How to Win at Tic-Tac-Toe

Norm Do

Undoubtedly, one of the most popular pencil and paper games in the world is tic-tac-toe, also commonly known as noughts and crosses. In this talk, you will learn how to beat your friends (at tic-tac-toe), discover why snaky is so shaky, and see the amazing tic-tac-toe playing chicken!

March 2007
Some facts about tic-tac-toe

- Tic-Tac-Toe is old: It may have been played under the name of “terni lapilli” in Ancient Rome.
Some facts about tic-tac-toe

- Tic-Tac-Toe is old: It may have been played under the name of “terni lapilli” in Ancient Rome.
- Tic-Tac-Toe is popular: You’ve all played it while sitting at the back of a boring class. In fact, some of you are probably playing it right now!
Some facts about tic-tac-toe

- Tic-Tac-Toe is old: It may have been played under the name of “terni lapilli” in Ancient Rome.
- Tic-Tac-Toe is popular: You’ve all played it while sitting at the back of a boring class. In fact, some of you are probably playing it right now!
- Tic-Tac-Toe is boring: People who are mildly clever should never lose.
How not to lose at tic-tac-toe

Perform as many of the following actions as possible on your turn — listed in order of priority — without sacrificing higher priorities.

1. Complete three in a row.
2. Block your opponent from completing three in a row.
3. Threaten a win with two possible completions in two rows.
4. Avoid a configuration in which your opponent can force the win.
5. Threaten a win with a possible completion (two in a row).
6. If you are the second player and the center space is not already taken, then take it.
7. Prevent your opponent from getting two in a row.
Fundamental Theorem of Game Theory

In a game which has two players, no luck, and perfect information, exactly one of the following things is true:

- the first player can force a win;
- the second player can force a win; or
- both players can force a draw.
Fundamental Theorem of Game Theory

In a game which has two players, no luck, and perfect information, exactly one of the following things is true:

- the first player can force a win;
- the second player can force a win; or
- both players can force a draw.

Examples

The Fundamental Theorem of Game Theory applies to the following games

- tic-tac-toe;
- Connect Four;
- chess; and
- all of the games that we will consider today.
Count Foxy Words

Two players take turns to select one of the following words.

COUNT FOXY WORDS AND STAY AWAKE USING LIVELY WIT
Count Foxy Words

- Two players take turns to select one of the following words.

 COUNT FOXY WORDS AND STAY AWAKE USING LIVELY WIT

- A word may not be chosen if it has already been used and a player wins once they have chosen three words which all have one letter in common.
Count Foxy Words

- Two players take turns to select one of the following words.

 COUNT FOXY WORDS AND STAY AWAKE USING LIVELY WIT

- A word may not be chosen if it has already been used and a player wins once they have chosen three words which all have one letter in common.

- If all of the words have been selected without one of the players winning, then the game is declared a draw.
The diagram below shows a map of towns and roads, represented by points and line segments, respectively.
The diagram below shows a map of towns and roads, represented by points and line segments, respectively.

Two players take turns to select a road and a road may not be chosen if it has already been used.
The diagram below shows a map of towns and roads, represented by points and line segments, respectively.

Two players take turns to select a road and a road may not be chosen if it has already been used.

The first player to take all of the roads passing through a town wins. If all roads have been selected without one of the players winning, then the game is declared a draw.
Magic Fifteen

- Two players take turns to select an integer from 1 to 9.
Magic Fifteen

- Two players take turns to select an integer from 1 to 9.
- An integer may not be chosen if it has already been used and a player wins once they have chosen three distinct numbers which add to 15.
Magic Fifteen

- Two players take turns to select an integer from 1 to 9.
- An integer may not be chosen if it has already been used and a player wins once they have chosen three distinct numbers which add to 15.
- If all of the nine numbers have been selected without one of the players winning, then the game is declared a draw.
The game’s the same by any name!

- All three games require two players to alternately select an object from a set of size nine with the aim being to obtain one of eight possible combinations of three objects.
The game’s the same by any name!

- All three games require two players to alternately select an object from a set of size nine with the aim being to obtain one of eight possible combinations of three objects.
- Sound familiar? Of course it does! All of these games are simply tic-tac-toe in disguise — the game’s the same by any name!
The game’s the same by any name!

- All three games require two players to alternately select an object from a set of size nine with the aim being to obtain one of eight possible combinations of three objects.
- Sound familiar? Of course it does! All of these games are simply tic-tac-toe in disguise — the game’s the same by any name!

![Diagram of tic-tac-toe board]

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>1</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COUNT</th>
<th>FOXY</th>
<th>WORDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>STAY</td>
<td>AWAKE</td>
</tr>
<tr>
<td>USING</td>
<td>LIVELY</td>
<td>WIT</td>
</tr>
</tbody>
</table>
N-in-a-row

- Two players take turns to mark squares of an infinite square grid.
N-in-a-row

- Two players take turns to mark squares of an infinite square grid.
- The aim of the game is to mark N cells in a row, either horizontally, vertically or diagonally.
N-in-a-row

- Two players take turns to mark squares of an infinite square grid.
- The aim of the game is to mark N cells in a row, either horizontally, vertically or diagonally.
- If neither player can force a win, then the game is considered a draw.
N-in-a-row

- Two players take turns to mark squares of an infinite square grid.
- The aim of the game is to mark N cells in a row, either horizontally, vertically or diagonally.
- If neither player can force a win, then the game is considered a draw.

Theorem

The first player can force a win for $N = 1, 2, 3$ or 4.
N-in-a-row

- Two players take turns to mark squares of an infinite square grid.
- The aim of the game is to mark N cells in a row, either horizontally, vertically or diagonally.
- If neither player can force a win, then the game is considered a draw.

Theorem

The first player can force a win for $N = 1, 2, 3$ or 4.

Intuition

How can the second player possibly have the advantage after beginning the game one move behind?
Theorem

The second player does not have a winning strategy for N-in-a-row.
Theorem

The second player does not have a winning strategy for N-in-a-row.

Proof.

Let us suppose that the second player has a winning strategy. But now the first player can win by making his or her first move at random and thereafter adopting the second player’s winning strategy. If this calls for the first player to play in an already occupied square, he or she just makes another random move. Since having an extra square on the board cannot possibly hurt the first player, this gives the contradiction that both players can force a win. So we must conclude that the second player cannot have a winning strategy, as desired.
Theorem

The second player can force a draw in 9-in-a-row.
The second player can force a draw in 9-in-a-row.

Proof.

Pairing strategy
The most interesting version to play is 5-in-a-row. This game has been played since the 7th century BC in Japan, where the game is known as Go Moku.
The most interesting version to play is 5-in-a-row. This game has been played since the 7th century BC in Japan, where the game is known as Go Moku.

For a long time, the experts believed that the first player had a massive advantage.
Go Moku

- The most interesting version to play is 5-in-a-row. This game has been played since the 7th century BC in Japan, where the game is known as Go Moku.
- For a long time, the experts believed that the first player had a massive advantage.

Theorem

The first player can force a win in 5-in-a-row.
Go Moku

- The most interesting version to play is 5-in-a-row. This game has been played since the 7th century BC in Japan, where the game is known as Go Moku.
- For a long time, the experts believed that the first player had a massive advantage.

Theorem

The first player can force a win in 5-in-a-row.

Proof.

Proven in 1993 using new computer algorithms, sheer brute force, and hundreds of hours of CPU time!
Theorem

The second player can force a draw in 8-in-a-row.
Theorem

The second player can force a draw in 8-in-a-row.

Proof.

Well tricky!
Theorem

The second player can force a draw in 8-in-a-row.

Proof.

Well tricky!

Unsolved problem

Can the first player force a win for 6-in-a-row or 7-in-a-row?
Animal Tic-Tac-Toe

- Players take turns to mark cells of the board with the aim of creating a predetermined animal (also known as a polyomino).
Animal Tic-Tac-Toe

- Players take turns to mark cells of the board with the aim of creating a predetermined animal (also known as a polyomino).
- We will allow any translations, rotations and reflections of the animal.
Animal Tic-Tac-Toe

- Players take turns to mark cells of the board with the aim of creating a predetermined animal (also known as a polyomino).
- We will allow any translations, rotations and reflections of the animal.
- A player wins if they can create the animal and, if neither player can force a win, then the game is considered a draw.

Theorem

The second player does not have a winning strategy for animal tic-tac-toe.

Proof.

Strategy stealing
Animal Tic-Tac-Toe

- Players take turns to mark cells of the board with the aim of creating a predetermined animal (also known as a polyomino).
- We will allow any translations, rotations and reflections of the animal.
- A player wins if they can create the animal and, if neither player can force a win, then the game is considered a draw.

Theorem

The second player does not have a winning strategy for animal tic-tac-toe.
Animal Tic-Tac-Toe

- Players take turns to mark cells of the board with the aim of creating a predetermined animal (also known as a polyomino).
- We will allow any translations, rotations and reflections of the animal.
- A player wins if they can create the animal and, if neither player can force a win, then the game is considered a draw.

Theorem

The second player does not have a winning strategy for animal tic-tac-toe.

Proof.

Strategy stealing
Change the rules!

To even up the game, let us say that the first player wins if they can create the animal, and the second player wins if they can prevent the first player from doing so.
Change the rules!

To even up the game, let us say that the first player wins if they can create the animal, and the second player wins if they can prevent the first player from doing so.

Definition

Animals are *winners* or *losers* depending on whether the first player wins or loses, respectively.
Theorem

The first player can win in animal tic-tac-toe if the animal used is one of the following twelve.
Small animals

- The only animal of size 1 is a winner.
Small animals

- The only animal of size 1 is a winner.
- The only animal of size 2 is a winner.
Small animals

- The only animal of size 1 is a winner.
- The only animal of size 2 is a winner.
- Both animals of size 3 are winners.
Small animals

- The only animal of size 1 is a winner.
- The only animal of size 2 is a winner.
- Both animals of size 3 are winners.
- All animals of size 4 are winners...
Small animals

- The only animal of size 1 is a winner.
- The only animal of size 2 is a winner.
- Both animals of size 3 are winners.
- All animals of size 4 are winners...
- ...except for “fatty”, the 2×2 square.
Small animals

- The only animal of size 1 is a winner.
- The only animal of size 2 is a winner.
- Both animals of size 3 are winners.
- All animals of size 4 are winners...
- ...except for “fatty”, the 2×2 square.
- Let us call fatty a “basic loser”, since it is a loser which does not contain a smaller one.
Theorem

The twelve animals in the figure below are all basic losers.
Proof.

Pairing strategies

![Diagram of pairing strategies](image_url)
Large animals

- Of the twelve animals of size five:
 - one of them is a loser since it contains fatty,
 - three of them appear in the list of winners, and
 - the remaining eight appear in the list of basic losers.
Large animals

- Of the twelve animals of size five:
 - one of them is a loser since it contains fatty,
 - three of them appear in the list of winners, and
 - the remaining eight appear in the list of basic losers.

- Of the 35 animals of size six:
 - all but four of them contain basic losers of smaller size;
 - of these four, three appear in the list of basic losers; and
 - the remaining one we will discuss a little later on.
Large animals

- Of the twelve animals of size five:
 - one of them is a loser since it contains fatty,
 - three of them appear in the list of winners, and
 - the remaining eight appear in the list of basic losers.

- Of the 35 animals of size six:
 - all but four of them contain basic losers of smaller size;
 - of these four, three appear in the list of basic losers; and
 - the remaining one we will discuss a little later on.

- Of the 108 animals of size seven:
 - every single one contains a basic loser and hence, are losers themselves.
Large animals

- Of the twelve animals of size five:
 - one of them is a loser since it contains fatty,
 - three of them appear in the list of winners, and
 - the remaining eight appear in the list of basic losers.

- Of the 35 animals of size six:
 - all but four of them contain basic losers of smaller size;
 - of these four, three appear in the list of basic losers; and
 - the remaining one we will discuss a little later on.

- Of the 108 animals of size seven:
 - every single one contains a basic loser and hence, are losers themselves.

- It follows that every animal of size greater than seven is also a loser since they all contain an animal of size seven.
And what about the one animal of size six which has been left unaccounted for? Let us now meet this exotic animal which, in the literature, goes by the name of Snaky.

![Snaky Diagram]
And what about the one animal of size six which has been left unaccounted for? Let us now meet this exotic animal which, in the literature, goes by the name of Snaky.

Even though experts believe that Snaky is a winner, Snaky is a bit shaky.
Snaky

- And what about the one animal of size six which has been left unaccounted for? Let us now meet this exotic animal which, in the literature, goes by the name of Snaky.

- Even though experts believe that Snaky is a winner, Snaky is a bit shaky.

Unsolved problem

Is Snaky a winner or a loser?
Hypercube Tic-Tac-Toe

Hypercube tic-tac-toe is played on a k-dimensional hypercube of side length n divided into n^k unit hypercubes with players taking turns to mark one of the cells.
Hypercube Tic-Tac-Toe

- Hypercube tic-tac-toe is played on a k-dimensional hypercube of side length n divided into n^k unit hypercubes with players taking turns to mark one of the cells.
- Of course, the aim of the game is to mark a winning path of n cells whose centres are collinear.
Hypercube Tic-Tac-Toe

- Hypercube tic-tac-toe is played on a k-dimensional hypercube of side length n divided into n^k unit hypercubes with players taking turns to mark one of the cells.
- Of course, the aim of the game is to mark a winning path of n cells whose centres are collinear.
- If hypercube tic-tac-toe is played on a k-dimensional hypercube of side length n, then we call the game n^k tic-tac-toe. The original game of tic-tac-toe is simply 3^2 tic-tac-toe.
Hypercube Tic-Tac-Toe

- Hypercube tic-tac-toe is played on a k-dimensional hypercube of side length n divided into n^k unit hypercubes with players taking turns to mark one of the cells.
- Of course, the aim of the game is to mark a winning path of n cells whose centres are collinear.
- If hypercube tic-tac-toe is played on a k-dimensional hypercube of side length n, then we call the game n^k tic-tac-toe. The original game of tic-tac-toe is simply 3^2 tic-tac-toe.
- Strategy stealing arguments can be used to prove that the second player cannot force a win.
Theorem

Hypercube tic-tac-toe on the 3^3 board is a win for the first player. In fact, it is impossible for a game of 3^3 tic-tac-toe to result in a draw.
Theorem

Hypercube tic-tac-toe on the 5^2 board is a theoretical draw.
Theorem

Hypercube tic-tac-toe on the 5^2 board is a theoretical draw.

Proof.

Use the pairing strategy indicated by the diagram below.

```
V  I  A  A  F
J  B  H  U  B
C  I  G  C
D  U  H  D  F
J  E  E  G  V
```
Theorem

Hypercube tic-tac-toe on the 4^3 board is a win for the first player.
Theorem

Hypercube tic-tac-toe on the 4^3 board is a win for the first player.

Proof.

Proven in 1980 using sheer brute force, symmetry considerations, some clever programming and 1500 hours of CPU time!
The following table gives results and conjectures for hypercube tic-tac-toe for small values of n and k. An entry labelled “W” denotes a win for the first player while “D” denotes a theoretical draw and an entry in red indicates that the result is merely conjectured but not actually proven.

<table>
<thead>
<tr>
<th>n</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
<th>$k = 4$</th>
<th>$k = 5$</th>
<th>$k = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>D</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>D</td>
<td>W</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>7</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>W</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>8</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>W</td>
</tr>
</tbody>
</table>
Unsolved problem

- If the n^k game is a draw, then the n^{k-1} game is a draw.
- If the n^k game is a draw, then the $(n + 1)^k$ game is a draw.
Pairing strategies and winning paths

- We have seen that pairing strategies can be used to prove that the second player can force a draw.
Pairing strategies and winning paths

- We have seen that pairing strategies can be used to prove that the second player can force a draw.
- When do pairing strategies exist?
Pairing strategies and winning paths

- We have seen that pairing strategies can be used to prove that the second player can force a draw.
- When do pairing strategies exist?
- Pairing strategies can only exist if the number of cells on the board is at least twice the number of winning paths.
Pairing strategies and winning paths

- We have seen that pairing strategies can be used to prove that the second player can force a draw.

- When do pairing strategies exist?

- Pairing strategies can only exist if the number of cells on the board is at least twice the number of winning paths.

- So how many winning paths are there in n^k tic-tac-toe?
Theorem

The number of winning paths on the n^k hypercube is

$$\frac{(n + 2)^k - n^k}{2}.$$
Theorem

The number of winning paths on the \(n^k \) hypercube is

\[
\frac{(n + 2)^k - n^k}{2}.
\]

Proof.

- Embed your \(n^k \) hypercube inside an \((n + 2)^k \) hypercube.
- Every winning path can be extended to give two cells in the outer shell.
- Every cell in the outer shell corresponds to a unique winning path.
- So the number of winning paths is half the number of cells in the outer shell — that is, \(\frac{(n+2)^k - n^k}{2} \).
Theorem

If a pairing strategy exists for the second player in n^k tic-tac-toe, then

$$n \geq \frac{2}{\sqrt[k]{2} - 1}.$$
Theorem

If a pairing strategy exists for the second player in n^k tic-tac-toe, then

$$n \geq \frac{2}{\sqrt[2k]{2} - 1}.$$

Proof.

For a pairing strategy to exist, the number of cells on the board must be at least twice the number of winning paths. Therefore

$$\# \text{ cells on the board} \geq 2 \times \# \text{ winning paths}$$

$$n^k \geq (n + 2)^k - n^k.$$

This rearranges to give the desired inequality.
Preliminary results

The Number of Winning Paths

<table>
<thead>
<tr>
<th>k</th>
<th>$\frac{2}{\sqrt{2} - 1}$</th>
<th>$\frac{2k}{\log_2 e}$</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.000</td>
<td>2.885</td>
<td>0.885</td>
</tr>
<tr>
<td>2</td>
<td>4.828</td>
<td>5.771</td>
<td>0.942</td>
</tr>
<tr>
<td>3</td>
<td>7.695</td>
<td>8.656</td>
<td>0.962</td>
</tr>
<tr>
<td>4</td>
<td>10.570</td>
<td>11.542</td>
<td>0.971</td>
</tr>
<tr>
<td>5</td>
<td>13.450</td>
<td>14.427</td>
<td>0.977</td>
</tr>
<tr>
<td>6</td>
<td>16.332</td>
<td>17.312</td>
<td>0.981</td>
</tr>
<tr>
<td>7</td>
<td>19.214</td>
<td>20.198</td>
<td>0.983</td>
</tr>
<tr>
<td>8</td>
<td>22.098</td>
<td>23.083</td>
<td>0.986</td>
</tr>
<tr>
<td>100</td>
<td>287.540</td>
<td>288.539</td>
<td>0.999</td>
</tr>
<tr>
<td>1000</td>
<td>2884.390</td>
<td>2885.390</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Conjecture

For every positive integer k, the following equation holds.

$$\left\lfloor \frac{2}{k\sqrt{2} - 1} \right\rfloor = \left\lceil \frac{2k}{\log_e 2} \right\rceil$$
Conjecture

For every positive integer k, the following equation holds.

$$\left\lceil \frac{2}{\sqrt{2} - 1} \right\rceil = \left\lfloor \frac{2k}{\log_e 2} \right\rfloor$$

Disproof

Consider $k = 6, 847, 196, 937$ or $k = 27, 637, 329, 632$ or \ldots ?!
More Than Child’s Play
How to Get N in a Row
Games with Animals
Hypercube Tic-Tac-Toe

Preliminary results
The Number of Winning Paths
Read my article at
http://www.austms.org.au/Publ/Gazette/

E-mail me at
norm@ms.unimelb.edu.au

See me at
the front of the Russell Love Theatre