
3. SURFACES 3.4. The Classification of Surfaces

Polygon Models

We’re going to look at how to very simply draw a surface on a piece of paper, and the idea is inspired by
Pac-Man world. Recall that when you glue up the sides of Pac-Man world, you obtain a torus. Furthermore,
if you look at the seams of your gluing, they form a map on the torus and, most importantly, this map has
exactly one face. This face corresponds precisely to the rectangle that made up Pac-Man world in the first
place.

So, if you could find a map on a surface which has one face, then you could cut the surface open along the
edges of the map to give a polygon. The surface can be reconstructed from this polygon as long as you have
the right gluing instructions. When you can do this, the resulting polygon and its gluing instructions are
referred to as a polygon model for the surface. Note that a polygon model must always have an even number
of sides which are glued together in pairs, without any edges left unglued. Fortunately, every surface can be
turned into a polygon model, as the following result shows.

Theorem.

Every surface corresponds to a polygon model.

Every polygon model corresponds to a surface.

Proof.

The idea here is to use the simple sounding though difficult to prove theorem which states that every
surface can be cut up into triangles. So suppose you have a surface and that you cut it up into triangles
and lay them down on a table. We can label each side of a triangle with a gluing instruction which tells
you how the triangles can be glued back together to recreate the surface. Now just take two triangles
which are supposed to be glued together and glue them together. Find another triangle which can be
glued onto these two and just go ahead and glue it to them. If you keep gluing more triangles onto the
shape that you have, they will all end up making one piece which will form a polygon — in fact, the
gluing instructions on the unglued edges of the polygon will ensure that it’s a polygon model for the
surface.

A polygon model is really just a polygon with 2n sides which are glued together in n pairs. You can
check that after performing such a gluing, the resulting object is indeed a surface. The main thing
to check is that around every point, there is a little disk — this is certainly true for points inside the
polygon. And for points on the edges, there will be half of a disk protruding from one edge and half of
a disk protruding from the edge that it’s glued to — these two halves of disks glue together to make a
whole disk. Finally, you need to check that if you take a point which is a vertex of the polygon model,
then it’s surrounded by a disk. But this is easy to check, since all of the vertices which glue together
will have a little pizza slice of a disk and these pizza slices glue together to make a whole disk.

Edge Words

Imagine that someone calls you up on the phone and asks you to describe your favourite surface — how
can you do it? One way is to cut up your surface into triangles, glue the triangles together until they form a
polygon, and then describe the resulting polygon and its gluing instructions — remember that this is called a
polygon model. These gluing instructions are usually given by writing the same letter on each pair of sides
which get glued together and placing arrows on the sides to show in which direction they get glued.
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So you can describe a surface by reading around its polygon model — usually in a counterclockwise fashion
— calling out x if the side is labelled x and the arrow is facing in the right direction and calling out x−1 if the
side is labelled x and the arrow is facing in the wrong direction. This sequence of letters, some with inverses
and some without, is called an edge word for a surface. Note that one surface can be described by many many
different edge words. Hopefully it’s clear that once you tell someone an edge word to your favourite surface,
then they can reconstruct the surface that you’re talking about.

Example. Let’s consider the Pac-Man world example from earlier, which we know to be the torus. Starting
in the bottom-left corner and reading around counterclockwise, the first letter is a, the second is b, the third is
a−1 and the fourth is b−1, which takes us back to where we started. So an edge word for the torus is aba−1b−1.

a

b

a

b

Example. Some other useful edge words to keep in mind are aa, which represents the projective plane, and
aba−1b which represents the Klein bottle.

Playing with Edge Words

What we’d like to do is translate some of the constructions to do with surfaces into the world of edge words.
This will allow us to play with surfaces by just playing with edge words — and that is a much simpler game,
because edge words don’t involve any crazy pictures, imagining things in four-dimensional space, and so on.

First, let’s consider what happens to edge words when we take connected sums. We earlier discussed that
when you take connected sums, it doesn’t matter in the slightest where you decide to cut out your holes from
each surface. So if we want to take the connected sum of two tori, for example, we could describe one by
aba−1b−1, the other by cdc−1d−1, and decide to cut out holes from each one as shown in the diagram below.
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If you open each of these holes up, the rectangles look more like pentagons, where four of the edges are
labelled and the unlabelled edges in each pentagon will get glued together. The result will be an octagon
whose edge word is simply aba−1b−1cdc−1d−1.
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It is a simple matter to generalise this reasoning and the final result is the following fact.

Proposition. Given polygon models for the surfaces S1 and S2 with edge words W1 and W2, an edge word for the
connected sum S1 # S2 is W1W2, where the words W1 and W2 have simply been written one after the other.

If you analyse what happens when you slide a counterclockwise arrow around a polygon model, then you’ll
find that nothing happens to the direction of the arrow unless you happen to slide over an edge and emerge
from the edge that it is glued to. In fact, the direction of the arrow doesn’t change unless these two edges are
facing in the same direction around the polygon. In other words, we have the following fact which allows us
to deduce the orientability of a surface very simply from its edge word.

Proposition. In an edge word for an orientable surface, every letter appears with its inverse. In an edge word for a
non-orientable surface, there exists at least one letter which does not appear with its inverse.

Finally, let’s consider how to calculate the Euler characteristic from an edge word, for example the edge word
abcdc−1b−1a−1d−1. Once you’ve seen how to calculate the Euler characteristic for this edge word, you’ll no
doubt be able to calculate the Euler characteristic for just about any edge word I give you.
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Above we have a diagram of the polygon model corresponding to the edge word. Of course, to work out
the Euler characteristic of the corresponding surface, we’d like to determine the number of vertices, edges
and faces. The easiest of these is the number of faces, since we always have F = 1 for a polygon model. The
next easiest is the number of edges, since the eight edges will get glued into four pairs, so the resulting map
on the surface will have E = 4. And finally we can calculate the number of vertices as V = 3. We do this
by determining which vertices get matched up with each other after the gluing occurs. In the diagram, the
three different vertices are labelled 1, 2 and 3. The strategy for finding this labelling is to make sure that the
two vertices at the tip of the edges labelled a correspond to the same vertex and the two vertices at the tail
of the edges labelled a correspond to the same vertex. If you do this for every edge label, then you should
find that the vertices of the polygon divide into the three groups indicated, each group corresponding to
one of the three vertices of the resulting map. Now that we have the number of vertices, edges and faces,
it’s a simple matter to calculate χ = V − E + F = 3− 4 + 1 = 0. Furthermore, we know that this surface is
orientable because, in the edge word abcdc−1b−1a−1d−1, every letter appears with its inverse.

The Classification of Surfaces

Finally, we’re in a position where we can classify the surfaces — that is, write a list of every different surface
possible. A lot of effort by mathematicians goes into classifying mathematical objects. However, surfaces is
one of the few examples where we’ve been successful and achieved a complete classification. In fact, this was
all worked out back in the early twentieth century.

Theorem (The classification of surfaces). Every surface is homeomorphic to the sphere, a connected sum of tori or a
connected sum of projective planes. Furthermore, no two of these surfaces are homeomorphic to each other.

Sketch of the proof. The proof of this theorem, although reasonably elementary, is rather involved. Rather than
get bogged down in all the gory details, I’ll just give an overview of the proof, which relies heavily on the
fact that surfaces can be described by edge words and that every edge word describes a surface.

Take any edge word — our goal is to show that that it corresponds to a sphere, a connected sum of tori
or a connected sum of projective planes.

The idea is to apply simplifying moves to the edge word which do not change the surface. Such moves
can be applied until the edge word can be recognised as the sphere or a connected sum of tori and
projective planes. The only moves you require to perform this task are the following — you should
check that they do not change the surface.

– σ(aXa−1Y) ∼= σ(b−1XbY)

– σ(XY) ∼= σ(YX)

– σ(X) ∼= σ(X−1)

– σ(aa−1X) ∼= σ(X)

– σ(aXaY) ∼= P # σ(XY−1)

– σ(aWbXa−1Yb−1Z) ∼= T # σ(WZYX)

The idea is that a sequence of such moves allows you to break an edge word into a piece which is a
projective plane or a torus connected sum with a surface whose edge word is shorter. Here, I am using
a and b to represent letters, and W, X, Y, Z to represent words. Furthermore, P and T represent the
projective plane and the torus, respectively. And finally, the word X−1 is what you get if you read the
word X backwards. For example, if X was aba−1cdc−1, then reading it backwards would give you
cd−1c−1ab−1a−1. Here, we are using the notation σ(W) to denote the surface which corresponds to the
edge word W.
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So you can use the aforementioned simplifying moves to reduce the surface to a connected sum of tori
and projective planes. However, connected sums of tori and projective planes do not actually appear in
our classification of surfaces. But that’s all right, because when you have a mix of the two appearing in
a connected sum, you can replace the torus with two projective planes. Another way to say this is that
T # P ∼= P # P # P. The proof of this statement is something that you can try in the comfort of your own
home — it’s simply equivalent to the statement σ(aba−1b−1cc) = σ(aabbcc).

These tricks can be used to reduce any edge word until it looks like it represents the sphere, a connected
sum of tori or a connected sum of projective planes. All that remains is to show that these are all
different from each other. However, this is quite easy, because we can use orientability and the Euler
characteristic to tell all of these surfaces apart. For more details, you can consult the following useful
table.

SURFACE ORIENTABILITY EULER CHARACTERISTIC

sphere orientable 2
connected sum of g tori orientable 2− 2g
connected sum of n projective planes non-orientable 2− n

So we now have a very useful corollary — it took a lot of work to get to this point in time, but we can now
say that we essentially understand everything there is to understand about surfaces.

Corollary. In order to identify a surface, all you need are its orientability and its Euler characteristic.

Problems

Problem. Identify the surface corresponding to the edge word abcdc−1b−1a−1d−1.

Proof. We earlier calculated that this surface has Euler characteristic equal to zero and is orientable. Now we
can consult the table above and identify the surface as a connected sum of one torus — namely, a torus.

Problem. Identify the surface corresponding to the edge word abcdec−1d−1bae−1.

Proof. The following is a diagram of the polygon
model, with the vertices of the polygon labelled 1
and 2. All of the vertices labelled 1 will coincide
after the gluing is performed and all of the ver-
tices labelled 2 will coincide after the gluing is per-
formed. Therefore, the Euler characteristic is simply
χ = V − E + F = 2− 5 + 1 = −2.

It is easy to see from the edge word that the surface is
non-orientable, since the letter a does not appear with
its inverse. Therefore, the classification of surfaces
tells us that it must be a connected sum of projective
planes. In fact, the Euler characteristic tells us that it
must be a connected sum of four projective planes,
which we can write as P # P # P # P.
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Noether

Amalie Emmy Noether was a German mathemati-
cian who was born into a Jewish family in 1882 and
died from surgery complications in 1935 at the age
of fifty-three. She is known for her groundbreaking
contributions to abstract algebra and to theoretical
physics, despite many obstacles in her life. For exam-
ple, her decision to attend the University of Erlangen
was unconventional since the Academic Senate of the
university had declared that allowing coeducation
would “overthrow all academic order”. She was one
of only two female students in a university of nearly
one thousand and was only allowed to audit classes
with the permission of each individual professor.

After completing her dissertation, Noether worked
at the Mathematical Institute of Erlangen, but had to
do so without pay for seven years. Finally in 1915,
she was invited by the great mathematicians David
Hilbert and Felix Klein to join the mathematics de-
partment at the University of Göttingen, a world-
renowned centre of mathematical research. However,
when the Nazis came to power in 1933, Noether was
forced to leave her job due to her Jewish background.
She accepted the decision calmly and was fortunately
offered a job at Bryn Mawr College near Philadelphia,
which provided a welcoming home for her during
the last two years of her life.

Noether was highly respected for her teaching. Ap-
parently, she did not follow a lesson plan for her lec-
tures, which frustrated some students. Instead, she
used her lectures as a spontaneous discussion time,
to think through and clarify important cutting-edge
problems in mathematics. Once, when the mathemat-
ics department was closed for a state holiday, she
gathered the class on the steps outside, led them
through the woods, and lectured at a local coffee
house. Later, after she had been dismissed by the
Third Reich, she invited students into her home to
discuss their future plans and mathematical concepts.
In addition to her own publications, Noether was

generous with her ideas and is credited with several
lines of research published by other mathematicians,
even in fields far removed from her main work.

Noether was described by Albert Einstein and oth-
ers as the most important woman in the history of
mathematics. She revolutionised abstract algebra and
discovered Noether’s theorem in physics, which ex-
plains the fundamental connection between symme-
try and conservation laws — this tells us why we
can expect conversation of physical properties such
as energy, momentum and angular momentum. Her
theorem has been called “one of the most important
mathematical theorems ever proved in guiding the
development of modern physics”.
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