Take a permutation and count the number of ways to express it as a product of a fixed number of transpositions — you have calculated a Hurwitz number. By adding a mild constraint on such factorisations, one obtains the notion of a monotone Hurwitz number. We have recently shown that the monotone Hurwitz problem fits into the so-called topological recursion/quantum curve paradigm. This talk will attempt to give the flavour of what exactly the previous sentence means.
Hurwitz numbers

Hurwitz numbers count the number of ways to express a permutation as a product of transpositions.
Hurwitz numbers

Hurwitz numbers count the number of ways to express a permutation as a product of transpositions.

Definition
Let $H_{g,n}(\mu_1, \mu_2, \ldots, \mu_n)$ be $\frac{1}{|\mu|!}$ multiplied by the number of tuples $(\sigma_1, \sigma_2, \ldots, \sigma_m)$ of transpositions in $S_{|\mu|}$ such that
- $m = 2g - 2 + n + |\mu|$;
- $\sigma_1\sigma_2\cdots\sigma_m$ has labelled cycles of lengths $\mu_1, \mu_2, \ldots, \mu_n$; and
- $\langle\sigma_1, \sigma_2, \ldots, \sigma_m\rangle$ is transitive.

Secret
Hurwitz numbers count branched covers of $\mathbb{C}P^1$.
Hurwitz numbers

Hurwitz numbers count the number of ways to express a permutation as a product of transpositions.

Definition
Let $H_{g,n}(\mu_1, \mu_2, \ldots, \mu_n)$ be $\frac{1}{|\mu|!}$ multiplied by the number of tuples $(\sigma_1, \sigma_2, \ldots, \sigma_m)$ of transpositions in $S_{|\mu|}$ such that
- $m = 2g - 2 + n + |\mu|$;
- $\sigma_1 \sigma_2 \cdots \sigma_m$ has labelled cycles of lengths $\mu_1, \mu_2, \ldots, \mu_n$; and
- $\langle \sigma_1, \sigma_2, \ldots, \sigma_m \rangle$ is transitive.

Secret
Hurwitz numbers count branched covers of \mathbb{CP}^1.
Monotone Hurwitz numbers

For monotone Hurwitz numbers, we add a mild constraint.
Monotone Hurwitz numbers

For monotone Hurwitz numbers, we add a mild constraint.

Definition

Let $\tilde{H}_{g,n}(\mu_1, \mu_2, \ldots, \mu_n)$ be $\frac{1}{|\mu|!}$ multiplied by the number of tuples $(\sigma_1, \sigma_2, \ldots, \sigma_m)$ of transpositions in $S_{|\mu|}$ such that

- $m = 2g - 2 + n + |\mu|$;
- $\sigma_1 \sigma_2 \cdots \sigma_m$ has labelled cycles of lengths $\mu_1, \mu_2, \ldots, \mu_n$;
- $\langle \sigma_1, \sigma_2, \ldots, \sigma_m \rangle$ is transitive; and
- if $\sigma_i = (a_i \ b_i)$ with $a_i < b_i$, then $b_1 \leq b_2 \leq \cdots \leq b_m$.

Secret

Monotone Hurwitz numbers are natural from the viewpoint of matrix models (HCIZ integral); representation theory (Jucys–Murphy elements); and integrability (Toda tau-functions).
Monotone Hurwitz numbers

For monotone Hurwitz numbers, we add a mild constraint.

Definition
Let $\tilde{H}_{g,n}(\mu_1, \mu_2, \ldots, \mu_n)$ be $\frac{1}{\mu_1!}$ multiplied by the number of tuples $(\sigma_1, \sigma_2, \ldots, \sigma_m)$ of transpositions in $S_{|\mu|}$ such that

- $m = 2g - 2 + n + |\mu|$;
- $\sigma_1 \sigma_2 \cdots \sigma_m$ has labelled cycles of lengths $\mu_1, \mu_2, \ldots, \mu_n$;
- $\langle \sigma_1, \sigma_2, \ldots, \sigma_m \rangle$ is transitive; and
- if $\sigma_i = (a_i b_i)$ with $a_i < b_i$, then $b_1 \leq b_2 \leq \cdots \leq b_m$.

Secret
Monotone Hurwitz numbers are natural from the viewpoint of

- matrix models (HCIZ integral);
- representation theory (Jucys–Murphy elements); and
- integrability (Toda tau-functions).
Example calculation

Take \((g, n) = (0, 2)\) and \(\mu = (1, 2)\), so \(m = 2g - 2 + n + |\mu| = 3\).
Example calculation

Take \((g, n) = (0, 2)\) and \(\mu = (1, 2)\), so \(m = 2g - 2 + n + |\mu| = 3\).

There are 27 products of 3 transpositions in \(S_3\) and 24 are transitive.

\[
\begin{align*}
(1 \, 2) \circ (1 \, 2) \circ (1 \, 3) & \quad (1 \, 2) \circ (1 \, 3) \circ (2 \, 3) & \quad (1 \, 3) \circ (1 \, 3) \circ (2 \, 3) & \quad (2 \, 3) \circ (1 \, 3) \circ (1 \, 3) \\
(1 \, 2) \circ (1 \, 2) \circ (2 \, 3) & \quad (1 \, 2) \circ (2 \, 3) \circ (1 \, 3) & \quad (1 \, 3) \circ (2 \, 3) \circ (1 \, 3) & \quad (2 \, 3) \circ (1 \, 3) \circ (2 \, 3) \\
(1 \, 2) \circ (1 \, 3) \circ (1 \, 3) & \quad (1 \, 2) \circ (2 \, 3) \circ (2 \, 3) & \quad (1 \, 3) \circ (2 \, 3) \circ (2 \, 3) & \quad (2 \, 3) \circ (2 \, 3) \circ (1 \, 3) \\
(1 \, 2) \circ (1 \, 3) \circ (1 \, 2) & \quad (1 \, 3) \circ (1 \, 2) \circ (1 \, 3) & \quad (1 \, 3) \circ (2 \, 3) \circ (1 \, 2) & \quad (2 \, 3) \circ (1 \, 2) \circ (2 \, 3) \\
(1 \, 2) \circ (2 \, 3) \circ (1 \, 2) & \quad (1 \, 3) \circ (1 \, 2) \circ (2 \, 3) & \quad (2 \, 3) \circ (1 \, 2) \circ (1 \, 2) & \quad (2 \, 3) \circ (1 \, 3) \circ (1 \, 2) \\
(1 \, 3) \circ (1 \, 2) \circ (1 \, 2) & \quad (1 \, 3) \circ (1 \, 3) \circ (1 \, 2) & \quad (2 \, 3) \circ (1 \, 2) \circ (1 \, 3) & \quad (2 \, 3) \circ (2 \, 3) \circ (1 \, 2)
\end{align*}
\]
Example calculation

Take \((g, n) = (0, 2)\) and \(\mu = (1, 2)\), so \(m = 2g - 2 + n + |\mu| = 3\).

There are 27 products of 3 transpositions in \(S_3\) and 24 are transitive.

\[
(1 2) \circ (1 2) \circ (1 3) \quad (1 2) \circ (1 3) \circ (2 3) \quad (1 3) \circ (1 3) \circ (2 3) \quad (2 3) \circ (1 3) \circ (1 3) \\
(1 2) \circ (1 2) \circ (2 3) \quad (1 2) \circ (2 3) \circ (1 3) \quad (1 3) \circ (2 3) \circ (1 3) \quad (2 3) \circ (1 3) \circ (2 3) \\
(1 2) \circ (1 3) \circ (1 3) \quad (1 2) \circ (2 3) \circ (2 3) \quad (1 3) \circ (2 3) \circ (2 3) \quad (2 3) \circ (2 3) \circ (1 3) \\
(1 2) \circ (1 3) \circ (1 2) \quad (1 3) \circ (1 2) \circ (1 3) \quad (1 3) \circ (2 3) \circ (1 2) \quad (2 3) \circ (1 2) \circ (2 3) \\
(1 2) \circ (2 3) \circ (1 2) \quad (1 3) \circ (1 2) \circ (2 3) \quad (2 3) \circ (1 2) \circ (1 2) \quad (2 3) \circ (1 3) \circ (1 2) \\
(1 3) \circ (1 2) \circ (1 2) \quad (1 3) \circ (1 3) \circ (1 2) \quad (2 3) \circ (1 2) \circ (1 3) \quad (2 3) \circ (2 3) \circ (1 2)
\]

All 24 products produce cycle type \((1, 2)\), so \(H_{0,2}(1, 2) = \frac{24}{3!} = 4\).

Only the first 12 products are monotone, so \(\tilde{H}_{0,2}(1, 2) = \frac{12}{3!} = 2\).
Old results

- **Polynomiality.** There are polynomials $P_{g,n}$ and $\tilde{P}_{g,n}$ such that

 $H_{g,n}(\mu_1, \ldots, \mu_n) = m! \times \prod \frac{\mu_i^{\mu_i}}{\mu_i!} \times P_{g,n}(\mu_1, \ldots, \mu_n)$

 $\tilde{H}_{g,n}(\mu_1, \ldots, \mu_n) = \prod \left(\frac{2^{\mu_i}}{\mu_i}\right) \times \tilde{P}_{g,n}(\mu_1, \ldots, \mu_n)$.
Old results

- Polynomiality. There are polynomials $P_{g,n}$ and $\tilde{P}_{g,n}$ such that

 - $H_{g,n}(\mu_1, \ldots, \mu_n) = m! \times \prod \frac{\mu_i^{\mu_i}}{\mu_i!} \times P_{g,n}(\mu_1, \ldots, \mu_n)$

 - $\tilde{H}_{g,n}(\mu_1, \ldots, \mu_n) = \prod \left(\frac{2^{\mu_i}}{\mu_i!} \right) \times \tilde{P}_{g,n}(\mu_1, \ldots, \mu_n)$.

 For example, $\tilde{P}_{1,2}(\mu_1, \mu_2) = \frac{1}{12} (2\mu_1^2 + 2\mu_2^2 + 2\mu_1\mu_2 - \mu_1 - \mu_2 - 1)$.
Old results

- **Polynomiality.** There are polynomials $P_{g,n}$ and $\bar{P}_{g,n}$ such that
 - $H_{g,n}(\mu_1,\ldots,\mu_n) = m! \times \prod \frac{\mu_i^{\mu_i}}{\mu_i!} \times P_{g,n}(\mu_1,\ldots,\mu_n)$
 - $\bar{H}_{g,n}(\mu_1,\ldots,\mu_n) = \prod (\frac{2\mu_i}{\mu_i}) \times \bar{P}_{g,n}(\mu_1,\ldots,\mu_n)$.

 For example, $\bar{P}_{1,2}(\mu_1,\mu_2) = \frac{1}{12} (2\mu_1^2 + 2\mu_2^2 + 2\mu_1\mu_2 - \mu_1 - \mu_2 - 1)$.

- **Cut-and-join recursion.** (Monotone) Hurwitz numbers of type (g,n) can be calculated from those of types
 - $(g,n-1)$
 - $(g-1,n+1)$
 - $(g_1,n_1) \times (g_2,n_2)$ for $g_1+g_2 = g$ and $n_1 + n_2 = n + 1$.

Old results

- **Polynomiality.** There are polynomials $P_{g,n}$ and $\tilde{P}_{g,n}$ such that
 \[
 H_{g,n}(\mu_1, \ldots, \mu_n) = m! \times \prod \frac{\mu_i^{\mu_i}}{\mu_i!} \times P_{g,n}(\mu_1, \ldots, \mu_n)
 \]
 \[
 \tilde{H}_{g,n}(\mu_1, \ldots, \mu_n) = \prod (2^{\mu_i}) \times \tilde{P}_{g,n}(\mu_1, \ldots, \mu_n).
 \]

 For example, $\tilde{P}_{1,2}(\mu_1, \mu_2) = \frac{1}{12} (2\mu_1^2 + 2\mu_2^2 + 2\mu_1\mu_2 - \mu_1 - \mu_2 - 1)$.

- **Cut-and-join recursion.** (Monotone) Hurwitz numbers of type (g, n) can be calculated from those of types
 \[
 (g, n - 1)
 \]
 \[
 (g - 1, n + 1)
 \]
 \[
 (g_1, n_1) \times (g_2, n_2) \quad \text{for} \quad g_1 + g_2 = g, \quad n_1 + n_2 = n + 1.
 \]

 For example,

 \[
 \mu_1 \tilde{H}_{1,2}(\mu_1, \mu_2) = (\mu_1 + \mu_2) \tilde{H}_{1,1}(\mu_1 + \mu_2) + \sum_{\alpha + \beta = \mu_1} \alpha \beta \tilde{H}_{0,3}(\alpha, \beta, \mu_2)
 \]
 \[
 + 2 \sum_{\alpha + \beta = \mu_1} \alpha \beta \left[\tilde{H}_{0,1}(\alpha) \tilde{H}_{1,2}(\beta, \mu_2) + \tilde{H}_{1,1}(\alpha) \tilde{H}_{0,2}(\beta, \mu_2) \right].
 \]
Topological recursion and quantum curves

spectral curve $P(x, y) = 0$

differentials $\omega_{g,n}(x_1, \ldots, x_n)$

free energies $F_{g,n}(x_1, \ldots, x_n)$

quantum curve $\hat{P}(\hat{x}, \hat{y})$

Schrödinger eq. $\hat{P}(\hat{x}, \hat{y})Z = 0$

wave function $Z(x, \hbar)$

We use the definitions $Z(x, \hbar) = \exp \sum_{g=0}^{\infty} \sum_{n=1}^{\infty} \frac{g^{-2} + n!}{2} F_{g,n}(x_1, \ldots, x_n)$.
We use the definitions

- $Z(x, \hbar) = \exp \left[\sum_{g=0}^{\infty} \sum_{n=1}^{\infty} \frac{\hbar^{2g-2+n}}{n!} F_{g,n}(x, \ldots, x) \right]$

- $\hat{x} = x$ and $\hat{y} = -\hbar \frac{\partial}{\partial x}$, which imply $[\hat{x}, \hat{y}] = \hbar$.
New results

This is joint work with A. Dyer and D. Mathews (arXiv:1408.3992).

- The spectral curve $P(x, y) = xy^2 - y + 1 = 0$ yields

$$F_{g,n}(x_1, \ldots, x_n) = \sum_{\mu} \tilde{H}_{g,n}(\mu_1, \ldots, \mu_n) x_1^{\mu_1} \cdots x_n^{\mu_n}.$$
New results

This is joint work with A. Dyer and D. Mathews (arXiv:1408.3992).

- The spectral curve $P(x, y) = xy^2 - y + 1 = 0$ yields
 \[F_{g,n}(x_1, \ldots, x_n) = \sum_{\mu} \hat{H}_{g,n}(\mu_1, \ldots, \mu_n) x_1^{\mu_1} \cdots x_n^{\mu_n}. \]

- The wave function satisfies
 \[Z(x, \hbar) = 1 + \sum_{d=1}^{\infty} \sum_{m=0}^{\infty} \left\{ \frac{d + m - 1}{d - 1} \right\} \frac{x^d \hbar^{m-d}}{d!}. \]
New results

This is joint work with A. Dyer and D. Mathews (arXiv:1408.3992).

- The spectral curve $P(x, y) = xy^2 - y + 1 = 0$ yields

$$F_{g,n}(x_1, \ldots, x_n) = \sum_{\mu} \hat{H}_{g,n}(\mu_1, \ldots, \mu_n) x_1^{\mu_1} \cdots x_n^{\mu_n}.$$

- The wave function satisfies

$$Z(x, \hbar) = 1 + \sum_{d=1}^{\infty} \sum_{m=0}^{\infty} \left\{ \begin{array}{c} d + m - 1 \\ d - 1 \end{array} \right\} \frac{x^d \hbar^{m-d}}{d!}.$$

- The corresponding quantum curve is $\hat{P}(\hat{x}, \hat{y}) = \hat{x}\hat{y}^2 - \hat{y} + 1$, so

$$x\hbar^2 \frac{\partial^2 Z}{\partial x^2} + \hbar \frac{\partial Z}{\partial x} + Z = 0.$$