

The operators are named so because they span a subalgebra of the Virasoro Lie algebra. It is
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relatively straightforward to verify that they satisfy the relation [Vm, Vn] = (m− n)Vm+n for all
m and n. One can state Witten’s conjecture in terms of the Virasoro operators in a rather succinct
fashion.

Theorem 1.21 (Witten’s conjecture — Virasoro version). For every integer n ≥ −1,

Vn(exp F) = 0.

Witten originally provided evidence for his conjecture in the form of the string and dilaton
equations as well as low genus results [57]. In particular, the string and dilaton equations cor-
respond precisely to the annihilation of exp F by the operators V−1 and V0, respectively. Since
then, several proofs of Witten’s conjecture have emerged, three of which we briefly discuss here.

Kontsevich [26]
The year after Witten announced his conjecture, Kontsevich produced a proof as part of his
doctoral thesis. He used a cell decomposition ofMg,n ×Rn

+ arising from results concern-
ing quadratic differentials on a Riemann surface known as Jenkins–Strebel differentials.
This allowed him to deduce a combinatorial formula which equates a generating func-
tion for the psi-class intersection numbers with a particular enumeration of combinatorial
objects known as trivalent ribbon graphs. Kontsevich carried out this enumeration using
Feynman diagram techniques and a certain matrix model, from which Witten’s conjecture
followed. His proof will be discussed in greater detail in Section 3.1.

Okounkov and Pandharipande [44]
The main tool in their proof of Witten’s conjecture was the ELSV formula. Originally
proven by Ekedahl, Lando, Shapiro and Vainshtein [11], this formula relates intersec-
tion numbers of psi-classes and Hodge classes — also known as Hodge integrals — with
Hurwitz numbers. Hurwitz numbers enumerate topological types of branched covers of
the sphere or, equivalently, factorisations of permutations into transpositions. Okounkov
and Pandharipande reproduced the ELSV formula using a technique known as virtual
localisation and proceeded to show that Kontsevich’s combinatorial formula was a conse-
quence, using asymptotic combinatorial methods.

Mirzakhani [33, 34]
More recently, Mirzakhani has produced a proof of Witten’s conjecture quite distinct from
those before her. In particular, she adopts a hyperbolic geometric approach and considers
the symplectic geometry of moduli spaces of hyperbolic surfaces. We will have a lot more
to say about Mirzakhani’s work in Section 1.4.

We point out that there are also other proofs — such as that by Kazarian and Lando [24] or by
Kim and Liu [25] — but these have a lesser bearing on the work contained in this thesis.
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1.3 Moduli spaces of hyperbolic surfaces

The uniformisation theorem

One of the most important foundational results in algebraic geometry asserts that the category
of irreducible projective algebraic curves and the category of compact Riemann surfaces are
equivalent. Due to this equivalence, the boundary between these two fields is rather porous,
with techniques from complex analysis flowing into algebraic geometry and vice versa. In
addition, the following theorem allows us to adopt a geometric viewpoint when dealing with
algebraic curves or Riemann surfaces.

Theorem 1.22 (The uniformisation theorem). Every metric on a surface is conformally equivalent to
a complete constant curvature metric. Furthermore, the sign of the curvature is equal to the sign of the
Euler characteristic of the surface.

From the previous discussion, a smooth genus g algebraic curve with n marked points corre-
sponds to a genus g Riemann surface with n marked points, which we think of as punctures.{

smooth algebraic curves with
genus g and n marked points

}
←→

{
Riemann surfaces with

genus g and n punctures

}

The complex structure defines a conformal class of metrics which, by the uniformisation theo-
rem, contains a hyperbolic metric when 2g− 2 + n > 0. Furthermore, if we demand that the re-
sulting surface has finite area, then this hyperbolic metric is unique and endows each puncture
with the structure of a hyperbolic cusp. So we have the following one-to-one correspondence.{

smooth algebraic curves with
genus g and n marked points

}
←→

{
hyperbolic surfaces with

genus g and n cusps

}

Moduli spaces of hyperbolic surfaces can be given a natural topology. The correspondence
described above defines a map from the moduli space of smooth algebraic curves to the mod-
uli space of hyperbolic surfaces which respects not only this topology, but also the structure-
preserving automorphism group of the surface. In short, the map is a homeomorphism of orb-
ifolds. Therefore, we can and will use the notationMg,n to denote the moduli space of smooth
genus g curves with n marked points as well as the moduli space of genus g hyperbolic surfaces
with n cusps — the particular meaning should be clear from the context.

If the finite area condition is relaxed, then there exist hyperbolic metrics which endow each
puncture with the structure of a hyperbolic flare. Each such flare has a unique geodesic waist
curve which, after being cut along, leaves a compact hyperbolic surface with geodesic bound-
aries. Furthermore, the only moduli of the removed flare is the length of the geodesic waist
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curve. So for L = (L1, L2, . . . , Ln) an n-tuple of positive real numbers, we may define

Mg,n(L) =

{
(X, β1, β2, . . . , βn)

∣∣∣∣∣ X is a genus g hyperbolic surface with n boundary
components β1, β2, . . . , βn of lengths L1, L2, . . . , Ln

}/
∼

where (S, β1, β2, . . . , βn) ∼ (T, γ1, γ2, . . . , γn) if and only if there is an isometry from S to T
which sends βk to γk for all k. Note that when a boundary length approaches zero, we recover
the cusp case in the limit, soMg,n(0) =Mg,n.

Teichmüller theory

Teichmüller theory will enable us to construct the moduli spaceMg,n(L) and endow it with a
natural symplectic structure. Fix a smooth orientable surface Sg,n with genus g and n boundary
components labelled from 1 up to n, where χ(Sg,n) = 2− 2g − n is negative. Now define a
marked hyperbolic surface of type (g, n) to be a pair (X, f ) where X is a hyperbolic surface and
f : Sg,n → X is a diffeomorphism. We call f the marking of the hyperbolic surface and define
the Teichmüller space

Tg,n(L) =

{
(X, f )

∣∣∣∣∣ (X, f ) is a marked hyperbolic surface of type (g, n)
with geodesic boundaries of lengths L1, L2, . . . , Ln

}/
∼

where (X, f ) ∼ (Y, g) if and only if there exists an isometry φ : X → Y such that φ ◦ f is isotopic
to g. In essence, Teichmüller space is the space of all deformations of the hyperbolic structure
on a surface.

We now define global coordinates on Teichmüller space, known as Fenchel–Nielsen coordi-
nates. Start by considering a pair of pants decomposition of the surface Sg,n — in other words, a
collection of disjoint simple closed curves whose complement is a disjoint union of genus 0 sur-
faces with 3 boundary components. Alternatively, a pair of pants decomposition is a maximal
collection of disjoint simple closed curves such that no curve is parallel to the boundary and no
two are homotopic. Since the Euler characteristic is additive on surfaces glued along circles, the
number of pairs of pants in any such decomposition must be −χ(Sg,n) = 2g− 2 + n. It follows
that every pair of pants decomposition of Sg,n must consist of precisely 3g− 3 + n simple closed
curves.

Note that a marking f : Sg,n → X maps a pair of pants decomposition to a collection of simple
closed curves, each of which has a unique geodesic representative in its homotopy class. Denote
these simple closed geodesics by γ1, γ2, . . . , γ3g−3+n and let their lengths be `1, `2, . . . , `3g−3+n,
respectively. Cutting X along γ1, γ2, . . . , γ3g−3+n leaves a disjoint union of 2g− 2 + n hyperbolic
pairs of pants. The following simple lemma guarantees that the lengths `1, `2, . . . , `3g−3+n are
sufficient to determine the hyperbolic structure on each pair of pants.
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Lemma 1.23. Given three non-negative real numbers L1, L2, L3, there exists a unique hyperbolic pair of
pants up to isometry with geodesic boundaries of lengths L1, L2, L3. We refer to the three geodesic arcs
perpendicular to the boundary components and joining them in pairs as the seams. Every hyperbolic pair
of pants can be decomposed into two congruent right-angled hexagons by cutting along the seams. As
per usual, a boundary of length 0 corresponds to a hyperbolic cusp.

Note that the lengths `1, `2, . . . , `3g−3+n provide insufficient information to reconstruct the hy-
perbolic structure on all of X, since there are infinitely many ways to glue together the hyper-
bolic pairs of pants. This extra gluing information is stored in the twist parameters, which we
denote by τ1, τ2, . . . , τ3g−3+n. To construct them, fix a collection C of disjoint curves on Sg,n

which are either closed or have endpoints on the boundary. We require that C meets the pair
of pants decomposition transversely, and such that its restriction to any particular pair of pants
consists of three disjoint arcs, connecting the boundary components pairwise. Now to construct
the twist parameter τk, note that there are either one or two curves γ ∈ C such that f (γ) meets
γk. Homotopic to f (γ), relative to the boundary of X, is a unique length-minimising piecewise
geodesic curve which is entirely contained in the seams of the hyperbolic pairs of pants and the
curves γ1, γ2, . . . , γ3g−3+n. The twist parameter τk is the signed distance that this curve travels
along γk, according to the following sign convention.

positive twist parameter negative twist parameter

For further details, one can consult Thurston’s book [54], where he notes the following.

“That a twist parameter takes values in R, rather than S1, tends to be a confusing issue,
because twist parameters that are the same modulo 1 result in surfaces that are isometric.
But, remember, to determine a point in Teichmüller space we need to consider how many
times the leg of the pajama suit is twisted before it fits onto the baby’s foot.”

More prosaically, the length parameters and the twist parameters modulo 1 are sufficient to
reconstruct the hyperbolic structure on X. However, to recover the marking as well, it is neces-
sary to consider the twist parameters as elements of R. So there is a one-to-one correspondence
between marked hyperbolic surfaces and their associated length and twist parameters, which
we refer to as Fenchel–Nielsen coordinates.

Theorem 1.24. The Fenchel–Nielsen map FN : Tg,n(L)→ R
3g−3+n
+ ×R3g−3+n, which associates to

a marked hyperbolic surface the length and twist parameters, is a bijection. In fact, if Teichmüller space
is endowed with its natural topology, then the map is a homeomorphism.



30 1. A gentle introduction to moduli spaces of curves

There is clearly a projection map Tg,n(L) → Mg,n(L) given by forgetting the marking. In fact,
we obtain the moduli space as a quotient of Teichmüller space by a group action. Consider the
mapping class group

Modg,n = Diff+(Sg,n)/Diff+0 (Sg,n),

where Diff+(Sg,n) is the group of orientation preserving diffeomorphisms fixing the boundaries
and Diff+0 (Sg,n) is the normal subgroup consisting of those diffeomorphisms isotopic to the
identity. There is a natural action of the mapping class group on Teichmüller space described
as follows: if [φ] is an element of Modg,n, then [φ] sends the marked hyperbolic surface (X, f )
to the marked hyperbolic surface (X, f ◦ φ).

Proposition 1.25. The action of Modg,n on Tg,n(L) is properly discontinuous, though not necessarily
free. Therefore, the quotientMg,n(L) = Tg,n(L)

/
Modg,n is an orbifold.

Compactification and symplectification

Earlier, we described the Deligne–Mumford compactification Mg,n, obtained by considering
stable algebraic curves. It should be noted that there is an analogous construction in the hy-
perbolic setting, where a node of an algebraic curve corresponds to degenerating the length of
a simple closed curve on a hyperbolic surface to zero. In fact, one can construct T g,n(L), the
Teichmüller space of marked stable hyperbolic surfaces, in the following way. Define a stable
hyperbolic surface of type (g, n) to be a pair (X, M) where X is a surface of genus g with n
punctures, M is a collection of disjoint simple closed curves on X and X \M is endowed with
a finite area hyperbolic metric. Again, we refer to a diffeomorphism f : Sg,n → X as a marking
and define the compactified Teichmüller space

T g,n(L) =

{
(X, M, f )

∣∣∣∣∣ f is a marking of a stable hyperbolic surface (X, M) of
genus g with n boundaries of lengths L1, L2, . . . , Ln

}/
∼

where (X, M, f ) ∼ (Y, N, g) if and only if there exists a homeomorphism φ : X → Y such that
φ(M) = N, φ restricted to X \ M is an isometry, and φ ◦ f is isotopic to g on each connected
component of Sg,n \ f−1(M). Once again, the mapping class group acts on the compactified
Teichmüller space and one may define a compactification of the moduli spaceMg,n(L) as

Mg,n(L) = T g,n(L)/Modg,n.

The moduli spaceMg,n(0) can be canonically identified withMg,n by the uniformisation the-
orem. When L 6= 0, the moduli spaceMg,n(L) does not possess a natural complex structure.
However, by the work of Wolpert [61], the Fenchel–Nielsen coordinates do induce a real an-
alytic structure. For more information on the compactification and real analytic structure of
moduli spaces of hyperbolic surfaces, the reader is encouraged to consult the references [1, 3].
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The Teichmüller space Tg,n(L) can be endowed with the canonical symplectic form

ω =
3g−3+n

∑
k=1

d`k ∧ dτk

using the Fenchel–Nielsen coordinates. Although this is a rather trivial statement, a deep fact is
that this form is invariant under the action of the mapping class group. Therefore, ω descends
to a symplectic form on the quotient, namely the moduli spaceMg,n(L). This is referred to as
the Weil–Petersson symplectic form and we will also denote it by ω. Its existence allows us to
use the techniques of symplectic geometry in the study of moduli spaces. Wolpert [61] used the
real analytic structure onMg,n(L) to show that the Weil–Petersson form extends smoothly to a
closed form onMg,n(L). In the particular case L = 0, he showed that this extension defines a
cohomology class [ω] ∈ H2(Mg,n, R) which satisfies the following.

Theorem 1.26. The de Rham cohomology class of the Weil–Petersson symplectic form and the charac-
teristic class κ1 are related by the equation [ω] = 2π2κ1 ∈ H2(Mg,n, R).

Note that for all values of L, the spacesMg,n(L) are diffeomorphic to each other, but not nec-
essarily symplectomorphic, when endowed with the Weil–Petersson symplectic structure. It
is therefore natural to ask how the symplectic structure varies as L varies, a topic which we
discuss in the next section.

1.4 Volumes of moduli spaces

Weil–Petersson volumes

Powering up the Weil–Petersson symplectic form, one obtains the corresponding volume form

ω3g−3+n

(3g− 3 + n)!
= d`1 ∧ dτ1 ∧ d`2 ∧ dτ2 ∧ . . . ∧ d`3g−3+n ∧ dτ3g−3+n.

Of course, Teichmüller space has infinite volume with respect to this form. However, the ac-
tion of the mapping class group is such that the volume of the moduli space is finite. This
follows from the fact that the Weil–Petersson symplectic form can be extended smoothly to the
compactification. Therefore, define Vg,n(L) to be the Weil–Petersson volume ofMg,n(L). Note
that when dealing with volumes, one need not worry about the compactification of the moduli
space since, by Theorem 1.2, the boundary divisor has positive codimension. In particular, it
is not necessary for us to consider an extension of the Weil–Petersson symplectic form to the
boundary.
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The following is a brief selection of the early results concerning Weil–Petersson volumes.6

Wolpert [58, 59] proved that V0,4(0) = 2π2, V1,1(0) = π2

12 and Vg,n(0) = q(2π2)3g−3+n

for some rational number q. This last fact is a corollary of Theorem 1.26, from which we
deduce that q =

∫
Mg,n

κ
3g−3+n
1 .

Penner [50] proved that V1,2(0) = π4

4 .

Zograf [63, 62] proved that V0,5(0) = 10π4 and that V0,n(0) = (2π2)n−3

(n−3)! an, where a3 = 1
and for n ≥ 4,

an =
1
2

n−3

∑
k=1

k(n− k− 2)
n− 1

(
n− 4
k− 1

)(
n

k + 1

)
ak+2an−k.

Näätänen and Nakanishi [40, 41] proved that

V0,4(L1, L2, L3, L4) =
1
2
(L2

1 + L2
2 + L2

3 + L2
4 + 4π2) and V1,1(L1) =

1
48

(L2
1 + 4π2).

Much of the early work in this direction was rooted in algebraic geometry, where there is no
analogue to the length of a boundary component. Hence, the results often concerned the con-
stant Vg,n(0) rather than the more general volume function Vg,n(L). However, Näätänen and
Nakanishi’s work suggests that this latter problem yields nice results, at least for moduli spaces
of complex dimension one. In fact, they showed that V1,1(L1) and V0,4(L1, L2, L3, L4) are both
polynomials in the boundary lengths. That this is the case for all of the Weil–Petersson volumes
Vg,n(L) was proven by Mirzakhani in two distinct ways [33, 34]. The remainder of this section
is dedicated to giving the essential ideas, results and proofs involved in Mirzakhani’s work.

Mirzakhani’s recursion

One of the main obstacles in calculating the volume of the moduli space is the fact that the
Fenchel–Nielsen coordinates do not behave nicely under the action of the mapping class group.
In particular, there is no concrete description for a fundamental domain ofMg,n(L) in Tg,n(L)
for general values of g and n. Mirzakhani had the idea of unfolding the integral required to
calculate the volume of the moduli space to a cover over the moduli space. In general, consider
a covering π : X1 → X2, let dv2 be a volume form on X2, and let dv1 = π∗dv2 be the pull-back

6When comparing these results with the original sources, there may be some discrepancy due to two issues. First,
there are distinct normalisations of the Weil–Petersson symplectic form which differ by a factor of two. We have scaled
the results, where appropriate, to correspond with the Weil–Petersson symplectic form defined earlier. Second, one
must treat the special cases of V1,1(L1) and V2,0 with some care. This is due to the fact that every point onM1,1(L1) and
M2,0 is an orbifold point, generically with orbifold group Z2. As a result, the statement of certain theorems holds true
only if one considers V1,1(L1) and V2,0 as orbifold volumes — in other words, half of the true volumes. The upshot is
that one should not be alarmed if results concerning Weil–Petersson volumes from different sources differ by a factor
which is a power of two.
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volume form on X1. If π is a finite covering, then for a function f : X1 → R, one can consider
the push-forward function π∗ f : X2 → R defined by

(π∗ f )(x) = ∑
y∈π−1(x)

f (y).

In fact, even if π is an infinite covering, then the push-forward may still exist provided f is
sufficiently well-behaved. The main reason for considering this setup is the fact that∫

X1

f dv1 =
∫

X2

(π∗ f ) dv2.

Therefore, we wish to find a covering π : M̃g,n(L) → Mg,n(L) such that the former space is
easier to integrate over than the latter. A natural candidate is Tg,n(L)/G, where G is a subgroup
of the mapping class group Modg,n. So, to calculate the volume Vg,n(L) in this way, it is desirable
to express the constant function onMg,n(L) as the sum of push-forward functions of the type
described above. The main tool used by Mirzakhani to carry out this integration scheme was a
generalisation of the following “remarkable identity” discovered by McShane [30].

Theorem 1.27 (McShane’s Identity). On a cusped hyperbolic torus,

∑
γ

1
1 + e−`(γ)/2

=
1
2

,

where the sum is over all simple closed geodesics and `(γ) denotes the length of γ.

Mirzakhani [33] was able to extend McShane’s identity to arbitrary hyperbolic surfaces with
geodesic boundary components in the following way.

Theorem 1.28 (Generalised McShane’s Identity). On a hyperbolic surface with n geodesic boundary
components β1, β2, . . . , βn of lengths L1, L2, . . . , Ln, respectively,

∑
(α1,α2)

D(L1, `(α1), `(α2)) +
n

∑
k=2

∑
γ

R(L1, Lk, `(γ)) = L1.

Here, the first summation is over unordered pairs (α1, α2) of simple closed geodesics which bound a pair
of pants with β1, while the second summation is over simple closed geodesics γ which bound a pair of
pants with β1 and βk. The functions D : R3 → R andR : R3 → R are defined as follows.

D(x, y, z) = 2 log

(
e

x
2 + e

y+z
2

e
−x
2 + e

y+z
2

)
R(x, y, z) = x− log

(
cosh y

2 + cosh x+z
2

cosh y
2 + cosh x−z

2

)

This identity allows one to express the constant function onMg,n(L) as a sum of push-forward
functions on coverings of the form Mγ

g,n(L) → Mg,n(L). Here, γ is a multicurve on the sur-
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face Sg,n and Mγ
g,n(L) = Tg,n(L)/G, where G ⊆ Modg,n is the stabiliser of the multicurve γ.

Since these coverings are inherently easier to integrate over, it is possible to unfold the integral
required to calculate the volume ofMg,n(L). The final result is the following recursive formula
due to Mirzakhani [33].

Theorem 1.29 (Mirzakhani’s recursion). The Weil–Petersson volumes satisfy the following formula.

2
∂

∂L1
L1Vg,n(L) =

∫ ∞

0

∫ ∞

0
xy H(x + y, L1) Vg−1,n+1(x, y, L̂) dx dy

+ ∑
g1+g2=g
I1tI2=[2,n]

∫ ∞

0

∫ ∞

0
xy H(x + y, L1) Vg1,|I1|+1(x, LI1) Vg2,|I2|+1(y, LI2) dx dy

+
n

∑
k=2

∫ ∞

0
x[H(x, L1 + Lk) + H(x, L1 − Lk)] Vg,n−1(x, L̂k) dx

We have used L̂ = (L2, L3, . . . , Ln), L̂k = (L2, . . . , L̂k, . . . , Ln) and LI = (Li1 , Li2 , . . . , Lim) for I =
{i1, i2, . . . , im}. Furthermore, the function H : R2 → R is defined by

H(x, y) =
1

1 + e
x+y

2

+
1

1 + e
x−y

2

.

Mirzakhani’s recursion expresses Vg,n(L) in terms of certain integral transforms of volumes
corresponding to moduli spaces with smaller negative Euler characteristic. Therefore, the cal-
culation of any Weil–Petersson volume can be reduced to the base cases

V0,1(L1) = 0, V0,2(L1, L2) = 0, V0,3(L1, L2, L3) = 1 and V1,1(L1) =
1

48
(L2

1 + 4π2).

Without going into the details of the proof of Mirzakhani’s recursion, we can at least understand
how the three terms arise. Philosophically, the mechanism behind Mirzakhani’s recursion is
based on removing pairs of pants from Sg,n which contain the boundary component β1. The
three types of surface which can result are

Sg−1,n+1 when the pair of pants is bound by β1 and two interior simple closed curves and
its removal leaves a connected surface;

Sg1,n1+1 ∪ Sg2,n2+1 when the pair of pants is bound by β1 and two interior simple closed
curves and its removal leaves a disconnected surface; or

Sg,n−1 when the pair of pants is bound by β1, another boundary component βk and an
interior simple closed curve.

These correspond precisely to the three terms on the right hand side of Mirzakhani’s recursion.
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In practice, Mirzakhani’s recursion requires one to be able to integrate expressions of the form

∫ ∞

0
x2k−1H(x, t) dx and

∫ ∞

0

∫ ∞

0
x2a−1y2b−1H(x + y, t) dx dy,

where k, a and b are positive integers. It is straightforward to prove that

∫ ∞

0
x2k−1H(x, t) dx = F2k−1(t)∫ ∞

0

∫ ∞

0
x2a−1y2b−1H(x + y, t) dx dy =

(2a− 1)!(2b− 1)!
(2a + 2b− 1)!

F2a+2b−1(t)

where

F2k−1(t) = (2k− 1)!
k

∑
i=0

ζ(2i)(22i+1 − 4)
(2k− 2i)!

t2k−2i.

The following equations give the explicit computations of F1(t), F3(t), F5(t) and F7(t).

F1(t) =
t2

2
+

2π2

3

F3(t) =
t4

4
+ 2π2t2 +

28π4

15

F5(t) =
t6

6
+

10π2t4

3
+

56π4t2

3
+

992π6

63

F7(t) =
t8

8
+

14π2t6

3
+

196π4t4

3
+

992π6t2

3
+

4064π8

15

Observe that F2k−1(t) is an even polynomial of degree 2k in t and that the coefficient of t2m

is a rational multiple of π2k−2m. The following calculation of V1,2(L1, L2) demonstrates how
Mirzakhani’s recursion can be used to compute Weil–Petersson volumes.

Example 1.30. Only two of the three terms on the right hand side are non-zero, one depending
on V0,3 and the other on V1,1. This corresponds to the fact that removing a pair of pants from
the surface S1,2 which contains at least one of the boundary components must leave either S0,3

or S1,1.

2
∂

∂L1
L1V1,2(L1, L2)

=
∫ ∞

0

∫ ∞

0
xy H(x + y, L1) V0,3(x, y, L2) dx dy +

∫ ∞

0
x[H(x, L1 + L2) + H(x, L1 − L2)] V1,1(x) dx

=
∫ ∞

0

∫ ∞

0
xy H(x + y, L1) dx dy +

∫ ∞

0
x[H(x, L1 + L2) + H(x, L1 − L2)]

(
x2 + 4π2

48

)
dx

=
1
6

F3(L1) +
1
48

F3(L1 + L2) +
1

48
F3(L1 − L2) +

π2

12
F1(L1 + L2) +

π2

12
F1(L1 − L2)

=
5L4

1
96

+
L2

1L2
2

16
+

L4
2

96
+

π2L2
1

2
+

π2L2
2

6
+

π4

2
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Now integrate with respect to L1 and divide by 2L1 to obtain the desired volume.

V1,2(L1, L2) =
L4

1
192

+
L2

1L2
2

96
+

L4
2

192
+

π2L2
1

12
+

π2L2
2

12
+

π4

4

=
1

192
(L2

1 + L2
2 + 4π2)(L2

1 + L2
2 + 12π2)

A simple though important corollary of Mirzakhani’s recursion is the following result.

Corollary 1.31. The volume Vg,n(L) is an even symmetric polynomial of degree 6g − 6 + 2n in the
boundary lengths L1, L2, . . . , Ln. Furthermore, the coefficient of L2α1

1 L2α2
2 . . . L2αn

n is a rational multiple
of π6g−6+2n−2|α|.

The symmetry of Vg,n(L) follows immediately from the symmetry of the boundary labels. The
remainder of the statement can be proven by induction on the negative Euler characteristic.
That the Weil–Petersson volumes are polynomials is a rather amazing fact. Actually, we will
see that the technique of symplectic reduction can be used to prove that their coefficients store
interesting information.

Volumes and symplectic reduction

Symplectic geometry has its origins in the mathematical formulation and generalisation of the
phase space of a classical mechanical system.7 For a long time, physicists have taken advantage
of the fact that when a symmetry group of dimension n acts on a system, then the number of
degrees of freedom for the positions and momenta can be reduced by 2n. The analogous math-
ematical phenomenon is known as symplectic reduction. More precisely, consider a symplectic
manifold (M, ω) of dimension 2d with a

Tn = S1 × S1 × . . .× S1︸ ︷︷ ︸
n times

action that preserves the symplectic form. Furthermore, suppose that this action is the Hamil-
tonian flow for the moment map µ : M→ Rn and that 0 is a regular value of the moment map.
Note that Tn must act on the level sets of µ, so one can define

M0 = µ−1(0)/Tn.

The main theorem of symplectic reduction states that M0 is a symplectic manifold of dimension
2d− 2n with respect to the unique 2-form ω0 which satisfies i∗ω = π∗ω0, where π : µ−1(0) →
M0 and i : µ−1(0) → M are the natural projection and inclusion maps. In fact, since 0 is a

7For a reasonably elementary introduction to symplectic geometry, we recommend the text [7].
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regular value, there exists an ε > 0 such that all a ∈ Rn satisfying |a| < ε are also regular
values. So it is possible to define symplectic manifolds (Ma, ωa) for all such a.

If we think of the Tn action as n commuting circle actions, then the kth copy of S1 induces a
circle bundle Sk on M0. Let the first Chern class of this circle bundle be denoted by c1(Sk) = φk.
Then the variation of the symplectic form ω0 is described by the following result [19].

Theorem 1.32. For a = (a1, a2, . . . , an) sufficiently close to 0, (Ma, ωa) is symplectomorphic to M0

equipped with a symplectic form whose cohomology class is equal to [ω0] + a1φ1 + a2φ2 + · · ·+ anφn.

This then allows us to consider the variation of the volume.

Corollary 1.33. For a = (a1, a2, . . . , an) sufficiently close to 0, the volume of (Ma, ωa) is a polynomial
in a1, a2, . . . , an of degree d = 1

2 dim(Ma) given by the formula

∑
|α|+m=d

∫
M0

φα1
1 φα2

2 . . . φαn
n ωm

α!m!
aα1

1 aα2
2 . . . aαn

n .

We now retrace Mirzakhani’s steps in constructing a setup in which these techniques will pro-
duce Weil–Petersson volumes. Doing so will provide a second proof of the fact that Vg,n(L) is a
polynomial and, furthermore, show that its coefficients store interesting information — namely,
intersection numbers on the moduli spaceMg,n.

Consider the space

M̂g,n =

{
(X, p1, p2, . . . , pn)

∣∣∣∣∣ X is a genus g hyperbolic surface with n geodesic boundary
components β1, β2, . . . , βn and pk ∈ βk for all k

}

and note that there is a Tn = S1 × S1 × . . .× S1 action on the space, where the kth copy of S1

moves the point pk along the boundary βk. This action is the Hamiltonian flow for the moment
map µ : M̂g,n → Rn defined by µ(X, p1, p2, . . . , pn) = ( 1

2 L2
1, 1

2 L2
2, . . . , 1

2 L2
n), where Lk denotes

the length of the geodesic boundary component βk.

Fix a tuple γ = (γ1, γ2, . . . , γn) of disjoint simple closed curves on Sg,2n such that γk bounds
a pair of pants with the boundaries labelled 2k − 1 and 2k. Then g ∈ Modg,2n acts on γ by
gγ = (gγ1, gγ2, . . . , gγn). Now define

Mγ
g,2n = {(X, η1, η2, . . . , ηn) | X ∈ Mg,2n(0) and (η1, η2, . . . , ηn) ∈ Modg,2n · γ}

or, equivalently, consider Mγ
g,2n = Tg,2n(0)/G where G =

⋂
Stab(γk) ⊆ Modg,2n. Since the

Weil–Petersson symplectic form on Tg,2n(0) is invariant under the action of Modg,2n, it is also
invariant under G. Therefore, it descends to a symplectic form onMγ

g,2n.

There is a natural map f : M̂g,n → Mγ
g,2n. Simply take (X, p1, p2, . . . , pn) where X ∈ Mg,n(L)
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and, to the kth boundary component, glue in a pair of pants with two cusps labelled 2k− 1 and
2k and a boundary component of length Lk. Of course, this can be done in infinitely many ways
and we choose the unique way such that the seam from the cusp labelled 2k meets the point pk.
The map f can be used to pull back the symplectic form to M̂g,n, where it is invariant under the
Tn-action. Furthermore, the canonical map `−1(L)/Tn → Mg,n(L) is a symplectomorphism,
where ` : M̂g,n → Rn sends a hyperbolic surface to its boundary lengths.

As mentioned earlier, the Tn action gives rise to n circle bundles S1,S2, . . . ,Sn on the symplectic
reductionMg,n(0) = µ−1(0)/Tn. Mirzakhani managed to prove the following fact concerning
the Chern classes of these circle bundles.

Proposition 1.34. For k = 1, 2, . . . , n, c1(Sk) = ψk ∈ H2(Mg,n, Q).

We are now ready to state and prove one of the most important results underlying this thesis.

Theorem 1.35 (Mirzakhani’s theorem). The volume polynomial Vg,n(L) is given by the formula

∑
|α|+m=3g−3+n

(2π2)m ∫
Mg,n

ψα1
1 ψα2

2 . . . ψαn
n κm

1

2|α|α!m!
L2α1

1 L2α2
2 . . . L2αn

n .

Proof. We simply apply Corollary 1.33 to the symplectic manifold M̂g,n with the moment map
µ defined earlier. This shows that the Weil–Petersson volume ofMg,n(L) in a neighbourhood of
0 is a polynomial in L2

1, L2
2, . . . , L2

n whose coefficients are given by integrating products of Chern
classes of the circle bundles S1,S2, . . . ,Sn alongside powers of the reduced symplectic form.
By Theorem 1.34, these Chern classes are precisely the psi-classes. Furthermore, the reduced
symplectic form coincides with the Weil–Petersson form, whose cohomology class we can write
as 2π2κ1, by Theorem 1.26.

We have purposefully glossed over some of the more technical details in the proof of Theo-
rem 1.35. The three main issues are as follows.

In actual fact, 0 is not a regular value of the moment map, so we cannot legitimately
construct the symplectic reduction as proposed. However, all values away from 0 are
regular, so we can form the reduced manifold Mε for ε 6= 0. We recover the desired result
in the ε→ 0 limit.

The literature on symplectic reduction generally does not consider the case of symplectic
orbifolds. However, in analogy with Theorem 1.1 and Theorem 1.2, one can get around
such problems by lifting to a manifold cover. This takes a little extra care, but essentially
causes no problems.
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Proposition 1.34 claims that c1(Sk) is an element of H2(Mg,n, Q) when it is apparent that
Sk is a circle bundle over the uncompactified spaceMg,n(0). However, it is straightfor-
ward to extend Sk to the compactification.

Mirzakhani’s theorem shows that Vg,n(L) is a polynomial whose coefficients store information
about the intersection numbers onMg,n. In fact, all psi-class intersection numbers onMg,n can
be recovered from the top degree part of Vg,n(L) alone. On the other hand, Mirzakhani’s re-
cursion shows that the Weil–Petersson volumes can be calculated recursively. Therefore, these
two theorems together provide an effective recursive algorithm to determine all psi-class inter-
section numbers onMg,n. So it should come as little surprise that Mirzakhani was able to give
a new proof of Witten’s conjecture using these results. However, there are three remarkable
aspects of her proof. First, she proved Witten’s conjecture by directly verifying the Virasoro
constraints. Second, Mirzakhani’s proof was the first to appear which did not require the use of
a matrix model. Third, and most importantly for us, her proof of Witten’s conjecture is deeply
rooted in hyperbolic geometry.

The basis for the new results appearing in this thesis is Mirzakhani’s theorem. In particular,
it allows us to adopt the philosophy that any meaningful statement about the volume Vg,n(L)
gives a meaningful statement about the intersection theory onMg,n, and vice versa.
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Chapter 2

Weil–Petersson volume relations and

hyperbolic cone surfaces

In this chapter, we prove the generalised string and dilaton equations, which take the form of
relations between Weil–Petersson volumes. Two distinct proofs are supplied — one arising from
algebraic geometry and the other from Mirzakhani’s recursion. One striking feature of these
results is that they are highly suggestive of a third proof, involving the geometry of hyperbolic
cone surfaces. As applications of the generalised string and dilaton equations, we show how
to efficiently calculate genus 0 and genus 1 Weil–Petersson volumes and give a formula for the
volume Vg,0, a case not dealt with by Mirzakhani’s recursion. The chapter concludes with some
ideas on how this work may be extended.

2.1 Volume polynomial relations

Generalised string and dilaton equations

Mirzakhani’s theorem — Theorem 1.35 — asserts that the Weil–Petersson volumes are polyno-
mials whose coefficients store interesting information. In particular, any meaningful statement
about Vg,n(L) gives a meaningful statement about the intersection theory on Mg,n, and vice
versa. Mirzakhani’s recursion — Theorem 1.29 — provides an effective algorithm to calculate
these Weil–Petersson volumes. Therefore, it is possible to adopt a numerological approach and
simply search for interesting patterns among the volume polynomials. These, in turn, should
translate into relations concerning the intersection theory on moduli spaces of curves. The hope
is that packaging the intersection numbers on Mg,n into the polynomial Vg,n(L) may reveal
useful information which is otherwise obscured.

41
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For example, consider Vg,1(L) for small values of g.

V1,1(L) =
1
48

(L2 + 4π2)

V2,1(L) =
1

2211840
(L2 + 4π2)(L2 + 12π2)(5L4 + 384π2L2 + 6960π4)

V3,1(L) =
1

267544166400
(L2 + 4π2)(5L12 + 2136π2L10 + · · ·+ 152253906944π12)

V4,1(L) =
1

1035588555767808000
(L2 + 4π2)(35L18 + · · ·+ 24243263955499483136π18)

From this evidence alone, it is natural to conjecture that Vg,1(L) always possesses a factor of
L2 + 4π2. This is indeed true, but also suggests that the volume polynomials exhibit interest-
ing behaviour when one of the arguments is evaluated at 2πi. A more thorough investigation
uncovers the following results.

Theorem 2.1 (Generalised string equation). For 2g− 2 + n > 0, the Weil–Petersson volumes satisfy
the following relation.1

Vg,n+1(L, 2πi) =
n

∑
k=1

∫
LkVg,n(L) dLk

Theorem 2.2 (Generalised dilaton equation). For 2g − 2 + n > 0, the Weil–Petersson volumes
satisfy the following relation.

∂Vg,n+1

∂Ln+1
(L, 2πi) = 2πi(2g− 2 + n)Vg,n(L)

These two statements relate the volume Vg,n+1(L, Ln+1) to the volume Vg,n(L) and, therefore,
also relate the intersection theory onMg,n+1 to the intersection theory onMg,n. In fact, equat-
ing coefficients of the top degree terms, one recovers the string and dilaton equations, thereby
explaining our choice of nomenclature. At first glance, there are two notable observations one
can make about these relations. First, their concise nature indicates that the Weil–Petersson vol-
ume Vg,n(L) is a useful way to package intersection numbers onMg,n. Second, the intriguing
appearance of the number 2πi suggests that there is interesting geometry lurking behind these
statements.

Three viewpoints

There are at least three possible approaches to proving the generalised string and dilaton equa-
tions.

1Here, we have used the notation
∫

LkVg,n(L) dLk to refer to the unique antiderivative of LkVg,n(L) with respect to Lk
which has zero constant term. A more accurate, though also more cumbersome, notation would have been to express
this as

∫ Lk
0 xVg,n(L1, . . . , Lk−1, x, Lk+1, . . . , Ln) dx.



2.1. Volume polynomial relations 43

In the world of algebraic geometry, one can pass from a curve in Mg,n+1 to a curve in
Mg,n simply by forgetting the last marked point and stabilising, if necessary. This pro-
cess is formalised by the forgetful morphism π : Mg,n+1 →Mg,n. Witten’s proofs of the
string and dilaton equations arise from the analysis of psi-classes under pull-back via the
forgetful morphism [57]. Naturally, one would expect their generalisations to succumb to
a similar approach. The first step is to invoke Mirzakhani’s theorem in order to translate
the generalised string and dilaton equations into equivalent statements concerning inter-
section numbers. For our purposes, the analysis of kappa-classes under pull-back via the
forgetful morphism is also required. This approach is presented in Section 2.2.

Mirzakhani’s recursion allows one to determine all of the polynomials Vg,n,(L) from a
small number of base cases. Therefore, any relation between the Weil–Petersson volumes
is, in some sense, encapsulated in her recursive formula. So it should come as little sur-
prise that the generalised string and dilaton equations follow from Mirzakhani’s results.
What is interesting, however, is the nature of these proofs and the fact that they rely on
certain interesting identities among the Bernoulli numbers. This approach is presented in
Section 2.3.

In both the generalised string and dilaton equations, one of the arguments in the volume
polynomial is evaluated at 2πi. It would be desirable to ascribe geometric meaning to this
formal evaluation. Indeed, a general phenomenon in hyperbolic geometry is the fact that
a purely imaginary length often corresponds to an angle. In this way, one is motivated to
consider hyperbolic cone surfaces with a cone angle approaching 2π. Therefore, we have
a tantalising connection between the intersection theory on moduli spaces of curves and
the geometry of hyperbolic cone surfaces.

Unfortunately, it is a difficult task to make such a connection explicit, since the geometry of
hyperbolic cone surfaces is not very well understood. We conclude this chapter with some
discussion of these difficulties and how they may possibly be overcome. This approach
largely remains work in progress but the hope is that the ideas presented may be the germ
for future results.

Note that these three viewpoints naturally correspond to three ways in which one can pass
from a surface of type (g, n + 1) to a surface of type (g, n). When the surfaces are endowed with
the structure of algebraic curves, then the forgetful morphism allows one to essentially remove
one of the marked points. In the hyperbolic setting, there is no analogous map which forgets
a boundary component. On the other hand, one can decrease the number of boundary com-
ponents by simply removing a pair of pants. As noted earlier, this is precisely the mechanism
by which Mirzakhani’s recursion inductively reduces the calculation of Vg,n(L). Another way
to decrease the number of boundary components is to degenerate one of them — first, from a
geodesic boundary to a cusp, then from a cusp to a cone point with cone angle 2π.
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2.2 Proofs via algebraic geometry

Pull-back relations

In this section, we describe the behaviour of the psi-classes and kappa-classes under pull-back
via the forgetful morphism. These results, which appear in various references such as Arbarello
and Cornalba’s paper [2], are then used to deduce the generalised string and dilaton equations.
For clarification, we will occasionally use a tilde over a symbol to distinguish between analo-
gous constructions onMg,n and those onMg,n+1. For example, ψk denotes the kth psi-class on
Mg,n while ψ̃k denotes the kth psi-class onMg,n+1.

One might naively expect that L̃k = π∗Lk or, at the level of Chern classes, that ψ̃k = π∗ψk for
k = 1, 2, . . . , n. However, this is not the case due to the fact that the morphism π : Mg,n+1 →
Mg,n not only forgets the last marked point, but also stabilises the resulting curve, if necessary.
So the discrepancy is, in some sense, caused by the geometry occurring at the boundary divisor
of the moduli space. The actual behaviour of the psi-classes under pull-back via the forgetful
morphism is given by the following result.

Lemma 2.3 (Pull-back relation for psi-classes). For k = 1, 2, . . . , n, the cohomology classes ψ̃k ∈
H2(Mg,n+1, Q) and ψk ∈ H2(Mg,n, Q) are related by the equation

ψ̃k = π∗ψk + Dk.

Proof. Recall that we are using the notation Dk to represent the divisor σk(Mg,n) as well as
the corresponding homology class and Poincaré dual cohomology class. Away from Dk, the
line bundles L̃k and π∗Lk are identical. Therefore, we have the following isomorphism of line
bundles for some value of m.

L̃k
∼= π∗Lk ⊗O(mDk)

For curves corresponding to points in Dk, the kth marked point lies on a rigid object — namely,
a copy of CP1 with three special points. Therefore, the pull-back of L̃k under σk is trivial. So we
have

O = σ∗k L̃k = σ∗k π∗Lk ⊗ σ∗kO(mDk) = Lk ⊗ (L∗k )m,

from which it follows that m = 1. Here, we have used σ∗kO(Dk) = L∗k , which holds because both
line bundles are isomorphic to Nσk , the normal bundle to the embedding σk :Mg,n →Mg,n+1.
Finally, we deduce that L̃k

∼= π∗Lk ⊗ O(Dk) and, after taking Chern classes, one obtains the
desired result.

In the previous proof, we observed that the pull-back of L̃k along σk is trivial. It follows that
ψ̃k · Dk = 0, and we can combine this with the pull-back relation for psi-classes to obtain the
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following equation.

ψ̃m+1
k = ψ̃k · (π∗ψk + Dk)m = ψ̃k · π∗ψm

k = (π∗ψk + Dk) · π∗ψm
k = π∗ψm+1

k + Dk · π∗ψm
k

Another consequence of ψ̃k · Dk = 0 and the pull-back relation for psi-classes is the equation
(π∗ψk + Dk) · Dk = 0 or equivalently, D2

k = (−π∗ψk) · Dk. By induction on this identity, we
deduce that Dm+1

k = (−π∗ψk)m · Dk for all non-negative integers m. Combining this with the
equation above yields

ψ̃m+1
k = π∗ψm+1

k + (−1)mDm+1
k .

Lemma 2.4 (Pull-back relation for kappa-classes). The cohomology classes κ̃m ∈ H2(Mg,n+1, Q)
and κm ∈ H2(Mg,n, Q) are related by the equation

κ̃m = π∗κm + ψm
n+1.

Proof. Consider the following commutative diagram, where

M∼=Mg,n, Mx ∼=My ∼=Mg,n+1 and Mxy ∼=Mg,n+2.

All are moduli spaces of genus g curves with marked points labelled 1, 2, . . . , n. The spaceMx

has an extra point labelled x, the spaceMy has an extra point labelled y and the spaceMxy has
two extra points labelled x and y. All maps are forgetful morphisms with the subscript denoting
the label of the forgotten point.

Mxy

Mx

π̃y

<
My

π̃x

>

M

πy

<

πx
>

From the previous discussion, we have the relation ψ̃m+1
x = π̃∗y ψm+1

x + (−1)mDm+1
xy on Mxy.

Here, Dxy denotes the divisor corresponding to the image of the section σx :Mx →Mxy, which
coincides with the image of the section σy : My → Mxy. Now use the forgetful morphism π̃x

to push this relation down toMy and obtain π̃x∗ψ̃m+1
x = π̃x∗π̃∗y ψm+1

x + (−1)mπ̃x∗Dm+1
xy . From

the equality of ψn+1 and the twisted Euler class, we have the following.

κ̃m = π̃x∗π̃∗y ψm+1
x + (−1)mσ∗y Dm

xy = π∗y πx∗ψm+1
x + σ∗y (−Dxy)m = π∗yκm + ψm

y
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The first equality is a result of the fact that intersecting with Dk followed by pushing down to
Mg,n is the same as pulling back along σk. To obtain the second equality, we have interchanged
the order of the push-forward and pull-back operations — for justification of this step, see §6.2
in [15]. The third equality uses the fact that ψk = σ∗k (−Dk), which follows from our observation
in the proof of Lemma 2.3 that σ∗kO(Dk) = L∗k .

In the algebro-geometric proofs of the generalised string and dilaton equations, we will make
particular use of Lemma 2.4 in the case m = 1 — in other words, κ1 = π∗κ1 + ψn+1. We also
require the following straightforward evaluations of the Gysin map π∗ : H∗(Mg,n+1, Q) →
H∗(Mg,n, Q).

π∗1 = 0 π∗Dk = 1 for k = 1, 2, . . . , n π∗ψn+1 = 2g− 2 + n

The first two evaluations can be directly deduced from the Poincaré duality description of the
Gysin map. The third uses the fact that ψn+1 coincides with the twisted Euler class e, which
satisfies 〈e, Σ〉 = −χ(Σ−∪Dk) = 2g− 2 + n on every fibre Σ.

Proof of the generalised string equation

Recall that the generalised string equation states that the following relation holds.

Vg,n+1(L, 2πi) =
n

∑
k=1

∫
LkVg,n(L) dLk

By Mirzakhani’s theorem, the left hand side can be written as

∑
|α|+j+k=3g−2+n

(2π2)k ∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n ψ

j
n+1κk

1

2|α|2jα!j!k!
L2α1

1 L2α2
2 . . . L2αn

n (2πi)2j.

Set m = 3g− 2 + n− |α| and consider the coefficient of L2α1
1 L2α2

2 . . . L2αn
n in this expression.

m

∑
j=0

(2πi)2j(2π2)m−j

2|α|2jα!j!(m− j)!

∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n ψ

j
n+1κ

m−j
1

=
(2π2)m

2|α|α!m!

m

∑
j=0

(−1)j
(

m
j

) ∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n ψ

j
n+1κ

m−j
1

=
(2π2)m

2|α|α!m!

∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n (κ1 − ψn+1)m

Now consider the coefficient of L2α1
1 L2α2

2 . . . L2αn
n on the right hand side of the generalised string
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equation. Invoking Mirzakhani’s theorem again, we can express this as

(2π2)m

2|α|α!m!

n

∑
k=1

∫
Mg,n

ψα1
1 . . . ψ

αk−1
k . . . ψαn

n κm
1 .

Therefore, it suffices to show that

∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n (κ1 − ψn+1)m =

n

∑
k=1

∫
Mg,n

ψα1
1 . . . ψ

αk−1
k . . . ψαn

n κm
1 .

However, this is a direct result of the following chain of equalities.

π∗
[
ψα1

1 ψα2
2 . . . ψαn

n (κ1 − ψn+1)m] = π∗

[
π∗κm

1

n

∏
k=1

(
π∗ψαk

k + Dk · π∗ψαk−1
k

)]

= κm
1

n

∑
k=1

ψα1
1 . . . ψ

αk−1
k . . . ψαn

n

The first equality comes about from substituting the pull-back relations stated as Lemma 2.3
and Lemma 2.4. The second equality follows from the push-pull formula, the straightforward
fact that Di · Dj = 0 for i 6= j, as well as the evaluations π∗1 = 0 and π∗Dk = 1.

Proof of the generalised dilaton equation

Recall that the generalised dilaton equation states that the following relation holds.

∂Vg,n+1

∂Ln+1
(L, 2πi) = 2πi(2g− 2 + n)Vg,n(L)

By Mirzakhani’s theorem, the left hand side can be written as

∑
|α|+j+k=3g−3+n

(2π2)k ∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n ψ

j+1
n+1κk

1

2|α|2jα!j!k!
L2α1

1 L2α2
2 . . . L2αn

n (2πi)2j+1.

Set m = 3g− 3 + n− |α| and consider the coefficient of L2α1
1 L2α2

2 . . . L2αn
n in this expression.

m

∑
j=0

(2πi)2j+1(2π2)m−j

2|α|2jα!j!(m− j)!

∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n ψ

j+1
n+1κ

m−j
1

=
2πi(2π2)m

2|α|α!m!

m

∑
j=0

(−1)j
(

m
j

) ∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n ψ

j+1
n+1κ

m−j
1

=
2πi(2π2)m

2|α|α!m!

∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n ψn+1(κ1 − ψn+1)m
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Now consider the coefficient of L2α1
1 L2α2

2 . . . L2αn
n on the right hand side of the generalised dilaton

equation. Invoking Mirzakhani’s theorem again, we can express this as

2πi(2g− 2 + n)(2π2)m

2|α|α!m!

∫
Mg,n

ψα1
1 ψα2

2 . . . ψαn
n κm

1 .

Therefore, it suffices to show that∫
Mg,n+1

ψα1
1 ψα2

2 . . . ψαn
n ψn+1(κ1 − ψn+1)m = (2g− 2 + n)

∫
Mg,n

ψα1
1 ψα2

2 . . . ψαn
n κm

1 .

However, this is a direct result of the following chain of equalities.

π∗
[
ψα1

1 ψα2
2 . . . ψαn

n ψn+1(κ1 − ψn+1)m] = π∗

[
ψn+1 · π∗κm

1

n

∏
k=1

(
π∗ψαk

k + Dk · π∗ψαk−1
k

)]
= (2g− 2 + n)κm

1 ψα1
1 ψα2

2 . . . ψαn
n

The first equality comes about from substituting the pull-back relations stated as Lemma 2.3
and Lemma 2.4. The second equality follows from the push-pull formula, the straightforward
fact that Di · Dj = 0 for i 6= j, as well as the evaluation π∗ψn+1 = 2g− 2 + n.

2.3 Proofs via Mirzakhani’s recursion

Bernoulli numbers

The Bernoulli numbers B0, B1, B2, . . . can be defined by the generating function

x
ex − 1

=
∞

∑
k=0

Bk
xk

k!
.

They have a habit of appearing in various disparate branches of mathematics, often unexpect-
edly, and the theory of moduli spaces of curves is no exception. One of the first results enunciat-
ing such a connection was the calculation of the orbifold Euler characteristic ofMg,n, performed
by Harer and Zagier [21] and also by Penner [49]. They essentially proved that

χ(Mg,n) = (−1)n (2g− 3 + n)!
2g(2g− 2)!

B2g.

Proposition 1.12 gives an elegant formula relating Hodge classes to kappa-classes which also
features the Bernoulli numbers. They make an appearance in our work through the evaluations
of the integrals arising from Mirzakhani’s recursion. These involve values of the Riemann zeta
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function at non-negative even integers, which are directly related to the Bernoulli numbers by
the well-known formula

ζ(2k) =
(−1)k+1(2π)2kB2k

2(2k)!
.

Another elementary result is the fact that, for odd k greater than 1, Bk = 0. The Bernoulli num-
bers satisfy a myriad of other interesting relations, though we will only require the following
facts.

Lemma 2.5. The Bernoulli numbers obey the following two relations.

(i) For every positive integer n,
n

∑
k=0

(
n + 1

k

)
Bk = 0.

(ii) For every even positive integer n,

n

∑
k=0

2k
(

n + 1
k

)
Bk = 0.

Proof.

(i) From the definition of the Bernoulli numbers, we obtain the following chain of equalities.

x =

(
∞

∑
k=0

Bk
xk

k!

)
(ex − 1) =

(
∞

∑
k=0

Bk
xk

k!

)(
∞

∑
m=1

xm

m!

)
=

∞

∑
n=0

(
n

∑
k=0

Bk
k!(n + 1− k)!

)
xn+1

Equating the coefficients of xn+1 on both sides for positive n yields the desired relation.

n

∑
k=0

Bk
k!(n + 1− k)!

= 0 ⇒
n

∑
k=0

(
n + 1

k

)
Bk = 0

(ii) Again, from the definition of the Bernoulli numbers, we obtain the following.

2x
e2x − 1

=
∞

∑
k=0

Bk
(2x)k

k!
⇒ 2x

ex − 1
=

(
∞

∑
k=0

2kBk
xk

k!

)
(ex + 1)

Therefore, we have the generating function identity

∞

∑
n=0

2Bn
xn

n!
=

(
∞

∑
k=0

2kBk
xk

k!

)(
2 +

∞

∑
m=1

xm

m!

)
,

which implies
∞

∑
n=1

(2− 2n+1)Bn
xn

n!
=

∞

∑
n=1

(
n−1

∑
k=0

2kBk
k!(n− k)!

)
xn.
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After shifting the index of the summations, we have

∞

∑
n=0

(2− 2n+2)Bn+1
xn+1

(n + 1)!
=

∞

∑
n=0

(
n

∑
k=0

2kBk
k!(n + 1− k)!

)
xn+1,

and equating the coefficients of xn+1 on both sides for n positive and even yields the de-
sired relation.

n

∑
k=0

2kBk
k!(n + 1− k)!

= 0 ⇒
n

∑
k=0

2k
(

n + 1
k

)
Bk = 0

Lemma 2.6. For every non-negative integer n,

∑
i+j≤n

(22i − 2)(22j − 2)B2iB2j

(2i)!(2j)!(2n− 2i− 2j)!
= (2n− 1)

(22n − 2)B2n

(2n)!
,

where the summation is over ordered pairs of non-negative integers (i, j).

Proof. For every non-negative integer k, define Ak = (22k−2)B2k
(2k)! and Ek = 1

(2k)! . Given this
notation, the result we wish to prove takes the form

∑
i+j+k=n

Ai AjEk = (2n− 1)An.

Identities involving convolutions like this are particularly amenable to a generating function
approach. In fact, if we define a(x) = ∑ Akx2k and e(x) = ∑ Ekx2k, then the problem is equiv-
alent to the identity a(x)2e(x) = xa′(x) − a(x). This can be easily verified from the explicit
expressions

a(x) =
−2x

ex − e−x and e(x) =
ex + e−x

2
.

Proof of the generalised dilaton equation

Armed with the Bernoulli identities above, we will prove that the generalised dilaton equation
is a consequence of Mirzakhani’s recursion. Let us start by introducing the following operators.

D[·] = 2
∂

∂L1
L1[·]

∂[·] =
∂

∂Ln+1
[·]Ln+1=2πi

H1[·] =
∫ ∞

0

∫ ∞

0
xy H(x + y, L1) [·] dx dy

Hk[·] =
∫ ∞

0
x[H(x, L1 + Lk) + H(x, L1 − Lk)] [·] dx
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Here, the function H : R2 → R is defined as in the statement of Theorem 1.29. These operators
can be considered as linear endomorphisms of the complex vector space with basis the set of
monomials in x2, y2, L2

1, L2
2, L2

3, . . .. With this notation in place, Mirzakhani’s recursion can be
stated as

D[Vg(L, Ln+1)] =H1[Vg−1(x, y, L̂, Ln+1)] + ∑
g1+g2=g

I1tI2=[2,n+1]

H1[Vg1(x, LI1)Vg2(y, LI2)]

+
n

∑
k=2

Hk[Vg(x, L̂k, Ln+1)] + Hn+1[Vg(x, L̂)].

Furthermore, the generalised dilaton equation can be stated as

∂[Vg(L, Ln+1)] = 2πi(2g− 2 + n)Vg(L).

Recall the notation L̂ = (L2, L3, . . . , Ln), L̂k = (L2, . . . , L̂k, . . . , Ln) and LI = (Li1 , Li2 , . . . , Lim) for
I = {i1, i2, . . . , im}. Note that we have omitted the second subscript of the volume polynomials
where it is clear how many arguments are involved. For example, Vg,n(L1, L2, . . . , Ln) may be
abbreviated to Vg(L), and we will continue this practice for notational economy.

Observe that the action of Hk on the monomial x2a−2 for a positive integer a can be explicitly
expressed as follows.

Hk[x2a−2] =
∫ ∞

0
x2a−1[H(x, L1 + Lk) + H(x, L1 − Lk)] dx

= (2a− 1)!
a

∑
i=0

ζ(2i)(22i+1 − 4)
(2a− 2i)!

[(L1 + Lk)2a−2i + (L1 − Lk)2a−2i]

= (2a− 1)!
a

∑
i=0

ζ(2i)(22i+1 − 4)
(2a− 2i)!

a−i

∑
j=0

2
(

2a− 2i
2j

)
L2j

1 L2a−2i−2j
k

= 2(2a− 1)! ∑
i+j≤a

ζ(2i)(22i+1 − 4)
(2j)!(2a− 2i− 2j)!

L2j
1 L2a−2i−2j

k

It is a simple matter to verify the generalised dilaton equation when (g, n) is equal to (0, 3) or
(1, 1). The proof now proceeds by induction on the negative Euler characteristic 2g − 2 + n,
and we start by applying the operator ∂ to both sides of Mirzakhani’s recursion. Since ∂ and D
commute, the left hand side becomes

∂ ◦ D[Vg(L, Ln+1)] = D ◦ ∂[Vg(L, Ln+1)].

The right hand side breaks up naturally as the sum of four terms, which we will deal with in
order. The first term gives the following, where we have made use of the fact that ∂ and H1
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commute, as well as the inductive assumption.

∂ ◦ H1[Vg−1(x, y, L̂, Ln+1)] = H1 ◦ ∂[Vg−1(x, y, L̂, Ln+1)]

= 2πi(2g− 3 + n)H1[Vg−1(x, y, L̂)]

The second term can be taken care of by simply concentrating on the summation over I1 t I2.
Once again, we have made use of the fact that ∂ and H1 commute, as well as the inductive
assumption.

∂

 ∑
I1tI2=[2,n+1]

H1[Vg1(x, LI1)Vg2(y, LI2)]


= ∑
I1tI2=[2,n]

H1 ◦ ∂[Vg1(x, LI1 , Ln+1)Vg2(y, LI2)] + H1 ◦ ∂[Vg1(x, LI1)Vg2(y, LI2 , Ln+1)]

= ∑
I1tI2=[2,n]

[2πi(2g1 − 1 + |I1|) + 2πi(2g2 − 1 + |I2|)] H1[Vg1(x, LI1)Vg2(y, LI2)]

= 2πi(2g− 3 + n) ∑
I1tI2=[2,n]

H1[Vg1(x, LI1)Vg2(y, LI2)]

The third term can be dealt with in a similar manner, using the fact that ∂ and Hk commute.

∂

[
n

∑
k=2

Hk[Vg(x, L̂k, Ln+1)

]
=

n

∑
k=2

Hk ◦ ∂[Vg(x, L̂k, Ln+1)]

= 2πi(2g− 3 + n)
n

∑
k=2

Hk[Vg(x, L̂k)]

Putting all of this together and invoking Mirzakhani’s recursion again, we obtain the following.

D ◦ ∂[Vg(L, Ln+1)] = 2πi(2g− 3 + n)D[Vg(L)] + ∂ ◦ Hn+1[Vg(x, L̂)]

Now since D is invertible, the generalised dilaton equation will follow if we can prove that

∂ ◦ Hn+1[Vg(x, L̂)] = 2πiD[Vg(L)].

However, this is a direct corollary of the following result.

Lemma 2.7. For every even polynomial P, the following relation holds.

∂ ◦ Hn+1[P(x)] = 2πiD[P(L1)]

Proof. By linearity, it suffices to prove the lemma for monomials of the form x2a, where a is a
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non-negative integer.
∂ ◦ Hn+1[x2a] = 2πiD[L2a

1 ]

We can use the explicit expressions for the operators ∂, D, Hn+1 to state this as

(2a)! ∑
i+j≤a

ζ(2i)(22i+1 − 4)
(2j)!(2a + 1− 2i− 2j)!

L2j
1 (2πi)2a−2i−2j = L2a

1 .

Note that both sides of this equation are polynomials in L1 and that the coefficient of Ld
1 on the

left hand side can be written as

(2a)!
(2d)!

a−d

∑
i=0

ζ(2i)(22i+1 − 4)
(2a− 2d + 1− 2i)!

(2πi)2a−2d−2i. (2.1)

Set m = a− d and replace the values of the Riemann zeta function with Bernoulli numbers to
obtain

(−1)m+1(2π)2m

2m + 1

(
2a
2d

) m

∑
i=0

B2i(22i − 2)
(

2m + 1
2i

)
.

Since Bi(2i − 2) = 0 for all odd positive integers i, this is equivalent to

(−1)m+1(2π)2m

2m + 1

(
2a
2d

) 2m

∑
i=0

Bi(2i − 2)
(

2m + 1
i

)

=
(−1)m+1(2π)2m

2m + 1

(
2a
2d

)[ 2m

∑
i=0

2i
(

2m + 1
i

)
Bi − 2

2m

∑
i=0

(
2m + 1

i

)
Bi

]
.

The two summations in the latter expression are equal to zero by Lemma 2.5 unless m = 0.
Therefore, the only contribution to equation (2.1) occurs when d = a. In this case, it is easy to
verify that the coefficient of L2d

1 is indeed 1 and the result follows.

Proof of the generalised string equation

The method of proof for the generalised string equation is very similar in nature to that used for
the generalised dilaton equation, though even more unwieldy. Rather than provide the lengthy
and tedious algebraic manipulations, we will content ourselves by stating the important steps
of the proof. We will need some further notation before we begin.

Ik[·] =
∫

Lk[·] dLk Ix[·] =
∫

x[·] dx Iy[·] =
∫

y[·] dy

K[·] =
1

2L1

∫
[·] dL1 H2πi[·] = Hk[·]Lk=2πi
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Once again, these can be considered as linear endomorphisms of the complex vector space with
basis the set of monomials in x2, y2, L2

1, L2
2, L2

3, . . .. With this notation, the generalised string
equation can be stated as

Vg(L, 2πi) =
n

∑
k=1

Ik[Vg(L)].

The action of H1 on the monomial x2a−2y2b−2 for positive integers a and b can be explicitly
expressed as follows.

H1[x2a−2y2b−2] =
∫ ∞

0

∫ ∞

0
x2a−1y2b−1H(x + y, L1) dx dy

= (2a− 1)!(2b− 1)!
a+b

∑
i=0

ζ(2i)(22i+1 − 4)
(2a + 2b− 2i)!

L2a+2b−2i
1

Similarly, the action of H2πi on the monomial x2a−2 for a positive integer a takes the following
form.

H2πi[x2a−2] = Hk[x2a−2]Lk=2πi

= 2(2a− 1)! ∑
i+j≤a

ζ(2i)(22i+1 − 4)(2πi)2a−2i−2j

(2j)!(2a− 2i− 2j)!
L2j

1

It is a simple matter to verify the generalised string equation when (g, n) is equal to (0, 3) or
(1, 1). The proof now proceeds by induction on the negative Euler characteristic 2g− 2 + n, and
our starting point is Mirzakhani’s recursion. Applying the inductive hypothesis allows us to
write the left hand side of the generalised string equation in the following lengthy manner.

Vg(L, 2πi) = 2K ◦ H1 ◦ Ix[Vg−1(x, y, L̂)] + 2 ∑
g1+g2=g
I1tI2=[2,n]

K ◦ H1 ◦ Ix[Vg1(x, LI1)Vg2(y, LI2)]

+
n

∑
i=2

Ki ◦ Hi ◦ Ix[Vg(x, L̂i)] +
n

∑
k=2

K ◦ H1 ◦ Ik[Vg−1(x, y, L̂)]

+ ∑
g1+g2=g
I1tI2=[2,n]

n

∑
k=2

K ◦ H1 ◦ Ik[Vg1(x, LI1)Vg2(y, LI2)] + 2
n

∑
k=2

K ◦ H1[Vg(x, L̂k)]

+
n

∑
i=2

n

∑
k=2,k 6=i

K ◦ Hi ◦ Ik[Vg(x, L̂i)] + K ◦ H2πi[Vg(x, L̂)]

Our approach from here will be to use Mirzakhani’s recursion and the inductive hypothesis to
express the right hand side of the generalised string equation in a similar manner. Equating the
two sides and performing certain cancellations and simplifications, we will arrive at a statement
involving only Bernoulli numbers.
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The right hand side of the generalised string equation can be expressed as follows.

n

∑
k=1

Ik[Vg(L)] = I1 ◦ K ◦ H1[Vg−1(x, y, L̂)] + ∑
g1+g2=g
I1tI2=[2,n]

I1 ◦ K ◦ H1[Vg1(x, LI1)Vg2(y, LI2)]

+
n

∑
i=2

I1 ◦ K ◦ Hi[Vg(x, L̂i)] +
n

∑
k=2

K ◦ H1 ◦ Ik[Vg−1(x, y, L̂)]

+ ∑
g1+g2=g
I1tI2=[2,n]

n

∑
k=2

K ◦ H1 ◦ Ik[Vg1(x, LI1)Vg2(y, LI2)]

+
n

∑
i,k=2,i 6=k

K ◦ Hi ◦ Ik[Vg(x, L̂i)] +
n

∑
k=2

Ik ◦ K ◦ Hk[Vg(x, L̂k)]

After equating the previous two expressions and performing some mild cancellation, the gen-
eralised string equation boils down to proving the following equality.

2K ◦ H1 ◦ Ix[Vg−1(x, y, L̂)] + 2 ∑
g1+g2=g
I1tI2=[2,n]

K ◦ H1 ◦ Ix[Vg1(x, LI1)Vg2(y, LI2)]

+ 2
n

∑
k=2

K ◦ H1[Vg(x, L̂k)] +
n

∑
i=2

Ki ◦ Hi ◦ Ix[Vg(x, L̂i)] + K ◦ H2πi[Vg(x, L̂)]

= I1 ◦ K ◦ H1[Vg−1(x, y, L̂)] + ∑
g1+g2=g
I1tI2=[2,n]

I1 ◦ K ◦ H1[Vg1(x, LI1)Vg2(y, LI2)]

+
n

∑
k=2

Ik ◦ K ◦ Hk[Vg(x, L̂k)] +
n

∑
i=2

I1 ◦ K ◦ Hi[Vg(x, L̂i)]

At this stage, we invoke Mirzakhani’s recursion yet again, after which we arrive at the following
rather cumbersome equation.

K ◦ H2πi[K ◦ H1[Vg−1(x, y, L̂i)]]L1=x + 2 ∑
g1+g2=g
I1tI2=[2,n]

K ◦ H1 ◦ Ix[Vg1(x, LI1)Vg2(y, LI2)]

+ 2
n

∑
k=2

K ◦ H1[Vg(x, L̂k)] +
n

∑
i=2

Ki ◦ Hi ◦ Ix[Vg(x, L̂i)] +
n

∑
i=2

K ◦ H2πi[K ◦ Hi[Vg(x, L̂i)]]L1=x

+ ∑
g1+g2=g
I1tI2=[2,n]

K ◦ H2πi[K ◦ H1[Vg1(x, LI1)Vg2(y, LI2)]]L1=x + 2K ◦ H1 ◦ Ix[Vg−1(x, y, L̂)]

= I1 ◦ K ◦ H1[Vg−1(x, y, L̂)] + ∑
g1+g2=g
I1tI2=[2,n]

I1 ◦ K ◦ H1[Vg1(x, LI1)Vg2(y, LI2)]

+
n

∑
k=2

Ik ◦ K ◦ Hk[Vg(x, L̂k)] +
n

∑
i=2

I1 ◦ K ◦ Hi[Vg(x, L̂i)]
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However, by inspection, this equality is a direct corollary of the following two lemmas.

Lemma 2.8. For every symmetric even polynomial P(x, y), the following relation holds.

2K ◦ H1 ◦ Ix[P] + K ◦ H2πi[K ◦ H1[P]]L1=x = I1 ◦ K ◦ H1[P]

Lemma 2.9. For every even polynomial P(x), the following relation holds.

K ◦ Hk ◦ Ix[P] + 2K ◦ H1[P] + K ◦ H2πi[K ◦ Hk[P]]L1=x = Ik ◦ K ◦ Hk[P] + I1 ◦ K ◦ Hk[P]

Proof of Lemma 2.8. By linearity, it suffices to prove the lemma for polynomials of the form
x2ay2b + x2by2a, where a and b are non-negative integers. If we set m = a + b + 1, then the
first term on the left hand side is

2m(2a− 1)!(2b− 1)!
m

∑
i=0

ζ(2i)(22i+1 − 4)
(2m + 1− 2i)!

L2m−2i
1 ,

the second term on the left hand side is

(2a− 1)!(2b− 1)!
m

∑
i=0

∑
j+k≤m−i

ζ(2i)(22i+1 − 4)ζ(2j)(22j+1 − 4)
(2m− 2i− 2j− 2k)!(2k + 1)!

(−4π2)m−i−j−kL2k
1 ,

and the right hand side is

(2a− 1)!(2b− 1)!
m−1

∑
i=0

ζ(2i)(22i+1 − 4)
(2m− 2i)!

L2m−2i
1 .

Therefore, what we wish to prove can be equivalently expressed as

∑
i+j+k+l=m

ζ(2i)(22i+1 − 4)ζ(2j)(22j+1 − 4)
(2l)!(2k + 1)!

(−4π2)l L2k
1 =

m

∑
i=0

ζ(2i)(22i+1 − 4)(1− 2i)
(2m + 1− 2i)!

L2m−2i
1 .

Note that both sides are even polynomials in L1 of degree at most 2m, and equating the coeffi-
cients of L2m−2d

1 on both sides yields

∑
i+j≤d

ζ(2i)(22i+1 − 4)ζ(2j)(22j+1 − 4)
(2d− 2i− 2j)!

(−4π2)d−i−j = ζ(2d)(22d+1 − 4)(1− 2d).

Replacing the zeta values with Bernoulli numbers leads to

∑
i+j≤d

(22i − 2)(22j − 2)B2iB2j

(2i)!(2j)!(2d− 2i− 2j)!
= (2d− 1)

(22d − 2)B2d
(2d)!

,
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which is true by Lemma 2.6.

The following is very similar in nature to the previous proof and, perhaps surprisingly, relies
on the very same identity involving Bernoulli numbers.

Proof of Lemma 2.9. By linearity, it suffices to prove the lemma for monomials of the form x2a,
where a is a non-negative integer. The first term on the left hand side is

(2a + 1)(2a− 1)! ∑
i+j≤a+1

ζ(2i)(22i+1 − 4)
(2a + 2− 2i− 2j)!(2j + 1)!

L2j
1 L2a+2−2i−2j

k ,

the second term on the left hand side is

(2a− 1)!
a+1

∑
i=0

ζ(2i)(22i+1 − 4)
(2a + 3− 2i)!

L2a+2−2i
1 ,

and the third term on the left hand side is

(2a− 1)! ∑
i+j≤a

∑
k+l≤j+1

ζ(2i)(22i+1 − 4)ζ(2k)(22k+1 − 4)(2πi)2j+2−2k−2l

(2a− 2i− 2j)!(2j + 2− 2k− 2l)!(2l + 1)!
L2l

1 L2a−2i−2j
k .

The first term on the right hand side is

(2a− 1)! ∑
i+j≤a

ζ(2i)(22i+1 − 4)
(2a− 2i− 2j)!(2j + 1)!

L2j
1 L2a+2−2i−2j

k
2a + 2− 2i− 2j

,

and the second term on the right hand side is

(2a− 1)! ∑
i+j≤a

ζ(2i)(22i+1 − 4)
(2a− 2i− 2j)!(2j + 2)!

L2j+2
1 L2a−2i−2j

k .

Therefore, what we are required to prove amounts to the following, after some tedious though
mild simplification.

∑
i+j≤a+1

(2i + 2j)ζ(2i)(22i+1 − 4)
(2a + 2− 2i− 2j)!(2j + 1)!

L2j
1 L2a+2−2i−2j

k

+ ∑
i+j≤a

∑
k+l≤j+1

ζ(2i)(22i+1 − 4)ζ(2k)(22k+1 − 4)(2πi)2j+2−2k−2l

(2a− 2i− 2j)!(2j + 2− 2k− 2l)!(2l + 1)!
L2l

1 L2a−2i−2j
k

= ∑
i+j≤a

ζ(2i)(22i+1 − 4)
(2a− 2i− 2j)!(2j + 2)!

L2j+2
1 L2a−2i−2j

k
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Note that both sides of the equation are even polynomials in L1 and Lk with degree at most 2a +
2. Now equate the coefficient of L2m−2d

1 L2a+2−2m
k and note that to obtain a non-zero contribution

on both sides, we require 0 ≤ d ≤ m.

2mζ(2d)(22d+1 − 4)
(2a + 2− 2m)!(2m− 2d + 1)!

+ ∑
i+k≤d

ζ(2i)(22i+1 − 4)ζ(2k)(22k+1 − 4)(2πi)2d−2i−2k

(2a + 2− 2m)!(2d− 2i− 2k)!(2m− 2d + 1)!

=
ζ(2d)(22d+1 − 4)

(2a + 2− 2m)!(2m− 2d)!

A little rearrangement yields the equation

∑
i+k≤d

ζ(2i)(22i+1 − 4)ζ(2k)(22k+1 − 4)(2πi)2d−2i−2k

(2d− 2i− 2k)!
= ζ(2d)(22d+1 − 4)(1− 2d).

Once again, replacing the zeta values with Bernoulli numbers leads to

∑
i+j≤d

(22i − 2)(22j − 2)B2iB2j

(2i)!(2j)!(2d− 2i− 2j)!
= (2d− 1)

(22d − 2)B2d
(2d)!

,

which is true by Lemma 2.6.

2.4 Applications and extensions

Small genus Weil–Petersson volumes

The generalised string and dilaton equations are insufficient to recover all of the Weil–Petersson
volumes. However, they do uniquely determine the volume polynomials in genus 0 and 1,
given the base cases V0,3(L1, L2, L3) = 1 and V1,1(L1) = 1

48 (L2
1 + 4π2). The proof of this fact

hinges on the following lemma.

Lemma 2.10.

(i) A symmetric polynomial P(x1, x2, . . . , xn) of degree less than n is uniquely determined by the
evaluation P(x1, x2, . . . , xn−1, c) for any c ∈ C.

(ii) A symmetric polynomial P(x1, x2, . . . , xn) of degree less than or equal to n is uniquely determined
by the evaluations P(x1, x2, . . . , xn−1, c) and ∂P

∂xn
(x1, x2, . . . , xn−1, d) for any c, d ∈ C.

Proof.

(i) Suppose that P(x1, x2, . . . , xn) and Q(x1, x2, . . . , xn) are symmetric polynomials of degree
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less than n which have the same evaluation at xn = c. Then P−Q vanishes on the hyper-
plane defined by the equation xn = c and it follows that xn − c | P−Q. By symmetry, we
deduce that (x1 − c)(x2 − c) . . . (xn − c) | P−Q, and since P−Q has degree less than n, it
must be the case that P = Q.

(ii) Suppose that P(x1, x2, . . . , xn) and Q(x1, x2, . . . , xn) are symmetric polynomials of degree
less than or equal to n which have the same evaluation at xn = c. From the previous
discussion, we have (x1 − c)(x2 − c) . . . (xn − c) | P−Q, and it follows that

P(x1, x2, . . . , xn) = Q(x1, x2, . . . , xn) + a(x1 − c)(x2 − c) . . . (xn − c)

for some a ∈ C. Taking the partial derivative of this equation with respect to xn and
substituting xn = d yields

∂P
∂xn

(x1, x2, . . . , xn−1, d) =
∂Q
∂xn

(x1, x2, . . . , xn−1, d) + a(x1 − c)(x2 − c) . . . (xn−1 − c).

So if ∂P
∂xn

and ∂Q
∂xn

have the same evaluation at xn = d, then a = 0 and it must be the case
that P = Q.

Theorem 2.11.

(i) The volume V0,n+1(L, Ln+1) is uniquely determined from V0,n(L) and the generalised string equa-
tion for n ≥ 3.

(ii) The volume V1,n+1(L, Ln+1) is uniquely determined from V1,n(L), the generalised string equation,
and the generalised dilaton equation for n ≥ 1.

Proof.

(i) Note that V0,n+1(L, Ln+1) is a symmetric polynomial in the variables L2
1, L2

2, . . . , L2
n+1 of

degree n− 2. Therefore, by Lemma 2.10, it is uniquely determined from its evaluation at
Ln+1 = −4π2 or equivalently,

V0,n+1(L, 2πi).

However, this is given by the generalised string equation in terms of V0,n(L).

(ii) Note that V1,n+1(L, Ln+1) is a symmetric polynomial in the variables L2
1, L2

2, . . . , L2
n+1 of

degree n + 1. Therefore, by Lemma 2.10, it is uniquely determined from its evaluation at
L2

n+1 = −4π2 as well as the evaluation of its partial derivative at Ln+1 = −4π2. However,
these can be expressed as

V1,n+1(L, 2πi) and
1

4πi
∂V1,n+1

∂Ln+1
(L, 2πi)
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respectively, both of which are given by the generalised string and dilaton equations in
terms of V1,n(L).

Theorem 2.11 can be used to produce an effective algorithm which computes V0,n+1(L, Ln+1)
from V0,n(L) and V1,n+1(L, Ln+1) from V1,n(L). For example, see Appendix A.2 for a simple
Maple routine which performs the former of these two tasks. Empirically, these algorithms
seem to compute the Weil–Petersson volumes in genus 0 and 1 much faster than implementing
Mirzakhani’s recursive formula. This is to be expected, since the computation of V0,n+1(L, Ln+1)
using Mirzakhani’s recursion requires knowledge of the volumes V0,m(L1, L2, . . . , Lm) for all
m ≤ n. Similarly, the computation of V1,n+1(L, Ln+1) using Mirzakhani’s recursion requires
knowledge of the volumes V0,m(L1, L2, . . . , Lm) for all m ≤ n + 1 and V1,m(L1, L2, . . . , Lm) for
all m ≤ n. Therefore, we see that one of the strengths of the generalised string and dilaton
equations is their inherent simplicity.

Closed hyperbolic surfaces

There is a variety of constructions, calculations and theorems concerning the moduli spaces
Mg,n or Mg,n which do not apply when n = 0. For example, the cell decomposition of the
decorated moduli space Mg,n ×Rn

+ used in Kontsevich’s proof of Witten’s conjecture has no
analogue in the case without marked points, punctures or boundaries. In fact, it remains an im-
portant open problem to find a natural cell decomposition forMg,0. As another example, there
is no McShane-type identity for closed hyperbolic surfaces of arbitrary genus. Thus, Mirza-
khani’s recursion has nothing to say about the volume Vg,0. However, the generalised string
and dilaton equations do allow us to calculate Vg,0 for all values of g using the following.

Theorem 2.12.

(i) When n = 1, the volume factorises as Vg,1(L) = (L2 + 4π2)Pg(L) for some polynomial Pg.

(ii) For g ≥ 2, we have the following formula.

Vg,0 =
1

4πi(g− 1)
∂Vg,1

∂L
(2πi) =

Pg(2πi)
g− 1

Proof.

(i) In the case g = 1, we have V1,1(L) = 1
48 (L2 + 4π2), so the result is true by inspection. For

g ≥ 2, Vg,1(L) is a real polynomial which satisfies Vg,1(2πi) = 0 by the generalised string
equation. It follows that Vg,1(L) must possess a factor of (L2 + 4π2).

(ii) By the generalised dilaton equation, we have
∂Vg,1

∂L (2πi) = 2πi(2g− 2)Vg,0. Substituting
Vg,1(L) = (L2 + 4π2)Pg(L), we obtain 4πiPg(2πi) = 2πi(2g− 2)Vg,0, which can be rear-
ranged to give the desired result.
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For example, one can calculate the following Weil–Petersson volumes corresponding to moduli
spaces of closed hyperbolic surfaces.

V2,0 =
43π6

2160

V3,0 =
176557π12

1209600

V4,0 =
1959225867017π18

493807104000

V5,0 =
84374265930915479π24

355541114880000

The case of genus two is particularly special since every genus two closed hyperbolic surface
possesses a hyperelliptic involution. McShane [31] and the team of Tan, Wong and Zhang [53]
have independently capitalised on this extra symmetry to produce the following McShane-type
identity.

Proposition 2.13. If S is a genus 2 closed hyperbolic surface, then

∑
(α,β)

tan−1 exp
(
− `(α)

4
− `(β)

2

)
=

3π

2
.

Here, the sum is over all ordered pairs (α, β) of disjoint simple closed geodesics on S such that α is
separating and β is non-separating.

It is possible to use this result in conjunction with Mirzakhani’s integration scheme to unfold
the integral required to calculate V2,0. The result is the following expression for the volume.

V2,0 =
1

144π

∫ ∞

0

∫ ∞

0
xy(x2 + 4π2) tan−1 exp

(
− x

4
− y

2

)
dx dy

Although we have not calculated the integral explicitly, we have computationally verified that it
does agree with the predicted value of 43π6

2160 to 12 significant figures. It would certainly be inter-
esting to generalise the McShane-type identity for closed surfaces and this volume calculation
to the case of arbitrary genus.

Further volume polynomial relations

Given the nature of the generalised string and dilaton equations, one would expect further
relations involving the higher order derivatives of Vg,n+1(L, Ln+1) evaluated at Ln+1 = 2πi.
Evidence comes from the fact that the Virasoro constraints are a sequence of relations for the top
degree terms of Vg,n(L) whose first two terms precisely encode the string and dilaton equations.
In recent work, Mulase and Safnuk [38] have extended the Virasoro relations to the full volume
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polynomials. It would be desirable to express their results in a form similar to the generalised
string and dilaton equations. This would allow one to determine the Weil–Petersson volumes
recursively, relying on the elementary fact that the derivatives of a polynomial evaluated at a
point completely determine the polynomial. Further evidence is given by the following volume
polynomial relation involving the second derivative of Vg,n+1(L, Ln+1).

Proposition 2.14. For 2g− 2 + n > 0, the Weil–Petersson volumes satisfy the following relation.

∂2Vg,n+1

∂L2
n+1

(L, 2πi) =

[
n

∑
k=1

Lk
∂

∂Lk
− (4g− 4 + n)

]
Vg,n(L)

This was obtained by differentiating Mirzakhani’s recursion and then using the generalised
string and dilaton equations. By taking higher derivatives of Mirzakhani’s recursion, one can
hope to recursively obtain further volume polynomial relations. However, the strength of the
generalised string and dilaton equations lies in their simplicity. It is not clear that any higher
derivative relations obtained in this way may possess this same strength. Therefore, one would

like to know when the expression
∂kVg,n+1

∂Lk
n+1

(L, 2πi) depends only on Vg,n(L).

Hyperbolic cone surfaces

In hyperbolic geometry, one encounters the general phenomenon that a purely imaginary length
corresponds to an angle. For example, the elements of PSL2(R) representing translations of dis-
tance d have trace equal to 2 cosh d

2 while those representing rotations of angle θ have trace equal
to 2 cos θ

2 = 2 cosh iθ
2 . Note that the generalised string and dilaton equations involve evaluation

of Weil–Petersson volumes with one of the lengths equal to 2πi. The natural geometric interpre-
tation for this is that the boundary component has degenerated to a cone point with cone angle
2π. In this way, the generalised string and dilaton equations provide a tantalising connection
between the intersection theory onMg,n and hyperbolic cone surfaces.

Unfortunately, the geometry of hyperbolic cone surfaces is not very well understood. Many
of the results concerning hyperbolic surfaces with geodesic boundary do not translate in any
straightforward manner to the case of hyperbolic surfaces with cone points. The following
example shows that there is not always a simple closed geodesic in every isotopy class of simple
closed curves.

Example 2.15. The following diagram shows a quadrilateral with three ideal vertices in the
Poincaré disk model of the hyperbolic plane. It can be doubled along its boundary to create a
genus 0 hyperbolic surface with three cusps labelled 1, 2, 3 and a cone point labelled 4. The
dashed curve lifts to a simple closed curve γ on the surface. However, if we treat the cone point
as a puncture, then there is no simple closed geodesic in the same isotopy class as γ.
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1

2

3

4

The example above demonstrates that a topological pair of pants decomposition cannot always
be isotoped to a geometric decomposition involving hyperbolic pairs of pants with geodesic
boundary. Since such decompositions are fundamental in the existing theory, this obstruction
is a major stumbling block in the analysis of hyperbolic cone surfaces. However, note that
the surface described in the example does actually allow at least one geometric pair of pants
decomposition, so not all hope is lost.

Many of the results concerning hyperbolic surfaces which generalise to the case of cone surfaces
do so only when the cone angles are at most π. As an example, consider the following generali-
sation of Theorem 1.28 to hyperbolic cone surfaces due to Tan, Wong and Zhang [53]. They refer
to geodesic boundary components, cusps and cone points as geometric boundary components.
Furthermore, they define the complex length of a geodesic boundary component of length L to
be L, of a cusp to be 0 and of a cone point with cone angle θ to be iθ.

Theorem 2.16 (Generalised McShane’s identity). Consider a hyperbolic cone surface with n geo-
metric boundary components β1, β2, . . . , βn of complex lengths L1, L2, . . . , Ln, respectively. If all cone
angles lie in the interval (0, π], then

∑
(α1,α2)

D(L1, `(α1), `(α2)) +
n

∑
k=2

∑
γ

R(L1, Lk, `(γ)) = L1.

Here, the first summation is over unordered pairs (α1, α2) of simple closed geodesics which bound a pair
of pants with β1, while the second summation is over simple closed geodesics γ which bound a pair of
pants with β1 and βk. The functions D : R3 → R andR : R3 → R are defined as follows.

D(x, y, z) = 4 tanh−1

(
sinh x

2

cosh x
2 + exp y+z

2

)
R(x, y, z) = 2 tanh−1

(
sinh x

2 sinh y
2

cosh z
2 + cosh x

2 cosh y
2

)

In an ideal world, Mirzakhani’s results on Weil–Petersson volumes would generalise to the
case of hyperbolic surfaces with cone points. Consequently, one would be able to use the in-
termediate moduli spacesMg,n+1(L, iθ) for 0 ≤ θ ≤ 2π in order to give relations between the
intersection theory onMg,n+1 and the intersection theory onMg,n. This approach to proving
the generalised string and dilaton equations sheds light on these relations and, furthermore,



64 2. Weil–Petersson volume relations and hyperbolic cone surfaces

predicts that there are others. As pointed out by Norbury, the idea of using these intermediate
moduli spaces is reminiscent of work by Kronheimer and Mrowka [27]. In their paper, they use
moduli spaces of anti-self-dual connections with cone singularities around an embedded sur-
face in a four-manifold to obtain information about intersection numbers on instanton moduli
spaces.

Unfortunately, Mirzakhani’s results simply do not extend to the case of hyperbolic cone surfaces
when the cone angles are as large as 2π. In fact, it is presently unclear how to even define
a moduli space of hyperbolic cone surfaces, a corresponding Weil–Petersson symplectic form
and, hence, a volume polynomial. Perhaps the correct point of view might be to consider the
algebraic analogue of the geometric picture. For example, a promising avenue is to analyse
representations of the fundamental group of Sg,n into PSL2(R) rather than hyperbolic metrics
on Sg,n, à la Goldman [16, 17].



Chapter 3

A new approach to Kontsevich’s

combinatorial formula

In this chapter, we provide a new approach to Kontsevich’s combinatorial formula via hyper-
bolic geometry. This formula relates psi-class intersection numbers with combinatorial objects
known as ribbon graphs. The starting point is Mirzakhani’s theorem, which motivates one to
consider the asymptotics of the Weil–Petersson volume Vg,n(L). The first step in our journey
will be to prove that the moduli space of hyperbolic surfaces is homeomorphic as an orbifold
to the moduli space of metric ribbon graphs. One advantage of working with this latter space
is the fact that it possesses a natural user-friendly system of local coordinates. Next, we use
this result to determine the asymptotic behaviour of the Weil–Petersson symplectic form. This
part of the proof involves a careful analysis of the behaviour of hyperbolic surfaces as their
boundary lengths approach infinity. The key geometric intuition involved is the fact that, in the
limit, the hyperbolic surface resembles a ribbon graph after appropriate rescaling of the metric.
The final piece of the puzzle is a combinatorial problem relating two determinants associated
to a trivalent ribbon graph. These results essentially show that the information stored in the
asymptotics of Vg,n(L) is precisely Kontsevich’s combinatorial formula. As a whole, this work
draws together Kontsevich’s combinatorial approach and Mirzakhani’s hyperbolic approach to
Witten’s conjecture into a coherent narrative.

“I think it is said that Gauss had ten different proofs for the law of quadratic reciprocity.
Any good theorem should have several proofs, the more the better. For two reasons: usually,
different proofs have different strengths and weaknesses, and they generalise in different
directions: they are not just repetitions of each other.”

Sir Michael Atiyah [51]

65
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3.1 Kontsevich’s combinatorial formula

Ribbon graphs and intersection numbers

One of the fundamental problems concerning moduli spaces of curves is the calculation of in-
tersection numbers, particularly those involving the psi-classes. Witten [57] conjectured that a
certain generating function for these numbers satisfies the KdV hierarchy, while Kontsevich [26]
supplied the proof. The main result in Kontsevich’s paper is a formula which relates psi-class
intersection numbers with combinatorial objects known as ribbon graphs.

A ribbon graph is essentially the 1-skeleton of a finite cell decomposition of a compact, con-
nected, oriented surface. Note that such a graph may not necessarily be simple — although it
must be finite, it may have multiple edges or loops. The orientation of the surface endows each
vertex of the graph with a cyclic orientation of the half-edges meeting there. Conversely, given
the graph and the cyclic orientation of the half-edges meeting at each vertex, the topological
type of the surface and its cell decomposition may be recovered. This is accomplished by using
the extra structure to thicken the graph into a surface with boundaries which may be filled with
disks to produce a closed surface. More precisely, we have the following definition.

Definition 3.1. A ribbon graph of type (g, n) is a graph such that every vertex has degree at least
three, there is a cyclic ordering of the half-edges meeting at each vertex, and the thickening of
the graph is a genus g connected surface with n boundary components labelled from 1 up to n.

Given a ribbon graph Γ, let X denote the set of its half-edges and let s0 be the permutation
on X which cyclically permutes all half-edges adjacent to the same vertex in an anticlockwise
manner. Also, let s1 be the permutation on X which interchanges each pair of half-edges which
together form an edge of the ribbon graph. The set X0 = X/〈s0〉 is canonically equivalent to
the set of vertices of Γ while the set X1 = X/〈s1〉 is canonically equivalent to the set of edges
of Γ. Furthermore, if we let s2 = s−1

0 s1, then the set X2 = X/〈s2〉 is canonically equivalent to
the set of boundary components of Γ. Therefore, one can alternatively consider a ribbon graph
to be a triple (X, s0, s1) where X is a finite set, s0 is a permutation on X without fixed points or
transpositions and s1 is an involution on X without fixed points. We also require a labelling of
the boundary components of Γ, which is simply a bijection from X/〈s2〉 to {1, 2, . . . , n}. Define
two ribbon graphs (X, s0, s1) and (X′, s′0, s′1) to be isomorphic if and only if there exists a bijection
f : X → X′ such that f ◦ s0 = s′0 ◦ f and f ◦ s1 = s′1 ◦ f . We also impose the condition that f
must preserve the labelling of the boundary components. A ribbon graph automorphism is, of
course, an isomorphism from a ribbon graph to itself. The set of automorphisms of a ribbon
graph Γ forms a group which is denoted by Aut Γ.

Example 3.2. On the left of the diagram below is a trivalent ribbon graph with two vertices
and three edges. It has been drawn such that the cyclic ordering of the half-edges meeting
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at every vertex matches the orientation of the page, a convention which we will continue to
adopt. On the right is the thickening of the ribbon graph, which plainly shows a surface with
one boundary component. Substituting V = 2, E = 3 and n = 1 into the formula for the Euler
characteristic V − E = 2− 2g − n yields the fact that g = 1. In fact, this is the only trivalent
ribbon graph of type (1, 1), and its automorphism group has precisely six elements. In order to
see this, observe that there exists a unique automorphism which maps any fixed half-edge to
any of the six half-edges in the graph.

1 1

The above example illustrates that, given a ribbon graph, it is possible to determine the value
of n by thickening up the graph and then the value of g from an Euler characteristic calculation.
It should also be clear from the diagram why ribbon graphs are named so.

Example 3.3. The diagram below depicts the four trivalent ribbon graphs of type (0, 3). Note
that the rightmost example is isomorphic as an abstract graph to the unique trivalent ribbon
graph of type (1, 1). However, the two graphs possess different ribbon structures and represent
different topological surfaces.

1 2
3

2 3
1

3 1
2

1

2
3

The set of ribbon graphs of type (g, n) is denoted by RGg,n. A particularly important subset of
these is the set of trivalent ribbon graphs of type (g, n), which we denote by TRGg,n. We are
now in a position to state Kontsevich’s combinatorial formula.

Theorem 3.4 (Kontsevich’s combinatorial formula). The psi-class intersection numbers on Mg,n

satisfy the following formula.

∑
|α|=3g−3+n

〈τα1 τα2 · · · ταn〉
n

∏
k=1

(2αk − 1)!!

s2αk+1
k

= ∑
Γ∈TRGg,n

22g−2+n

|Aut Γ| ∏
e∈E(Γ)

1
s`(e) + sr(e)

Here, E(Γ) denotes the set of edges of Γ and the expression (2α− 1)!! is a shorthand for (2α)!
2αα! . For an

edge e, the terms `(e) and r(e) are the labels of the boundaries on its left and right.1

1Note that, although the left and right of an edge are not well-defined, the sum s`(e) + sr(e) certainly is.
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Kontsevich’s combinatorial formula is a rather amazing result. In fact, a priori, it appears as
if it could not even be true, since the left hand side is explicitly a polynomial in 1

s1
, 1

s2
, . . . , 1

sn

while the right hand side only appears to be a rational function of s1, s2, . . . , sn. To see how the
formula works in practice, consider the following examples.

Example 3.5. In the case (g, n) = (1, 1), the only contribution to the left hand side is 〈τ1〉 1
s3

1
,

resulting from α1 = 1. There is only one term on the right hand side, corresponding to the
unique trivalent ribbon graph of type (1, 1), discussed in Example 3.2. Its contribution is

2× 1
6
× 1

(s1 + s1)(s1 + s1)(s1 + s1)
=

1
24s3

1
.

Hence, we conclude that 〈τ1〉 = 1
24 , which agrees with the calculation from Example 1.16.

Example 3.6. In the case (g, n) = (0, 3), the only contribution to the left hand side is 〈τ3
0 〉 1

s1s2s3
,

resulting from α1 = α2 = α3 = 0. There are four terms on the right hand side, one for each
trivalent ribbon graph of type (0, 3), discussed in Example 3.3. None of these ribbon graphs
possess non-trivial automorphisms, so their contributions are as follows.

2 3
1

2
(s1+s1)(s1+s2)(s1+s3)

3 1
2

2
(s2+s2)(s2+s3)(s2+s1)

1 2
3

2
(s3+s3)(s3+s1)(s3+s2)

1

2
3

2
(s1+s2)(s2+s3)(s3+s1)

These four terms may be placed over a common denominator in order to simplify their sum.

s2s3(s2 + s3) + s3s1(s3 + s1) + s1s2(s1 + s2) + 2s1s2s3

s1s2s3(s1 + s2)(s2 + s3)(s3 + s1)

=
(s1 + s2)(s2 + s3)(s3 + s1)

s1s2s3(s1 + s2)(s2 + s3)(s3 + s1)

=
1

s1s2s3

Hence, we conclude that 〈τ3
0 〉 = 1, which agrees with the calculation from Example 1.14.

From Witten to Kontsevich

In Section 1.2, we discussed the intersection theory on moduli spaces of curves, noting that one
of the landmark results in the area is Witten’s conjecture. This can be used, with the help of
the string equation and the base case 〈τ3

0 〉 = 1, to effectively calculate any psi-class intersec-
tion number. Apart from its actual content, there are two notable aspects of Witten’s conjecture.
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First, it emerged from the analysis of a particular model of two-dimensional quantum grav-
ity. This is one of the more striking instances of the symbiosis between pure mathematics and
theoretical physics. Second, the statement of Witten’s conjecture involves the KdV hierarchy
of partial differential equations, whose origin lies in the analysis of shallow water waves from
classical physics. The KdV hierarchy is now known as the prototypical example of an exactly
solvable model, thereby providing a connection between moduli spaces of curves and the the-
ory of integrable systems.

The first proof of Witten’s conjecture is due to Kontsevich [26] and relies on a cell decomposi-
tion of the decorated moduli space Mg,n ×Rn

+ previously noted by Harer, Mumford, Penner
and Thurston. Kontsevich used the complex analytic formulation of this theorem, which relies
on results concerning quadratic differentials on Riemann surfaces with punctures. These are
holomorphic sections of the complex line bundle T∗ ⊗ T∗, where T denotes the tangent bundle
of the Riemann surface. In a local coordinate z, a quadratic differential can be expressed in the
form φ(z) dz2, where φ is a holomorphic function. The expression φ(z) dz2 transforms under
change of coordinates to w as φ(z(w))( dz

dw )2 dw2. A horizontal trajectory of a quadratic differen-
tial is a curve along which φ(z) dz2 is both real and positive. Among the quadratic differentials
on a Riemann surface is the class of Jenkins–Strebel quadratic differentials, for which the union
of non-closed horizontal trajectories has measure zero. This union of non-closed horizontal tra-
jectories is then a ribbon graph embedded in the Riemann surface. Furthermore, if the Riemann
surface has genus g and n punctures, then the ribbon graph has type (g, n). One can naturally
associate a positive real number to each edge of the ribbon graph by integrating the 1-form√|φ(z)| dz along the edge. This motivates the following definition.

Definition 3.7. A metric ribbon graph is a ribbon graph with a positive real number assigned
to every edge. We refer to this number as the length of the edge and the sum of the numbers
around a boundary as the length of the boundary.2

LetMRGg,n denote the set of all metric ribbon graphs of type (g, n) and observe that it has a
natural topology. For every ribbon graph Γ of type (g, n), there is a subsetMRGΓ ⊆ MRGg,n

consisting of those metric ribbon graphs whose underlying ribbon graph is Γ. The setMRGΓ

can be described as the quotient of an open cell canonically homeomorphic to R
|E(Γ)|
+ by the

action of Aut Γ. These orbifold cells glue together via edge degenerations — in other words,
when an edge length goes to zero, the edge contracts to give a ribbon graph with fewer edges.
In this way, we have endowedMRGg,n with not only a topology, but also an orbifold structure.

Strebel [52] proved that, given a Riemann surface C with distinct points p1, p2, . . . , pn and pos-
itive real numbers x1, x2, . . . , xn, there exists a unique Jenkins–Strebel quadratic differential on
C \ {p1, p2, . . . , pn} whose associated ribbon graph has boundary lengths x1, x2, . . . , xn. One
consequence of Strebel’s work is the following result.

2Note that if an edge is incident to a boundary on both sides, then its length must be included in the sum twice.
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Theorem 3.8. The map J S : Mg,n × Rn
+ → MRGg,n described above is a homeomorphism of

orbifolds.

Due to this theorem, the natural cell decomposition ofMRGg,n gives rise to a cell decomposi-
tion ofMg,n ×Rn

+. Kontsevich used this fact to to combinatorialise the moduli space of curves
and the psi-class intersection numbers. The end result was precisely Kontsevich’s combinatorial
formula. The right hand side of this formula can be interpreted as an enumeration of trivalent
ribbon graphs which is, quite fortunately, amenable to Feynman diagram techniques. In par-
ticular, Kontsevich showed that this enumeration of trivalent ribbon graphs is governed by the
asymptotic expansion of the following matrix model.

Fn(S) = log

∫ exp
(
− 1

2 tr SX2 + i
6 tr X3

)
dX∫

exp
(
− 1

2 tr SX2
)

dX


Here, the integrals are over the space of n × n Hermitian matrices, dX denotes the standard
volume form compatible with the metric d(X, Y) =

√
tr (X−Y)2, and S = diag(s1, s2, . . . , sn).

Note that this idea of applying Feynman diagrams and matrix models to problems concerning
moduli spaces of curves was not without precedent. These techniques were previously utilised
in the calculation of the Euler characteristic ofMg,n by Harer and Zagier [21] and also by Pen-
ner [49]. Furthermore, the link between Hermitian matrix models and integrable systems had
already been established, so it was a relatively straightforward matter for Kontsevich to then
deduce Witten’s conjecture.

It should be noted that Kontsevich’s paper [26], containing his proof of Witten’s conjecture, is
very concise in nature. This is partly due to the fact that various technical results are stated with-
out proof. These centre around the compactification of the moduli space, the cell decomposition
of the decorated moduli space and the combinatorialisation of the psi-classes. Subsequently,
Looijenga [29] provided rigorous proofs for Kontsevich’s claims about the compactification of
the moduli space. The remaining subtleties arising from Kontsevich’s paper are discussed in
full detail in a paper by Zvonkine [64].

The remainder of this chapter is dedicated to providing a new proof of Kontsevich’s combi-
natorial formula, from the perspective of hyperbolic geometry. One strength of this proof is
that it avoids the complications inherent in Kontsevich’s groundbreaking work. Furthermore,
it draws together the distinct proofs of Witten’s conjecture by Kontsevich and Mirzakhani.

The proof of Kontsevich’s combinatorial formula: Part 0

Recall our philosophy that any meaningful statement about the volume Vg,n(L) gives a mean-
ingful statement about the intersection theory onMg,n, and vice versa. In more explicit terms,
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Mirzakhani’s theorem — see Theorem 1.35 — asserts that the Weil–Petersson volume takes the
form

Vg,n(L) = ∑
|α|+m=3g−3+n

(2π2)m ∫
Mg,n

ψα1
1 ψα2

2 . . . ψαn
n κm

1

2|α|α!m!
L2α1

1 L2α2
2 . . . L2αn

n .

So the intersection numbers of psi-classes are stored in the top degree part of the volume poly-
nomial. Therefore, information concerning psi-class intersection numbers can be accessed via
the asymptotics of Vg,n(L). A fact well-known amongst combinatorialists is that asymptotics are
often more tractable than exact enumeration, and it will be advantageous to subscribe to this
school of thought. Indeed, the Weil–Petersson volumes were calculated by Mirzakhani using
an intricate integration scheme which only produces a recursive formula. In this chapter, we
will calculate the asymptotics of Vg,n(L) directly and, hence, obtain information about psi-class
intersection numbers onMg,n. In fact, this information turns out to be precisely Kontsevich’s
combinatorial formula.

The previous discussion motivates us to study the following expression for a fixed n-tuple of
positive real numbers x = (x1, x2, . . . , xn).

lim
N→∞

Vg,n(Nx)
N6g−6+2n = lim

N→∞
∑

|α|+m=3g−3+n

(2π2)m ∫
Mg,n

ψα1
1 ψα2

2 . . . ψαn
n κm

1

2|α|α!m!
x2α1

1 x2α2
2 . . . x2αn

n

N6g−6+2n−2|α|

= ∑
|α|=3g−3+n

1
23g−3+nα!

〈τα1 τα2 . . . ταn〉 x2α1
1 x2α2

2 . . . x2αn
n

This is a homogeneous symmetric polynomial whose coefficients store all of the psi-class in-
tersection numbers onMg,n. The left hand side of Kontsevich’s combinatorial formula is also
a homogeneous symmetric polynomial whose coefficients store the same information. Despite
the fact that they are clearly distinct, they are related by a simple transformation — namely, the
Laplace transform — as demonstrated by the following calculation.

L
{

lim
N→∞

Vg,n(Nx)
N6g−6+2n

}
= L

 ∑
|α|=3g−3+n

1
23g−3+nα!

〈τα1 τα2 . . . ταn〉 x2α1
1 x2α2

2 . . . x2αn
n


= ∑
|α|=3g−3+n

〈τα1 τα2 . . . ταn〉
n

∏
k=1

(2αk − 1)!!

s2αk+1
k

In short, we have shown that the Laplace transform of the asymptotics of Vg,n(L) is precisely
the left hand side of Kontsevich’s combinatorial formula. It practically goes without saying that
our goal now is to show that it is also equal to the right hand side.

L
{

lim
N→∞

Vg,n(Nx)
N6g−6+2n

}
= ∑

Γ∈TRGg,n

22g−2+n

|Aut Γ| ∏
e∈E(Γ)

1
s`(e) + sr(e)

(3.0)



72 3. A new approach to Kontsevich’s combinatorial formula

To do this, we need to deal with Vg,n(Nx) in the N → ∞ limit, which leads us to consider
hyperbolic surfaces with long boundaries. The key geometric intuition involved is that, in the
limit, the hyperbolic surface resembles a ribbon graph after appropriate rescaling of the metric.
In the next section, we make this heuristic argument precise, thereby providing the desired
relation between the asymptotics of Weil–Petersson volumes on the one hand and ribbon graphs
on the other.

3.2 Hyperbolic surfaces and ribbon graphs

Combinatorial moduli space

For an n-tuple of positive real numbers x = (x1, x2, . . . , xn), define MRGg,n(x) to be the set
of metric ribbon graphs of type (g, n), where the length of the boundary labelled k is xk. As
a subset of MRGg,n, it inherits not only a topology, but also an orbifold structure. The main
reason for considering this space is the following theorem, which justifies referring to it as the
combinatorial moduli space.

Theorem 3.9. The spacesMg,n(x) andMRGg,n(x) are homeomorphic as orbifolds.

Our proof of this theorem will essentially imitate the work of Bowditch and Epstein, who con-
sidered the case of cusped hyperbolic surfaces [5]. The main idea is to associate to a hyperbolic
surface S with geodesic boundary its spine Γ(S), otherwise referred to as its cut locus. For every
point p ∈ S, let n(p) denote the number of shortest paths from p to the boundary. Generically,
we have n(p) = 1 and we define the spine as

Γ(S) = {p ∈ S | n(p) ≥ 2}.

The locus of points with n(p) = 2 consists of a disjoint union of open geodesic segments. These
correspond precisely to the edges of a graph embedded in S. The locus of points with n(p) ≥ 3
forms a finite set which corresponds to the set of vertices of the aforementioned graph. In fact,
if n(p) ≥ 3, then the corresponding vertex will have degree n(p). So Γ(S) has the structure of a
ribbon graph since the cyclic ordering of the half-edges meeting at every vertex can be derived
from the orientation of the surface. Furthermore, it is a deformation retract of the original
hyperbolic surface, so if S has genus g and n boundary components, then Γ(S) will be a ribbon
graph of type (g, n).

Now for each vertex p of Γ(S), consider the n(p) shortest paths from p to the boundary. We refer
to these geodesic segments, which are perpendicular to the boundary of S, as ribs. The diagram
below shows part of a hyperbolic surface S, along with its spine and ribs. Note that cutting S
along its ribs leaves a collection of hexagons, each with four right angles and a reflective axis
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of symmetry along one of the diagonals. In fact, this diagonal is one of the edges of Γ(S) and
we assign to it the length of the side of the hexagon which lies along the boundary of S. Of
course, there are two such sides; however, the reflective symmetry of the hexagon guarantees
that they have the same length. In this way, Γ(S) becomes a metric ribbon graph of type (g, n).
By construction, the sum of the edge lengths around each boundary of Γ(S) coincides precisely
with the length of the corresponding boundary in S. In other words, we have constructed a map
Γ : Mg,n(x) → MRGg,n(x). We now consider the non-trivial task of showing that this map is
bijective by constructing the inverse map.

Fix a metric ribbon graph Γ ∈ MRGg,n(x) whose vertex and edge sets are V and E, respec-
tively. We wish to construct a hyperbolic surface S(Γ) whose spine is precisely this metric
ribbon graph. Given r ∈ RV

+ which assigns a positive real number to each vertex, one can de-
termine whether or not these constitute the set of rib lengths for such a hyperbolic surface S(Γ).
The data of Γ and r together uniquely determine the symmetric hexagons and the way that they
glue together. This produces a surface with spine Γ which has a hyperbolic structure away from
the vertices of Γ. At the vertices, the surface obtained may have cone points.

This construction yields a well-defined function F : RV → RV
+ which takes the set of rib lengths

to the set of cone angles around the vertices. Note that we are now allowing the rib lengths to
be negative, a fact that will facilitate the proof to follow. We will prove that there exists a unique
value of r ∈ RV such that F(r) = (2π, 2π, . . . , 2π). In order to do this, define the function
θ : R3 → R, where θ(`, r, s) denotes the measure of the labelled angle in the following diagram.

A B

C
D

`

r
s

θ
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To be more precise, construct the segment AB of length ` in the hyperbolic plane, as shown. The
segment AD is constructed perpendicular to AB with length |r|, with D above or below the line
AB according to whether r is positive or negative, respectively. The segment BC is constructed
similarly, with length |s|. The angle θ(`, r, s) is the angle through which the line DA needs to be
rotated in an anticlockwise manner about D so that it coincides with the line DC.

If Fv(r) denotes the component of F(r) corresponding to the vertex v, then we have the formula

Fv(r) = 2 ∑
vw

θ(`vw, rv, rw).

Here, the summation is over the edges vw, `vw denotes the length of the edge and rv denotes
the component of r corresponding to the vertex v. We make the following simple observations
about the behaviour of θ.

Lemma 3.10. Define the function Θ : R3 → R by Θ(`, r, s) = θ(`, r, s) + θ(`, s, r). Then θ and Θ
satisfy the following conditions.

(i) ∂θ
∂r < 0

(ii) ∂θ
∂s > 0

(iii) ∂Θ
∂r < 0

(iv) ∂Θ
∂s < 0

(v) r → ∞⇒ θ → 0

(vi) r → −∞⇒ θ → π

(vii) r < 0 and r < s⇒ θ > π
2

For every W ⊆ V, let EW ⊆ E denote the set of edges in Γ which are incident to at least one
vertex in W. Define the open polytope P ⊆ RV

+ by the condition: p ∈ P if and only if for every
non-empty W ⊆ V,

∑
w∈W

pw < 2π|EW |.

Lemma 3.11. For a fixed metric ribbon graph Γ, the function F

(a) is injective;

(b) is an immersion;

(c) is proper; and

(d) is a bijection from RV → P .

Proof. The proof hinges on the facts stated in Lemma 3.10.

(a) In order to obtain a contradiction, suppose that F(r) = F(s) for r 6= s. Without loss of
generality, assume that rv < sv for some v ∈ V and let m = max(r, s). Then from (iii), it
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follows that

∑
v∈V

Fv(r) > ∑
v∈V

Fv(m).

So there must exist w ∈ V such that Fw(r) > Fw(m). But by (i) and (ii), w must satisfy
rw < mw and it follows that sw = mw. Again by (ii), this implies that Fw(m) ≥ Fw(s) and
we have the contradiction Fw(r) > Fw(s).

(b) In order to obtain a contradiction, suppose that at some r ∈ RV we have DF(x) = 0 for
x 6= 0. Without loss of generality, assume that at least one component of x is negative and
let y = max(x, 0). Then from (iii), it follows that

∑
v∈V

DFv(y) < ∑
v∈V

DFv(x).

Now consider the non-empty set W = {v ∈ V | xv < 0}. Then (ii) implies that DFv(y) ≥
DFv(x) for all v /∈W. So there must exist w ∈W such that DFw(y) < DFw(x). However, by
(i) and the fact that yw = 0, DFw(y) ≥ 0 and we have the contradiction DFw(x) > 0.

(c) Let r0, r1, r2, . . . be a sequence of points in RV which converges to infinity. We will show
that the sequence F(r0), F(r1), F(r2), . . . converges to the boundary of P . First, write V as
the disjoint union V− t V+ t V0, where rv → −∞ for v ∈ V−, rv → +∞ for v ∈ V+, and rv

converges to a finite limit for v ∈ V0. Then (v) implies that Fv(r) → 0 for v ∈ V+. Hence,
if V+ is non-empty, then F(r) converges to the boundary of P . So let us assume that V+ is
empty while V− is non-empty. In this case, we can use (v) and (vi) to deduce that

∑
v∈V−

Fv(r)→ 2π|EV− |.

So F(r) converges to the boundary of P , as desired.

(d) The fact that F : RV → P is a bijection follows from the earlier parts and Hadamard’s
observation that a local homeomorphism RN → RN is bijective if and only if it is a proper
map.

We are now ready to prove Theorem 3.9.

Proof of Theorem 3.9. All that remains is to make the following three observations.

First, we need to show that (2π, 2π, . . . , 2π) ∈ P . To see this, take some non-empty
W ⊆ V and observe that 3|W| ≤ 2|EW |, since every vertex in W has degree at least 3.
Therefore, we have the inequality 2π|W| ≤ 4π

3 |EW | < 2π|EW |, as desired.

Thus far, we have allowed the rib lengths to be negative. In order to guarantee a bona
fide hyperbolic structure, it is necessary to show that F(r) = (2π, 2π, . . . , 2π) implies
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that r ∈ RV
+. However, note that if rv is minimal and negative, then by (vii) we have

Fv(r) > 3π, a contradiction. Therefore, we are now able to associate to a metric ribbon
graph Γ a hyperbolic surface S(Γ) whose spine is precisely Γ. In other words, the map
S : MRGg,n(x) → Mg,n(x) which we have constructed is the inverse of the map Γ :
Mg,n(x)→MRGg,n(x) defined earlier.

Finally, we need to show that the orbifold structure is preserved by the maps Γ and S. In
other words, for every metric ribbon graph Γ, it should be true that Aut S(Γ) ∼= Aut Γ.
Certainly every automorphism of a hyperbolic surface gives rise to an automorphism of
the corresponding metric ribbon graph, since it preserves the spine. Therefore, there is an
injective homomorphism Aut S(Γ)→ Aut Γ. Now suppose that f is an automorphism of
the metric ribbon graph Γ. The fact that the map F defined earlier is injective coupled with
the fact that Γ = f (Γ) implies that the rib lengths of S(Γ) satisfy rv = r f (v). Therefore,
f extends to an automorphism of the metric ribbon graph as well as the associated rib
lengths. However, this means that f extends to an automorphism of S(Γ) itself. So the
injective homomorphism described earlier is, in fact, an isomorphism of groups.

The proof of Kontsevich’s combinatorial formula: Part 1

Theorem 3.9 asserts that one may equivalently consider eitherMg,n(x) orMRGg,n(x). There
are at least two distinct advantages in adopting the latter viewpoint. The moduli space of metric
ribbon graphs possesses a tractable system of local coordinates provided by the edge lengths as
well as a natural orbifold cell decomposition, which we now describe.

Proposition 3.12. There is an orbifold cell decomposition

MRGg,n(x) =
⋃

Γ∈RGg,n

MRGΓ(x).

If E is the number of edges in Γ, then

dimMRGΓ(x) =

E− n if Γ has at least one odd degree vertex,

E− n + 1 if Γ has no odd degree vertices.

Proof. Simply let a metric ribbon graph lie in the setMRGΓ(x) if its underlying ribbon graph
coincides with Γ. In order to determine dimMRGΓ(x), label the edges of Γ from 1 up to E and
denote the length of the edge labelled k by ek. Then it follows from the proof of Theorem 3.9
that we can write

MRGΓ(x) = {e ∈ RE
+ | Ae = x}/Aut Γ,

where A denotes the n × E adjacency matrix between the boundaries and edges of Γ. The
condition Ae = x simply captures the linear constraints that the edge lengths must satisfy in
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order for the boundary lengths to be prescribed by x. Since Aut Γ is finite — each automorphism
is a permutation on the half-edges of Γ — the dimension ofMRGΓ(x) is given by

dimMRGΓ(x) = E− rank A = E− n + nullity AT .

Consider Γ to be the 1-skeleton of a cell decomposition of a genus g surface whose faces are
denoted by { f1, f2, . . . , fn}. We think of AT as a linear map from the real vector space with
basis { f1, f2, . . . , fn} to the real vector space with basis the set of edges of Γ. Now suppose that
a1 f1 + a2 f2 + · · ·+ an fn ∈ ker AT and note that if fi and f j are adjacent faces, then ai + aj = 0.
Since our surface is connected, it must be the case that |a1| = |a2| = . . . = |an|.
If Γ has a vertex of degree 2m + 1, then without loss of generality, suppose that the adjacent
faces, in cyclic order, are f1, f2, . . . , f2m+1. It follows that

a1 = −a2 = a3 = . . . = −a2m = a2m+1 = −a1

from which we conclude that a1 = 0. Therefore, a1 = a2 = . . . = an = 0 and nullity AT = 0.

The condition that Γ has no odd degree vertices is equivalent to the condition that the dual
graph to Γ is bipartite. In other words, the faces can be coloured black and white so that adjacent
faces are opposite in colour. If we denote the formal sum of the black faces by fB and the formal
sum of the white faces by fW , then ker AT is generated by the element fB − fW and it follows
that nullity AT = 1.

In particular, if Γ is trivalent, then the dimension ofMRGΓ(x) is equal to 6g− 6 + 2n. Further-
more, if Γ is not trivalent, then the dimension ofMRGΓ(x) is strictly less than 6g− 6 + 2n. By
Theorem 3.9, we may consider the Weil–Petersson volume ofMRGΓ(x), which we denote by
VΓ(x). Then, by Proposition 3.12, the volume of the moduli space can now be expressed as the
following sum.

Vg,n(L) = ∑
Γ∈RGg,n

VΓ(L)

However, since the volume only cares about cells of top dimension, the sum need only be over
the trivalent ribbon graphs. So equation (3.0) — which we wish to prove — becomes

L
 lim

N→∞
∑

Γ∈TRGg,n

VΓ(Nx)
N6g−6+2n

 = ∑
Γ∈TRGg,n

22g−2+n

|Aut Γ| ∏
e∈E(Γ)

1
s`(e) + sr(e)

.

Therefore, Kontsevich’s combinatorial formula will follow immediately once we are able to
show that

L
{

lim
N→∞

VΓ(Nx)
N6g−6+2n

}
=

22g−2+n

|Aut Γ| ∏
e∈E(Γ)

1
s`(e) + sr(e)

. (3.1)
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3.3 Hyperbolic surfaces with long boundaries

Preliminary geometric lemmas

Since we are interested in VΓ(Nx) in the large N limit, it is natural to consider hyperbolic
surfaces with long boundaries. More precisely, we fix a trivalent metric ribbon graph Γ ∈
MRGg,n(x) and let NΓ ∈ MRGg,n(Nx) denote the same underlying ribbon graph with the
metric scaled by a factor of N. We will be interested in the geometry of the hyperbolic surfaces
S(NΓ) as N approaches infinity. It will be helpful to keep in mind the intuitive picture that, in
the limit, the hyperbolic surface S(NΓ) resembles the metric ribbon graph Γ after appropriate
rescaling of the metric. In the following, this intuition will be made precise.

Recall that NΓ occurs as the spine of a hyperbolic surface S(NΓ). Every edge e of NΓ is both a
diagonal and the axis of symmetry of a hexagon obtained from cutting S(NΓ) along its ribs. Lift
a neighbourhood of the edge e which includes this hexagon to the hyperbolic plane. The two
sides of the hexagon parallel to e lift to two geodesic segments, which lie on two lines. We refer
to the common perpendicular between these two lines as the intercostal and denote its length
by 2δ(e).

Lemma 3.13. For any edge e,
lim

N→∞
δ(e) = 0.

Proof. The diagram below shows an edge e and its corresponding hexagon. The boundary of
the hexagon comprises four ribs which have been drawn as dotted lines and two boundary
segments which have been drawn as solid lines. Note that the intercostal is perpendicular to
the two boundary segments and hence, by symmetry, is perpendicular to the edge e. So there
are four hyperbolic trirectangles which occur in the diagram.

θ

N`

a b

δ

δ

Denote the length of the edge e in the metric ribbon graph Γ by `. Consider the lower left
trirectangle in the diagram and, without loss of generality, assume that the length marked a sat-
isfies a ≥ N`

2 . By a standard hyperbolic trigonometric formula for trirectangles — for example,
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consider the reference [6] — we have the equation cos θ = sinh δ sinh a. It follows that

sinh δ =
cos θ

sinh a
≤ 1

sinh N`
2

.

So we have limN→∞ sinh δ = 0, and the desired result follows immediately.

Although the proof of the previous lemma remains valid, the diagram used is somewhat mis-
leading, since the intercostal may not actually intersect the edge e. However, the next lemma
guarantees that this assumption is indeed correct, at least for N sufficiently large.

Lemma 3.14. If N is sufficiently large, then the intercostal corresponding to an edge intersects that edge.

Proof. Suppose that the intercostal of the edge e does not intersect it. Consider a lift of e to
the hyperbolic plane, along with the associated intercostal of length 2δ, the adjacent boundary
components and the two ribs from e which lie closer to the intercostal, as shown in the diagram
below.

X

Y

δ

δ

r

r e

Suppose that the vertex adjacent to e closer to the intercostal is at distance r from the two adja-
cent boundary components. Then there must exist a third lift of a boundary component which
is at distance r from this vertex. Furthermore, the endpoints of this lift must lie between the
points X and Y in the diagram. By Lemma 3.13, as N approaches infinity, the length δ ap-
proaches zero. And as δ approaches zero, it is clear that e cannot remain equidistant from the
three aforementioned lifts of boundaries without intersecting the intercostal.

Lemma 3.15. Let γ be a closed geodesic of length m(γ) in NΓ. Since NΓ is a deformation retract of
the surface S(NΓ), the curve γ defines a unique closed geodesic on the hyperbolic surface S(NΓ) whose
length we denote by `(γ). Then

lim
N→∞

[`(γ)−m(γ)] = 0.
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Proof. The previous lemma allows us to consider N sufficiently large so that we may cut the
surface S(NΓ) along the intercostals to obtain a collection of right-angled hexagons. Note that if
a closed curve enters a hexagon by one intercostal, it must leave by another. So we can consider
the curve γ as the union

γ =
M⋃

k=1

γk

where γk denotes the part of γ between entering and exiting one of these hexagons. Let `(γk)
denote the length of γk and let m(γk) denote the length of its projection onto the adjacent bound-
ary. Then by the triangle inequality, we have

m(γk) ≤ `(γk) ≤ m(γk) + 2δ(ek) + 2δ(ek)⇒ 0 ≤ `(γk)−m(γk) ≤ 2δ(ek) + 2δ(ek),

where the edges ek and ek correspond to the intercostals where the geodesic enters and exits the
hexagon, respectively. After summing over k = 1, 2, . . . , M, one obtains

0 ≤ `(γ)−m(γ) ≤ 4M max δ(ek).

Lemma 3.13 can now be used to deduce that limN→∞ [`(γ)−m(γ)] = 0.

Lemma 3.16. Consider two distinct homotopy classes of closed curves in Γ. These define homotopy
classes of curves in S(NΓ) for all N. Let the geodesic representatives of these homotopy classes intersect
in an angle θ ≤ π

2 . Then as N → ∞, we have θ → 0.

Proof. Cutting the surface along the intercostals leaves a collection of right-angled hexagons.
Each of these hexagons has three alternating sides which are intercostals and three alternating
sides which are boundary segments. If a simple closed geodesic enters one of these hexagons
via one intercostal, it must leave via another. Therefore, the intersection of two simple closed
geodesics, restricted to one of these hexagons, must resemble one of the following two dia-
grams.

θ
a

bc

θ

δ
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In the diagram on the left, as N approaches infinity, we may assume without loss of generality
that the lengths denoted a and b also approach infinity. Furthermore, by Lemma 3.13, the length
denoted c approaches zero. The hyperbolic cosine rule states that cosh c = cosh a cosh b −
sinh a sinh b cos θ or equivalently,

cos θ = coth a coth b− cosh c
sinh a sinh b

.

Therefore, as N → ∞, we have cos θ → 1 and θ → 0.

In the diagram on the right, as N approaches infinity, δ approaches zero by Lemma 3.13. Since
the hexagon is right-angled, the two boundary segments adjacent to this intercostal limit to an
ideal vertex. The two geodesic segments lie between them, so the acute angle they form —
namely, θ — must approach zero.

These results concerning hyperbolic surfaces confirm the intuition that, in the N → ∞ limit, the
hyperbolic surface S(NΓ) resembles a metric ribbon graph. A precise statement of this fact can
be made by rescaling the hyperbolic metric and making use of Gromov–Hausdorff convergence.

Proposition 3.17. Given a metric ribbon graph Γ and a positive real number N, let ŜN denote the surface
S(NΓ), where the hyperbolic metric has been scaled by a factor of 1

N . Then, in the Gromov–Hausdorff
topology, we have

lim
N→∞

ŜN = Γ.

Asymptotic behaviour of the Weil–Petersson form

Now let Γ ∈ TRGg,n be a trivalent ribbon graph and fix an n-tuple of positive real numbers
x = (x1, x2, . . . , xn). We consider Γ to be embedded as the 1-skeleton of a cell decomposition of a
genus g surface, so that the boundary labelled k corresponds to a face of the cell decomposition,
which we also label k. Then for every positive real number N, we have the map

f :MRGΓ(x)→MRGΓ(Nx)→Mg,n(Nx),

which is a homeomorphism onto its image. This is the composition of two maps — the first
scales the ribbon graph metric by a factor of N while the second uses the Bowditch–Epstein
construction discussed in the proof of Theorem 3.9. Consider the normalised Weil–Petersson
symplectic form ω

N2 on Mg,n(Nx) and note that it pulls back via f to a symplectic form on
MRGΓ(x). We will be interested in the behaviour of this 2-form as N approaches infinity.

The Fenchel–Nielsen coordinates, which are canonical for the Weil–Petersson symplectic form,
provide local coordinates on the moduli space. They consist of 3g− 3 + n length parameters,
which are simple to understand, and 3g− 3 + n twist parameters, which are more complicated
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in nature. It is certainly desirable to have local coordinates for the moduli space, each of which
is the length function associated to some simple closed curve. The following theorem due to
Wolpert [60] asserts that this is possible and, furthermore, that the Weil–Petersson symplectic
form has a reasonably simple description in these coordinates.

Theorem 3.18. In a genus g hyperbolic surface with n cusps, consider distinct simple closed geodesics
C1, C2, . . . , C6g−6+2n with lengths `1, `2, . . . , `6g−6+2n. For a point p ∈ Ci ∩ Cj, let θp denote the angle
between the curves at p, measured anticlockwise from Ci to Cj. Define the (6g− 6 + 2n)× (6g− 6 + 2n)
skew-symmetric matrix X by

Xij = ∑
p∈Ci∩Cj

cos θp, for i < j.

If X is invertible, then `1, `2, . . . , `6g−6+2n are local coordinates for the moduli space and the Weil–
Petersson symplectic form is given by

ω = −∑
i<j

[X−1]ij d`i ∧ d`j.

On closer inspection of Wolpert’s original proof, this theorem extends without amendment to
the case of hyperbolic surfaces with geodesic boundaries. By linearity, the theorem also holds
if C1, C2, . . . , C6g−6+2n are geodesic multicurves or, in other words, if they are finite unions of
distinct simple closed geodesics, each with an integer weight. In order to use Theorem 3.18, we
require a natural system of multicurves to work with. Begin by labelling the edges of Γ from 1
up to 6g− 6 + 3n. To the edge labelled k, we associate a multicurve C̃k in Γ as follows.

Case 1: If the edge labelled k is adjacent to two distinct faces, labelled i and j, then let C̃k

be the curve shown in bold in the diagram below left.

i jk

i

i

k

Case 2: If the edge labelled k is adjacent to the face labelled i on both sides, then let C̃k be
the union of the two curves shown in bold in the diagram above right.

Case 3: If the edge labelled k is a loop, then let C̃k be the empty curve.

The ribbon graph Γ occurs as the spine of all hyperbolic surfaces S(Γ̃), for a metric ribbon graph
Γ̃ ∈ MRGΓ(x). Since Γ is a deformation retract of S(Γ̃), the multicurve C̃k on Γ defines a
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unique homotopy class of multicurves on S(Γ̃). Let the unique geodesic representative in this
homotopy class be Ck and denote its length with respect to the hyperbolic metric by `k. In this
way, we have length functions `1, `2, . . . , `6g−6+3n onMRGΓ(x) and, in fact, onMRGΓ(Nx) for
every positive real number N. However, we will be more interested in the normalised length
functions ̂̀k = `k

N for k = 1, 2, . . . , 6g− 6 + 3n. Note that onMRGΓ(x), we also have the edge
length functions e1, e2, . . . , e6g−6+3n. For a particular value of N, it is difficult to precisely relate
these two coordinate systems. However, the picture is much simpler in the N → ∞ limit, where
we can use Lemma 3.15 to deduce the following.

Case 1: If the edge labelled k is adjacent to two distinct faces, labelled i and j, then

lim
N→∞

̂̀k = xi + xj − 2ek.

Case 2: If the edge labelled k is adjacent to the face labelled i on both sides, then

lim
N→∞

̂̀k = xi − 2ek.

Case 3: If the edge labelled k is a loop, then ̂̀k = 0.

Observe that the function ̂̀k can be naturally extended to an open subset U which satisfies
MRGΓ(x) ⊆ U ⊆ MRGg,n(x). Therefore, both ̂̀k and its derivative converge uniformly on
MRGΓ(x). It follows that one may interchange the operation of limit and derivative. Thus, in
the N → ∞ limit, we obtain

d̂̀k = −2dek, for k = 1, 2, . . . , 6g− 6 + 3n.

Now we turn our attention to the asymptotic behaviour of the matrix X̂, the (6g − 6 + 3n) ×
(6g− 6 + 3n) skew-symmetric matrix defined by

X̂ij = ∑
p∈Ci∩Cj

cos θp, for i < j.

First, we introduce the oriented adjacency B̂ij of edge i and edge j to be 0 if they are not adjacent
or equal, and according to the following convention otherwise.

i j

Bij = −1

j i

Bij = +1

i j

Bij = 0

ij

Bij = −2

i j

Bij = +2
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This also defines a (6g − 6 + 3n) × (6g − 6 + 3n) skew-symmetric matrix. Note that B̂ is an
integer matrix by definition while X̂ is an integer matrix as a result of Lemma 3.16. In fact, these
two matrices are related by the following lemma.

Lemma 3.19. In the N → ∞ limit, the matrix X̂ converges to −2B̂.

Proof. Suppose that the two curves Ci and Cj traverse a maximal path of consecutive edges.
Then in the N → ∞ limit, they will contribute +1 to X̂ij if the diagram is as follows, −1 if the
curves are reversed, and 0 otherwise.

It is clear that if Ci and Cj are not adjacent to a common face, then the two curves do not meet at
all and X̂ij = 0. Now suppose that edges i and j do share a common face, but are not adjacent.
Then the schematic diagram below, combined with our previous observation, shows that Ci and
Cj meet precisely twice, but with differing signs, so in the N → ∞ limit we have X̂ij = 0.

i j

Ci

i j

Cj

Now suppose that the oriented adjacency between edge i and edge j is −1. Then the schematic
diagram below, combined with our previous observation, shows that Ci and Cj meet precisely
twice with positive orientation so in the N → ∞ limit, we have X̂ij = 2. The same argument
can be used to prove that if the oriented adjacency between edge i and edge j is +1, then in the
N → ∞ limit, we have X̂ij = −2.

i j

Ci

i j

Cj
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There are a few other cases which may arise, for example when the oriented adjacency between
edge i and j is ±2 or when vertices, edges or faces in the diagrams above coincide. However,
these may be handled in an entirely analogous manner which is not worthy of reproduction
here. In conclusion, we have X̂ij = −2B̂ij for all i and j in the N → ∞ limit.

We state here the fact that the matrix B̂ has rank 6g− 6 + 2n, although the proof will be delayed
until Proposition 3.25. Therefore, we may assume that there exists

I = {i1, i2, . . . , i6g−6+2n} ⊆ {1, 2, . . . , 6g− 6 + 3n}

such that the matrix B formed from taking the corresponding 6g− 6 + 2n rows and 6g− 6 + 2n
columns of B̂ is invertible. The matrix X is defined analogously from the matrix X̂. The previous
results lead to the following result.

Theorem 3.20. In the N → ∞ limit, f ∗ω
N2 converges pointwise onMRGΓ(x) to a 2-form Ω.

Proof. We will assume without loss of generality that I = {1, 2, . . . , 6g − 6 + 2n}, for ease of
notation. By Theorem 3.18, Lemma 3.19 and the observation that d̂̀k = −2dek in the limit, we
have

Ω = lim
N→∞

f ∗ω
N2 = − lim

N→∞
∑
i<j

[X−1]ij d̂̀i ∧ d̂̀j

=
1
2 ∑

i<j
[B−1]ij d̂̀i ∧ d̂̀j = 2 ∑

i<j
[B−1]ij dei ∧ dej.

We note that this 2-form on the combinatorial moduli spaceMRGΓ(x) coincides precisely with
the 2-form Ω defined by Kontsevich in [26]. It has also been brought to our attention that this
result, with an alternative proof due to Mondello, appears in [36]. Among other differences,
Mondello uses a system of coordinates dual to ours to compute the Weil–Petersson Poisson
structure on Teichmüller space and produces Theorem 3.20 as a byproduct. It seems that our
choice of coordinates is more well-suited for the purpose of analysing the asymptotic behaviour
of the Weil–Petersson symplectic form. We believe that it also offers a more intuitive, rather than
computational, proof of Theorem 3.20.

The proof of Kontsevich’s combinatorial formula: Part 2

As discussed in the proof of Proposition 3.12, we have

MRGΓ(x) = {e ∈ R
6g−6+3n
+ | Ae = x}/Aut Γ,
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where A is the adjacency matrix between faces and edges. In other words, Aij is the number of
times that face i is adjacent to edge j in the cell decomposition of a genus g surface associated to
Γ. Therefore,MRGΓ(x) can be interpreted as the quotient of a polytope by a finite group. Now
recall that we are interested in the calculation of the following expression.

lim
N→∞

VΓ(Nx)
N6g−6+2n =

1
(3g− 3 + n)!

lim
N→∞

∫
MRGΓ(x)

(
f ∗ω
N2

)3g−3+n

In Section 1.3, we stated that the Weil–Petersson form extends smoothly to a closed form on
Mg,n(L). SinceMg,n(L) is compact, one consequence is the fact that Vg,n(L) is finite. Therefore,
we can invoke Lebesgue’s dominated convergence theorem to interchange the order of the limit
and integration procedures.

lim
N→∞

VΓ(Nx)
N6g−6+2n =

1
(3g− 3 + n)!

∫
MRGΓ(x)

(
lim

N→∞

f ∗ω
N2

)3g−3+n

=
∫
MRGΓ(x)

Ω3g−3+n

(3g− 3 + n)!

= 23g−3+n Pf B−1
∫
MRGΓ(x)

deI

=
1

|Aut Γ|
23g−3+n
√

det B

∫
Ae=x
e>0

deI

Here, we have used the notation deI = dei1 ∧ dei2 ∧ . . . ∧ dei6g−6+2n . The second and third equal-
ities follow from Theorem 3.20, while the appearance of the factor 1

|Aut Γ| in the final line is due

to the action of Aut Γ on the polytope {e ∈ R
6g−6+3n
+ | Ae = x}.

We are now interested in performing the volume calculation∫
Ae=x
e>0

deI .

As a function of x, this volume is piecewise linear though not so easy to describe, due to the
positivity constraints on e. However, its Laplace transform does have a simple description, as
demonstrated by the following result.

Theorem 3.21. Suppose that A is an n× (m + n) matrix with rank n, non-negative real entries, and
positive column sums. Consider sets I t J = {1, 2, . . . , m + n}, where I = {i1, i2, . . . , im} and
J = {j1, j2, . . . , jn}. Let V(x) denote the volume of the polytope P(x) = {e ∈ Rm+n

+ | Ae = x}
with respect to the volume form deI = dei1 ∧ dei2 ∧ . . . ∧ deim . If AJ is the n× n matrix formed by the
columns of A indexed by elements of J and st = (s1, s2, . . . , sn), then the Laplace transform of V(x) is
given by

L{V(x)} = |det AJ |
m+n

∏
k=1

1
[Ats]k

.
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Proof. Let P̂(x) denote the projection of P(x) onto the subspace defined by {ej = 0 | j ∈ J },
and note that V(x) is the volume of P̂(x) with respect to the volume form deI . If the matrix AJ
is singular, then P(x) projects to a set of positive codimension in the subspace {ej = 0 | j ∈ J }.
Therefore, both sides of the equation are zero and the theorem is trivially true.

So consider the case det AJ 6= 0. If we write eI = (ei1 , ei2 , . . . , eim) and eJ = (ej1 , ej2 , . . . , ejn),
then the following is true.

eI ∈ P̂(x)⇔ eI > 0 and there exists eJ > 0 such that AIeI + AJ eJ = x

⇔ eI > 0 and A−1
J AIeI < A−1

J x

It is required to perform two integrations — one for the volume calculation and one for the
Laplace transform. Our first step will be to switch the order of integration.

L{V(x)} = L
{∫

Ae=x
e>0

deI

}
=
∫

x>0

(∫
Ae=x
e>0

deI

)
exp(−〈s, x〉) dx

=
∫

eI>0

(∫
A−1
J AIeI<A−1

J x
exp(−〈s, x〉) dx

)
deI

Now use the substitution y = A−1
J x, which implies that dx = |det AJ | dy.

L{V(x)} = |det AJ |
∫

eI>0

(∫
A−1
J AIeI<y

exp(−〈s, AJ y〉) dy

)
deI

= |det AJ |
∫

eI>0

(∫
A−1
J AIeI<y

exp(−〈At
J s, y〉) dy

)
deI

The inner integral can be directly evaluated to obtain the following.

L{V(x)} = |det AJ |∏
j∈J

1
[At
J s]j

∫
eI>0

exp(−〈At
Is, eI 〉) deI

= |det AJ |∏
j∈J

1
[At
J s]j

∏
i∈I

∫ ∞

0
exp(−[Ats]iei) dei

= |det AJ |
m+n

∏
k=1

1
[Ats]k

Now recall that the proof of Kontsevich’s combinatorial formula will be complete once we prove
equation (3.1).

L
{

lim
N→∞

VΓ(Nx)
N6g−6+2n

}
=

22g−2+n

|Aut Γ| ∏
e∈E(Γ)

1
s`(e) + sr(e)
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Theorem 3.21 can now be applied to our setting with m = 6g− 6 + 2n and A representing the
n× (6g− 6 + 3n) adjacency matrix between faces and edges of Γ.

L
{

lim
N→∞

VΓ(Nx)
N6g−6+2n

}
=

1
|Aut Γ|

23g−3+n
√

det B
L
{∫

Ae=x
e>0

deI

}

=
23g−3+n

|Aut Γ|
|det AJ |√

det B

6g−6+3n

∏
k=1

1
[Ats]k

=
23g−3+n

|Aut Γ|
|det AJ |√

det B
∏

e∈E(Γ)

1
s`(e) + sr(e)

The first equality we have already deduced from Theorem 3.20, the second equality follows
from Theorem 3.21, and the third equality uses the combinatorial structure of the matrix A. So
all that remains, in order to deduce Kontsevich’s combinatorial formula, is to prove that

23g−3+n

|Aut Γ|
|det AJ |√

det B
=

22g−2+n

|Aut Γ| ⇔ det B = 22g−2(det AJ )2. (3.2)

3.4 Calculating the combinatorial constant

Chain complexes associated to a ribbon graph

The final piece of the puzzle in our proof is to deduce the correct combinatorial constant ap-
pearing in Kontsevich’s combinatorial formula. From the discussion in the previous section,
particularly equation (3.2), this boils down to proving the following theorem concerning deter-
minants associated to a coloured trivalent ribbon graph.

Theorem 3.22. Let Γ be a trivalent ribbon graph of type (g, n) with n edges coloured white and the
remaining 6g− 6 + 2n edges coloured black. Let A be the n× n adjacency matrix formed between the
faces and the white edges. Let B be the (6g− 6 + 2n)× (6g− 6 + 2n) oriented adjacency matrix formed
between the black edges. Then

det B = 22g−2(det A)2.

Example 3.23. Consider the following trivalent ribbon graph of type (0, 4), with the two colour-
ings shown.

1 2 3 4 1 2 3 4
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For the colouring on the left, we have the matrices

A =


1 1 0 0
0 1 1 1
0 0 0 1
1 0 1 0

 and B =

[
0 1
−1 0

]

which satisfy det A = −2 and det B = 1. For the colouring on the right, we have the matrices

A =


1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

 and B =

[
0 0
0 0

]

which satisfy det A = 0 and det B = 0. Therefore, Theorem 3.22 is certainly satisfied for the two
colourings of this trivalent ribbon graph.

For the remainder of this section, fix a trivalent ribbon graph Γ of type (g, n) with n edges
coloured white and the remaining 6g − 6 + 2n edges coloured black. Consider Γ to be the
1-skeleton of a cell decomposition of a closed genus g surface. This cell decomposition nec-
essarily consists of 4g − 4 + 2n vertices, 6g − 6 + 3n edges and n faces. Denote the edges by
e1, e2, . . . , e6g−6+3n and the faces by f1, f2, . . . , fn. Consider the sequence C of free Z-modules

0 −→ C1
d1−→ C2

d2−→ C3
d3−→ C4 −→ 0,

where C1 = C4 = 〈 f1, f2, . . . , fn〉 and C2 = C3 = 〈e1, e2, . . . , e6g−6+3n〉. We define the Z-module
homomorphisms as follows.

The map d1 is the adjacency map from faces to edges of the cell decomposition associ-
ated to Γ. In other words, for a face f adjacent to the m not necessarily distinct edges
e1, e2, . . . , em as shown in the diagram below, let

d1( f ) = e1 + e2 + · · ·+ em,

and extend d1 to a homomorphism of Z-modules.

The map d2 is the oriented adjacency map on the edges of the cell decomposition associ-
ated to Γ. In other words, for an edge e adjacent to the four not necessarily distinct edges
e1, e2, e3, e4 as shown in the diagram below, let

d2(e) = e1 − e2 + e3 − e4,
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and extend d2 to a homomorphism of Z-modules.

The map d3 is the adjacency map from edges to faces of the cell decomposition associated
to Γ. In other words, for an edge e adjacent to the two not necessarily distinct faces f1 and
f2 as shown in the diagram below, let

d3(e) = f1 + f2,

and extend d3 to a homomorphism of Z-modules.

e1

e2

e3

e4

e5

em

f e

f1

f2

e2 e3

e4e1

e

Proposition 3.24. The sequence C is a chain complex of Z-modules.

Proof. There are two things to check — namely, that d2 ◦ d1 = 0 and d3 ◦ d2 = 0.

Suppose that f is a face which is adjacent to the m not necessarily distinct edges e1, e2, . . . , em, as
shown in the diagram below. Furthermore, suppose that the edges ek and ek+1 are also adjacent
to the edge ek, where the subscripts are taken modulo m.

e1

e2

e3

e4 e5

em
e1

e2

e3

e4

e5

em

f

d2 ◦ d1( f )

= d2(e1 + e2 + · · ·+ em)

= ∑ d2(ek)

= ∑(ek−1 − ek−1 + ek − ek+1)

= ∑ ek−1 −∑ ek−1 + ∑ ek −∑ ek+1

= 0

Since d2 ◦ d1 = 0 on the generators f1, f2, . . . , fn, it holds for all elements of C1.

Now suppose that e is an edge which is adjacent to the four not necessarily distinct edges
e1, e2, e3, e4, as shown in the diagram below. Furthermore, suppose that the edges ek and ek+1
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are adjacent to the face fk, where the subscripts are taken modulo 4.

e

f4

f1

f2

f3

e2 e3

e4e1

d3 ◦ d2(e)

= d3(e1 − e2 + e3 − e4)

= d3(e1)− d3(e2) + d3(e3)− d3(e4)

= ( f4 + f1)− ( f1 + f2) + ( f2 + f3)− ( f3 + f4)

= 0

Since d3 ◦ d2 = 0 on the generators e1, e2, . . . , e6g−6+3n, it holds for all elements of C2.

Now let us consider C ⊗R, the following sequence of vector spaces and linear maps.

0 −→ C1 ⊗R
d1−→ C2 ⊗R

d2−→ C3 ⊗R
d3−→ C4 ⊗R −→ 0

Of course, the linear maps are defined on the basis elements in precisely the same way as for the
sequence C. In a hopefully excusable abuse of notation, we will use d1, d2, d3 to denote the Z-
module homomorphisms of C as well as the linear maps of C ⊗R. As a result of Proposition 3.24,
the sequence C ⊗R is a chain complex of real vector spaces although the following proposition
asserts even more.

Proposition 3.25. The chain complex C ⊗R is exact.

Proof. Since C ⊗R is a chain complex, it suffices to prove that

dim(ker d1) = 0, dim(im d1) = dim(ker d2), dim(im d2) = dim(ker d3), dim(im d3) = n.

The fact that dim(ker d1) = 0 follows from the proof of Corollary 3.12. Now observe that d1 and
d3 are transposes of each other, with respect to the canonical bases. If we invoke the rank-nullity
theorem, then all that remains to be proved is that dim(ker d2) = n.

As in Proposition 3.24, suppose that f is a face which is adjacent to the m not necessarily distinct
edges e1, e2, . . . , em. Furthermore, suppose that the edges ek and ek+1 are also adjacent to the
edge ek, where the subscripts are taken modulo m.

If ∑ akek ∈ ker d2, then
ai−1 + ai − ai−1

2
=

ai + ai+1 − ai
2

for all i, where the subscripts are taken modulo m. So to the face f , we can associate the well-
defined value

b =
a1 + a2 − a1

2
=

a2 + a3 − a2

2
= · · · = am + a1 − am

2
.
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Then d1(∑ bk fk) = ∑ akek, from which it follows that ker d2 ⊆ im d1. Since we have already
established that im d1 ⊆ ker d2, we can now deduce that ker d2 = im d1 and dim(ker d2) =
dim(im d1) = n.

There are various implications of the previous result, such as the fact that the matrix B̂ used in
the statement of Lemma 3.19 has rank 6g− 6 + 2n. We also have the following result.

Corollary 3.26. Consider a trivalent ribbon graph Γ of type (g, n) with n edges coloured white and the
remaining 6g− 6 + 2n edges coloured black. If one forms the matrices A and B as per the statement of
Theorem 3.22, then det A = 0 if and only if det B = 0.

Thus, for the remainder of the section, we may assume that the colouring of the edges of Γ is
such that both A and B are invertible.

Torsion of an acyclic complex

Interesting information is captured by the homology of a chain complex. When the complex is
acyclic — that is, has zero homology — then one can extract further information by considering
its torsion. A simple example arises in the case of a linear map between two real vector spaces of
the same dimension. An invariant under change of basis is the rank of the linear map. However,
when the rank is maximal and bases for the vector spaces are fixed, then one can also consider
the determinant. The notion of torsion is the natural generalisation of this concept to acyclic
chain complexes. For more information, see the first chapter of [42].

Recall our definition of C ⊗R as a sequence of real vector spaces, each with a canonical basis
described in terms of the edges and faces of the cell decomposition associated to Γ. We will
calculate the torsion of the acyclic complex C ⊗R with respect to these bases in two distinct
ways.

Method 1: Black and white edges
The following is an approach for calculating the torsion of an acyclic complex C given by

0 −→ C1
d1−→ C2

d2−→ · · · dn−2−→ Cn−1
dn−1−→ Cn −→ 0.

For each k, choose finite ordered collections Bk ⊆ Ck with Bn = ∅ such that the restriction
of dk to Bk is one-to-one and dkBk ∪ Bk+1 is a basis for Ck+1. The fact that this is possible
relies on the acyclicity of the complex. For two bases U and V of a vector space, let V/U
denote the matrix describing the base change U 7→ V. Also, let Xk be a basis for Ck for all
k and note that X =

⊕
Xk is a basis for C =

⊕
Ck. Then the torsion of C with respect to
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the basis X is given by the equation

T (C, X) =
n−1

∏
k=0

det[dkBk ∪ Bk+1/Xk+1](−1)n−k
.

Let us apply this to the acyclic complex C ⊗R associated to the trivalent ribbon graph Γ.
Suppose that the white edges of Γ are ei1 , ei2 , . . . , ei6g−6+2n . Let X1 = X4 = { f1, f2, . . . , fn}
and X2 = X3 = {e1, e2, . . . , e6g−6+3n} be the canonical bases for C ⊗ R. Note that, by
assumption, the sets

B0 = ∅ B3 = {ei1 , ei2 , . . . , ei6g−6+2n}
B1 = { f1, f2, . . . , fn} B4 = ∅
B2 = {ei1 , ei2 , . . . , ei6g−6+2n}

satisfy the conditions required, so we have the following equation for the torsion of C ⊗R.

T (C, X) = det[B1/X1]× 1
det[d1B1 ∪ B2/X2]

× det[d2B2 ∪ B3/X3]× 1
det[d3B3 ∪ B4/X4]

= 1× 1
det A

× det B× 1
det A

=
det B

(det A)2

Method 2: Smith normal form
Interpret the chain complex of real vector spaces associated to Γ as a linear map d : C → C
where C =

⊕
Ck. With respect to the canonical basis X, the map d is defined over the

integers, so diagonal coordinates are provided by the Smith–Jordan normal form. In other
words, we can write

C1 = 〈A1, A2, . . . , An〉
C2 = 〈B1, B2, . . . , Bn, P1, P2, . . . P6g−6+2n〉
C3 = 〈Q1, Q2, . . . , Q6g−6+2n, Y1, Y2, . . . , Yn〉
C4 = 〈Z1, Z2, . . . , Zn〉

where the boundary maps are all diagonal in the following sense.

d1 Ak = akBk for k = 1, 2, . . . , n
d2Pk = bkQk for k = 1, 2, . . . , 6g− 6 + 2n d2Bk = 0 for k = 1, 2, . . . , n
d3Yk = ckZk for k = 1, 2, . . . , n d3Qk = 0 for k = 1, 2, . . . , 6g− 6 + 2n

Note that ak, bk and ck are integers which, by a simple change of basis, we may assume
to be non-negative. Furthermore, they must be non-zero in order for C ⊗R to be acyclic.
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Once again, we can express the torsion as an alternating product of determinants. How-
ever, the diagonal coordinates allow us to express these determinants as products of pos-
itive integers.

T (C, X) =
(∏ bk)

(∏ ak) (∏ ck)

However, the construction of the diagonal coordinates and the numbers ak, bk, ck leads
directly to the following relations.

n

∏
k=1

ak = |H2(C)|
6g−6+2n

∏
k=1

bk = |H3(C)|
n

∏
k=1

ck = |H4(C)|

Equating these two torsion calculations yields the equation

det B
(det A)2 =

|H3(C)|
|H2(C)| × |H4(C)| . (3.3)

Proposition 3.27. The Z-modules H2(C), H3(C) and H4(C) are vector spaces over F2.

Proof. The proposition follows from the following three facts.

If d2y = 0 for y ∈ C2, then there exists x ∈ C1 such that d1x = 2y.
Suppose that y = ∑ akek, where a1, a2, . . . , a6g−6+3n are integers. Then by Proposition 3.25,
there exist real numbers b1, b2, . . . , bn such that d1(∑ bk fk) = ∑ akek. Consider an edge
e1 and a vertex v adjacent to e1. Assume without loss of generality that the three not
necessarily distinct edges e1, e2, e3 and the three not necessarily distinct faces f1, f2, f3 are
adjacent to v. Then one can deduce the following.

a1 = b2 + b3 2b1 = a2 + a3 − a1

a2 = b3 + b1 ⇒ 2b2 = a3 + a1 − a2

a3 = b1 + b2 2b3 = a1 + a2 − a3

Therefore, b1, b2, b3 are half-integers and the integral linear combination of faces defined
by x = ∑ 2bk fk ∈ C1 satisfies d1x = 2y, as required.

If d3y = 0 for y ∈ C3, then there exists x ∈ C2 such that d2x = 2y.
Fix vertices v1, v2, . . . , vn, not necessarily distinct, with the condition that the vertex vk lies
on the face fk. For an edge e adjacent to the faces fi and f j, consider the path from vi to vj

which travels anticlockwise around fi, clockwise around f j and passes through the edge e
precisely once.
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fi fje

vi vj

For example, the schematic diagram above indicates the path for a particular edge e. Let
F(e) denote the formal sum of the edges traversed by this path and extend the map
F : C3 → C2 to a homomorphism of Z-modules. Now consider an edge e whose end
vertices lie on the faces fi, f j, fk, f`, as shown in the diagram below. If e is not adjacent to
any of vi, vj, vk, v`, then F ◦ d2(e) = F(e1)− F(e2) + F(e3)− F(e4) = −2e. The paths cor-
responding to F(e1) and F(e3) are shown in grey, while the paths corresponding to F(e2)
and F(e4) are shown in black. Note the cancellation of black and grey edges everywhere
apart from along the edge e itself.

i

j

k

`

evi

vj

vk

v`

If e is adjacent to any of vi, vj, vk, v`, then the picture is slightly different, and we have the
equation

F ◦ d2(e) = F(e1)− F(e2) + F(e3)− F(e4) = −2e−mid1 fi + mjd1 f j −mkd1 fk + m`d1 f`.

Here, mi = 1 or 0 depending on whether vi is adjacent to e or not, respectively, and
mj, mk, m` are similarly defined. The following diagram shows an example where e is
adjacent to vi, where the paths corresponding to F(e1) and F(e3) are shown in grey, while
the paths corresponding to F(e2) and F(e4) are shown in black.
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i

j

k

`

e
vi

vj

vk

v`

Now suppose that y = ∑ akek, where a1, a2, . . . , a6g−6+3n are integers. In the particular
case when d3y = 0, we have the particularly nice result that F ◦ d2(y) = −2y. It follows
that d2 ◦ Ft(y) = 2y, where we have used the fact that the matrix representing the map d2

is skew-symmetric. Since Ft is defined over the integers, it now suffices to take x = Ft(y).

For all y ∈ C4, there exists x ∈ C3 such that d3x = 2y.
Consider a face f1 and a vertex v on that face. Assume without loss of generality that
the three not necessarily distinct faces f1, f2, f3 and the three not necessarily distinct edges
e1, e2, e3 are adjacent to v. Then we can deduce the following.

d3(e2 + e3 − e1) = d3e2 + d3e3 − d3e1

= ( f3 + f1) + ( f1 + f2)− ( f2 + f3)

= 2 f1

Since the statement is true for the generators of C4, it holds for all y ∈ C4.

The proof of Kontsevich’s combinatorial formula: Part 3

Recall that Kontsevich’s combinatorial formula follows immediately once we have proven The-
orem 3.22. To do so, we invoke the universal coefficient formula.

Hk(C; F2) =
(

Hk(C)⊗F2

)
⊕ Tor

(
Hk+1(C); F2

)
Proposition 3.27 implies that Hk(C)⊗ F2 = Hk(C) and Tor

(
Hk+1(C); F2

)
= Hk+1(C), so we

have the relation
Hk(C; F2) = Hk(C)⊕ Hk+1(C).
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The cell decomposition associated to Γ gives rise to a chain complex of free Z-modules X .

0 −→ X2
∂2−→ X1

∂1−→ X0 −→ 0

Here, X2 is generated by the faces of Γ, X1 is generated by the edges of Γ, and X0 is generated by
the vertices of Γ. There is also the dual cell decomposition Γ∗ which gives rise to the associated
chain complex of free Z-modules X ∗.

0 −→ X∗2
∂∗2−→ X∗1

∂∗1−→ X∗0 −→ 0

Here, X∗2 is generated by the faces of Γ∗, X∗1 is generated by the edges of Γ∗, and X∗0 is generated
by the vertices of Γ∗. Since X0 is canonically isomorphic to X∗2 , these two chain complexes can
be glued together to obtain the following sequence of homomorphisms X .

0 −→ X2
∂2−→ X1

∂1−→ X0 ∼= X∗2
∂∗2−→ X∗1

∂∗1−→ X∗0 −→ 0

Tensoring with F2, we obtain a chain complex X ⊗F2 which coincides precisely with C ⊗F2.

0 −→ X2 ⊗F2
∂2−→ X1 ⊗F2

∂∗2◦∂1−→ X∗1 ⊗F2
∂∗1−→ X∗0 ⊗F2 −→ 0

Note that H1(X ⊗ F2) = H4(X ⊗ F2) = F2, since they are both equal to the corresponding
homology groups of the underlying genus g surface. Now consider the equation

dim(ker ∂∗2 ◦ ∂1) = dim(ker ∂1) + dim(im ∂1 ∩ ker ∂∗2).

In order to put this to use, we note that ker ∂∗2 is generated by the fundamental class, which
is represented by the sum of the dual faces. Since this generator lies in im ∂1 — it is equal to
∂1 applied to the sum of all edges — it follows that dim(ker ∂∗2 ◦ ∂1) = dim(ker ∂1) + 1. So
H2(X ⊗F2) = F

2g+1
2 and, in summary, the following equations hold true.

H1(X ⊗F2) = H1(C ⊗F2) = H1(C)⊕ H2(C) = F2

H2(X ⊗F2) = H2(C ⊗F2) = H2(C)⊕ H3(C) = F
2g+1
2

H3(X ⊗F2) = H3(C ⊗F2) = H3(C)⊕ H4(C)
H4(X ⊗F2) = H4(C ⊗F2) = H4(C) = F2

The matrix representing d1 has full rank — see Theorem 3.12 — so we have H1(C) = 0 and it
follows that H2(C) = F2, H3(C) = F

2g
2 , and H4(C) = F2. Finally, combining these homology

calculations with equation (3.3) completes the proof of Theorem 3.22.

det B
(det A)2 =

|H3(C)|
|H2(C)| × |H4(C)| = 22g−2
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Chapter 4

Concluding remarks

In this thesis, we have explored the fascinating world of intersection theory on moduli spaces
of curves. The recent work of Mirzakhani allows one to adopt a hyperbolic geometric approach
to obtain not only new results, but also new insights in this area. For example, we earlier
introduced the generalised string and dilaton equations, which relate Weil–Petersson volumes.
These, in turn, can be interpreted as relations between intersection numbers on moduli spaces
of curves. However, one of the most interesting aspects of this work is the connection revealed
between the intersection theory onMg,n and the geometry of hyperbolic cone surfaces.

In another direction, this thesis includes a proof of Kontsevich’s combinatorial formula which,
of course, is not in itself a new result. What is novel in this work is the crucial use of hyperbolic
geometry and the close relationship uncovered between the work of Kontsevich and Mirza-
khani. One of the strengths of our proof is the fact that it is both intuitive in nature and devoid
of the technical difficulties inherent in the original. The unifying concept in this thesis is the
philosophy that any meaningful statement about the volume Vg,n(L) gives a meaningful state-
ment about the intersection theory onMg,n, and vice versa. It seems likely that one can extend
this idea far beyond the content of this thesis.

Our proof of Kontsevich’s combinatorial formula capitalised on the fact that the psi-class inter-
section numbers are stored in the top degree part — in other words, the asymptotics — of the
Weil–Petersson volumes, which we now denote by

Ṽg,n(L) = lim
N→∞

Vg,n(NL)
N6g−6+2n .

The crux of the proof was the direct calculation of Ṽg,n(L) using results from hyperbolic geome-
try and some combinatorics. As part of joint work with Safnuk [10], we have recently extended
some of the ideas in this thesis to prove the following recursive formula for these polynomials.
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Theorem 4.1. The asymptotics of the Weil–Petersson volumes satisfy the following formula.

L1Ṽg,n(L) =
∫∫

0<x+y<L1

xy (L1 − x− y) Ṽg−1,n+1(x, y, L̂) dx dy

+ ∑
g1+g2=g
I1tI2=[2,n]

∫∫
0<x+y<L1

xy (L1 − x− y) Ṽg1,|I1|+1(x, LI1) Ṽg2,|I2|+1(y, LI2) dx dy

+
n

∑
k=2

∫ L1−Lk

0
x(L1 − x) Ṽg,n−1(x, L̂k) dx +

∫ L1+Lk

L1−Lk

1
2

x(L1 + Lk − x) Ṽg,n−1(x, L̂k) dx

We have used L̂ = (L2, L3, . . . , Ln), L̂k = (L2, . . . , L̂k, . . . , Ln) and LI = (Li1 , Li2 , . . . , Lim) for I =
{i1, i2, . . . , im}.

The resemblance of this equation to Mirzakhani’s recursion is more than cosmetic, since it is
proved in an entirely analogous manner. In particular, the main idea is to unfold the desired
volume integral, although the mechanics of the proof are much simpler in this case. For ex-
ample, standing in the place of the generalised McShane identity in the proof of this statement
is the trivial fact that the sum of the edge lengths around a boundary component of a ribbon
graph is equal to the length of the boundary. The result itself is also simpler than Mirzakhani’s
recursion in the sense that all integrands are polynomials. We note here that the differential
version of Safnuk’s recursion precisely captures the Virasoro constraint condition of Witten’s
conjecture.

The viewpoint adopted in this thesis might also be used to obtain results concerning integra-
tion over Witten cycles and Kontsevich cycles. These are subcomplexes of the moduli space of
metric ribbon graphs which are combinatorially defined by constraints on the degree sequence
of the metric ribbon graph. Witten and Kontsevich conjectured that these correspond to cycles
which are Poincaré dual to polynomials in the tautological classes, a fact now known due to
work by Mondello [35] and Igusa [23]. The techniques used in this thesis are well-suited for an
investigation along these lines, although this largely remains work in progress. It appears that
this thesis, like the vast majority of mathematical research, poses many more questions than it
answers.



Bibliography

[1] ABIKOFF, W. The real analytic theory of Teichmüller space, vol. 820 of Lecture Notes in Mathe-
matics. Springer, Berlin, 1980.

[2] ARBARELLO, E., AND CORNALBA, M. Calculating cohomology groups of moduli spaces
of curves via algebraic geometry. Inst. Hautes Études Sci. Publ. Math. 88 (1998), 97–127.

[3] BERS, L. Spaces of degenerating Riemann surfaces. In Discontinuous groups and Riemann
surfaces. Princeton Univ. Press, Princeton, N.J., 1974, pp. 43–55.

[4] BOGGI, M., AND PIKAART, M. Galois covers of moduli of curves. Compositio Math. 120, 2
(2000), 171–191.

[5] BOWDITCH, B. H., AND EPSTEIN, D. B. A. Natural triangulations associated to a surface.
Topology 27, 1 (1988), 91–117.

[6] BUSER, P. Geometry and spectra of compact Riemann surfaces, vol. 106 of Progress in Mathemat-
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Appendix A

Weil–Petersson volumes

A.1 Table of Weil–Petersson volumes

The following table shows various Weil–Petersson volumes Vg,n(L1, L2, . . . , Ln). As previously
mentioned in Section 1.4, there may be a discrepancy of a power of two between these results
and others in the literature. These are caused by a differing normalisation of the Weil–Petersson
volume form and by the particular orbifold nature of the spacesM1,1(L1) andM2,0.

g n Vg,n(L1, L2, . . . , Ln)

0 3 1
4 1

2 ∑ L2
i + 2π2

5 1
8 ∑ L4

i + 1
2 ∑ L2

i L2
j + 3π2 ∑ L2

i + 10π4

6 1
48 ∑ L6

i + 3
16 ∑ L4

i L2
j + 3

4 ∑ L2
i L2

j L2
k + 3π2

2 ∑ L4
i + 6π2 ∑ L2

i L2
j + 26π4 ∑ L2

i + 244π6

3

7 1
384 ∑ L8

i + 1
24 ∑ L6

i L2
j + 3

32 ∑ L4
i L4

j + 3
8 ∑ L4

i L2
j L2

k + 3
2 ∑ L2

i L2
j L2

k L2
m + 5π2

12 ∑ L6
i

+ 15π2

4 ∑ L4
i L2

j + 15π2 ∑ L2
i L2

j L2
k + 20π4 ∑ L4

i + 80π4 ∑ L2
i L2

j + 910π6

3 ∑ L2
i + 2758π8

3

1 1 1
48 L2

1 + π2

12

2 1
192 ∑ L4

i + 1
96 L2

1L2
2 + π2

12 ∑ L2
i + π4

4

3 1
1152 ∑ L6

1 + 1
192 ∑ L4

i L2
j + 1

96 L2
1L2

2L2
3 + π2

24 ∑ L4
i + π2

8 ∑ L2
i L2

j + 13π4

24 ∑ L2
i + 14π6

9

4 1
9216 ∑ L8

i + 1
768 ∑ L6

i L2
j + 1

384 ∑ L4
i L4

j + 1
128 ∑ L4

i L2
j L2

k + 1
64 L2

1L2
2L2

3L2
4 + 7π2

576 ∑ L6
i

+ π2

12 ∑ L4
i L2

j + π2

4 ∑ L2
i L2

j L2
k + 41π4

96 ∑ L4
i + 17π4

12 ∑ L2
i L2

j + 187π6

36 ∑ L2
i + 529π8

36

5 1
92160 ∑ L10

i + 1
4608 ∑ L8

i L2
j + 7

9216 ∑ L6
i L4

j + 1
384 ∑ L6

i L2
j L2

k + 1
192 ∑ L4

i L4
j L2

k

+ 1
64 ∑ L4

i L2
j L2

k L2
m + 1

32 L2
1L2

2L2
3L2

4L2
5 + 11π2

4608 ∑ L8
i + 35π2

1152 ∑ L6
i L2

j + pi2
16 ∑ L4

i L4
j

+ 5π2

24 ∑ L4
i L2

j L2
k + 5π2

8 ∑ L2
i L2

j L2
k L2

m + 13π4

62 ∑ L6
i + 253π4

192 ∑ L4
i L2

j + 35π4

8 ∑ L2
i L2

j L2
k

+ 809π6

144 ∑ L4
i + 703π6

36 ∑ L2
i L2

j + 4771π8

72 ∑ L2
i + 16751π10

90
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g n Vg,n(L1, L2, . . . , Ln)

2 0 43π6

2160

1 1
442368 L8

1 + 29π2

138240 L6
1 + 139π4

23040 L4
1 + 169π6

2880 L2
1 + 29π8

192

2 1
4423680 ∑ L10

i + 1
294912 ∑ L8

i L2
j + 29

2211840 ∑ L6
i L4

j + 11π2

276480 ∑ L8
i + 29π2

69120 ∑ L6
i L2

j + 7π2

7680 L4
1L4

2

+ 19π4

7680 ∑ L6
i + 181π4

11520 ∑ L4
i L2

j + 551π6

8640 ∑ L4
i + 7π6

36 L2
1L2

2 + 1085π8

1728 ∑ L2
i + 787π10

480

3 1
53084160 ∑ L12

i + 1
2211840 ∑ L10

i L2
j + 11

4423680 ∑ L8
i L4

j + 1
147456 ∑ L8

i L2
j L2

k + 29
6635520 ∑ L6

i L6
j

+ 29
1105920 ∑ L6

i L4
j L2

k + 7
122880 L4

1L4
2L4

3 + π2

172800 ∑ L10
i + 11π2

110592 ∑ L8
i L2

j + 5π2

13824 ∑ L6
i L4

j

+ 29π2

27648 ∑ L6
i L2

j L2
k + 7π2

3072 ∑ L4
i L4

j L2
k + 41π4

61440 ∑ L8
i + 211π4

27648 ∑ L6
i L2

j + 37π4

2304 ∑ L4
i L4

j

+ 223π4

4608 ∑ L4
i L2

j L2
k + 77π6

2160 ∑ L6
i + 827π6

3456 ∑ L4
i L2

j + 419π6

576 L2
1L2

2L2
3 + 30403π8

34560 ∑ L4
i

+ 611π8

216 ∑ L2
i L2

j + 75767π10

8640 ∑ L2
i + 1498069π12

64800

3 0 176557π12

1209600

1 1
53508833280 L14

1 + 77π2

9555148800 L12
1 + 3781π4

2786918400 L10
1 + 47209π6

418037760 L8
1 + 127189π8

26127360 L6
1 + 8983379π10

87091200 L4
1

+ 8497697π12

9331200 L2
1 + 9292841π14

4082400
2 1

856141332480 ∑ L16
i + 1

21403533312 ∑ L14
i L2

j + 77
152882380800 ∑ L12

i L4
j + 503

267544166400 ∑ L10
i L6

j

+ 607
214035333120 L8

1L8
2 + 17π2

22295347200 ∑ L14
i + 77π2

3185049600 ∑ L12
i L2

j + 17π2

88473600 ∑ L10
i L4

j

+ 1121π2

2229534720 ∑ L8
i L6

j + 1499π4

7431782400 ∑ L12
i + 899π4

185794560 ∑ L10
i L2

j + 10009π4

371589120 ∑ L8
i L4

j

+ 191π4

4128768 L6
1L6

2 + 3859π6

139345920 ∑ L10
i + 33053π6

69672960 ∑ L8
i L2

j + 120191π6

69672960 ∑ L6
i L4

j + 195697π8

92897280 ∑ L8
i

+ 110903π8

4644864 ∑ L6
i L2

j
6977π8

138240 L4
1L4

2 + 37817π10

430080 ∑ L6
i + 2428117π10

4147200 ∑ L4
i L2

j + 5803333π12

3110400 ∑ L4
i

+ 18444319π12

3110400 L2
1L2

2 + 20444023π14

1209600 ∑ L2
i + 2800144027π16

65318400

4 0 1959225867017π18

493807104000

1 1
29588244450508800 L20

1 + 149π2

3698530556313600 L18
1 + 48689π4

2397195730944000 L116 + 50713π6

8989483991040 L14
1

+ 30279589π8

32105299968000 L12
1 + 43440449π10

445906944000 L10
1 + 274101371π12

44590694400 L8
1 + 66210015481π14

292626432000 L6
1

+ 221508280867π16

50164531200 L4
1 + 74706907467169π18

1975228416000 L2
1 + 92480712720869π20

987614208000

5 0 84374265930915479π24

355541114880000

1 1
48742490377990176768000 L26

1 + 7π2

133907940598874112000 L24
1 + 1823π4

31067656673034240000 L22
1

+ 296531π6

7766914168258560000 L20
1 + 68114707π8

4271802792542208000 L18
1 + 2123300941π10

474644754726912000 L16
1

+ 42408901133π12

49442161950720000 L14
1 + 19817320001π14

176579149824000 L12
1 + 11171220559409π16

1135151677440000 L10
1 + 62028372646367π18

111244864389120 L8
1

+ 202087901261599π20

10534551552000 L6
1 + 626693680890100121π22

1738201006080000 L4
1 + 881728936440038779π24

289700167680000 L2
1

+ 21185241498983729441π26

2824576634880000

A.2 Program for genus 0 Weil–Petersson volumes

The following Maple routine, due to Norbury [9], uses the generalised string equation in or-
der to calculate V0,n+1(L, Ln+1) from V0,n(L). A similar algorithm may be used to calculate
V1,n+1(L, Ln+1) from V1,n(L). These programs have the advantage of being much faster than
implementing Mirzakhani’s recursion.
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> # input: symmetric polynomial f in n variables L1,...,Ln
# output: symmetric polynomial S in n+1 variables L1,...,L(n+1)
# satisfying S(L(n+1)=0)=f
sym:=proc(f) local i,j,k,m,S,T,T1,prod,sum,epsilon:
S:=f:
epsilon:=array[1..100]:
for i from 1 to 100 do epsilon[i]:=0: od:
while epsilon[n+1]<1 do
T:=subs(seq(L||j=(1-epsilon[j])*L||j,j=1..n),f):
T1:=0:
for i from 1 to n do
prod:=1:
for j from i+1 to n+1 do
prod:=prod*(1-epsilon[j])
od:
T1:=T1+prod*subs(L||i=L||(n+1),T):
od:
sum:=0: for k from 1 to n do sum:=sum+epsilon[k] od:
S:=S+(-1)^sum*T1:
for k from 1 to 100 do
if epsilon[k]=1 then epsilon[k]:=0
else epsilon[k]:=1: k:=100 end if:
od:
od:
S:=simplify(S):
end:

> # calculate the genus zero volumes recursively from evaluation
# of V_(0,n+1) at L(n+1)=2*Pi*I
for n from 3 to 12 do
P:=0:
for j from 1 to n do
P:=P+int(L||j*V[n],L||j)
od:
Q0:=P:
C0:=simplify(coeff(Q0,Pi,0)):
sim:=sym(C0):
V[n+1]:=sim:
for k from 1 to n-2 do
P||k:=sim-C||(k-1):
Q||k:=subs(L||(n+1)=2*Pi*I,Q||(k-1)-P||k*Pi^(2*k-2)):
C||k:=simplify(coeff(Q||k,Pi,2*k)):
sim:=sym(C||k):
V[n+1]:=V[n+1]+sim*Pi^(2*k):
od:
od:
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