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Unsolved problems for young and old

1  The lure of an unsolved problem

In his superb article entitled “The two cultures of mathematics’ [4], Fields medallist Tim
Gowers writes on the ever more prevalent dichotomy between mathematicians who are pri-
marily problem-solvers and those who are primarily theory-builders. In particular, he de-
fends the currently less fashionable problem-solving areas, such as combinatorics, and pro-
poses that they should be just as highly regarded as theoretical ones. Despite this growing
trend towards theory-building, unsolved problems remain the driving force behind mathe-
matical progress. For example, it seems highly doubtful that the state of the Taniyama-
Shimura Conjecture would now be known had Fermat the margin space to pen his infamous,
and most likely mythical, proof. For those unaware, the Taniyama-Shimura Conjecture was
finally proven in 1999 through the collaboration of Breuil, Conrad, Diamond and Taylor,
forty-four years after Taniyama first speculated the deep connection between rational elliptic
curves and modular forms. Much of the groundwork for the proof was provided by Andrew
Wiles after an incredible eight years of continuous toil spent searching for the Holy Grail of
mathematics, a proof of Fermat’s Last Theorem. But who amongst us has not felt the lure
of an unsolved problem?

This article contains concise expositions on four beautiful, though elementary, unsolved
problems which have lured me in the past. Of course, the word “elementary” refers only
to the lack of technical prerequisites needed to understand and approach the problems.
Indeed, the fact that they have all withstood attack from mathematicians the world over is
testament to their difficulty. Old mathematicians will hopefully be reminded that learning a
wealth of mathematical machinery is not necessary to attack interesting unsolved problems.
Young mathematicians can use such problems as these to cut their teeth on with a minimum
of knowledge before progressing on to higher mathematical pursuits. Since an article such
as this could easily contain hundreds of fascinating elementary unsolved problems, I have
adopted the following three criteria in problem selection, along with my own personal taste
and discretion.

o The problem can be understood by any person with a working knowledge of mathe-
matics.
The reader will not be reading about the much publicized Clay Mathematics Insti-
tute Millennium Prize Problems here, all of which require mathematical mastery of
their respective areas.

o The problem is not very well-known.
Many of the well-known unsolved problems are considered intractable by the mathe-
matical community, such as as Goldbach’s Conjecture or the Twin Prime Conjecture.
Anyway, what is the point of telling a joke that everyone already knows?

o The problem is interesting, tantalizing and surprising.
My hope is that readers might also feel the lure of these unsolved problems. Perhaps
they will be bandied around classrooms and offices, written on the backs of envelopes,
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and passed on by word of mouth until some very clever person can lay claim to a
solution. Remember that all maths problems were, at some stage, unsolved!

2  The Angel Problem

The Angel and the Devil are playing a game on an infinite grid of unit squares. The
Devil, on his turn, may remove any unoccupied square from the playing field. The
Angel is a chess piece on the board and, on her turn, can move to any remaining square
up to 1000 king moves away. Since she has wings, the Angel can fly over any intervening
squares that have been removed. In other words, she can move to any other available
square within the 2001 x 2001 square centred at her current location. The Devil wins
if he can trap the Angel while the Angel wins if she can continue flying forever. Can
the Devil beat the Angel?

There are few people who would suspect that the Devil has a chance of winning such a biased
game. For it seems that the Angel can fly far quicker than the Devil can remove squares
from the board. So it should come as a surprise that this problem, initially proposed by
John Conway over twenty years ago, remains unsolved to this day.

The Angel that we have described here is said to have power 1000, since she can move up
to 1000 king moves in one graceful bound. Of course, the problem admits generalization
to any positive integer power. It turns out that the Devil has the upper hand in a battle
against an Angel of power 1, otherwise known as a king in chess terminology. Surprisingly,
that is about the extent of our knowledge, since the winner of the game is unknown even
when we consider an Angel with any power greater than or equal to 2. The main difficulty
in the problem lies in the fact that the Devil can never make a wrong move — no matter
how the Devil moves, he is always better off than he was before.

In an excellent survey of the problem [2], Conway shows that such battles between the Angel
and the Devil may not be as one-sided as at first seems. For example, suppose that the Angel
adopts the naive strategy of flying as quickly as possible in one direction, gracefully weaving
around any squares that the Devil may have removed. The following result ensures that this
is bound to end in doom for the Angel.

Theorem 1 A Fool is an Angel who must increase her y-coordinate with every move. The
Devwil can catch a Fool.

Proof. We will show that the Devil can start building a wall far to the North which, by
the time the Fool arrives, will be an impenetrable blockade of width 1000. First observe
that a Fool who begins at the point X is subsequently contained within the upward cone
emanating from X, with a gradient of iﬁ. Let us truncate this cone with the horizontal
line AgBy at some yet to be chosen height H far far above Xy. The Devil can now eat one
out of every M squares along AgBy, where M is chosen so that the Devil has completed this

task by the time the Fool has reached a distance of % away from AgBy.

Now the Fool is at the point X; and is subsequently contained within the upward cone
formed by X; and the segment A; By, which is exactly half the length of AgBy. The Devil
can now eat the second of every M squares along A; B, and should be able to complete this
task by the time the Fool has reached a distance of % away from AgBy.
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The Devil can merrily continue building his blockade, taking the third of every M squares,
then the fourth of every M squares, and so on. So there will be a point in time when the
Devil will have eaten all of the squares along AgBy which the Fool has a chance of reaching.
The Fool should now be a distance of QiM away from AgBy. The Devil can repeat the very
same trick along the row just below AyBy. In this manner, he should easily be able to
remove all of the squares along or just below AgBy which the Fool can subsequently reach
by the time the Fool has reached a distance of 22% away from AgBy. Now if we take H to
be 1000 x 2V, where N > 1000M, then continuing this strategy ensures that the Devil can
build his wall until it is 1000 squares in thickness before the Fool has reached it. [

Conway believes that this problem has been alive far too long and offers $100 for a proof
that a sufficiently high-powered Angel can win, and $1000 for a proof that the Devil can
trap an Angel of any finite power.

Problem: An Out-and-Out Fool is an Angel who promises always to increase her distance
from the origin. Prove that the Devil can catch an Out-and-Out Fool.

3 The Happy End Problem

It is a somewhat trivial fact that three non-collinear points in the plane will always be
the vertices of a triangle. More interesting is the fact that among any five points in the
plane, with no three collinear, there are always four which form the vertices of a convex
quadrilateral. This is certainly not true for four points and is due to the fact that five such
points must be in one of the following three configurations.

One is now inclined to ask how many points in the plane are required to guarantee a convex
pentagon, or more generally, the following unsolved problem.
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Let f(n) denote the number of points in the plane, with no three collinear, that are
required to guarantee a convex n-gon. What is f(n)?

This problem was first examined in the 1930’s by a group of talented Hungarian mathemati-
cians, including Paul Erdos, George Szekeres and Esther Klein, who may be familiar to many
readers. It was Erdés who named it the Happy End Problem after the latter two became
engaged and eventually married and the name has since been propagated throughout the
literature. Their early work on the problem produced the results f(3) = 3, f(4) = 5 and
f(5) = 9 which suggests that the correct expression for f(n) may be 2"=2 + 1. In fact, it
did not take long before they found a construction to show that this conjecture was indeed
a lower bound for f(n). And not long after they also discovered the following upper bound.

Theorem 2 Let f(n) denote the smallest number of points in the plane, with no three

collinear, that are required to guarantee a convex n-gon. Then f(n) < (2::24) + 1.

Proof. Given n points in the plane, we can find a Cartesian coordinate system in which it
is possible to list the points in strictly increasing order of z-coordinate. For two points A
and B in the plane, let g(A, B) denote the gradient of the line which passes through them.
Now define an m-cap to be a set of points @1, Q2, ...,y listed in strictly increasing order
of z-coordinate such that

9(Q1,Q2) > 9(Q2,Q3) > ... > g(Qm—-1,Qm)-

Similarly, we can define an n-cup to be a subsequence Q1,Qs,...,Q, listed in strictly
increasing order of z-coordinate such that

9(Q1,Q2) < 9(Q2,Q3) < ... < g(Qn-1,Qn).

Let F'(m,n) be the smallest number of points in the plane, with no three collinear, that are
required to guarantee an m-cap or an n-cup. Then this function must satisfy the inequality
F(m,n) < F(m—1,n)+F(m,n—1)—1. Now using the simple fact that F(3,n) = F(n,3) =n
and applying the inequality recursively yields F'(m,n) < (m;:;l) +1. Since f(n) < F(n,n),
it follows that f(n) < (*'7}) + 1. O

n—2

Unfortunately, this upper bound happens to be exponentially far away from the lower bound
of 2241, which is the conjectured value for f(n). However, it did pave the way for further
progress on the problem. It was not until 1998 that a second married couple, consisting of
Ronald Graham and Fan Chung, managed to cleverly tweak the original proof to knock the
upper bound down by one to (27?:24). Such a slight improvement may not seem like much of
a dent on the original problem, but did mark the first significant progress made in over sixty
years. Not only that, their result was the start of a cascade of increasingly strong upper
bounds on the problem. In the very same volume of the journal Discrete and Computational

Geometry, Kleitman and Pachter managed to bring the upper bound down to (2"_4) +7—-2n

n—2
while Té6th and Valtr did better still with an upper bound of (2::35) + 2
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n | Lower Bound for f(n) | Upper Bound for f(n)
3 3 3
4 ) 5
5 9 9
6 17 37
7 33 128
8 65 464
9 129 1718
n "2 +1 (o)) +2

The table above gives the current upper and lower bounds for f(n) and it is amazing that
we still do not know the value of f(6). In fact, we cannot even close the upper and lower
bounds to within a factor of 2. The interested reader may like to consult the excellent survey
of this problem by Morris and Soltan [6].

Problem: Prove that F(m,n) < F(m—1,n)+ F(m,n—1) — 1.
4  The Burnt Pancake Problem
The following problem was introduced by W. H. Gates and C. H. Papadimitriou [3] in

the former author’s only published paper before founding a certain well-known software
corporation.

A chef decides to make n pancakes but, due to incredible sloppiness, the pancakes
all have different sizes and each is burnt on one side. A waiter wishes to sort them
in increasing order of size from top to bottom as well as ensure that all pancakes have
their burnt side down. With only one free hand, the waiter must achieve this by picking
up some number of pancakes from the top and flipping them over. How many flips are
required to sort any given stack of n burnt pancakes?

Let us consider the stack of pancakes as a permutation of the numbers 1,2, ..., n with some
elements negated, commonly known as a signed permutation. Here, the number +% denotes
the kth smallest pancake with burnt side down while —k denotes the kth smallest pancake
with burnt side up. In this notation, the flips of the waiter now take the following form.

(a1,a2, ..., Gy Qpg1y -y Q) — (—Qky .oy —A2, —Q1, Qg1 .-, Gp)

Thus, a large pancake with burnt side up sitting on a small pancake with burnt side up
sitting on a medium pancake with burnt side down is designated by the signed permutation
(—3,—1,2). And a clever waiter can sort this configuration in three flips as follows.

(-3,-1,2) —» (-2,1,3) — (—1,2,3) — (1,2,3)

The status of the Burnt Pancake Problem is found in [5] and can be summarized in the
following theorem.

Theorem 3 Let B(n) denote the number of flips required to sort any signed permutation
of the numbers (1,2,...,n). Also, let R(n) denote the number of flips required to sort the
signed permutation (—1,—-2,...,—n). Then B(n) > 3 B(n) < 2n — 2 for n > 10, and
R(n) < # forn > 23.
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Some known values for B(n) and R(n) are shown in the table below. Of course, there seems
to be striking evidence for the conjecture that B(n) = R(n) for all n. In other words,
it is conjectured that the worst case scenario occurs when the initial stack of pancakes
is in increasing order of size from top to bottom, but all pancakes have their burnt side
up. Proving this open conjecture would significantly help to sandwich the upper and lower
bounds for B(n).

n 123 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Bn)|1 4 6 8 10 12 14 15 17 18 727 22 772 727 20 77 77 7
Rn)|1 4 6 8 10 12 14 15 17 18 19 21 22 23 24 26 28 29

Problem: The Unburnt Pancake Problem, as the name suggests, is the analogous problem
where the waiter is trying to sort a stack of n unburnt pancakes of varying sizes. Show how
to sort a stack of n unburnt pancakes with at most 2n — 3 flips. How much better can you
do?

5 The Lonely Runner Conjecture

Suppose that n people are running at distinct constant speeds around a circular track
of unit length. They all start at the same time and place and never stop. A runner is
said to be lonely whenever every other runner is at least % away. Is it true that every
runner must get lonely at some time?

Despite appearances, this beautiful conjecture is number theoretic in nature, since it has
been shown that the speeds can be assumed to be integral. Of course, it is sufficient to
concentrate on one particular runner and show that he or she must get lonely at some time.
Since we are only concerned with the relative speeds and distances between the runners, it
is also safe to assume that this particular runner has zero speed. Thus, the problem can be
restated more mathematically, though far less poetically, thus.

Let v1,v2,...,v,_1 be distinct integers. Then there exists a positive real number ¢ such
that = < {v,t} < 2=L for all k. (Here, {x} denotes the fractional part of z.)

Note that the Lonely Runner Conjecture can be stated as a visibility problem. For example,
the n = 3 case is equivalent to the fact that a ray from the origin can avoid all points in
the plane whose coordinates both have fractional parts in the interval [%, %} only if the ray
travels along one of the axes. A proof of this is obvious upon consideration of the following
diagram.

| O ]

= | & /ﬁ
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The furthest progress to date on the conjecture is the following theorem which was first
published in 2001 by the team of Bohman, Holzman and Kleitman [1].

Theorem 4 The lonely runner conjecture holds for up to six runners.

The proof of this statement was simplified by Renault [7] in 2004, using involved arguments
in numerous cases based on congruence classes of the runners’ velocities. It remains to be
seen whether the proof can be simplified further, whether there exists a proof which applies
more generally, or even whether the conjecture is true for all runners.

Problem: Prove the lonely runner conjecture for four runners.
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