
4. TILING AND DISSECTION 4.1. Tiling Rectangles

The Mutilated Chessboard

One of the most famous of tiling conundrums is the following, a problem which almost every mathematician
must have encountered at one time or another.

Consider an 8× 8 chessboard, where the top-right and bottom-left squares have been removed. Is
it possible to tile this mutilated chessboard with 2× 1 dominoes?

The first thing you should do is take out some pen and paper, draw a mutilated chessboard, and try to tile it
with 2× 1 dominoes. However, I can tell you right now that you’ll fail — not because your tiling skills are
inadequate, but because the task is impossible. The answer to this problem should seem surprising to an
unsuspecting audience.

Prior to removing the two squares, there is a myriad of ways to perform such a domino tiling — actually,
36042 = 12988816 ways to be precise, but that’s another story. So why should such a trivial alteration of the
board reduce this number to zero? The argument is stunning in its simplicity and the key to the solution lies
in the seemingly unimportant colouring of the chessboard into black and white squares. This colouring is
such that the placement of any domino on the board will cover exactly one square of each colour. So if it’s
possible to tile the board with dominoes, then it must be the case that there is an equal number of black and
white squares. However, a quick count reveals that the mutilated chessboard has 30 black squares and 32
white squares. A slicker way to see that there are unequal numbers of black and white squares is to notice
that we removed two squares of the same colour from a board that previously had equal numbers of each.
From this disparity, we are led to the conclusion that the mutilated chessboard cannot be tiled by dominoes,
no matter how hard one might try.

Colouring Arguments

We were lucky with the mutilated chessboard problem, because the standard 8× 8 chessboard came with a
colouring which helped our cause, free of charge. But sometimes, as in the next problem, you have to invent
your own colouring.

Is it possible to tile a 10× 10 square with 4× 1 rectangles?

Once again, try as you might, you’ll find that it’s impossible to tile a 10× 10 board with 4× 1 rectangles. So it
seems like a good idea to generalise the colouring trick which worked for the mutilated chessboard so that it
works for this problem too. And if it works for this problem too, then who knows how many other problems
this colouring trick will work for?
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4. TILING AND DISSECTION 4.1. Tiling Rectangles

The crucial aspect of the chessboard colouring that we used is the fact that any domino placed on the board
occupied one square of each colour. So the idea here is to find a colouring of the 10× 10 square such that
any 4× 1 rectangle placed on the board occupies one square of each colour. Of course, this means that we
require four colours, which we will call 0, 1, 2 and 3. Working along the top row of the board, we may as well
label the first four squares 0, 1, 2 and 3, in that order. In order to satisfy the property that any 4× 1 rectangle
placed on the board occupies one square of each colour, the next square along must be labelled 0. And the
next square along must be labelled 1, and the next square along must be labelled 2, and the next square along
must be labelled 3, and so on. So we see that every square in the first row will be coloured according to the
repeating pattern 0, 1, 2, 3, 0, 1, 2, 3, . . .. Since this seems to work along the first row, we can use the same trick
to fill the first column. And after a little trial and error, you should find the following very pretty looking
colouring of the 10× 10 square.

0 1 2 3 0 1 2 3 0 1

1 2 3 0 1 2 3 0 1 2

2 3 0 1 2 3 0 1 2 3

3 0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0 1

1 2 3 0 1 2 3 0 1 2

2 3 0 1 2 3 0 1 2 3

3 0 1 2 3 0 1 2 3 0

0 1 2 3 0 1 2 3 0 1

1 2 3 0 1 2 3 0 1 2

I like to call this a modulo 4 colouring, because if we label the rows and columns 0, 1, 2, . . ., then the square in
row i and column j is coloured i + j modulo 4. If you have no idea what I’m talking about, then that’s fine,
because the colouring is easy to describe without all of this jargon. You simply cycle through the colours 0, 1,
2, 3 along the first row, and every other row is the same as the previous one, but shifted to the left by one.
Hopefully, I don’t need to tell you that for other problems, you might need to use a modulo k colouring for
some positive integer k.

This colouring certainly obeys the rule that a 4× 1 rectangle on the board always occupies one square of each
colour. You can easily check this for a 4× 1 rectangle placed in the first row which means that it’s also true
for a 4× 1 rectangle placed in any other row or any column. Of course, we’re hoping that there are not the
same number of squares of each colour, so that we can deduce that it’s impossible to tile the board. One way
to verify this is to simply count them and you would indeed find that this is true — there are twenty-five
squares coloured 0, twenty-six squares coloured 1, twenty-five squares coloured 2, and twenty-four squares
coloured 3. However, that’s rather pedestrian, so let’s use a slicker, more stylish, approach.

We simply note that it’s possible — and quite easy to demonstrate — a tiling of the entire board except for the
2× 2 square in the top-left corner. This is because any 4× n rectangle is very easy to tile with 4× 1 rectangles.
So you can tile the bottom four rows of the grid, leaving a 6× 10 rectangle. Then you can tile the bottom four
rows of this grid, leaving a 2× 10 rectangle. Now you can tile the rightmost four columns of this grid, leaving
a 2× 6 rectangle. And then you can tile the rightmost four columns of this grid, leaving a 2× 2 square.
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The part of the board which we’ve covered in tiles must certainly contain the same number of squares of
each colour, otherwise we wouldn’t have been able to tile it. Since the remaining part of the board does not —
there is one square coloured 0, two squares coloured 1, one square coloured 2 and zero squares coloured 3 —
there cannot be the same number of squares of each colour on the entire board. We conclude that a 10× 10
square cannot be tiled with 4× 1 rectangles.

These colouring arguments are extremely useful and are most commonly applied with a modulo k colouring
for some positive integer k. Hopefully you can imagine what such a colouring might look like and how such
an argument might work, but if not, then we’ll see an example very soon. One thing to keep in mind is that a
colouring argument can be used to prove that a tiling is impossible, but it can never ever be used to prove
that a tiling is possible. Anyway, to prove to someone that a particular tiling is possible is usually easy —
you just have to demonstrate it to them.

Tiling Rectangles with Skinny Rectangles

Since a colouring argument was so successful for the previous problem, we may as well try to solve the
following far more general problem.

For which values of m, n and k is it possible to tile an m× n rectangle with k× 1 rectangles?

If someone gives you a problem like this, the very first thing you should do with it is experiment with various
values of m, n and k. One thing you should realise very quickly is that if m is a multiple of k, then the tiling
is really easy to find. And that’s because the first column consists of m squares and can be tiled with m

k
rectangles. Once you can tile the first column this way, then you can tile every column on the board in this
way. Similarly, the tiling is very easy to find if n is a multiple of k. But what happens if neither m nor n is
a multiple of k? Well, you should find that the task is impossible, and that’s precisely what we’re going to
prove.

Theorem. It’s possible to tile an m× n rectangle with k× 1 rectangles if and only if m is a multiple of k or n is a
multiple of k.1

Proof. We’ve already shown that if m is a multiple of k or n is a multiple of k, then the tiling is easy to find. So
let’s now assume that m and n are not multiples of k and prove that the tiling is impossible.

This is where our coloured pencils come to the rescue. Hopefully, you haven’t forgotten the problem we
solved earlier about tiling with 4× 1 rectangles. We solved that one by using a colouring which repeats every
four squares. For this problem, we simply use a colouring which repeats every k squares. The strategy here
is the same — fill out the first row by cycling through the colours 0, 1, 2, . . . , k− 1 and let every other row
be the same as the previous row one, but shifted to the left by one. I just happen to be using the colours
0, 1, 2, . . . , k− 1 because that’s what I’m used to. You’re more than welcome to use the colours 1, 2, 3, . . . , k or
even real colours — whatever takes your fancy.

Now if m is not a multiple of k, then it must leave some remainder a after you divide by k. Similarly, if n is
not a multiple of k, then it must leave some remainder b after you divide by k. And these numbers a and b
can’t be any old numbers — they must be positive integers which lie strictly between 0 and k.

1In mathematics, when we say A or B, we allow the possibility that both A and B could happen. It’s not like when you go to a friend’s
house and they ask you whether you want tea or coffee, in which case they are usually excluding the fact that you might want both.
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We’ll also make the assumption that a ≤ b which we certainly can do, because if it wasn’t true, then we could
just switch the names of m and n and the names of a and b to make it true.2

Note that it’s possible — and quite easy to demon-
strate — a tiling of the entire board except for the
a × b square in the top-left corner. This is because
you can tile the bottom k rows of the grid, leaving an
(m− k)× n rectangle. Then you can tile the bottom
k rows of this grid, leaving an (m − 2k) × n rectan-
gle. And you can keep tiling the bottom k rows of
the grid, until you are left with an a × n rectangle.
Now you can tile the rightmost k columns of this
grid, leaving an a× (n− k) rectangle. Then you can
tile the rightmost k columns of this grid, leaving an
a× (n− 2k) rectangle. And you can keep tiling the
rightmost k rows of the grid, until you are left with
an a× b rectangle.

a

k

k

b k k

m

n

...
...

...

· · ·

Remember that our goal is to show that there aren’t equal numbers of squares of each colour on the entire
board. The trick we’ve used here is to tile a large part of the board, which tells us that the tiled part definitely
does have equal numbers of squares of each colour. In other words, we’ve reduced the problem to showing
that there aren’t equal numbers of squares of each colour in the a× b rectangle in the top-left corner.

All we have to do now is note the following two things.

Note that the colour a− 1 appears in the bottom-left corner. In fact, it has to appear in every row of the
a× b rectangle. This is because it also appears in the square one up and one right of the bottom-left
corner, and in the square one up and one right from that one, and in the square one up and one right
from that one, and so on. Since a ≤ b, this means that the colour a− 1 appears at least once in every
row. The fact that b < k tells us that no colour can appear more than once in a row. So, in summary,
colour a− 1 actually appears exactly a times, once in each row.

0 1 2 · · · b − 2 b − 1

1 2 3 · · · b − 1 b

2 3 4 · · · b b + 1

...
...

...
...

...

a − 2 a − 1 a · · ·

a − 1 a a + 1 · · ·

2Often, mathematicians will say that we can make an assumption of this sort without loss of generality. It basically means that the
assumption is allowed, and that you are still covering all possible cases, even though it might not at first appear to be so. In fact, such
arguments are often referred to as WLOG arguments.
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Note that the colour 0 appears in the top-left corner but it definitely does not appear in the second
row — and this is because the second row looks like 1, 2, 3, . . .. So if it did appear, then the second row
would have at least k squares, clearly in contradiction of our assumption that b < k. This means that
the colour 0 definitely does not appear in the second row and yet, we already discussed the fact that no
colour can appear more than once in a row. So, in summary, the colour 0 appears fewer than a times.

This tells us that the colour 0 and the colour a− 1 do not appear the same number of times on the entire board.
And this is precisely what we wanted to prove, because we can now deduce that the tiling is impossible.

Tiling Rectangles with Rectangles

Thus far, we’ve considered only the case of tiling with skinny rectangles — in other words, those of the form
k× 1. Let’s now broaden our horizons and consider the more general case of tiling with a× b rectangles,
where a and b are positive integers. Of course, we can start by making the simplifying assumption that a and
b have no common factors greater than 1, since other cases reduce to this after scaling the size of the tiles and
the board down. For example, if a and b were both even and we wanted to know whether an m× n rectangle
can be tiled with a× b rectangles, then this is the same problem as determining whether an m

2 ×
n
2 rectangle

can be tiled with a
2 ×

b
2 rectangles. Obviously, the question we would like to answer is the following.

For which values of m, n, a and b is it possible to tile an m× n rectangle with a× b rectangles?

Before we state the answer, let’s consider three instructive cases.

Can you tile a 12× 15 rectangle with 4× 7 rectangles?
No, of course not, since the area of each tile does not divide the area of the board.

Can you tile a 17× 28 rectangle with 4× 7 rectangles?
The answer is again in the negative, although for a more subtle reason. It turns out that 4× 7 rectangles
cannot even be used to cover the first column of a 17× 28 rectangle. For if such a tiling is possible, we
must certainly be able to write the number 17 as a sum of 4’s and 7’s. A quick check shows that this is
not the case.

Can you tile an 18× 42 rectangle with 4× 7 rectangles?
It is not actually possible to carry out this task. If you could, then you could certainly tile the 18× 42
rectangle with 4× 1 rectangles, by tiling each 4× 7 rectangle with seven 4× 1 rectangles. But our
earlier result — which we proved using a colouring argument — tells us that you can’t tile an 18× 42
rectangle with 4× 1 rectangles because neither 18 nor 42 are multiples of 4.

These arguments can be generalised to prove the following theorem, which gives a complete answer to our
original problem.

Theorem. Let a and b be positive integers with no common factors greater than 1. A tiling of an m× n rectangle with
a× b rectangles exists if and only if

both m and n can be written as a sum of a’s and b’s; and

either m or n is a multiple of a and either m or n is a multiple of b.

Faulty Tilings

Let’s now turn our attention to the following beautiful tiling problem.
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A 6× 6 square is tiled with 2× 1 dominoes. Prove that it’s possible to cut the board into two
smaller rectangles with a straight line which doesn’t pass through any of the dominoes.

Given a tiling, let’s call a line which cuts the board into two pieces and yet does not pass through any of the
tiles a fault line. For example, the diagram below shows two tilings of a 5× 6 rectangle with dominoes, one
which has a fault line and one which doesnt. This particular problem asserts that every possible domino
tiling of the 6× 6 square must have a fault line.

In order to obtain a contradiction, let’s suppose that we have a domino tiling of the 6× 6 square which has no
fault line. Consider any one of the ten potential fault lines — five horizontal and five vertical — and, without
loss of generality, we may assume that it is vertical. Since our tiling has no fault line, at least one domino
must cross this vertical. However, it cannot be the only such domino, since otherwise, an odd number of
squares would remain to the left of the line and this part of the board cannot be tiled with dominoes. So at
least two dominoes must cross the given vertical line. The same argument applies for all ten potential fault
lines, so at least two dominoes must cross each of the ten potential fault lines. Since a domino may cross only
one such line, we conclude that the tiling must involve at least 10× 2 = 20 dominoes. However, 20 dominoes
cover an area of 40 squares, more than the area of the board in question. This contradiction implies that every
tiling of the 6× 6 square with dominoes must have a fault line.

Having solved this question, it’s only natural to ask the following more general question.

When can an m× n rectangle be tiled with a× b rectangles without any fault lines?

Despite first appearances, there is a natural answer to this problem as described by the following result.
Interestingly enough, the case of tiling a 6× 6 rectangle with dominoes which had such an elegant proof, is
the only exception to the rule.

Theorem. Let a and b be positive integers with no common factors greater than 1. A faultless tiling of an m× n
rectangle with a× b rectangles exists if and only if

both m and n can be written as a sum of a’s and b’s in such a way that at least one a and one b is used;

either m or n is a multiple of a, and either m or n is a multiple of b; and

for the case where the tiles are dominoes, the rectangle is not 6× 6.

More Mutilated Chessboards

We started with the mutilated chessboard problem — from such humble beginnings, we began our journey
into the amazing world of tiling. The mutilated chessboard problem spawns a further interesting question
whose answer is not quite so well-known.
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Which pairs of squares may be removed from the regular 8× 8 chessboard so that the remaining
board can be tiled with dominoes?

Of course, the colouring argument we used to solve the mutilated chessboard problem implies that any such
pair of squares must be of opposing colours. But if we remove two such squares, is it always possible to tile
the remaining board with dominoes? The answer is in the affirmative and the simplest proof requires us to
consider the chessboard as a labyrinth, as pictured below. This labyrinth is hardly the design that might be
used for a hedge maze, since it not only has no entrance and exit, but also consists simply of a tour which
traverses all of the 64 squares. All that’s required now is to note that the removal of two squares of opposite
colours divides the path now into two shorter paths, one of which may be empty. Furthermore, these two
paths are of even length, so it’s easy to tile them both.

Trominoes, Tetrominoes and Polyominoes

We’ll end with some interesting questions which can be solved with the help of colouring arguments and
other tiling tricks. But first, we have to introduce trominoes, shapes which can be made by gluing together
three unit squares edge to edge. You should be able to see that there are essentially two distinct trominoes —
one looks like a 3× 1 rectangle while the other looks like an L-shape. We already know which rectangles can
be tiled by 3× 1 rectangles, so it’s natural to ask which rectangles can be tiled by L-trominoes.

And once you’ve mastered trominoes, of course, you would move on to tetrominoes — shapes which can be
made by gluing together four unit squares edge to edge. Anyone who’s played the excellent computer game
Tetris before will be well-acquainted with them, but even if you haven’t, you should be able to see that there
are essentially the five different types as shown in the diagram below. With these simple shapes, you have a
myriad of tiling problems that you can try, such as the following.

Can the five tetrominoes tile a rectangle of area 20?

Can two copies of each of the five tetrominoes tile a rectangle of area 40?

For each tetromino, determine which rectangles can be tiled by them.
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And, of course, once you’ve mastered tetrominoes, there are many other shapes you can play with. In general,
any shape which can be made by gluing together unit squares edge to edge is called a polyomino. For any
polyomino, you can try to determine which rectangles can be tiled by them.

Problems

Problem. The 8× 8 chessboard can be tiled with twenty-one 3× 1 rectangles and one 1× 1 square. Determine all
possible locations for the 1× 1 square and prove that these are the only ones possible.

Proof. Our approach will, of course, use a modulo 3 colouring like the one pictured in the diagram below.
Recall that the great thing about this colouring is the fact that any 3× 1 rectangle placed on the board will
cover precisely one square of each colour. This means that twenty-one 3× 1 rectangles must cover exactly
twenty-one squares of colour 0, twenty-one squares of colour 1 and twenty-one squares of colour 2. But you
can plainly see from the diagram that there are actually twenty-one squares of colour 0, twenty-two squares
of colour 1 and twenty-one squares of colour 2. What this means is that the 1× 1 square must definitely be
on a square which has the colour 1. Unfortunately, it’s not true that if you put the 1× 1 square on a square
which has the colour 1 that you can actually tile the remainder of the board with twenty-one 3× 1 rectangles.

0 1 2 0 1 2 0 1

1 2 0 1 2 0 1 2

2 0 1 2 0 1 2 0

0 1 2 0 1 2 0 1

1 2 0 1 2 0 1 2

2 0 1 2 0 1 2 0

0 1 2 0 1 2 0 1

1 2 0 1 2 0 1 2

The trick here is to observe that there are actually two different modulo 3 colourings that we could have tried.
In the previous colouring, each row is equal to the previous row, but shifted by one square to the left. Now
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we simply use a colouring where each row is equal to the previous row, but shifted by one square to the
right. Again, the great thing about this colouring is the fact that any 3× 1 rectangle placed on the board will
cover precisely one square of each colour. This means that twenty-one 3× 1 rectangles must cover exactly
twenty-one squares of colour 0, twenty-one squares of colour 1 and twenty-one squares of colour 2. But you
can plainly see from the diagram that there are actually twenty-two squares of colour 0, twenty-one squares
of colour 1 and twenty-one squares of colour 2. What this means is that the 1× 1 square must definitely be
on a square which has the colour 0.

0 1 2 0 1 2 0 1

2 0 1 2 0 1 2 0

1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1 2 0

1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1

2 0 1 2 0 1 2 0

So what we’ve deduced is that the 1× 1 square must be on a square with the colour 1 in the first colouring
and on a square with the colour 0 in the second colouring. And there are only four such squares on the 8× 8
chessboard — the ones indicated in the diagram below.

I’ll leave it as an exercise for you to show that, whichever one of these squares you decide to put the 1× 1
square on, you can tile the remainder of the chessboard with 3× 1 rectangles.
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Erdős

Paul Erdős was a Hungarian mathematician famous
for being incredibly prolific but also incredibly eccen-
tric. He has published more mathematics papers than
anyone else in history, even more so than Euler, al-
though Euler published more pages. He wrote nearly
1500 articles in his lifetime, in collaboration with over
500 different people. This is due to Erdős’ philosophy
that mathematics is a social activity.

Erdős was born in 1913 to Jewish parents who were
both mathematics teachers. He learnt much from
them as a child and supposedly, at the age of three,
could calculate how many seconds his friends had
lived for. After receiving a doctorate in mathematics
at the age of twenty-one, he moved first to England
and then to the United States, to escape the growing
anti-Semitic sentiment in Europe. At this time, he
began to develop the habit of travelling from campus
to campus and staying with friends. He would typ-
ically show up at a colleague’s doorstep, announce
that “my brain is open”, and stay long enough to col-
laborate on a few papers before moving on a few days
later. Possessions meant very little to Erdős and most
of his belongings would fit in a suitcase. Awards and
other earnings were generally donated to people in
need and various worthy causes. He kept up this
vagabond lifestyle until his death in 1996.

His colleague Alfréd Rényi once said that “a math-
ematician is a machine for turning coffee into theo-
rems”. Erdős certainly drank copious amounts of cof-
fee but later in life also started to take amphetamines.
At one stage, a friend and colleague bet him $500 that
he couldn’t stop taking the drug for a month. Erdős
won the bet, but complained during his abstinence
that mathematics had been set back by a month: “Be-
fore, when I looked at a piece of blank paper my mind
was filled with ideas. Now all I see is a blank piece
of paper.” Needless to say, after he won the bet, he
promptly resumed his amphetamine habit.

Erdős had his own idiosyncratic vocabulary — he
spoke of “The Book”, an imaginary book in which
God had written down the most elegant proofs for
every mathematical theorem. Children were referred

to as “epsilons”, women were “bosses”, men were
“slaves”, people who stopped doing math had “died”,
people who physically died had “left”, alcoholic
drinks were “poison”, music was “noise”, people
who had married were “captured”, people who had
divorced were “liberated”, to give a mathematical
lecture was “to preach”, and to give an oral exam to
a student was “to torture”. For his epitaph he sug-
gested, “I’ve finally stopped getting dumber.”

He contributed to many areas of mathematics — most
notably combinatorics, graph theory, number theory,
analysis, approximation theory, set theory, and proba-
bility theory. As a teenager, Erdős managed to give a
very nice proof of Bertrand’s postulate, which states
that there is always a prime number between n and
2n. He discovered the first elementary proof of the
prime number theorem, which states that the number
of primes less than n is approximately n

log n . Erdős
also proved new results in several fields which were
of little interest to him, such as topology.
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Erdős is perhaps most well-known for his application
of the probabilistic method to extremal combinatorics,
particularly Ramsey theory. Ramsey theory is the
branch of mathematics concerned with problems of
the following type.

How many people do you need at a party
to guarantee that there exist at least n peo-
ple who all know each other or n people
who all don’t know each other?

We’ve already seen that the answer in the case n = 3
is six, and we write this as R(3) = 6. It turns out that
R(4) = 18 and that the value of R(5) is known only
to be between 43 and 49 inclusive. These so-called
Ramsey numbers are incredibly difficult compute, as
evidenced by the following story that Erdős used to
tell. Imagine that a large alien force, vastly more pow-
erful than us, lands on Earth and asks for the value of
R(5) within a year or they will destroy our planet. In
that case, we should gather together all of our human-

power and technology to try and find the value. On
the other hand, if they ask for R(6) instead, then we
should simply gather together all of our humanpower
and technology to try and launch a preemptive attack
on the aliens.

Erdős’ friends created a humorous tribute for him,
defining the Erdős number of a mathematician. Erdős
himself is the only mathematician with Erdős number
zero. Anyone who has written a paper with him has
Erdős number one, anyone who has written a paper
with someone who has written a paper with him has
Erdős number two, and so on. Some have estimated
that ninety percent of the world’s active mathemati-
cians have an Erdős number smaller than eight. At
least twice, there have been eBay auctions offering
the chance to collaborate on a paper with someone in
order to gain a small Erdős number. I have an Erdős
number of two and, unfortunately, it will never ever
decrease.
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