VARIATIONS ON VERTICES AND VORTICES LunchMaths seminar — 18 March 2013

Norm Do Monash University

Have you ever tried to count how many panels there are on a soccer ball? Have you ever wondered what the hairy ball theorem is and whether it applies to you? Have you ever thought about how curvaceous a person can be? If you've read this much of the abstract, then you should definitely come along to the seminar and learn about the amazing Euler characteristic!

WHAT IS A POLYHEDRON?

Naively speaking, a polyhedron is a shape consisting of vertices, edges, and faces.

Nice polyhedra

cube

A scary polyhedron

PROPERTIES OF POLYHEDRA

Let's count the number of vertices (V), edges (E), and faces (F).

polyhedron	V	Е	F	V-E+F
tetrahredron	4	6	4	2
cube	8	12	6	2
soccer ball	60	90	32	2
dinosaur	?	?	?	2

Euler's formula

If a polyhedron has V vertices, E edges, and F faces, then

$$V-E+F=2.$$

PLANAR GRAPHS

A graph consists of vertices and edges that join vertices in pairs. A graph is called planar if you can draw it without edges crossing.

Euler's formula

If a planar graph has V vertices, E edges, and divides the plane into F faces including the outside one, then

$$V-E+F=2.$$

Fact

The vertices and edges of a polyhedron form a planar graph.

$$V - E + F = ?$$

$$V - E + F = ?$$

$$V - E + F = ?$$

$$V - E + F = ?$$

$$V - E + F = ?$$

$$V-E+F=2$$

V-E+F=2

AMAZING FACTS ABOUT PLANAR GRAPHS

Fact

The graphs K_5 and $K_{3,3}$ are not planar.

Kuratowski's theorem

A graph is planar if and only if it does not contain " K_5 " or " $K_{3,3}$ ".

К_{3,3}

Fáry's theorem

Every planar graph can be drawn in the plane without edges crossing such that every edge is a straight line segment.

EULER'S FORMULA IN ACTION

How many faces does a soccer ball have?
 Suppose that there are P pentagons and H hexagons.
 Every pentagon is surrounded by five hexagons while every hexagon is surrounded by three pentagons and three hexagons.

$$3V = 2E$$

$$5P + 6H = 2E$$

$$5P = 3H$$

$$V - E + (P + H) = 2$$

$$P = 12$$

$$H = 20$$

• Why is the graph K_5 not planar? Suppose that K_5 is planar and can be drawn in the plane using V = 5 vertices, E = 10 edges, and F faces. Then

$$V - E + F = 2 \Rightarrow F = 7$$
 and $3F \le 2E \Rightarrow 21 \le 20$.

This is a blatant contradiction!

TWO PROBLEMS WITH EULER'S FORMULA

Here, V - E + F = 8 - 8 + 3 = 3. Each face must be a "2D blob" without holes.

Here, V - E + F = 16 - 28 + 12 = 0. The polyhedron must enclose a "3D blob" without holes.

Euler's formula generalised

A polyhedron with genus g — in other words, g holes — satisfies

$$V-E+F=2-2g.$$

The Euler characteristic of a surface is the magic number 2 - 2g.

COUNTING VORTICES

- Is it possible to comb a hairy ball without creating a cowlick?
- Is it possible for the wind on Earth to not have a vortex?
- Is it possible for a vector field on the sphere to not have a zero?

Hairy ball theorem [Brouwer, 1912]

It is impossible for a vector field on the sphere to not have a zero.

It is possible to comb a hairy doughnut without creating a cowlick.

THE POINCARÉ-HOPF THEOREM

Poincaré–Hopf theorem [Poincaré, 1881 and Hopf, 1926]

There is a special way to write a number at every vortex so that the sum of the numbers is equal to the Euler characteristic of the planet.

How to count vortices

Walk around the vortex in a small anticlockwise loop, always facing the wind. The index of the vortex is the number of anticlockwise turns that you make.

WHY YOU MIGHT BELIEVE POINCARÉ AND HOPF

- The gravy flow on the genus two surface has six vortices.
- The ones at the top and bottom have index +1, while the remaining four have index −1.
- These numbers sum up to -2, which is the Euler characteristic.

CURVATURE FOR DUMMIES

- Naively speaking, curvature measures how "bendy" or "curvy" a surface is at a particular point.
- To find the curvature at a point, take the smallest and largest circles of best fit and multiply the inverse of their radii.
- For example, a sphere of radius *R* has curvature $\frac{1}{R^2}$.

Below are shapes with positive curvature (sphere), zero curvature (cylinder), and negative curvature (hyperboloid).

THE GAUSS-BONNET THEOREM

Gauss-Bonnet theorem [Bonnet, 1848]

If you integrate the curvature K over a surface S with respect to the area dA, then you will find that

$$\int_{S} K \, dA = 2\pi \, \chi(S).$$

It seems like it could be true — when you deform a surface, you're only spreading out the curvature, never creating or destroying it.

THE GAUSS MAP

- The Gauss map takes a point P on your surface and returns a point G(P) on the unit sphere.
- Consider the vector that points directly out of the surface at *P*.
- Translate to the origin and shrink/expand until it has length one.

• Then *G*(*P*) is the endpoint of this vector.

WHY YOU MIGHT BELIEVE GAUSS AND BONNET

Calculating curvature

Draw a tiny triangle Δ around *P*. The curvature at *P* is the ratio

 $\frac{\text{Area } G(\Delta)}{\text{Area } \Delta}.$

A sketch proof

Divide your surface S into many tiny triangles $\Delta_1, \Delta_2, \Delta_3, \ldots$

$$\int_{S} K \, dA = \sum K(\Delta) \times \text{Area } \Delta = \sum \frac{\text{Area } G(\Delta)}{\text{Area } \Delta} \times \text{Area } \Delta$$
$$= \sum \text{Area } G(\Delta) = \deg G \times \text{Area sphere}$$
$$= 4\pi \deg G = 4\pi (1-g) = 2\pi \chi(S)$$

Intuitively, $\deg G$ is the number of times that the surface S is wrapped around the sphere by the map G.

GENERALISING THE EULER CHARACTERISTIC

Higher dimensions

The higher dimensional analogue of a surface is a manifold. The analogues of vertices, edges, and faces are simplices. If a_k is the number of k-dimensional simplices in M, then

$$\chi(M)=a_0-a_1+a_2-a_3+\cdots$$

Bundles

Vector fields choose a vector in each tangent plane of a surface. Instead of tangent planes, you can use other collections of planes to create vector bundles.

The analogue of the Euler characteristic is called the Euler class.

Cardinality

The Euler characteristic is like cardinality — it "counts" objects. Now sets can have a negative number of objects. There is also a way to have a fractional number of objects. What does it all mean?!

THANKS

If you would like more information, you can

- find the slides at http://users.monash.edu.au/~normd
- email me at norm.do@monash.edu
- speak to me at the front of the lecture theatre

