
Putnam Notes
The Year

One of the most underrated elements in the history of the development of math-
ematics is the notion of play. Any genuinely creative human activity has its as-
pect of fun; you might argue that this is where the originality comes from. But
according to an expositor as straightlaced as, say, Morris Kline, this is some-
thing to be suppressed in the case of math. (Maybe, y’know, people wouldn’t
take it as seriously as they should if they knew it could be, um, taken frivolously,
or made a game of.)

Enough of that. Almost all math contests that survive more than one year
feature problems involving particular four-digit numbers. Frequently, the par-
ticular number (the contest year, d’accord) is almost entirely irrelevant, as in

PROBLEM 1. Suppose S ⊆ {1, 2, 3, . . . , 2004} is a set with 1004 elements.
Show that there are two distinct numbers a, b ∈ S such that a + b = 2004.

Solution: Easy one. Consider the sets {1, 2003}, {2, 2002},. . . ,{1001, 1003}.
There are 1001 of these sets. If S has both elements of any of them, we are
done. Otherwise, it has at most 1001 elements from these sets, and possibly the
elements 1002 and 2004. But we assumed it had 1004 elements total. So indeed
it must have both elements from one of these sets.

This is a simple consequence the pigeon-hole principle. Believe it or not,
a simpler variant of this showed up on a Putnam, as an A1, of course. The
point here is that 2004 could be traded in for any number (if we trade in 1004
accordingly.)

What follows is a fairly random sample of “year” problems. There are many
more.

Now consider

PROBLEM 2. (B5, Putnam 1985) Find
∫ ∞

0

t−
1
2 e−1985(t+t−1)dt.

[Use
∫∞
−∞ e−x2

dx =
√

π.]
Solution: Any sensible person would realize that the essence of this problem

is the same if 1985 is replaced by any positive (why positive?) number α. Not
being quite so sensible, we let α =

√
1985, and we must evaluate

∫ ∞

0

t−
1
2 e−α2(t+t−1)dt.

Let t = u−1, so dt = −u−2du, t−
1
2 = u

1
2 and t + t−1 = u + u−1; as t goes from

0 to +∞, u falls from +∞ to 0. With this substitution, the integral becomes

−
∫ 0

∞
u−

3
2 e−α2(u+u−1)du =

∫ ∞

0

t−
3
2 e−α2(t+t−1)dt.
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Thus the integral is

1
2

∫ ∞

0

(t−
1
2 + t−

3
2 )e−α2(t+t−1)dt.

Now let v = α(t
1
2 − t−

1
2 ). So v2 = α2(t + t−1 − 2); i.e., α2(t + t−1) = v2 + 2α.

dv = α
2 (t−

1
2 + t−

3
2 )dt and as t ranges from 0 to +∞, v goes from −∞ to +∞.

With this substitution, the integral becomes

e−2α

α

∫ ∞

−∞
e−v2

dt =
e−2

√
1985

√
π√

1985
.

A couple of comments on the handstands here. The first move (u = t−1) was
of course the last thing I did when I first solved the problem. And I tried
v = α(t

1
2 + t−

1
2 ) for the other substitution in the first go-round. These things

usually require a couple of tries before you find what works.
One thing I’ve never been certain about is how careful one has to be with

these indefinite integrals. (The given one is in fact indefinite at both endpoints,
and should be expressed as a sum of two limits of definite integrals, as should all
the subsequent ones.) I have evaluated it as an analyst would — just go ahead
and justify later. I will leave the precise details of this to you.

In 1993, at least two of the problems involved the year indirectly, but I’ll bet
a lot of people didn’t notice it in the first case.

PROBLEM 3. Identify those real numbers c such that there is a straight line
which meets the graph of the curve y = x4 + 9x3 + cx2 + 9x + 3 in four distinct
points.

Solution: Note that the last two coefficients are utterly irrelevant to the
question. To say this meets the graph of y = ax + b in four distinct points is
exactly the same thing as saying that x4 + 9x3 + cx2 + (9 − a)x + (3 − b) has
four distinct real roots. If this happens, this function must have 3 distinct (real)
relative extremums. That is, the derivative function 4x3 + 27x2 + 2cx + (9− a)
must have 3 distinct real roots. For this to happen, we must needs have that its
derivative 12x2 + 54x + 2c has two distinct real roots, and this implies that its
discriminant 542 − 4(12)(2c) is positive, so c < 243

8 .
So far we have shown that c < 243

8 is necessary; we now show it is sufficient.
Note that the coefficient of x2 in (x+ 9

4 )4 is exactly 243
8 ; letting 2d = 243

8 −c > 0,
we have that

x4 + 9x3 + cx2 + (9− a)x + (3− b) = (x +
9
4
)4 − 2dx2 + ex + f

for some constants e and f . By choosing a and b correctly, we can arrange that
e and f are just right so that this last polynomial is

(x +
9
4
)4 − 2d(x +

9
4
)2 + d2 − g2 = [(x +

9
4
)2 − d]2 − g2
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for our favourite g. This has 4 distinct roots as long as 0 < g < d. They are
− 9

4 ±
√

d± g. We leave the rest of the details.
In some cases, the particular number does play a role. Consider the following

(from a competition in Tartu, Estonia, in 1992).

PROBLEM 5. Does there exist a convex polyhedron with 1992 faces, all of
them quadrilaterals?

Solution: Yes. First, note that if there is a convex polyhedron with n faces,
all quadrilaterals, then there is one with n + 4 faces, all quadrilaterals. For
let ABCD be any face of the polyhedron Π with n faces. (We assume that the
vertices A, B, C and D are arranged clockwise.) We add vertices A′, B′, C ′ and
D′ to Π such that the plane through A, B, C and D is parallel to that through
A′, B′, C ′ and D′; and the second plane is on the opposite side of the rest of
Π from the first. This can be done in such a way that if we replace ABCD
by the faces AA′B′B, AA′D′D, BB′C ′C, CC ′D′D and A′B′C ′D′ we still have
a convex polyhedron. (A picture would help here; essentially, if ABCD is on
“top” of Π, you “raise” it a little, but also “shrink” it a bit, to get A′B′C ′D′.
I can be more precise, at the expense of both readability and space, but again
I’m not certain how much rigour they want.)

With this observation in hand, the problem would be easy if instead of
1992, the year had been either 1990 or 1994. This is because we all know a
convex polyhedron with 6 quadrilateral faces, and the last paragraph (somewhat
vaguely) tells us how to construct one with 6 + 4k quadrilateral faces for any
positive integer k.

To get 1992 faces, we need a small one to start with, such that the number
of faces in the small one is divisible by 4 (like 1992). In fact, there is one with
8 quadrilateral faces. I can visualize it easily enough, but instead of describing
it directly, I will describe its dual. Start with a cube and cut off the four
“top” corners to the midpoints. (I.e., suppose one face of the cube is ABCD in
order, and the opposite face is A′B′C ′D′ in corresponding order, the midpoints
of A′B′, B′C ′, C ′D′ and D′A′ are E, F , G and H respectively. Our second
polyhedron has vertices A, B, C, D, E, F , G and H and faces ABCD, EFGH,
ABE, BCF , CDG, DAH, AEH, BEF , CFG and DGH.) Note that every
vertex is on four faces in this second polyhedron.

Now if we take the dual of this polyhedron, we get one with 8 vertices,
all quadrilaterals. The dual of a convex polyhedron Π has as its vertices the
centroids of the faces of Π and an edge joins two of these centroids in the dual
if and only if the corresponding faces share an edge in Π. It is well-known that
the dual is also convex, the number of faces in the dual is the number fo vertices
in the original (and vice versa), the number of edges in the dual is the same as
in the original, and the number of edges on a face in the dual is the number of
edges coming out of the corresponding vertex in the original (and vice versa).

Some comments: There may well be a more direct way to do this problem.
The essential thing about 1992 was that it is divisible by 4; the construction
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gives us a convex polyhedron with n quadrilateral faces for any even n ≥ 6. I
don’t know if there is a convex polyhedron with n quadrilateral faces for any
odd n.

In “year” problems, it is often the case that the answer depends on the parity
of the number; here’s one that use the fact that 2002 is congruent to 1 (mod 3).

PROBLEM 6 (B4, Putnam 2002). One of the integers 1, 2, . . . , 2002 is selected
at random – each of the them has an equal chance of being selected. You want
to guess the correct answer in an odd number of guesses. After each guess you
are told whether the secret number is greater than, equal, or less than your
guess. No cheating — if you are told on some guess that the answer is bigger
than m, every one of your subsequent guesses must be bigger than m. Show
that you can guess in such a way so that your correct guess will fall at an odd
try more than 2

3 of the time.
That is, find a strategy that will win this particular game more than 2

3 of
the times you play it, if you play it often enough. Or more precisely, for more
than 2

3 (2002) choices of the mystery number, your pattern of guesses will turn
up that object in an odd number of tries.

Solution: On your first guess, try g1 = 1. Generally, let g2m = 3m and
g2m+1 = 3m + 1 (where your nth guess is gn), as long as possible. Unless you
2mth guess is correct (bummer!), your (2m + 1)st guess will either be correct
(hey!) or you will be able to continue unless your 2mth guess is too high.

Eventually one of these three things must occur — you have hit the correct
guess on turn 2m and lose, or have hit it on turn 2m+1 since it is 3m+1, or the
guess 3m is too high (at turn 2m); since you have already guessed 3(m−1)+1 =
3m− 2 in this case, the correct answer is 3m− 1 and you will then get at your
(2m + 1)st turn.

So you win unless the eldricht number is 3m for some m ≤ [ 20023 ] = 667.
Your chance of winning is 1335

2002 > 2
3 .

(Incidentally, if some casino were foolish enough to institute a game like this
at reasonable odds, and they found you following this strategy, they’d notice
fast and kick you out. Generally, following a system gambling against a casino
or the government just guarantees in the long run that you lose systematically.
If they discover that your system actually works, they are within their legal
rights to ban you.)

Sometimes the result depends on more substantial properties of the number,
say its prime factorization. The most spectacular one of these I’ve seen is

PROBLEM 6. (Putnam 2001) Show that there is unique pair (a, b) of positive
integers such that ab+1 − (a + 1)b = 2001.

If we trade in 2001 for a different year, there may be no solutions, or many.
(Examples?)

Solution: It is trivial to check that a = 13, b = 2 solves the equation. But
how to find these numbers, and to show there is no other solution?
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First, by the binomial theorem, (a+1)b ≡ 1(moda), so a|2002. The factors of
2002 = 2 ·7 ·11 ·13 are 1,2,7,11,13,14,22,26,77,91,143,154,182,286,1001 and 2002.
a must be one of these. Letting c = a + 1, we also have (c− 1)b+1 − cb = 2001.
If b is even, (c−1)b+1 ≡ −1(modc) and c|2002. If b is odd, (c−1)b+1 ≡ 1(modc)
and c|2000. The factors of 2000 = 24 · 53 are 1,2,4,5,8,10,16,20,25,40,50,80,100,
125,200,250,400,500,1000 and 2000.

So either b is even and both a and a+1 come from the list of factors of 2002,
forcing either a = 1 or a = 13; or b is odd, and a comes from that list, and a+1
comes from the second list — in this case a must be 1 or 7. a = 1 is readily
seen to be impossible; we show that a = 7 and b odd is also out. 7b+1 − 8b is
congruent to 1− 2 ≡ −1(mod3) if b is odd, but 3|2001, so a 6= 7.

We now know that a = 13 and b is even. Now as 132 ≡ 1(mod8), we have
that 13b+1 ≡ 13 ≡ 5(mod8). If b ≥ 3, then 14b ≡ 0(mod8). As 2001 ≡ 1(mod8),
we must have b = 2.

Obviously this problem uses several particular properties of 2001 (including
the factorization of the numbers above and below it!) This doesn’t occur very
often, but you should be on the lookout for this kind of thing.

More typically, the number just puts a bound on things. This is from Putnam
1999 (duh!).

PROBLEM 5. Show that there is a constant C such that, for any polynomial p
of degree 1999,

|p(0)| ≤ C

∫ 1

−1

|p(x)|dx.

Obviously, the 1999 could be anything, but note that the constant depends
on the given degree. What we really prove (by induction on n, of course) is that

For any n, there is a constant Cn such that, for any polynomial p of degree
≤ n,

|p(0)| ≤ Cn

∫ 1

−1

|p(x)|dx.

There will not be a single constant C that works for all polynomials of every
degree. (You see, there was this guy named Weierstrass, and he proved this
theorem. . . )

If n = 0, we can obviously take C0 = 1
2 . (Ditto for n = 1, as you should

see from the first step of the general case.) Suppose we have Cm that works
for each m < n and we want to show that we can find such a Cn. As we will
see, Cn = 2Cm will work, where m = [n

2 ]. (How do you produce “floor”?) We
assume that n > 0.

Note first that for any continuous g,
∫ 1

−1
g(x)dx =

∫ 1

−1
g(−x)dx. (This can

be seen geometrically, or by substituting u = −x.) So for any p of degree leqn

∫ 1

−1

|p| = 1
2

∫ 1

−1

(|p(x)|+ |p(−x)|)dx ≥
∫ 1

−1

|q(x)|dx,
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where q(x) = 1
2 (p(x) + p(−x)). Note that q(0) = p(0), q has degree no larger

than p, and q is even.
Thus with m = [n

2 ], q(x) =
∑m

j=0 ajx
2j and m < n. Now

∫ 1

−1
|q| = 2

∫ 1

0
|q|.

We substitute u = x2, du = 2xdx; so dx = du
2
√

u
for u > 0. Let r(u) =

∑m
j=0 aju

j .
∫ 1

0
|q(x)|dx then becomes the (improper, but convergent) integral∫ 1

0
|r(u)| du

2
√

u
. As 1√

u
≥ 1 on (0, 1], this integral is at least 1

2

∫ 1

0
|r(u)|du.

Substituting −u for u, we see that is the same as 1
2

∫ 0

−1
|r(−u)|du. That is,

∫ 1

−1

|p(x)|dx ≥
∫ 1

−1

|q(x)|dx ≥ 1
2

∫ 1

−1

|g(x)|dx,

where g(x) = r(x) for x ≥ 0 and g(x) = r(−x) for x < 0. g may not be a
polynomial, but

s(x) =
1
2
(g(x) + g(−x)) =

1
2
(r(x) + r(−x))

is. Note that p(0) = q(0) = r(0) = g(0) = s(0). Also,
∫ 1

−1

|g(x)|dx =
∫ 1

−1

1
2
(|g(x)|+ |g(−x)|)dx ≥

∫ 1

−1

|s(x)|dx.

As s has degree ≤ m, this last integral is at least 1
Cm
|s(0)| = 1

Cm
|p(0)|. Now∫ 1

−1
|p(x)|dx ≥ 1

2

∫ 1

−1
|s(x)|dx ≥ 1

2Cm
|p(0)| and we finish. (Let Cn = 2Cm.)

In the next one, not only are the particular numbers 19 and 93 bogus (they
are big enough so that you can’t do the problem straight by inspection in the
given case) but I found that they got in the way of finding the solution. Unlike
in the previous two problems, they do have to be positive integers.

PROBLEM 5. Let 1 ≤ xj ≤ 19 for each 1 ≤ j ≤ 93 and 1 ≤ yk ≤ 93 for each
1 ≤ k ≤ 19. Each xj and yk is a positive integer, as of course are each j and k.
Show that there are nonempty sets S ⊆ {1, . . . , 93} and T ⊆ {1, . . . , 19} such
that

∑
j∈S xj =

∑
k∈T yk.

Solution: For each 1 ≤ m ≤ 19, let Xm =
∑m

j=1 xj ; for 1 ≤ n ≤ 93, let
Yn =

∑n
k=1 yk. Clearly, each of X19 and Y93 is at most 19 · 93, and we may

assume they are not equal. Suppose for the moment that X = X19 > Y = Y93.
Suppose also, for now, that some xj 6= 93, so X < 19 · 93.

Now consider the 19 · 93 sums Xm + Yn for all 1 ≤ m ≤ 19 and 1 ≤ n ≤ 93.
There must be distinct pairs (m, n) and (r, s) such that Xm + Yn and Xr + Ys

are equivalent (modX). Since both of these sums are < 2X, it must be the case
that either Xm + Yn = Xr + Ys or (WLOG) Xm + Yn − (Xr + Ys) = X.

In the first case, we must have either m > r and n < s, or m < r and n > s.
In the first of these subcases, we have

∑m
j=r+1 xj =

∑s
k=n+1 yk. In the other

subcase,
∑r

j=m+1 xj =
∑n

k=s+1 yk. Either way we’re done.
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Otherwise, we must have m > r and s > n (since both Xm−Xr and Yn−Ys

are less than X). But then
∑m

j=r+1 xj +
∑n

k=s+1 yk = X =
∑19

j=1 xj . So∑n
k=s+1 yk =

∑r
j=1 xj +

∑19
j=m+1 xj . (Actually, if m = 19, that last summand

is empty, but the others are not.)
We are done unless each xj = 93. Now consider the 93 sums Y1, . . . , Y93.

Either one of these is divisible by 93, in which case we take enough xj ’s to add
up to it, or two Yn and Ys of them are equivalent (mod 93), in which case some
sum of the xj ’s adds up to Ys − Yn =

∑s
k=n+1 yk. (I assume that n < s.)

It looks like we should also consider the possibility that Y > X. (The
situation is not transparently symmetric, since 19¡93.) But in that case we can
just reverse the roles of xj and yk and of 19 and 93. Really, we could replace 19
and 93 by any positive M and N and get the same result.

Also, incidentally, we don’t really need to split off the case where every
xj = N . But I think this is the least awkward way to present the proof. (If you
can shorten and/or clarify it, let me know.)
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