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Abstract 

 
One of the main challenges for large-scale computer clouds dealing with massive real-time data is 

in coping with the rate at which unprocessed data is being accumulated. “Big data” demands 

abound in scientific and engineering applications including biotechnology (e.g., characterisation 

using synchrotrons) and global monitoring of fixed and mobile assets in industry, transport and 

defence that entail massive real-time streams from and to stationary or mobile sensors and 

actuators. Their dynamic and distributed nature, and not least their exponential growth make real-

time data management complicated, and storage, updates and analytics costly. With emerging 

interest to leverage massive amounts of data that are available in open sources, such as the Web 

for solving long-standing information retrieval problems, the question as how to effectively process 

immense datasets is becoming increasingly relevant. This raises the question of whether our 

capability to recognise and process such immense data copes with our ability to generate them.  

       This question will be addressed in this thesis by first examining the capability of existing large-

scale data-processing schemes to scale up with this outgrowth of data. To address some of their 

highlighted limitations, particularly regarding computational complexity and scalability, this 

research proposes a novel associative-memory-based scheme for big data processing that is 

scalable, distributable and lightweight, and that overcomes some of the issues encountered in 

traditional data access mechanisms for data storage and retrieval. Thus, the primary aim of this 

thesis is to apply an access scheme that will enable fast data retrieval across multiple records and 

data segments associatively. This will result in a new type of database-like functionality that is 

capable of scaling up or down over the available infrastructure continuously and dynamically 

without degradation. Having a highly distributable computational framework that operates with 

simple processing elements and adapts to the conditions will provide a scalable framework for 

managing cloud data deluge. In this regard, associative memory concepts open a new pathway for 

accessing data in a highly distributed environment that will facilitate a parallel-distributed 

computational model to automatically adapt to the dynamic data environment for optimised 

performance.  
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       To achieve the above goal, a distributed data access scheme that enables data storage and 

retrieval by association is first developed to circumvent the partitioning issue experienced within 

referential data access mechanisms. In our model, data records are treated as patterns. As a result, 

data storage and retrieval are performed using a distributed pattern recognition approach that is 

implemented through the integration of loosely coupled computational networks, followed by a 

divide-and-distribute approach that facilitates the distribution of these networks within the cloud 

dynamically. To date, all implementations of MapReduce, including the Hadoop version, have 

interpreted data in a relational model, which limits its functionality when dealing with complex 

and unstructured data such as images. To address this, an associative-memory-based MapReduce 

is introduced to elevate the MapReduce key-value scheme to a higher level of functionality by 

replacing the purely quantitative key-value pairs with scalable associative-memory-based data 

structures that will improve parallel processing of data with complex relations. By having an 

associative key-value model, we can deal with data in any form and in any representation simply 

by using a pattern-matching model that treats data records as patterns and provides a distributed 

data access scheme that enables data storage and retrieval by association, thereby circumventing 

the scaling issue experienced within referential data access mechanisms. The principle of 

associative-memory-based learning is implemented through the use of connected layers in a 

hierarchical fashion; with local feature learning happening at the lowest layer while features are 

combined to form higher representations at upper layers. While the proposed scheme is 

fundamentally different from published approaches in data management, it provides comparable 

performance benchmarks when tested against well-known large-scale data management schemes 

like Distributed MapReduce, Pregel and GraphLab. For this purpose, a comprehensive series of 

analyses have been performed on recognition accuracy and computational complexity using 

various types of patterns ranging from facial images to sensory readings. These analyses were 

conducted to validate the proposed scheme as final proof of concept by developing a suitable test 

environment to ensure the applicability of the model for real-life datasets. 

       In addition, this thesis investigates the extension of the proposed distributed data management 

scheme for different data-intensive scenarios by improving upon the existing cloud data 

management models for fault tolerance and scalability and reducing MapReduce communication 

overheads by introducing data locality. In particular, three data-intensive scenarios are considered 

in detail: dealing with large datasets, handling large training volumes and a neural network with an 
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excessive number of processing neurons. We also investigate a number of innovative cloud 

applications that benefit from data that are universally available within the network, benchmarking 

and validating the results to find the asymptotical limits of the technique through rigorous testing 

and simulation. Moreover, the application of our associative-memory-based approach is examined 

as a case study in a cloud of wireless sensor networks (Cloud-WSNs) to investigate the capabilities 

of the scheme in performing large-scale pattern recognition operations in resource-constrained 

WSNs, and extending the scheme applicability to various platform types, from coarse-grained 

computer clouds to fine-grained wireless sensor networks. The outcomes of this study indicate that 

our distributed parallel processing model is highly capable of processing Internet-scale data using 

lightweight associative-memory-based techniques where data recognition results are obtained in 

real-time using computationally inexpensive parallel operations within the body of the network. 

  



 vi 

 

 

 

 

 

 

 

 

Declaration 

This thesis contains no material which has been accepted for the award of any other degree or 

diploma at any university or equivalent institution and that, to the best of my knowledge and belief, 

this thesis contains no material previously published or written by another person, except where 

due reference is made in the text of the thesis. 

 

Signature:  

Print Name: Amirhossein Basirat 

Date: 06/09/2016 



 vii 

This thesis is dedicated to my beloved wife, my lovely parents, my gorgeous daughter, and my 

supporting brother and sister, who have inspired and supported me in my pursuit of higher 

education. 

 



 viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

  



 ix 

 

Acknowledgements 

Primarily, my humble thanks to God, who is the most Beneficent and the most Merciful, for the 

endless help He has given me to complete this thesis.  

 

       My PhD has been a rewarding journey full of wonderful experiences that would not have been 

possible without the support and encouragement of many people. Now that my journey is near its 

end, I would like to take the opportunity to express my sincere thanks to all of the amazing people 

who have helped me along the way. First, I offer my profoundest gratitude to my supervisors, Dr 

Asad I. Khan and Professor Bala Srinivasan, who gave me the opportunity to pursue my studies in 

their group. I would like to thank them both for their continuous help, guidance, support and 

encouragement throughout all of the difficult and enjoyable moments of my PhD endeavour. 

Special thanks and deep appreciation go to Dr Asad I. Khan for all of his advice and support 

throughout the duration of my study. You have been an inspiration and guide to me. I acknowledge 

and highly value your expertise and experience. 

 

       My deep gratitude goes to my family for being there with me throughout this journey. In 

particular, I want to thank my precious wife, Fatima, for standing beside me, and for her endurance, 

support and unwavering love that will always be in my heart. These few words are not enough to 

express my deepest appreciation for her efforts during the past few years. My never-ending thanks 

and love are conveyed to my kind dad, my lovely mom, my supportive brother and my gorgeous 

sister for their continuous love and support, and for always being there for me through easy and 

difficult times. Finally, I would like to thank all of my friends and colleagues who helped to make 

this possible. It has been an incredible journey of self-discovery. Thank you all for making my 

dreams come true. 

 

Amir Hossein Basirat 

September 2016 



 x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank. 

 
 
 
 
 
 
 
 
 
 



 xi 

Contents 

Copyright Notice ...................................................................................................................... ii 

Abstract .................................................................................................................................... iii 

Declaration ............................................................................................................................... vi 

Acknowledgements .................................................................................................................. ix 

Contents ..................................................................................................................................... x 

List of Tables .......................................................................................................................... xiv 

List of Algorithms ................................................................................................................... xv 

List of Figures ........................................................................................................................ xvi 

List of Abbreviations ............................................................................................................. xxi 

List of Publications .............................................................................................................. xxiii 

Chapter 1: Introduction........................................................................................................... 1 
1.1 Recognition at Large-scale and Big Data ......................................................................... 2 

1.2 Cloud Computing and Large-scale Data Processing ........................................................ 4 
1.3 Big Data, Feature Extraction and Pattern Recognition .................................................... 5 

1.4 Pattern Recognition for Large-scale Data Processing ...................................................... 6 

1.4.1 Common Barriers ...................................................................................................... 7 

1.4.2 Possible Solutions ..................................................................................................... 8 
1.5 Motivation and Research Objectives .............................................................................. 10 

1.6 Hypotheses and Methodologies ..................................................................................... 12 
1.7 Research Contributions .................................................................................................. 15 
1.8 Thesis Outline ................................................................................................................ 16 

Chapter 2: Distributed Pattern Recognition and Data Management at Internet-scale .. 19 
2.1 Definition and Characteristics of Big Data .................................................................... 22 

2.1.1 Data Volume ........................................................................................................... 24 
2.1.2 Data Velocity........................................................................................................... 24 

2.1.3 Data Variety ............................................................................................................ 25 

2.2 Neural Network Schemes for Big Data Processing ....................................................... 26 

2.2.1 Feed-forward Neural Network ................................................................................ 27 
2.2.2 Recurrent Neural Networks ..................................................................................... 28 
2.2.3 Hopfield Network .................................................................................................... 29 
2.2.4 Self-organising Maps .............................................................................................. 30 
2.2.5 Support Vector Machine ......................................................................................... 31 

2.3 Neural Network/Machine Learning Requirements for Large-scale Pattern Recognition 

and Data Processing ........................................................................................................ 33 
2.4 Parallel Data-processing Frameworks ............................................................................ 35 

2.4.1 Hadoop and Hadoop Distributed File Systems ....................................................... 35 
2.4.1.1 HDFS Features ................................................................................................ 35 
2.4.1.2 HDFS Architecture ........................................................................................... 36 



 xii 

2.4.2 MapReduce.............................................................................................................. 38 
2.4.3 Hadoop YARN ........................................................................................................ 40 
2.4.4 Apache Mahout ....................................................................................................... 42 

2.4.5 Google Pregel .......................................................................................................... 44 
2.4.6 GraphLab ................................................................................................................. 46 

2.4.6.1 GraphLab 1.0 ................................................................................................... 46 
2.4.6.2 GraphLab 2.2 (PowerGraph Abstraction) ....................................................... 48 

2.5 Machine Learning and Pattern Recognition ................................................................... 49 

2.5.1 Pre-processing ......................................................................................................... 50 
2.5.2 Feature Selection ..................................................................................................... 51 
2.5.3 Model Selection....................................................................................................... 51 
2.5.4 Training, Testing and Optimisation ........................................................................ 51 

2.6 Distributed Approach for Large-scale Pattern Recognition and Data Processing ......... 52 
2.6.1 Learning Approach .................................................................................................. 53 
2.6.2 Processing Approach ............................................................................................... 54 

2.6.3 Training Approach .................................................................................................. 55 

2.7 Graph Neuron for Scalable Recognition ........................................................................ 55 
2.7.1 Graph Neuron Architecture ..................................................................................... 56 

2.7.1.1 Single-cycle Learning Approach ...................................................................... 58 

2.7.1.2 GN Pattern Crosstalk Problem ........................................................................ 61 
2.7.2 Hierarchical Graph Neuron ..................................................................................... 61 

2.7.2.1 HGN Communication Approach ...................................................................... 63 
2.7.3 Distributed Hierarchical Graph Neuron .................................................................. 65 

2.8 Conclusion ...................................................................................................................... 66 

Chapter 3: Edge Detecting Hierarchical Graph Neuron .................................................... 69 
3.1 Associative Memory Concept for Pattern Recognition .................................................. 70 
3.2 Pre-processing and Dimensionality/Content Reduction ................................................ 72 

3.2.1 Structural Reduction ................................................................................................ 73 

3.2.2 Content Reduction ................................................................................................... 74 
3.2.2.1 Drop-fall Algorithm .......................................................................................... 75 

3.3 EdgeHGN Computational Architecture ......................................................................... 78 
3.3.1 Two-stage Recognition Procedure .......................................................................... 80 

3.3.1.1 Sub-pattern Recognition Level ......................................................................... 80 
3.3.1.2 Pattern Reconstruction and Recognition Level ................................................ 81 

3.3.2 Bias Array Design ................................................................................................... 84 
3.4 EdgeHGN Communication Framework ......................................................................... 85 

3.4.1 Network Generation ................................................................................................ 85 
3.4.2 EdgeHGN Communications .................................................................................... 86 

3.4.2.1 EdgeHGN Macro-communications .................................................................. 87 

3.4.2.2 EdgeHGN Micro-communications ................................................................... 88 
3.5 EdgeHGN Algorithms and Functions ............................................................................ 89 
3.6 EdgeHGN Time Complexity and Scalability Analysis .................................................. 92 

3.6.1 Time Complexity..................................................................................................... 92 
3.6.1.1 Recall Time Comparative Study ....................................................................... 96 

3.6.2 Scalability Analysis ............................................................................................... 100 
3.6.2.1 Storage Capacity Analysis ............................................................................. 101 



 xiii 

3.6.2.2 Communication Complexity Analysis ............................................................. 103 
3.7 Pattern Recognition Simulation and Results ................................................................ 106 

3.7.1 Binary Character Pattern Recognition................................................................... 106 

3.7.2 Recognition Test on Binary Images ...................................................................... 113 
3.7.3 Recognition Test on Noisy Binary Images ........................................................... 119 

3.7.3.1 Global Binary Signature Scheme for Colour Recognition ............................. 120 
3.7.3.2 Sobel’s Edge Recognition for Structural Information.................................... 120 
3.7.3.3 Recognition Accuracy Analysis ...................................................................... 121 

3.7.4 Handwritten Object Recognition Test with Multiple Features ............................. 127 
3.7.4.1 Classification Procedures .............................................................................. 127 
3.7.4.2 Recognition Analysis ...................................................................................... 129 

3.8 Conclusion .................................................................................................................... 132 

Chapter 4: EdgeHGN_MR: Edge Detecting Hierarchical Graph Neuron-based 

MapReduce ........................................................................................................................... 135 
4.1 Neural Network based Classification Techniques ....................................................... 136 
4.2 Associative Memory Concept for Implementing Large-scale Classification  ............. 137 

4.2.1 EdgeHGN Approach for Cloud Data Access ........................................................ 139 
4.3 EdgeHGN-based MapReduce ...................................................................................... 139 

4.3.1 EdgeHGN_MRv1 .................................................................................................. 141 

4.3.2 EdgeHGN_MRv2 .................................................................................................. 144 
4.3.2.1 Bootstrapping ................................................................................................. 146 

4.3.2.2 Algorithm Design ........................................................................................... 146 
4.3.3 EdgeHGN_MRv3 .................................................................................................. 148 

4.4 Performance Evaluation ............................................................................................... 152 
4.4.1 Classification Accuracy......................................................................................... 153 

4.4.2 Computational Efficiency ..................................................................................... 157 
4.5 Comparative Performance Results ............................................................................... 158 

4.5.1 EdgeHGN-based MapReduce versus Distributed MapReduce ............................. 158 

4.5.2 EdgeHGN-based MapReduce versus Pregel-like Graph Processing Systems 

(Giraph, GPS, Mizan and GraphLab) ................................................................... 160 

4.5.2.1 System Setup and Datasets ............................................................................. 161 
4.5.2.2 PageRank Algorithm ...................................................................................... 162 

4.6 Conclusion .................................................................................................................... 166 

Chapter 5: EdgeHGN Application in Fine-grained Wireless Sensor Networks ............. 169 
5.1 Distributed Data Processing Scheme for Wireless Sensor Networks .......................... 172 

5.1.1 WSN Event Detection ........................................................................................... 173 
5.1.1.1 Performance-specific Event Detection Schemes ............................................ 173 
5.1.1.2 Application-specific Event Detection Schemes .............................................. 174 

5.1.1.3 Distributed Pattern Recognition Scheme within WSN ................................... 175 

5.2 Integrated EdgeHGN-WSN Processing Scheme .......................................................... 176 
5.2.1 Dimensionality Reduction in Sensory Data .......................................................... 178 

5.2.2 EdgeHGN Event Classification ............................................................................. 179 
5.2.2.1 Pattern Matching at Sensor Level .................................................................. 180 
5.2.2.2 EdgeHGN Classification Approach ............................................................... 181 

5.3 EdgeHGN-WSN Performance Evaluation ................................................................... 182 

5.3.1 EdgeHGN-WSN Memory Utilization ................................................................... 187 



 xiv 

5.4 Conclusions .................................................................................................................. 188 

Chapter 6: Case Study: Applying EdgeHGN based MapReduce Approach to Real World 

Big Data Processing Scenarios ............................................................................................ 191 
6.1 EdgeHGN based MapReduce – High Level Framework ............................................. 193 

6.2 Case Study: Solarwinds and ITSM Big Data Processing using MapReduce and 

EdgeHGN based MapReduce ....................................................................................... 195 

6.2.1 Solarwinds and ITSM Data Correlation Design Model ........................................ 197 
6.3 ITSM & Solarwinds Data Correlation Using EdgeHGN_MR ..................................... 199 

6.4 Comparing MR & EdgeHGN_MR for Data Correlation ............................................. 204 

6.5 Conclusions .................................................................................................................. 205 

Chapter 7: Conclusion ......................................................................................................... 207 
7.1 Research Summary ....................................................................................................... 208 

7.2 Research Contributions ................................................................................................ 213 

7.3 Future Research ............................................................................................................ 217 

7.3.1 Algorithm-Specific Research ................................................................................ 218 

7.3.2 Application-Specific Research .............................................................................. 218 

Vita ......................................................................................................................................... 221 

References ............................................................................................................................. 223 

 
  



 xv 

List of Tables 

Table 3.1: EdgeHGN total recall time complexity terms ......................................................... 92 

Table 3.2: Big-O notations for Hopfield and EdgeHGN schemes in the network generation 

stage (Hopfield network, 2012) ............................................................................... 97 

Table 3.3: Big-O notations for the Hopfield and EdgeHGN networks in the recognition stage 

(Hopfield network, 2012) ........................................................................................ 98 

Table 3.4: EdgeHGN storage and communication complexity terms .................................... 100 

Table 3.5: Binary signatures for the image in Figure 3.17 ..................................................... 114 

Table 3.6: Discretisation of feature data values using variable-binning methods ................. 128 

Table 3.7: EdgeHGN networks setup details for processing four feature sets ....................... 128 

Table 3.8: Recognition parameters with their respective definitions ..................................... 129 

Table 4.1: Hadoop Cluster Details ......................................................................................... 155 

Table 4.2: Processing time comparison between EdgeHGN_MR and MapReduce .............. 162 

Table 4.3: Experiments Setup Details .................................................................................... 164 

Table 4.4: Dataset Details ...................................................................................................... 165 

Table 5.1: Temperature readings example with their respective binary signature ................. 183 

Table 5.2: Recognition parameters with their respective definitions ..................................... 187 

Table 5.3: Comparative analysis on recognition accuracy parameters between EdgeHGN and 

other classifiers for event recognition using three sensory data obtained from 

Catterall et al. (2003) (Smart-It 1, Smart-It 2, and Smart-It 3) ............................. 188 

Table 6.1: ITSM and Solarwinds given data snapshots for data processing exercise ............ 200 

Table 6.2: Hadoop 4-node cluster setup for implementing MR and EdgeHGN_MR  ........... 201 

Table 6.3: ITSM & Solarwinds data correlation processing time using MR & EdgeHGN_MR208 

 

 

 

 



 xvi 

List of Algorithms 

Algorithm 3.1: SI Module Function ......................................................................................... 89 

Algorithm 3.2: Voting Function ............................................................................................... 90 

Algorithm 3.3: Adjacency Comparison Function (Base Layer) .............................................. 91 

Algorithm 3.4: Bias Calculation Function ............................................................................... 91 

Algorithm 4.1: EdgeHGN_MRv1 .......................................................................................... 147 

Algorithm 4.2: EdgeHGN_MRv2 .......................................................................................... 151 

Algorithm 4.3: EdgeHGN_MR_3 .......................................................................................... 154 

Algorithm 5.1: Pattern Matching Algorithm at the Sensor Level .......................................... 185 

Algorithm 6.1: EdgeHGN based MapReduce – High level framework ................................ 199 

Algorithm 6.2: EdgeHGN_MR scheme for pattern matching between ITSM & Solarwinds 205 

 

  



 xvii 

List of Figures 

Figure 1.1: Pattern recognition through the characterisation of patterns in data ....................... 6 

Figure 2.1: Feed-forward neural network model (Feed-forward neural network, 2011) ......... 28 

Figure 2.2: RNN with feedback link (Recurrent Neural Networks in Ruby, 2012) ................ 28 

Figure 2.3: A Hopfield network with four nodes (Hopfield network, 2012) ........................... 29 

Figure 2.4: Schematic view of a self-organising map network (Schlegel, 2011) .................... 31 

Figure 2.5: SVM classification process (Introduction to SVM, 2012) .................................... 32 

Figure 2.6: HDFS with multiple data nodes for storing data (Apache Hadoop, 2010) ............ 37 

Figure 2.7: MapReduce data flow structure (OpenSource Forum, 2011) ................................ 38 

Figure 2.8: Apache Hadoop 2.0 (Apache Hadoop YARN, 2013) ............................................ 40 

Figure 2.9: YARN, Apache next-generation MapReduce (Apache Hadoop YARN, 2013) ... 41 

Figure 2.10: Apache Mahout (Apache Mahout Software Foundation, 2012) .......................... 43 

Figure 2.11: Pregel data model (Percolator, Dremel & Pregel, 2012) ..................................... 45 

Figure 2.12: PowerGraph solution to power-law graphs (GraphLab Open Source, 2009) ...... 48 

Figure 2.13: Gather-apply-scatter decomposition (GraphLab Open Source, 2009) ................ 49 

Figure 2.14: An input pattern BABBC is stored in a GN array where each row of the array 

represents a value and each column represents a position ...................................... 57 

Figure 2.15: Four arbitrarily chosen patterns – P1: ABBD, P2: ACCB, P3: BACA, P4: ABCD – 

have been stored in the GN array. The maximum bias size is three for storing four 

patterns, indicating that the storage requirement per node would not disproportionably 

increase with the increase in the stored patterns. ....................................................... 59 

Figure 2.16: HGN with pattern size of seven and two possible values within the pattern 

(Nasution & Khan, 2008) ........................................................................................ 62 

Figure 2.17: HGN compositions of (a) 2-D (7x5) and (b) 3-D (7x5x3) for pattern sizes 35 and 

105, respectively (Nasution & Khan, 2008) ............................................................ 63 

Figure 2.18: Transformation of the HGN structure (top) into an equivalent DHGN structure 

(bottom) (Khan & Muhamad Amin, 2007) ............................................................. 65 

Figure 3.1: Auto-AM network to determine whether the input vector is ‘known’ or ‘unknown’

 ................................................................................................................................. 71 

Figure   3.2: Structural reduction on binary character images ................................................. 74 



 xviii 

Figure 3.3: EdgeHGN progressively removes unnecessary nodes from the two dimensional 

data using drop-fall for content reduction ............................................................... 75 

Figure 3.4: Pixel from which to commence the drop-fall ........................................................ 76 

Figure 3.5: Movement rules for the drop-fall algorithm .......................................................... 77 

Figure 3.6: Hybrid drop-fall heuristic approach on character data patterns ............................. 77 

Figure 3.7: EdgeHGN framework for distributed pattern recognition ..................................... 79 

Figure 3.8: EdgeHGN estimated and actual recall times for processing 10,000 stored patterns96 

Figure 3.9: Comparison of communication costs between the HGN, DHGN and EdgeHGN 

(Khan & Muhamad Amin, 2007) .......................................................................... 105 

Figure 3.10: EdgeHGN recall percentage for the three character patterns ‘A’ of different sizes107 

Figure 3.11: Seven different levels of random distortion applied to binary character patterns108 

Figure 3.12: EdgeHGN recall accuracy for various distortion rates ...................................... 109 

Figure 3.13: EdgeHGN node recall percentage for various distortion rates .......................... 110 

Figure 3.14: Recall percentage rate for EdgeHGN v. DHGN ................................................ 111 

Figure 3.15: Response time for EdgeHGN v. DHGN ............................................................ 112 

Figure 3.16: Recognition time for different sub-pattern sizes and different number of random 

sub-patterns ........................................................................................................... 112 

Figure 3.17: Block image with four different colours is divided into equally sized grids ..... 113 

Figure 3.18: Transformation of global colour histogram of image Lena from original image to 

various quantisation levels .................................................................................... 115 

Figure 3.19: Average recall and error rates for EdgeHGN greyscale image recognition on 40 

16 KB binary images using various quantisation levels ....................................... 116 

Figure 3.20: Total recognition time for each EdgeHGN subnet in binary pattern recognition 

with different number of sub-patterns derived from 16 KB binary images .......... 117 

Figure 3.21: Recall error rates for binary image recognition of 100 facial image classes when 

tested against 1000 stored images using EdgeHGN, DHGN, SVM & BPNN 

schemes. ................................................................................................................ 118 

Figure 3.22. Edge map after applying Global Binary Signature and Sobel’s edge detection 120 

Figure 3.23. Fifty different individuals in the face image dataset obtained from the Face 

Recognition Data ................................................................................................... 121 



 xix 

Figure 3.24. Applying the Sobel operator on both the base image and the test image before 

pattern matching .................................................................................................... 122 

Figure 3.25. Applying four possible drop-fall directions to the input pattern ....................... 123 

Figure 3.26. EdgeHGN recognition times after applying four drop-fall schemes on a test image

 ............................................................................................................................... 123 

Figure 3.27. Error values for EdgeHGN processing 50 facial image classes of 1000 test images

 ............................................................................................................................... 124 

Figure 3.28. Error values for EdgeHGN and BPNN processing 50 facial image classes of 1000 

test images ............................................................................................................. 124 

Figure 3.29: (Top) images contaminated by both Gaussian noise and salt-and-pepper noise with 

σ = 10 and s = 30% (bottom) recognition results using the EdgeHGN scheme ... 126 

Figure 3.30: (Top) images contaminated by both Gaussian noise and random-valued noise with 

σ = 10 and s = 25% (bottom) recognition results using the EdgeHGN scheme ... 126 

Figure 3.31:EdgeHGN classification results on four different features of numeral character 

objects .................................................................................................................... 130 

Figure 3.32: EdgeHGN classification best average results on four different features of numeral 

character objects .................................................................................................... 130 

Figure 3.33: Comparative study on error rates between EdgeHGN and other classifiers for 

similar dataset with respective features ................................................................. 131 

Figure 4.1: EdgeHGN_MRv1 Architecture ........................................................................... 145 

Figure 4.2: EdgeHGN_MRv2 architecture ............................................................................ 148 

Figure 4.3: EdgeHGN_MRv3 Architecture ........................................................................... 152 

Figure 4.4: Handwritten digits (MNIST Database) ................................................................ 156 

Figure 4.5: Accuracy rate of EdgeHGN_MRv1 ..................................................................... 157 

Figure 4.6: Accuracy rate of EdgeHGN_MRv2 ..................................................................... 157 

Figure 4.7: Accuracy rate of EdgeHGN_MRv3 ..................................................................... 158 

Figure 4.8: Accuracy rate comparison between EdgeHGN_MRv1, EdgeHGN_MRv2 and 

EdgeHGN_MRv3 .................................................................................................. 158 

Figure 4.9: Accuracy rate stability comparison between EdgeHGN_MRv1, EdgeHGN_MRv2 

and EdgeHGN_MRv3 ........................................................................................... 159 



 xx 

Figure 4.10: Computational efficiency comparison between EdgeHGN_MRv1, 

EdgeHGN_MRv2 and EdgeHGN_MRv3 ............................................................. 160 

Figure 4.11: MapReduce implementation of PageRank algorithm where the mapper emits 

initial PageRank values for every node. The reducer receives all PageRank 

contributions for a given node, adds them up, and emits its contribution to its own 

outgoing links ........................................................................................................ 166 

Figure 4.12: Computing time comparison between Giraph, GPS, Mizan, GraphLab and 

EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset .................... 167 

Figure 4.13: Computing time comparison between Giraph, GPS, Mizan, GraphLab and 

EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset .................... 167 

Figure 4.14: Maximum memory usage comparison between Giraph, GPS, Mizan, GraphLab 

and EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset ............. 168 

Figure 4.15: Maximum memory usage comparison between Giraph, GPS, Mizan, GraphLab 

and EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset ............. 169 

Figure 5.1: EdgeHGN distributed event detection framework .............................................. 181 

Figure 5.2: Sensor node placement in a Cartesian grid where each node is allocated to a specific 

grid area ................................................................................................................. 182 

Figure 5.3: EdgeHGN event detection result for a test using 1800 light sensor datasets (Smart-

It 1) (x-axis) with a threshold of 100 (Basirat & Khan, 2013) .............................. 187 

Figure 5.4: Comparative analysis on recognition parameters rates between EdgeHGN and other 

classifiers for event recognition using three sensory data obtained from Catterall et 

al. (2003) (Smart-It 1, Smart-It 2, and Smart-It 3) ................................................ 189 

Figure 5.5: EdgeHGN Recognition time for 1800 sensor data (x-axis) taken from Smart-It 1, 

Smart It 2 and Smart It 3 datasets ......................................................................... 190 

Figure 5.6: Maximum memory consumption for each EdgeHGN subnet for different pattern 

sizes. EdgeHGN uses minimum memory space with small pattern size .............. 191 

Figure 6.1: SPSS modelling process of linking ITSM and Solarwinds using EdgeHGN_MR 

scheme ................................................................................................................... 202 

Figure 6.2: Architectural overview of ITSM and Solarwinds data correlation project .......... 203 

Figure 6.3: EdgeHGN_MR architecture for pattern matching between ITSM and Solarwinds 

datasets .................................................................................................................. 206 



 xxi 

Figure 6.4: ITSM tickets raised due to Solarwinds alerts ...................................................... 206 

Figure 6.5: Service field for ITSM tickets raised due to Solarwinds alerts ........................... 207 

Figure 6.6: Main causes of Solarwinds alerts ........................................................................ 207 

Figure 6.7: Average distribution of Solarwinds alerts during day ......................................... 208 

Figure 6.8: Processing time of performing data correlation between ITSM and Solarwinds 

datasets using both MR and EdgeHGN_MR schemes .......................................... 209 

 

  



 xxii 

List of Abbreviations 

AM  Associative Memory 

ANN  Artificial Neural Network 

API  Application Programming Interface 

BAA               Bias Associative Array 

BAM  Bidirectional Associative Memory 

BMU  Best Matching Unit 

BPNN  Back-Propagation Neural Network 

BSP  Bulk Synchronous Parallel 

CAM  Content-Addressable Memory 

CBIR  Content-Based Image Retrieval 

CF  Collaborative Filtering 

CHN  Continuous Hopfield Network 

CPU  Computer Processing Units 

DBMS  Database Management Systems 

DDOS  Distributed Denial of Service 

DHGN  Distributed Hierarchical Graph Neuron 

DHN  Discrete Hopfield Network 

DPR  Distributed Pattern Recognition 

EBI  European Bioinformatics Institute 

EdgeHGN Edge Detecting Hierarchical Graph Neuron 

FAM  Fuzzy Associative Memory 

GAS  Gather-Apply-Scatter 

GCH  Global Colour Histogram 

GIS  Geographical Information System 

GN  Graph Neuron 

GPS  Global Positioning System 

GPU  Graphical Processing Unit 

HDFS             Hadoop Distributed File System 

HGN  Hierarchical Graph Neuron 



 xxiii 

HPC  High-Performance Computing 

InSAR  Interferometric Synthetic Aperture Radar 

ITSM              IT Service Management  

IoT  Internet-of-Things 

IP  Internet Protocol 

JVM  Java Virtual Machine 

KNN  K-Nearest Neighbour 

LDA  Linear Discriminant Analysis 

LLE  Local Linear Embedding 

MAM  Morphological Associative Memories 

MGI  McKinsey Global Institute 

ML  Machine Learning 

MNIST Mixed National Institute of Standards and Technology 

MPI  Message-Passing Interface 

MRI  Magnetic Resonance Imaging 

NM  NodeManager 

OCR  Optical Character Recognition 

PCA  Principal Components Analysis 

RDBMS Relational Database Management System 

RM  ResourceManager 

RNN  Recurrent Neural Network 

SI  Stimulator/Interpreter 

SOM  Self-Organising Map 

SoS                 System-of-Systems 

SPIE  Society of Photo-optical Instrumentation Engineers 

SPSS               Statistical Package for the Social Sciences 

SV  Support Vector 

SVM  Support Vector Machine 

TSP  Travelling Salesman Problem 

UAI  Uncertainty in Artificial Intelligence 

WSN  Wireless Sensor Network 



 xxiv 

 

List of Publications 

 

 
Publications arising from this thesis include: 

 

Book Chapters 

Basirat, A. H., & Khan, A. I. (2010). Building context aware network of wireless sensors using a 

scalable distributed estimation scheme for real-time data manipulation, in Wireless Sensor 

Network. Chapter 22, In-Tech Publication, DOI: 10.5772/13756. 

Basirat, A. H., Khan, A. I., & Schmidt, H. W. (2015). Pattern recognition for large-scale data 

processing, in Strategic Data-Based Wisdom in the Big Data Era, IGI Global Publication, pp. 198–

208. 

 

Conference Proceedings 

Basirat, A. H., & Khan, A. I. (2009). Building context aware network of wireless sensors using a 

novel pattern recognition scheme called Hierarchical Graph Neuron. Proceedings of the 2009 IEEE 

International Conference on Semantic Computing (ICSC 2009), 14–16 September, IEEE Computer 

Society, San Francisco, CA, pp. 487–494. 

Basirat, A. H., Muhamad Amin, A., & Khan, A. I. (2010). Under the cloud: A novel content 

addressable data framework for cloud parallelization to create and virtualise new breeds of cloud 

applications. Proceedings of the Ninth IEEE International Symposium on Network Computing and 

Applications, 15–17 July, IEEE Computer Society, Cambridge, MA, pp. 168–173. 

Basirat, A. H., & Khan, A. I. (2010). Evolution of information retrieval in cloud computing by 

redesigning data management architecture from a scalable associative computing perspective. 

Neural Information Processing. Models and Applications, Lecture Notes in Computer Science, 

volume 6444, pp. 275–282. 

Basirat, A., & Khan, A. (2011). Introducing a novel data management approach for distributed 

large-scale data processing in future computer clouds. Neural Information Processing, Lecture 

Notes in Computer Science, volume 7063, pp. 391–398. 

Basirat, A. H., & Khan, A. I. (2012). A novel associative model of data: Toward a distributed 

large-scale data processing scheme for future computer clouds. Proceedings of the IEEE 11th 

International Symposium on Network Computing and Applications, 23–25 August, IEEE Computer 

Society, Cambridge, MA, pp. 163–166. 



 xxv 

 

Basirat, A. H., & Khan, A. I. (2013). Scalable event detection in wireless sensor networks using 

a novel content-based pattern recognition scheme. Proceedings of the 3rd International Conference 

on Parallel, Distributed, Grid and Cloud Computing for Engineering (PARENG 2013), Civil-

Comp Press, Stirlingshire, UK, pp. 53–59. 

Basirat, A. H., & Khan, A. I. (2013). Introducing an intelligent MapReduce framework for 

distributed data processing in clouds. Proceedings of the 12th IEEE International Symposium on 

Network Computing and Applications (NCA 2013), Cambridge, MA, pp. 61–64. 

Basirat, A. H., Khan, A. I., & Srinivasan, B. (2014). Highly distributable associative memory 

based computational framework for parallel data processing in cloud. Lecture Notes in Computer 

Science, Social Informatics and Telecommunications Engineering, volume 131, pp. 66–77. 

Basirat, A. H., & Khan, A. I. (2015). A highly distributable computational framework for fast 

cloud data retrieval. Proceedings of the 14th IEEE International Conference on Machine Learning 

and Applications (ICMLA 2015), Miami, FL, USA, pp. 246 – 250. 

 

 



 

1 
 

 

 

 

 

 

 

Chapter 1 

 

 

Introduction 
 
 

 

 
 

Recent advancements in computing technology and data analysis have resulted in the 

generation of massive volumes of highly complex data, leading to a call for a 

paradigm shift in computing architectures and large-scale data processing 

frameworks. Jim Gray, a distinguished database researcher and the manager of 

Microsoft Research’s e-Science group, referred to this shift as the ‘fourth paradigm’ 

(Hey. et. al., 2009), with the first three shifts representing experimental, theoretical 

and computational science. Gray suggested that the only solution to this outgrowth of 

big data, commonly known as ‘data deluge’, is to develop a new set of computing, 

processing and analysing tools. He also argued that current computing frameworks 

are becoming more incapable of handling data-intensive tasks over time due to the 

constantly and rapidly growing latency gaps between multi-core computer processing 

units (CPUs) and mechanical hard disks (Gray. et. al., 2006). In fact, with emerging 

interest to leverage massive amounts of data that are available in open sources, such 

as the Web for solving long-standing information retrieval problems, the question of 

how to effectively process immense datasets is becoming increasingly relevant. The 

outgrowth of big data has significant implications for the development of computing 
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applications (Hey & Trefethen, 2003). According to Anderson (2008), the chief editor 

of Wired magazine: 

Sixty years ago, digital computers made information readable. Twenty 

years ago, the Internet made it reachable. Ten years ago, the first search 

engine crawlers made it a single database. Now Google and like-minded 

companies are sifting through the most measured age in history, treating 

this massive corpus as a laboratory of the human condition. They are the 

children of the Petabyte Age. Kilobytes were stored on floppy disks. 

Megabytes were stored on hard disks. Terabytes were stored in disk 

arrays. Petabytes are stored in the cloud. As we moved along that 

progression, we went from the folder analogy to the file cabinet analogy 

to the library analogy to – well, at petabytes we ran out of organizational 

analogies. 

 

     Thus, the world of big data is in need of high levels of scalability. As human 

beings, our brains could be represented as a large-scale distributed and interconnected 

network of sensory systems and memories. Observing, recognising and recalling what 

we have seen all form a considerable portion of the activities performed within these 

large-scale interconnected networks. Provided that an optimal solution is found for 

the scalability problem, the Internet can provide us with levels of interconnectivity 

and complexity that bear a resemblance to the human brain. Harnessing the massive 

potential embodied within these distributed networks of interconnected high-

performance machines may provide recognition and processing capabilities for large-

scale and highly complex data. 

 

1.1 Recognition at Large Scale and Big Data 

Transforming big data into valuable information is a significant challenge that real-

world systems must deal with. In fact, more data translates into more effective and 

efficient algorithms; hence it is quite reasonable to take advantage of the tremendous 

amounts of data that surround us. In this regard, the development of powerful high-
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resolution data-capture instruments and sensors in areas such as satellite and 

biomedical imaging has resulted in a massive production of voluminous and complex 

data. In satellite imaging applications, including the geographical information system 

(GIS) and the global positioning system (GPS), depending on the resolution of the 

images captured, the size of data generated can be enormous.  

     These large datasets need to be properly processed before they can be used in 

relevant applications. In biomedical imaging, intelligent processing schemes are 

usually deployed to extract critical information from high-dimensional images 

obtained through complex imaging approaches, such as Magnetic Resonance Imaging 

(MRI), to help medical experts with their diagnoses. With the advent of high-

resolution imaging techniques and recent technological developments in high-speed 

networking and storage fields, medical experts can conduct a collaborative diagnosis 

by collecting data from various sensory and imaging equipments over large scattered 

networks and storing and accessing these data within distributed repositories. With all 

these capabilities available, the amount of data produced and processed can be at the 

Internet-scale. In addition, significant advancements in large-scale scientific analysis 

activities have resulted in the introduction of complex and state-of-the-art 

technologies. One example is the advent of next-generation DNA sequencing 

technology producing an excessive amount of sequence data. This enormous amount 

of data must be properly and efficiently stored, indexed and delivered to scientists for 

further processing. Given that, in the modern science of genetics, genotypes can 

explain phenotypes, the effects of this advanced technology are nothing but 

transformative (Elaine, 2008). The European Bioinformatics Institute (EBI), which 

holds a huge central repository of sequence data called EMBL-bank, increased its 

storage capacity from 2.5 petabytes in 2008 to 18 petabytes in 2013 (EBI, 2013). 

Medical experts believe that in not a very distant future, sequencing an individual’s 

genome will be as easy as getting a simple blood test, thereby introducing a new era 

of personalised medicine, where prescriptions can be specifically developed and 

targeted for an individual. As mentioned in the work of (Fox. et. al., 2005), the 

development of sophisticated data-capture instruments and sensors, such as the Large 
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Hadron Collider and Interferometric Synthetic Aperture Radar (InSAR), in high-

energy physics has resulted in the consistent generation of large volumes of highly 

complex multi-dimensional data.  

     In fact, Petabyte datasets are rapidly becoming the norm, and the trends are 

obvious; our ability to produce and store data is quickly overwhelming our ability to 

process what we generate and store. In this regard, the need for highly sophisticated 

computational schemes is somehow prevalent, as the volumes of generated data make 

it absolutely impractical for data analysts to conduct any form of data processing 

without having the right tools available. However, existing data mining schemes are 

mostly suffering from various shortcomings such as the algorithmic complexity of 

deployed methods. For example, depending on the form of pruning applied the order 

of complexity for the decision tree classification tool can range from 𝖮(𝒏log𝒏) to 

𝖮(𝒏2 ) or even worse (Kamath & Musick, 1998). This in turn makes it practically 

infeasible for use in large-scale data processing approaches. Moreover, the rapid 

expansion of integration between various computational devices and sensor networks 

with the Internet has created a pervasive computational framework known as the 

Internet-of-Things (IoT) (Kopetz, 2011). This development builds a bridge between 

the physical and information domains and creates a smart space where a large number 

of high-performance computational devices can interact in real time to provide 

various services – a model that is analogous to the human biological nervous system. 

The problem arises when an enormous amount of data has been captured from 

various computing systems and there is an urgent need to process this data load 

somewhat in real time. 

 

1.2 Cloud Computing and Large-scale Data Processing 

Cloud computing offers a pay-per-use paradigm for providing services over the 

Internet in a scalable and distributed manner. In this regard, supporting data-intensive 

applications is an essential requirement for computer clouds. However, the dynamic 

and distributed nature of cloud computing environments leads to complex and 
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cumbersome data management processes, especially in the presence of real-time data-

processing/database-updating tasks. While the possibilities provided by the 

parallelisation and distribution of data in clouds have introduced some efficiency, 

existing relational and object-oriented data models in particular result in complicated 

storage and retrieval processes, especially when dealing with large parallel real-time 

data. Chaiken et al. (2008) observed that the challenge of processing large datasets in 

a scalable and cost-efficient manner has rendered traditional database solutions 

prohibitively expensive. At the other end of the spectrum, high-performance 

computing (HPC) has advanced rapidly but has generally focused on computational 

complexity and performance improvements. Virtual HPC in the cloud has significant 

limitations, especially when big data is involved. According to Shiers et al. (2009), ‘it 

is hard to understand how data-intensive applications; such as those that exploit 

today’s production grid infrastructures; could achieve adequate performance through 

the very high-level interfaces that are exposed in clouds’. Thus, the question of how 

to effectively process large-scale datasets is becoming increasingly relevant. Further, 

existing data management schemes do not work well when data is partitioned among 

numerous available nodes dynamically. Approaches towards parallel data processing 

in the cloud, which offer greater portability, manageability and compatibility of 

applications and data, are yet to be fully explored. 

 

1.3 Big Data, Feature Extraction and Pattern Recognition 

A practical solution to the challenge of voluminous datasets can be implemented 

through the use of pattern recognition/matching models where patterns represent a set 

of data captured over a certain period. To extract useful information from the 

captured data, feature extraction needs to be implemented in an efficient manner. 

Feature extraction can be viewed as a mapping from a typically high-dimensional 

data space to a reduced dimension space, while maintaining some key properties of 

the data. This approach for feature/pattern extraction is commonly referred to as data 

mining, which involves the process of uncovering patterns, determining associations 
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between data objects, detecting anomalies and even predicting future data trends. In 

this regard, pattern recognition is a common processing tool used in a wide range of 

applications, including medical diagnosis, environment and condition monitoring, 

decision-making, and various types of scientific explorations. However, when it 

comes to processing an enormous amount of data, common pattern recognition 

schemes that operate within a CPU-centric environment may not scale well to deal 

with data in the order of gigabyte or petabyte scales. Hence, a paradigm shift in data-

processing approaches is essential to handle recognition at the Internet-scale. 

 

1.4 Pattern Recognition for Large-Scale Data Processing 

In recent years, interest in pattern recognition has been dramatically renewed mainly 

due to the data explosion phenomenon that is currently taking place. In simple terms, 

a pattern may be expressed through the use of a common denominator among 

multiple instances of an entity. In this regard, pattern recognition schemes aim to 

make the process of observing and detecting these common characteristics explicit in 

such a way that they can be employed in computational devices to facilitate data 

processing by learning and adapting to its characteristics (see Figure 1.1).  

 

 

 

Figure 1.1: Pattern recognition through the characterisation of patterns in data 
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     The data deluge, along with rapid advancements in data capture technologies, such 

as in sensor networks, has led to a call for a paradigm shift in recognition approaches 

and analytical schemes. In fact, current recognition schemes must be reconsidered 

from a larger perspective to scale with the rapid growth of the data (i.e. from an 

Internet-scale perspective). Scalability is one of the most important factors to 

consider when deploying an efficient pattern recognition model. To meet the 

requirements of existing Internet-scale data, the capability of pattern recognition 

schemes should continue to grow and scale to minimise the risk of becoming 

obsolete. In this regard, Pal and Mitra (2004) restated the question of scalability as 

follows:  

‘Can the pattern recognition algorithm process large data sets efficiently, 

while building from them the best possible models?’   

     The recent surge in interest for scalable pattern recognition schemes has 

been accompanied by exponential growth of data sizes generated by digital 

media (images/audio/video), web authoring, scientific instruments and physical 

simulations. Thus, the question of how to effectively process these immense 

datasets is becoming increasingly important. Nevertheless, most of existing 

models suffer from excessive computational complexity when dealing with 

highly complex datasets.  

 

1.4.1 Common Barriers 

To achieve an adequate level of efficiency, a numbers of barriers must be overcome 

when implementing pattern recognition. These include, but are not limited to: 

i. Large Data: As the size of the data generated/stored increases over time, pattern 

recognition approaches should become more capable of coping with this 

outgrowth of the data in the most efficient and effective way. This requires taking 

into account all relevant data considerations from storage and transport 

perspectives. 

ii. Hi-dimensional Data: With current advancements in data capture technologies, 

there are many application domains where data to be extracted from the 
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environment is of considerably higher dimensionality and is not basically spatial 

(e.g., biological data measuring gene features). In this context, pattern-modelling 

schemes should be able to incorporate higher dimensionalities of data in their 

processing/implementation.    

iii. Algorithmic Complexity: To measure the performance of existing pattern 

recognition models, we need to consider two aspects of algorithm performance, 

namely time and space. First, how fast does the algorithm perform, and what 

affects its runtime? Second, what type of data structure can or should be used to 

maximise performance? Although existing pattern recognition models are very 

powerful and are capable of providing efficient solutions, they suffer from 

excessive complexity, mainly due to their iterative nature along, with complex 

mathematical foundations. A large portion of them are exponential and hence 

infeasible for implementation in large-scale data scenarios.  Moreover, their high 

cost of implementation in terms of time and space makes them operationally 

costly for large-scale data.  

     Hence, any scheme for processing big data should be capable of addressing 

increasing size and dimensionality of data while minimising implementation 

complexity.  

 

1.4.2 Possible Solutions 

There are some major techniques available for scaling up pattern recognition in 

dealing with big data:  

i. Data Approach: In this model, captured data are pre-processed and modified in 

preparation for the recognition process. A number of techniques have been 

proposed in the literature for this purpose, including data reduction (Chow & 

Huang, 2008), dimensionality reduction (Rueda & Herrera, 2008), and data 

partitioning (Kbir, et. al., 2000). The ultimate goal is to reduce/minimise the size 

and dimension of the data for faster and more efficient recognition; however, the 

approach is liable to overlook the importance of data integrity by reducing the 

size of the data domain.  
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ii. Learning Approach: A learning mechanism is a common component among 

pattern recognition schemes, and researchers have made many attempts to reduce 

the computational complexity of the learning phase in favour of achieving 

scalable models with a faster recognition speed. Examples include active learning 

(Cheng & Wang, 2007) and incremental learning (Schlimmer & Granger, 1986). 

A risk associated with this approach is that recognition accuracy will be 

compromised to reach faster recognition. Moreover, in many cases of learning 

approach, the issue of over-fitting is still present. This is mainly due to the fact 

that a model is more inclined to ‘memorise’ training data while putting less effort 

into ‘learning’ to generalise from data trends. 

iii. Distributed Computing Approach: Advancements in parallel processing 

technologies and improved networking capabilities have resulted in shifting large-

scale computations to be performed within the body of the network exploiting 

resource-sharing capabilities of distributed systems to cope with the incremental 

growth of resource demands. This approach benefits from guaranteed levels of 

reliability, availability and scalability due to its large-scale distributed nature of 

operations. In this regard, cloud computing may be viewed as a good example of 

a distributed computing system that is capable of providing scalable services 

using largely distributed resources to perform complex and computationally 

expensive tasks (e.g., recognition at the Internet-scale level). 

     Of the above three computing approaches, distributed processing is more 

promising for scaling up with today’s outgrowth of data. This technique is 

fundamentally different in the sense that adaptation to bio-inspired modelling of the 

brain being readily possible under parallel distributed processing when dealing with 

an excessive amount of data. However, this is not the case for the data and learning 

approaches. In effect, major advancements in parallel computing technology from 

simple multi-threading computational models to multi-core and graphical processing 

unit (GPU) forms of distributed computing have enabled large-scale processing to be 

performed in more elegant and efficient ways. Nevertheless, some existing models 

are extremely complex and highly cumbersome to parallelise. Moreover, the 



 

10 
 

scalability of deployed methods for processing voluminous data is still an open 

problem that needs to be addressed. Further, existing data management schemes do 

not work well when data is partitioned among numerous available nodes dynamically. 

Thus, the question of how to effectively process large-scale datasets is becoming 

increasingly relevant.  

 

1.5 Motivation and Research Objectives 

The dynamic and distributed nature of cloud computing environments, as well as 

their exponential growth, makes real-time data management complicated and storage, 

updates and analytics costly (Szalay. et. Al., 2006). This thesis hypothesises that 

fundamental changes and improvements in data access and movements are possible 

and beneficial for cloud-based data processing. That is, transforming big data into 

valuable information requires a fundamental rethink of how future data management 

models will need to be developed on the Internet. As previously discussed, distributed 

pattern recognition approaches can be investigated as an alternative solution for 

large-scale data processing. Nevertheless, some major obstacles must be overcome 

before these approaches are considered suitable for cloud environments. In fact, 

existing distributed pattern recognition models have been mainly formed along a top-

down approach – that is, from the interface design towards hardware and computing 

resources development and management. In this approach, relatively CPU-centric (or 

sequential-based) algorithms are instrumented and enhanced to function in a 

distributed manner. In addition to this limitation, most of current approaches 

implement distribution partially – that is, in the context of training and validation 

(e.g., feed-forward neural networks and self-organising maps).   

     In regards to distributed pattern recognition schemes dealing with large-scale data, 

the main motivation for the research work conducted in this thesis lies in the need for 

a bottom-up approach – that is, from existing heterogeneous resources to the 

development of abstraction layers for general usage. For this purpose, associative 

memory concepts open a new pathway for accessing data in a highly distributed 

environment that will facilitate a parallel-distributed computational model to 
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automatically adapt to the dynamic data environment for optimised performance. The 

problem lies in marrying such concepts with relevant advanced parallel processing 

patterns. With this in mind, this thesis targets a new type of data processing approach 

that will efficiently partition and distribute data for clouds and facilitate content-

based access for a wide range of applications. Thus, a fully distributed pattern 

recognition scheme that can work with a parallel-distributed computational model 

such as MapReduce will provide a reusable cloud-based framework for a range of 

applications, from image search and sensor data analysis to the control of cyber-

physical infrastructure, mobile equipment and devices.   

     The ability to partition data efficiently and automatically will allow elastic scaling 

of system resources and remove one of the main obstacles in provisioning data-

centric software-as-a-service in clouds. Improved data management, where data are 

optimally and automatically distributed – stands to improve application performance 

through efficient data access. In a nutshell, the fundamental motivation for this 

research work is to establish a fully distributable and highly scalable pattern 

recognition scheme for Internet-scale data analysis that can enable fast large-data 

retrieval across voluminous datasets associatively, utilising a parallel approach. 

Doing so will yield a new form of database-like functionality that can scale up or 

down over the available infrastructure without interruption or degradation, 

dynamically and automatically. In summary, the research work conducted in this 

thesis aims to meet the following objectives: 

i. Provide a distributed data access scheme that enables data storage and retrieval by 

association where data points are treated as patterns, thereby circumventing the 

scaling issue experienced within referential data access mechanisms. This will 

also enhance the overarching relationships among distributed datasets for a 

variety of pattern recognition and data-mining applications. 

ii. Provide a distributed data management scheme that is beneficial for the 

operational requirements of big data processing, thereby enabling relevant data to 

be readily available for large-scale computations. This can be achieved by 

redesigning the data management architecture from a scalable associative 
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computing perspective to create a database-like functionality that can scale up or 

down dynamically over the available infrastructure without any interruption or 

degradation. 

iii. Significantly reduce the number of processing messages and increase tolerance to 

failure by adapting higher data representation techniques. 

iv. Validate results and find asymptotical limits of the technique through simulation 

environments and real-world examples to establish the usefulness of our 

approach. 

 

1.6 Hypotheses and Methodologies 

Scalability in the context of large-scale pattern recognition can be defined as ‘the 

ability to either handle growing amounts of patterns in a graceful manner or to be 

readily enlarged’ (Bonndi, 2000). In this context, this thesis examines fundamental 

research on scalability for pattern recognition in association with big data. A number 

of different large-scale data processing approaches will be extensively reviewed and 

examined, and an effective solution for the scalability problem will be proposed.  

     Associative Memory Hypothesis: The main hypothesis of this research is that 

loosely-coupled associative techniques, which have not widely considered to date, 

can provide an efficient framework for cloud data management. This approach will 

entail two-fold benefit. First, applications based on associative computing models can 

efficiently utilise the underlying hardware to scale up and down the system resources 

dynamically. Second, it will remove the main obstacle to providing scalable 

partitioning and data distribution in the cloud, thereby providing a superior solution 

for handling data-intensive applications and the system infrastructure to support a 

pay-per-use basis. This thesis aims to design a neural networking computational 

framework that will result in an architecture that can scale up to use many neural 

network nodes operating in parallel, capable of performing large-scale data 

processing using neural computations in real-time. As this thesis aims to perform 
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computation at a scale that greatly exceeds the capacity of any single device, it 

proposes the scalability hypothesis. 

     Scalability Hypothesis: Neural networking computational systems must be able to 

be increased in real-time by scaling the system to multiple devices. The scalability 

hypothesis indicates that a neural computation system must be a parallel processing 

system. If a neural network is considered a parallel processing system, then neurons 

can be considered computing resources, while connections can be considered 

communication resources. This leads to the communication-centric Hypothesis. 

     Communication-Centric Hypothesis: The scalability of a neural computation 

system is communication-bound, not compute-bound. The communication-centric 

hypothesis means that the work involved in modelling communication in a neural 

computation system dominates the work involved in modelling the behaviour of 

neurons. It also means that the scale of the neural network that can be handled by a 

neural computation system in real-time is bounded by the availability of 

communication resources in this system rather than the availability of compute 

resources. This leads to the inter-node and intra-node bandwidth hypothesis. 

     Inter-node and Intra-node Bandwidth Hypothesis: The scale of the neural 

network that can be handled by a neural computation system in real-time is bounded 

by inter-node and intra-node communication bandwidths. These provide important 

considerations when designing a massively parallel neural computation system where 

it is necessary to employ an implementation platform that provides effective inter-

node and intra-node communication to maximise the scale of the neural network. 

     This thesis will provide justification for these hypotheses. To address the broad 

aims targeted in this research and prove its hypotheses, a number of objectives have 

been formulated: 

i. Conduct a comprehensive review of current cloud data management schemes and 

existing large-scale data processing models. The ultimate goal for this objective is 

to create a repository of knowledge playing the role as a foundation for the 

process of creating algorithms that provide demonstrably more efficient, robust 
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and scalable end-to-end data access for distributed real-time information 

processing in computer clouds through distributed pattern analysis. 

ii. Conduct an extensive study of a distributable recognition scheme for big data and 

benchmark the proposed model against other established big data processing 

schemes such as Hadoop MapReduce, Pregel and GraphLab. To achieve this, 

comprehensive analysis will be undertaken to best represent the learning and 

distribution mechanisms. This will enable us to better evaluate the computational 

complexity, scalability and fault tolerance of the proposed scheme. Further 

studies will be carried out to test the applicability of this technique in performing 

Internet-scale data processing, provided we can compare its characteristics with 

state-of-the-art techniques in cloud data management. This will in turn enable us 

to create a proposal for large-scale distributed data processing for cloud 

environments.  

iii. Scalability is an important factor when dealing with Internet-scale data. As a 

result, any scheme for large-scale data processing should have the ability to scale 

up for any given amount and dimension of data. Hence, a detailed study will be 

conducted of the scalability aspects of the proposed model to ensure that the 

scheme will be applicable to large-scale data scenarios. To achieve this, we will 

examine processing time and accuracy as two fundamental parameters for this 

study. 

iv. Formulate a distributed intelligent cloud data management model that enables 

seamless data access and distribution using single-cycle learning associative 

memory-based algorithms. This is done by developing an associative MapReduce 

framework that allows complex data representations to be used as keys for map 

and reduce operations. This will allow content-association-based data retrieval 

and storage within the cloud.  

v. Establish the veracity of the datasets through rigorous testing, and benchmark the 

results against state-of-the-art techniques used in the literature. This will enable us 

to identify novel scheme usages for big data processing in computer clouds.  
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1.7 Research Contributions 

The contributions of this thesis can be summarised as follows: 

i. A distributed data access scheme is proposed that enables data storage and 

retrieval by association where data records are treated as patterns; hence, finding 

overarching relationships among distributed datasets becomes easier for a variety 

of pattern recognition and data-mining applications. The proposed scheme will be 

suitable for the operational requirements of computer clouds and will enable 

relevant data to be readily available for large-scale computations. An extension 

towards data representation for distributed pattern recognition algorithms will be 

presented, which will significantly reduce the number of messages and increase 

tolerance to failure by adapting higher data representation techniques. 

ii. This thesis will reconcile MapReduce with associative memory concepts, in 

particular for adaptive and fast data access, aggregation and movement will be a 

key contribution of this thesis. This will improve MapReduce-based parallel 

processing by uniformly formatting data in a standard two-dimensional 

representation. It will eliminate data imbalances and complete the transition to 

cloud by replacing referential data access mechanisms with more versatile and 

distributable associative functions that allow complex data relations such as 

images to be easily encoded into the keys as patterns. These patterns can be 

applied in a variety of applications that require content recognition, such as image 

databases, searches within large multimedia files and data mining. The 

algorithmic strengths of the MapReduce approach are investigated for the first 

time in regards to the effectiveness of one-shot learning-based parallelism 

provisioned via our distributed pattern recognition approach. 

iii. This thesis will investigate the capabilities of the proposed scalable pattern 

recognition scheme in the context of distributed data processing in large-scale 

cloud of wireless sensor networks (WSNs). The research looks specifically into 

the applications of associative-memory based approaches in a resource-

constrained WSN network to demonstrate the ability of the proposed technique to 

provide an effective front-end recognition scheme for event detection. This 
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approach outlines a new type of the WSN that detects macroscopic events by 

collating diverse sensor data, locally and in real-time, into meaningful patterns 

and eliminates the bottleneck problem by offering on-site computations through 

adoption of a completely distributed and decentralised technique. 

 

1.8 Thesis Outline 

The rest of this thesis is organised as follows.  

     Chapter 2 will undertake a comprehensive review of various pattern recognition 

approaches to determine their computational complexity and how effectively they can 

address scalability concerns.  Moreover, different state-of-the-art techniques used in 

the literature for Internet-scale data will be discussed, along with their pros and cons. 

The chapter will also provide a detailed introduction to graph neuron (GN) and 

hierarchical graph neuron (HGN), which implement an effective scalable associative 

memory scheme through their parallel in-network processing frameworks. The 

chapter will also discuss their strengths and limitations. The primary goal of this 

chapter is to provide some background information and build a strong foundation for 

upcoming chapters, where we propose novel associative-memory-based schemes for 

large-scale data processing. 

     Chapter 3 will present a novel distributed single-cycle pattern matching scheme, 

referred to as edge detecting hierarchical graph neuron (EdgeHGN). The chapter will 

detail all of the features and characteristics of the scheme that we use throughout this 

thesis. The study will include discussions on required pre-processing steps, scheme 

architecture, data representation, communication and learning mechanisms, accuracy, 

and speed of implementation. In addition to scalability and computational complexity 

evaluations, various experiments are performed to examine the applicability of the 

scheme to large-scale datasets.    

     Chapter 4 will present a detailed discussion of a novel distributed pattern 

recognition model for Internet-scale data processing. The chapter will examine the 

capabilities of our evolved EdgeHGN based MapReduce scheme in different real-life 

testing scenarios. The applicability and efficiency of the proposed model for multiple 
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pattern recognition domains will be analysed in further detail. Further, this chapter 

will investigate an extension of our proposed distributed data management scheme 

for different data-intensive scenarios. In particular, three data-intensive scenarios are 

considered: dealing with large datasets, handling large training volumes and a neural 

network with an excessive number of processing neurons. In addition, a 

comprehensive evaluation of the proposed model will be conducted, to benchmark 

the proposed scheme’s performance against some of the state-of-the-art techniques 

used in the literature. This will include scalability tests and performance tests for 

large-scale datasets, and recognition accuracy tests using distorted and noisy patterns. 

     Chapter 5 will investigate the capabilities of the proposed scheme in the context of 

distributed data processing in large-scale cloud of wireless sensor networks (WSNs). 

The chapter will examine WSNs as a platform of operation for EdgeHGN distributed 

pattern matching, and it will provide an extensive set of performance benchmarks. 

The aim of this chapter is to demonstrate the ability of the proposed recognition 

technique to learn and recognise complex patterns using minimal information and 

resources to effectively perform classification tasks. 

     Chapter 6 will present the results of a 6-month AMSI internship project conducted 

at a major pharmaceutical company to showcase a study on the adoption of our 

proposed distributed data processing scheme for analysing real-world large-scale 

environmental monitoring data and IT service management data. The results 

presented in this chapter will validate the research findings by providing access to 

large-scale commercial data to test the effectiveness of our approach as a crucial 

element in the cross-validation of research contributions. 

     Finally, Chapter 7 will conclude this thesis by summarising its contributions and 

discussing potential future works. 
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Distributed Pattern Recognition and 

Data Management at Internet-scale 
 

 

 

 

 

 

 

To deal with the voluminous data gathered from the entire Internet in an efficient 

form and at a reasonable cost, search engines utilise a customised distributed data-

processing framework that is deployed on large clusters of computing nodes rather 

than relying on traditional database management systems (DBMSs). Relying on his 

previous experience as Inktomi (now part of Yahoo!) co-founder, Eric Brewer 

claimed that novel data-intensive frameworks (e.g., search engines) should ‘apply the 

principles of databases, rather than the artifacts’ (Brewer, 2005), as typical DBMSs 

are mostly overly generalised with some redundant features that, in the case of search 

engines, could introduce redundancy with costly overheads. As a result, search 

engines work better with simplified distributed and parallel data-processing schemes 

when dealing with large-scale data. Moreover, due to changes in the data access 

patterns of applications and the necessity to use thousands of compute nodes, the 
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main cloud computing providers have integrated specific frameworks for parallel-

distributed data processing in their product offerings, making them more suitable for 

end-users to access their services and deploy their applications. Thus, efficiencies 

through the widespread use of multi-core CPUs, cost reductions for commodity 

hardware, enhanced performance and higher reliability in use are derived from an 

architectural paradigm that favours a massively distributed data-processing platform 

running on an extensive number of cheap computing nodes. Large data operations, 

such as processing crawled documents or reproducing a web index, are divided into 

several independent jobs that are distributed across the network among the available 

processing nodes and computed in parallel within the network. To simplify the 

development of distributed applications on top of such highly distributed 

architectures, customised data-processing frameworks are developed and deployed. 

Well-known examples are Google’s MapReduce (Dean & Ghemawat, 2004), Hadoop 

YARN (Apache Hadoop YARN, 2013), Apache Mahout (Apache Mahout Software 

Foundation, 2012), Apache Spark (Apache Spark, 2013), Microsoft Dryad (Isard. et. 

al., 2007), Google Pregel (Grzegorz, et. al., 2010) and GraphLab (Low, et. al., 2010). 

     While these approaches are different in structure, their design principles share 

similar objectives – mainly reducing the task complexity of implementing parallel 

processing, fault tolerance and execution optimisation for the developer. In most 

cases, developers can write sequential programs without worrying about parallelising 

their code, and it is the compute framework’s responsibility to take care of 

distributing the program among the available processing nodes and executing each 

instance of the program on the proper segment of the dataset. Hence, the emergence 

of successful cloud computing projects can mainly be attributed to commoditising 

parallelism for solving the data management problem. However, the dynamic and 

distributed nature of cloud computing environments makes data management 

processes complicated, especially in the case of real-time data processing/database 

updating (Szalay. et. al., 2006). To cope with today’s intensive data workloads, 

Scalable Database Management Systems (DBMSs) are a critical component of the 

cloud infrastructure and play an important role in ensuring the smooth transition of 
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applications from traditional enterprise frameworks to the next generation of cloud 

computing services. Although distributed data management has been the vision of the 

database research community for a long time, much of the research has been focused 

on designing scalable schemes for intensive workloads in traditional large-scale data-

processing settings, and there has been little impetus on redesigning the processing 

architecture to keep up with big data. 

     The efficiency of the cloud system in dealing with data-intensive applications 

through parallel processing essentially lies in how data is partitioned and how 

processing is divided among nodes. As a result, data access schemes are sought to 

efficiently handle this partitioning automatically and to support the collaboration of 

nodes in a reliable manner. The majority of current data-parallel frameworks have 

achieved greater scalability than parallel databases. However, this comes at a cost, as 

time-consuming analysis and code customisation are required when dealing with 

complex data interdependencies. Moreover, real-time reliability guarantees remain 

elusive. Further, existing data management schemes do not work well when data is 

partitioned among numerous available nodes dynamically. Thus, the question of how 

to effectively process large-scale datasets is becoming increasingly relevant. Neural 

network approaches can provide effective tools needed for cloud-based data 

management. One of the main problems within artificial neural networks (ANN) is 

that the computational complexity increases substantially with increases in the 

problem size, and these algorithms often fail to scale up for large and complex 

datasets (Jain et al., 2000). Further, there is no clear solution to optimally segmenting 

multidimensional datasets such as images. Addressing these shortcomings for large-

scale data analysis will transform the way big data processing is done at present, and 

it will create a new path for fast data classification.  

     In this regard, pattern recognition will be an important element in addressing 

afore-noted shortcomings. However, a number of problems have prevented use of 

pattern recognition so far, mainly being CPU centric algorithms. To overcome this, 

Graph Neuron (GN), a scheme that was primarily developed for event detection in 

WSN (Khan, 2002), is identified as a potential candidate to benefit distributed 
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frameworks in cloud to process big data. The GN has been tested in pattern 

recognition applications within different types of distributed environments 

(Muhammad Amin & Khan, 2008). GN uses a graph-based model for pattern learning 

and recognition. One of the strengths of this technique is the employment of parallel 

in-network processing to address scalability issues effectively, which is a primary 

concern in distributed approaches. This research intends to further extend this scheme 

to establish an efficient scalable model for Internet-scale pattern recognition and data 

processing. 

     The aim of this chapter is to conduct a comprehensive review of current state-of-

the-art techniques for large-scale data processing. For this purpose, a number of data-

parallel frameworks are discussed in detail, along with their pros and cons. Further, 

the algorithmic strengths of various neural network approaches for scalable data 

processing are investigated in regards to the effectiveness of one-shot learning-based 

parallelism provisioned via graph neuron scheme. The objectives of this chapter are 

as follows: 

i. Conduct a comprehensive review of current data-parallel frameworks and 

machine learning schemes that deal with Internet-scale data and discuss how 

neural network approaches can open a new pathway for accessing data in highly 

distributed environments. 

ii. Conduct a detailed review of scalable data-processing requirements and the 

shortcomings of existing techniques in the literature. 

iii. Discuss single-cycle learning and in-network processing for removing the main 

hurdles towards providing the scalable partitioning and distribution of cloud data. 

 

2.1 Definition and Characteristics of Big Data 

There are many discussions on the topic of large-scale data processing – both within 

industry and academia – as well as the definition of ‘big data’ and how the term 

should be used. In a well-executed commercial study entitled ‘Big data: The next 

frontier for innovation, competition, and productivity’, the McKinsey Global Institute 

(MGI) defined the term ‘big data’ as follows (Manyika, et. al., 2011): 
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Big data refers to datasets whose size is beyond the ability of typical database 

software tools to capture, store, manage, and analyse. This definition is 

intentionally subjective and incorporates a moving definition of how big a 

dataset needs to be in order to be considered big data. 

 

     In this definition, the MGI claims that there is no certain volume threshold to 

classify data as ‘big’; rather, it depends on the context. However, the definition uses 

size or volume of data as the only criterion. In fact, the usage of the term ‘big data’ 

can be misleading in the sense that it mainly highlights the volume criterion. The 

question of how to deal with large datasets is an ongoing topic of discussion in the 

database community, and it led to the invention of parallel database systems with 

‘shared-nothing’ architectures (DeWitt & Gray, 1992). As a result, there should be 

more to the definition than just size and volume, and most publications elaborate 

further on this definition. One of these definitions is offered in IDC’s ‘The Digital 

Universe’ (Gantz & Reinsel, 2012): 

 

IDC defines Big Data technologies as a new generation of technologies and 

architectures, designed to economically extract value from very large volumes 

of a wide variety of data by enabling high-velocity capture, discovery, and/or 

analysis. There are three main characteristics of Big Data: the data itself, the 

analytics of the data, and the presentation of the results of the analytics. 

 

     This definition relies on the 3Vs model suggested by Doug Laney in 2001 (Laney, 

2001). Instead of using the term ‘big data’, Laney predicted that data management 

would become more important and difficult over time. This led him to identify 3Vs – 

data volume, data velocity and data variety – as the major challenges facing data 

management. Data volume refers to the size of the data, data velocity defines the 

speed at which new data is introduced to the system, and variety confirms that data 

can be extracted from different sources and can be unstructured or semi-structured. 

Later, a 5Vs model was suggested in the literature to capture variability 

(inconsistency of the data set) and veracity (the quality of captured data) as well 
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(Hilbert, 2015). However, when the discussion about big data started, different 

sources decided to adopt the 3Vs definition of big data to highlight the fact that any 

solution offered should effectively tackle all three to be successful (Russom, 2011). 

Overall, the 3Vs model of big data seems to be well accepted within both the industry 

and academia. Moreover, it is helpful when describing characteristics that can be 

exploited to derive the requirements for the relevant technologies. Therefore, the 3V 

model is used as a guiding definition for this thesis. The following section details the 

characteristics which are of fundamental nature and thus more relevant to our 

approach. 

 

2.1.1 Data Volume 

Dealing with voluminous data is the first and most important challenge. However, 

there is no obvious or concrete point at which data should be considered ‘big’. This is 

similar to a moving target that moves with a rapid pace over time as computing 

power increases. While a few hundred terabytes were considered big data almost 10 

years ago, petabyte datasets are now considered big, and the trend is shifting towards 

exabyte and even zettabyte data volumes (Gantz & Reinsel, 2012). In addition, more 

data results in better outcomes, especially in the case of complex analytic tasks. 

Halevy et al. (Halevy, et. al., 2009) stated that for big data challenges that involve 

machine learning and statistical approaches, generating larger datasets is the preferred 

method over designing sophisticated models and schemes. The authors referred to 

this as ‘the unreasonable effectiveness of data’, which means that, for machine-

learning-specific tasks, larger training sets of freely available, even noisy data 

typically provide a better result than smaller training sets of carefully cleaned data 

with complicated schemes. 

 

2.1.2 Data Velocity 

Velocity refers to the speed of data, which can be either the rate of new data coming 

into the system or the existing data being updated (Chen, et. al., 2013). Agrawal et al. 
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(2012) name this the ‘acquisition rate challenge’. Data velocity can also refer to the 

time it takes to conduct analysis while data is still receiving new feeds and updates, 

called the ‘timeliness challenge’. These two challenges are two separate issues in 

nature; they typically occur at the same time, but they do not necessarily need to 

(Agrawal, et. al., 2012). Tim Kraska referred to the first challenge as ‘big throughput’ 

(Kraska, 2013). In most cases, the workload is transactional, and the main task is to 

receive, filter, store and process fast and continuously incoming data in an effective 

way. Stonebraker et. al., (2013) also claimed that traditional relational database 

management approaches are not suitable for these types of processing tasks because 

they involve significant overhead due to excessive locking, logging and buffer pool 

control for multi-threaded operations.      The main challenge here is to maintain a 

somewhat consistent and persistent state while handling a large number of typically 

small write operations. A possible solution to this problem is to conduct some pre-

processing and filter redundant data to make the process more manageable. However, 

this filtering stage requires an intelligent mechanism to dismiss unnecessary 

information without losing important data, and it comes at a cost because pre-

processing consumes time and resources to perform the task. Further, it is not always 

feasible to filter data due to its nature and properties. Another requirement is to 

extract and keep metadata along with the streaming data so that data lineage can be 

managed, thereby enabling us to track which data should be kept and how they 

should be measured (Agrawal, et. al., 2012). 

 

2.1.3 Data Variety 

One reason why big data has gained so much attention is that data from diverse 

sources can provide significant value when properly aggregated and integrated for 

analytics. Data variety refers to a general diversity of data sources, including both 

excessive data gathered from various sources and considerable structural differences 

among those sources. On a higher level, this leads to the requirement of processing 

structured data, semi-structured data and unstructured data (Kaisler, et. al., 2013). 

However, on a lower level, while data sources can be structured or semi-structured, 
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they can still be heterogeneous and their schema may not be compatible, resulting in 

inconsistent semantics (Helland, 2011). Integrating and processing this collection of 

structurally different data can introduce several challenges. One of these challenges 

relates to the actual mechanism that should be used to store and manage this type of 

data in a database-type platform. For this purpose, relational database management 

systems (RDBMSs) may not be a good fit to cater for all types and formats of data. 

For example, Stonebraker et. al., (2013) claimed that RDBMSs offer a poor choice 

for array or graph data, where array data is typically important in scientific research 

and graph data is of high importance for social networks analytics (Stonebraker, et. 

al., 2013). Another important challenge when dealing with semi-structured or 

unstructured data is that before these data types can be of much use for analysis, some 

type of structure should be imposed on them to enable the researchers to extract 

entities, relationships and other relevant information. There are some existing 

machine learning, information retrieval, natural language processing and data-mining 

techniques available for this purpose; however, due to the variety of unstructured data 

sources (e.g., images and videos), new data extraction schemes should be developed 

to provide more feasible and effective ways of processing, as many of the existing 

processing tools fail when facing unstructured data (Agrawal, et. al., 2012). 

 

2.2 Neural Network Schemes for Big Data Processing 

Neural networks can be defined as interconnected parallel-computing networks of a 

massive number of processing nodes known as neurons (Jain, et. al., 2000). One of 

the main benefits of using neural network techniques for data processing is that they 

allow the system to learn from the data and progressively adapt to the nature of the 

data. This adaptive feature provides a promising tool for scalable Internet-scale 

recognition. However, a number of issues need to be overcome in relation to their 

implementation and deployment. This section provides an overview of some of the 

most well-known neural network schemes for pattern recognition. The techniques 

discussed here are widely used across many applications of pattern recognition; 

however, the focus here is on the scalability and adaptability of these approaches for 
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large-scale pattern matching tasks. An evaluation of the neural network and machine 

learning algorithms discussed in the literature suggests that these schemes can offer 

promising tools for deterministic pattern recognition (Vivanco, et. al., 2005). 

Moreover, they can let the system to learn from data and adopt itself to its conditions. 

However, the relative computational complexity of current schemes places a heavy 

burden on their widespread use for large-scale pattern processing. This is mainly due 

to their excessive and highly iterative training procedures.   

 

2.2.1 Feed-forward Neural Network 

The feed-forward neural network scheme provides a well-defined approach for 

building auto-associations between an input layer and an output layer in a large 

domain of computational problems such as pattern recognition (Nadal, 1989) (see 

Figure 2.1). However, its classification process faces some limitations relating to its 

implementation. These implantation barriers include: its relative sensitivity towards 

the training parameters, training speed, non-linear classification function, 

overtraining sensitivity and regularisation requirements (Jain et al., 2000). As 

described by Kalos (2005), it is difficult to incorporate feed-forward neural networks 

for mainstream applications because they are highly specialised. Moreover, he 

highlighted a few implementation-related issues for such networks, including the 

difficult process of interpreting the results, as well as the trial-and-error approach 

needed to build their architecture.  The cumbersome nature of predicting the results is 

due to the fact that the intermediate results obtained from the network should first be 

cross-validated before they can produce the best output. In addition, the algorithm 

design is a complex process because of the instability that is present in the number of 

hidden layers required for a given dataset. Given their intensive computational 

operations, they require excessive training procedures to achieve optimum 

recognition accuracy for a given dataset. As a result, feed-forward neural networks 

suffer from scalability and adaptability issues. Although their design permits parallel 

processing to improve upon scalability, the complex computational operations 

prevent them from being suitable candidates for scalable pattern recognition schemes. 
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Figure 2.1: Feed-forward neural network model  

(Feed-forward neural network, 2011) 

      
2.2.2 Recurrent Neural Networks (RNN) 

A recurrent neural network (RNN), also referred to as a feedback neural network, is a 

multi-layered network structure where the input receives feedback from an RNN 

output to increase recognition accuracy (Duda, et. al., 2001) (see Figure 2.2).  

 

 
 

Figure 2.2: RNN with feedback link (Recurrent Neural Networks in Ruby, 2012) 
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     RNNs can be categorised into two main categories, namely standard and 

relaxation RNNs (Connor, et. al., 1994). Standard RNNs follow the same principles 

as standard neural networks and incorporate feedback links within their design. 

Relaxation RNNs continuously implement learning and recognition stages until 

feedback inputs reach a predefined threshold. While RNNs are simple and powerful 

schemes, they may get stuck in calculating local minima during gradient descent, 

achieving sub-optimal results (Bengio, et. al., 1994). This limits their applicability to 

large-scale pattern recognition problems requiring optimal results in minimal time.   

 

2.2.3 Hopfield Network 

Hopfield and Tank (1985) introduced the Hopfield network as a type of supervised 

neural network, offering an alternative solution to complex computational tasks such 

as combinatorial optimisation. The Hopfield network has also provided an efficient 

approach for solving the Travelling Salesman Problem (TSP) and other pattern 

recognition tasks (see Figure 2.3).  

 

 
 

Figure 2.3: A Hopfield network with four nodes (Hopfield network, 2012) 
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     Hopfield networks can be divided into two main categories: Discrete Hopfield 

Network (DHN) and Continuous Hopfield Network (CHN) (Kim, et. al., 1992). DHN 

is a fast-processing stochastic approach that is simple to implement. As the scheme 

uses binary values to represent the states of neurons, it does not produce accurate 

results. Hence, DHN is not capable of providing sufficient levels of accuracy for 

pattern recognition applications. Conversely, CHN uses a differential equation 

scheme to achieve a near-optimal result. This approach requires more time to produce 

acceptable results, which in turn places a practical burden on its implementation. As a 

result, CHN cannot offer an efficient solution to pattern recognition applications that 

require fast processing. Moreover, the Hopfield network suffers from a convergence 

problem, which results in producing less-than-optimal solutions (Li et. al., 2005). It 

also does not scale well due to scalability issues associated with the storage of biased 

patterns (Lowe, 1999). These prevent the Hopfield approach from being a suitable 

candidate for solving large-scale pattern recognition problems, regardless of its 

ability to perform parallel recognition (Wilson, 2009). 

 

2.2.4 Self-Organizing Maps 

A self-organising map (SOM), also referred to as a Kohonen map, is an unsupervised 

neural network approach used for performing pattern clustering and classification 

(Kohonen, 2000). Kohonen maps are formed based on the competitive learning 

algorithm (Rumelhart & Zipser, 1988). As part of the classification process, SOM 

offers a mapping of high-dimensional data space to lower-dimensional data space 

using dimension reduction (see Figure 2.4). A peculiarity of this technique is that the 

neurons are well-placed and well-represented in the form of a geometrical dimension 

(Giorgetti, et. al, 2007). The SOM scheme also exhibits a high level of adaptability, 

as it can represent various types of data using a single form of representation. 

Kohonen networks have been extensively used in a wide range of applications 

including, geo-informatics (Zaremba, et. al., 2000), bioinformatics (Wang, et. al., 

2007), finance (Blazejewski & Coggins, 2004), information retrieval (Lin, et. al., 

1991) and wireless technology (Giorgetti et. al., 2007). 
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Figure 2.4: Schematic view of SOM Network (Schlegel, 2011) 

 
     One of the main drawbacks of the standard SOM approach is its high 

computational complexity and its inability to scale efficiently with increases in the 

map size. While SOM is a well-established method for clustering high-dimensional 

data, its training and classification process requires numerous iterations to be 

performed on each neuron, which makes the scheme computationally costly when 

dealing with high-dimensional data. To address this shortcoming, various dimension 

reduction techniques are adopted at the cost of increased processing time. Moreover, 

determining the learning rate of SOM-based schemes to estimate the efficiency of the 

approach is a non-trivial task (Cheung & Law, 2007). These limitations restrict the 

applicability of SOM-based techniques in solving large-scale pattern recognition 

problems. 

 

2.2.5 Support Vector Machine (SVM) 

Support vector machines (SVMs) have gained a lot of attention recently due to their 

ability to perform effective data classification and regression tasks (Casali, et. al., 

2006). The scheme implements classification by creating a mapping of input vectors 

to a high-dimensional feature space in a non-linear shape and form, and then forming 
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a linear decision surface by building one or more hyper-planes to enable class 

separation (Cortes & Vapnik, 1995). The classification process will be performed by 

determining the optimal separating hyper-plane. This approach is illustrated in Figure 

2.5, where the problem is simply defined as finding an optimal solution to a problem. 

In this example, the optimal solution is to find the best line passing as far as possible 

from all of the points. As a result, the SVM target here is to determine the hyper-

plane that provides the largest minimum distance to the training examples. This 

optimal separating hyper-plane maximises the margin of the training data. SVM was 

originally deployed and tested for binary problems because it offers unique solutions 

along with good generalisation properties of the solution (Mavroforakis & 

Theodoridis, 2006). However, the technique suffers from a slow test phase compared 

to other learning schemes presented in the literature (Huang, et. al., 2005). Moreover, 

the computational costs can become excessive with an increased number of support 

vectors (SVs) (Dong, et. al., 2005). In addition to that, SVM does not scale 

effectively, as the SVM training kernel matrix size increases quadratically with the 

size of the dataset; this results in a dramatic increase for big datasets, making it 

impractical for large-scale pattern processing problems (Nguyen & Ho, 2006). 

 

 
 

Figure 2.5: SVM classification process (Introduction to SVM, 2012) 
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2.3 Neural Network/Machine Learning Requirements for 

Large-scale Pattern Recognition and Data Processing 

Artificial neural network techniques have been extensively used for different pattern 

matching and classification tasks. For instance, Jiang et. al. (2010), introduced a back 

propagation neural network scheme to perform the processing of high-resolution 

sensory images to identify roads. In another example, Khoa et. al. (2006) presented a 

stock price forecasting scheme utilising the BPNN approach. Previously, ANN 

schemes were mainly used to deal with small-size datasets. However, with the 

emergence of large-scale data-processing applications, their potential use for big data-

processing tasks can be restricted in their current shape and form as they become 

computationally intensive, with large memory requirements when applied to large-

scale datasets. One of the main benefits of using neural network techniques for data 

processing is that they enable the system to learn from data and progressively adapt to 

that nature of data. This adaptive feature provides a promising tool for scalable 

Internet-scale recognition (Vivanco, et. al., 2005). However, a number of issues need 

to be overcome in relation to their implementation and deployment. Wang et al. 

(2014) claimed that ANN schemes can be considered one of the major tools for large-

scale data analysis if the fundamental challenges of dealing with big data can be faced 

effectively within the two phases, namely the training phase and operation phase. As 

an example, back-propagation neural network (BPNN) is one of the most widely used 

ANN techniques that can potentially approximate any sort of continuous non-linear 

function by arbitrary precision if enough neurons are available for computation 

(Hagan, et.al., 1996). In most cases, BPNN uses the back-propagation algorithm as 

part of the training stage, which can be time-consuming when dealing with large 

volume of training data (Gu, et. al., 2013). To take advantage of the potentials of 

neural networks for big data processing, an alternative is to use parallel processing 

approaches to speed up computational work – for example, the use of Message 

Passing Interface (MPI) (Kumar, et. al., 2002). Long and Gupta (2008) introduced a 

parallel ANN with an MPI technique for providing computational parallelism. While 
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MPI was originally designed for data-intensive applications, it does not offer great 

deal of support for fault tolerance. In fact, in many fault-occurring cases, MPI 

processes should be re-initiated, which makes them unsuitable for big data processing 

scenarios where failures can occur at any time in the system (Long & Gupta, 2008).  

Furthermore, many of the existing neural network techniques suffer from the over-

fitting problem, where a small-sized training dataset cannot effectively represent the 

actual characteristics of the large dataset. 

     A comprehensive study of the existing pattern recognition techniques in the 

literature shows that they are capable of offering acceptable levels of scalability and 

adaptability, but at the cost of introducing excessive computational costs with 

increased complexity. In this regard, some attempts have been made in the literature 

to offer faster neural network computations by either trying to better select the initial 

weights (Nguyen & Widrow, 2010) or better control the learning parameters (Kanan 

& Khanian, 2012). In recent years, many researchers have started focusing on 

utilising the potential embedded in parallel processing techniques and distributed 

computing approaches to come up with scalable methods to work around the 

computational bottlenecks of existing large neural network schemes (Ikram, et. al., 

2013) (Huqqani, et. al., 2014). Gu et. al., (2013) introduced a computationally fast 

parallel neural network approach utilising some in-memory data processing at the 

cost of providing less accurate results. They achieved a faster scheme through 

parallelism by splitting the training data into data chunks and processing them in 

parallel. In another work, Liu. et. al., (2010) demonstrated the application of a 

MapReduce-based BPNN in classifying an excessive amount of mobile data. In their 

proposed parallel neural network classification approach, they utilised AdaBoosting 

to compensate for the accuracy shortfall. Despite achieving higher accuracy rates, 

their approach suffers from computationally expensive operations within both 

training and classification phases. In addition, the AdaBoosting approach has the risk 

of increasing the weight of potential poor classified instances, resulting in less 

accurate results (Freund, et. al., 1998). 
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2.4 Parallel Data-processing Frameworks  

To simplify the development of distributed applications on top of such highly 

distributed architectures, customised data-processing frameworks are developed and 

deployed. 

 

2.4.1 Hadoop and Hadoop Distributed File System 

Hadoop has been extensively used for large-scale data processing in the clouds 

(Chen, et. al., 2008), and it is widely utilised by the industry’s major web players – 

Google, Yahoo, Microsoft and Facebook – as the platform to enable the cloud. As in 

the cloud, the computing unit is mostly VM (virtual machine) based, such that 

Amazon Elastic Cloud Computing (Amazon Elastic Cloud Computing, 2011) and 

GoGrid (GoGrid Cloud Hosting, 2011) offer VM-based computing infrastructure as a 

service. It is therefore possible to use cloud data-processing schemes in a virtualised 

data centre. Although poor functionality and significant load imbalances exist, VMs 

can still be employed to assist with utilising the system resources and provide better 

management and control while improving reliability (Figueiredo, et. al., 2003). 

Existing cloud systems often rely on Hadoop Distributed File Systems (HDFS) and 

the parallel scanning procedure as their underlying platform to manage data. HDFS is 

a kind of distributed file system that offers high throughput access to application data, 

and it is built and developed to function on commodity hardware (Apache Hadoop, 

2010). 

 
2.4.1.1 HDFS Features 

HDFS has many common characteristics with other distributed file systems, but its 

high level of fault tolerance makes it an efficient approach to support the 

development of Hadoop on large clusters of machines, providing high throughput 

access to deal with Internet-scale datasets (Apache Hadoop, 2010). In summary, the 

features of HDFS can be categorised as follows: 

 Very large datasets: HDFS enables the processing of massive amounts of data in 

the order of petabyte scales on distributed file systems. 
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 Streaming data access: The HDFS process follows the model of write once and 

then read many times. This approach not only minimises data coherency issues, 

but it also over-simplifies high throughput data access, making it efficient and 

suitable for MapReduce applications, which is discussed later in this chapter.      

 Commodity hardware: Hadoop can run on inexpensive machines with noticeably 

low power consumption. This brings the power of fault tolerance to the scheme, 

where basic failures can be recovered and compensated with minimum or no 

effects on the total functionality.   

 Data reliability: As data is stored on multiple nodes and racks in HDFS 

architecture, data will be easily accessible in case of sudden failures. In fact, the 

placement of replicas is one of the key differentiators between HDFS and other 

distributed file system mechanisms.    

 Portability: HDFS is designed so that it can be easily moved from one platform to 

another, thereby facilitating its use as a platform of choice for many applications.   

 

2.4.1.2 HDFS Architecture 

HDFS consists of one NameNode and a number of DataNodes, and it has 

master/slave architecture. The master server, referred to as the NameNode, divides 

files into blocks and distributes them among the cluster members with replication to 

cater for fault tolerance. It also keeps all metadata about stored files and arranges the 

system namespace. The slaves, referred to as DataNodes, are the actual repository of 

the data blocks; they respond to read/write requests from clients and distribute 

replication tasks as instructed by the NameNode. In response to a request, the relevant 

data is retrieved from the HDFS and sent to a set of pre-allocated compute nodes to 

implement parallel scanning. To achieve its goal, HDFS uses the JobTracker and 

TaskTracker functions. JobTracker is responsible for scheduling and assigning the 

relevant tasks to TaskTrackers, while TaskTrackers are only responsible for 

accomplishing the jobs they are assigned to. Upon completion of the job, 

TaskTrackers notifies JobTracker about the result of the work (success/failure), and 

in case of failure, the JobTracker reschedules the failed operations (see Figure 2.6).  
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Figure 2.6: HDFS with multiple data nodes for storing data  

(Apache Hadoop, 2010) 

 

     With this HDFS architecture, we may face some technical challenges, including: 

 Adapting ourselves to writing application codes in a new programming paradigm. 

 NameNodes do not scale effectively. In fact, HDFS runs a secondary NameNode 

for faster recovery, but the secondary NameNode plays the role of a log server 

rather than a failover server. In case of failure, the primary NameNode will 

eventually need to be restarted, and some of the actions should be replayed. 

 Similar to TaskTrackers with regards to their immediate effect on job 

performance, the poor performance of the NameNode or particular set of 

DataNodes can have a significant deteriorating effect on the overall functionality 

of the whole data cluster. 

 Based on experimental results, NameNode can be a bottleneck for linear scaling. 

In fact, a 10,000-node HDFS cluster with a single NameNode is expected to 

handle a workload of 100,000 readers (memory-only operation); however, 

practical experiments have shown that even 10,000 writers (bounded by the local 

hard drive performance) can produce a sufficient workload to saturate the 

NameNode and degrade the overall performance (NameNode Performance, 2008). 
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2.4.2 MapReduce 

MapReduce is a parallel processing framework for the distributed processing of large 

datasets among compute cluster nodes (Dean & Ghemawat, 2004), and the Hadoop 

version of it relies on HDFS as its underlying platform (Apache Hadoop MapReduce, 

2011). The MapReduce and HDFS frameworks both perform processing on the same 

set of nodes. That is, the majority of computational tasks are performed where the 

data already resides (data locality). This approach significantly speeds up processing 

because it is computationally much cheaper to move the computations and not the 

data. In the MapReduce data-processing approach, all processing operations are 

expressed using two main primitives – (a) a map function to accept a key-value pair, 

perform some computations and generate a set of intermediate key-value pairs as 

output, and (b) a reduce function to aggregate all intermediate results associated with 

the same intermediate key, perform some computations and emit the final output (see 

Figure 2.7). These simplified functions permit users to build and deploy parallel data-

processing jobs without the need to explicitly coordinate parallel sub-tasks with 

distributed file storage. As a result, the MapReduce abstraction can vastly improve 

user productivity and experience (Apache Hadoop MapReduce, 2011).  

 

 

 

Figure 2.7: MapReduce data flow structure (OpenSource Forum, 2011) 
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     MapReduce applications usually process large volumes of cloud data. This 

requires two critical data movements: gathering the input data for the map phase, and 

reorganising and redistributing the output of the map tasks as input for the reduce 

phase. The MapReduce data movement approach heavily depends on the 

parallelisation strategy used. It should be noted that maximum parallelism of the 

(parallel) map phase is bounded by the number of input pairs while the parallelism in 

the reduction phase is also restricted by the number of various output keys of the map 

phase, which in turn highly depends on the deployed algorithms and the nature of the 

input data. Moreover, the approach suffers from certain key limitations: 

 In the MapReduce type of query processing, the map tasks are assumed to be 

fully independent. However, when applied to massive relational or object-

oriented data, large records or objects resulting from aggregation and analytics are 

often broken into parts and distributed, thereby creating dependencies and 

requiring trade-offs between redundancy (for speed), coherence (for integrity 

under frequent updates) and compromises to parallel schedulability, as they break 

assumptions of mutual independence. 

 In practice, MapReduce functions are implemented imperatively and produce an 

excessive number of intermediary entities between the map and reduce stages 

(e.g., in the form of intermediate files). In many cases, these intermediate files 

must be first sorted and indexed before they can be entered as input to the reduce 

function. This system’s extensive sort and redistribution tasks incur significantly 

high processing and communication costs, and the system is either fundamentally 

non-scalable or requires fine-tuned architecture-aware access mechanisms. 

 While assisting designers and developers with few predefined architectural 

patterns for many applications (Gamma, et. al., 1995), the MapReduce data flow 

model is also rigid, limits variation and hence increases the complexities of 

dealing with errors, fault tolerance, performance and other end-to-end non-

functional issues. Some exploratory research implementations use key-value pairs 

with distributed ‘spaces’, such as JavaSpaces or other derivatives of Linda tuple 

spaces (Gelernter & Carriero, 1985), to simplify data sharing and conceptually 
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separate shared data from computational tasks. However, this simplification 

comes with significant efficiency loss and exacerbates the uncertainty of 

predicting reliability and real-time behaviour. 

     Hence, in practice, MapReduce cannot automatically scale up for many 

applications and datasets. 

 

2.4.3 Hadoop YARN 

In its original design, MapReduce suffers from various issues, including scalability 

concerns, as the maximum practical cluster size could achieve about 4000 nodes with 

coarse synchronisation processes for the JobTracker (Yahoo Developer Network, 

2008). In addition, the partitioning of resources into map and reduce slots results in 

inefficient utilisation. Moreover, the rigid design of the MapReduce framework, 

along with its lack of support for alternate paradigms, makes it impractical for some 

applications, in particular those that are iterative in nature. As a result, the 

MapReduce scheme has been significantly reinvented in Hadoop-0.23, and the 

current version is referred to as MapReduce 2.0 (MRv2) or YARN. YARN was 

originally introduced by Apache as a newly designed resource manager, but in its 

current form it is considered the next generation compute and resource management 

framework for big data applications (Apache Hadoop YARN, 2013) (see Figure 2.8). 

 

 

 

Figure 2.8: Apache Hadoop 2.0 (Apache Hadoop YARN, 2013) 
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     YARN has a master/slave architecture in which the JobTracker’s two main 

functionalities are executed within separate daemons, namely resource management 

and job scheduling/monitoring. YARN introduces a global ResourceManager (RM) 

and an ApplicationMaster for each application. In simple terms, the YARN data 

framework consists of the global ResourceManager and a per node slave called 

NodeManager (NM). For each application, the ApplicationMaster component looks 

after the implementation and monitoring of the dedicated tasks after negotiating 

required resources with the ResourceManager (see Figure 2.9).  

 

 

 

Figure 2.9: YARN, Apache next generation MapReduce  

(Apache Hadoop YARN, 2013) 

 

     This new computational framework design in YARN will eliminate MapReduce 

bottlenecks where pre-YARN jobs were forced to be executed through a single 

JobTracker daemon (as batch processes), thereby limiting MapReduce scalability 

while reducing processing speed (Apache Hadoop YARN, 2013). The 

ResourceManager in YARN plays the role of global coordination, which in turn 

creates a single point of failure in the system. Any planned (upgrades) or unplanned 

(node crashes) outages for ResourceManager can render YARN unavailable. 
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2.4.4 Apache Mahout  

Apache Mahout was initially started as a sub-component of the Apache Lucene 

project in 2008 (Apache Lucene Core, 2008) and became a big project by itself in 

2010. The goal of Apache Mahout is to build Apache-licensed machine learning 

libraries that can scale up with big data. Machine learning in the context of big data is 

simply to create computational intelligence using example data or by observing past 

experiences (Alpaydin, 2004). Building applications that intelligently learn from 

input data is of high interest, and such applications require machine learning schemes 

to achieve this. Apache Mahout is designed to address this requirement by enabling 

users to employ highly scalable machine learning approaches on multicore, such as 

collaborative filtering (CF) (Resnick & Varian, 1997) and random forest decision-

tree-based classifiers (Breiman, 2001). The goal of Apache Mahout for big data 

processing is to deliver a scheme that is as fast and efficient as possible given the 

intrinsic design of the algorithm. It must be capable of addressing the major 

shortcomings of many machine learning approaches, which do not scale effectively to 

massive machine clusters. Given its multicore implementation model, Mahout uses 

Hadoop’s HDFS and MapReduce frameworks. Mahout introduces a number of 

techniques – many of which are still in the development phase. However, Mahout’s 

three core themes are recommender engines, clustering and classification (Apache 

Mahout Software Foundation, 2012) (see Figure 2.10). The recommender system is 

probably the most noticeable machine learning scheme in use today. It recommends 

services and products based on historical actions and preferences. For this purpose, 

Mahout uses an extensive framework for collaborative filtering where top-level 

implementation packages define the Mahout interfaces to the following key 

abstractions: data model, user similarity, item similarity, user neighbourhood (nearest 

N-user neighbourhood or threshold-user neighbourhood) and recommender 

abstraction (Ricci, et. al., 2011). A clustering algorithm is an unsupervised machine 

learning technique that facilitates grouping a large number of entities together that 

share a similarity. This clustering approach helps in discovering patterns within 

complex unstructured datasets and assists in forming a hierarchy of datasets to 
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discover relationships. To perform clustering, Mahout calculates small intra-cluster 

distances by determining local and global minima and then calculates large inter-

cluster distances using Mahout’s Canopy clustering MapReduce algorithm to 

compute initial cluster centroids (Apache Mahout Canopy Clustering, 2012).  

 

 
 

Figure 2.10: Apache Mahout (Apache Mahout Software Foundation, 2012) 

 
          In contrast, classification algorithms are supervised machine learning 

techniques that aim to determine whether a certain entity belongs to a group or 

category, or whether it does or does not have some attribute. To achieve this, Mahout 

initially performs some training on labelled data and then runs a classifier algorithm 

against unlabelled data to implement the classification. In this regard, Mahout can 

choose from a large number of classification algorithms, such as the maximum 

entropy classifier (Ratnaparkhi, 1997), the naïve Bayes classifier (Friedman, et. al., 

1997), decision trees (Kamath & Musick, 1998), SVMs (Cortes & Vapnik, 1995), 

KNN algorithms (Dasarathy, 2002) and the perceptron scheme (Freund, 1999). While 

Mahout provides an effective approach for implementing machine learning 

techniques in a scalable fashion over multicore architectures, it suffers from certain 

key limitations (Apache Mahout Software Foundation, 2012): 
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 Mahout does not always scale as well as expected. Experimental results show that 

different data sizes with different algorithms can occasionally produce inefficient 

results, sometimes minus percentage speed-ups.  

 Experiments show that using Mahout for recommender systems can be inefficient 

in terms of high memory and resource consumption. 

 Its performance may not be comparable with specifically optimised schemes for 

certain datasets, but it still offers a great speed-up.  

     Moreover, in its current form, Mahout only works with a limited range of standard 

machine learning approaches, and it should be further optimised for specific 

algorithms. 

 

2.4.5 Google Pregel  

Pregel is an efficient, scalable and fault-tolerant framework that enables large-scale 

graph processing using a simple code. It is capable of performing computations over 

large graphs in a very fast fashion while hiding relevant distribution details behind an 

abstract application programming interface (API) (Malewicz, et. al., 2010). Its 

architecture is inspired and developed by the Bulk Synchronous Parallel (BSP) model 

(Valiant, 1990) that empowers the programmer to find parallel-computing solutions 

for a specific problem without having to know how communication and memory 

allocations are performed in a distributed setup. To minimise communication 

overhead, Pregel also tries to preserve data locality by moving the computations to 

where the data reside. The input-directed graph is loaded once during the start-up 

phase, and all following computations are performed in-memory. Pregel takes a 

directed graph as an input in which each vertex is uniquely identified with a string 

vertex identifier. Pregel has a master/slave model architecture where each worker 

receives a subset of the directed graph’s vertices to work with. Each vertex has an 

arbitrary value that can be get/set, and it also maintains a list of its outgoing edges. 

The directed edges are linked with their source vertices, and each edge is lined with a 

user-defined modifiable value and a target vertex identifier. A typical Pregel 
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implementation starts with the graph input, where the graph is first initialised. A 

sequence of processing iterations (super steps) is then performed, separated by a 

global synchronisation checkpoint, and this process continues until the algorithm 

terminates with an output (see Figure 2.11). As discussed previously, Pregel 

implements the BSP model when the master initiates an iteration, referred to as a 

super step. At every super step, workers execute a user-defined function on all of its 

vertices. Vertices can send/receive messages to other vertices, and those messages 

will be delivered in the next super step. Within each of the super step iterations, 

vertices can update their value, make changes to the value of edges or even modify 

the topology of the graph by adding or removing vertices/edges. Vertices also have 

the power of ‘vote to halt’. The execution is terminated when all vertices vote to halt 

and there are no more messages to be delivered. A problem arising from this type of 

processing is that a vertex program should keep running in the background to send 

out update messages, but there is a chance that some vertices converge earlier than 

others, resulting in a waste of CPU resources. 

 

 

 

Figure 2.11:  Pregel data model (Percolator, Dremel & Pregel, 2012) 
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     In addition, algorithms like Pregel, which follow the BSP computational model, 

can suffer from the straggler problem, where the transient slowdown of any 

processing thread can slow down the whole system. In fact, in the BSP approach, 

tight synchronisation requirements in each iteration can have a significant adverse 

effect on the overall performance of the scheme. Pregel is a simple parallel 

processing framework with many opportunities for improvement, and it has led to the 

invention of several other graph processing approaches, including Apache Giraph 

(Apache Giraph, 2013), GPS (Salihoglu & Widom, 2013) and Mizan (Khayyat, et. 

al., 2013). 

 

2.4.6 GraphLab  

A team from Carnegie Mellon University started the GraphLab project in 2009 to 

create a scalable computing framework for large-scale data processing, incorporating 

the requirements of parallel abstractions tailor-made for machine learning (ML) 

applications (GraphLab Open Source, 2009). They initially suggested a shared-

memory approach referred to as GraphLab 1.0, and they later introduced GraphLab 

2.1 for distributed environments. The latest release, GraphLab PowerGraph version 

2.2, introduces a new set of capabilities through the use of a new API to increase 

usability. The GraphLab algorithm was initially developed based on the common 

computational characteristics of machine learning approaches to provide an effective 

and scalable framework for building machine learning schemes. GraphLab achieves 

its goal by targeting common patterns in ML, such as sparse computational 

dependencies, asynchronous iterative computation along with sequential consistency 

and prioritised ordering (Low, et. al., 2010). 

 

2.4.6.1 GraphLab 1.0 

The GraphLab data structure consists of a directed data graph and a shared data table. 

The data graph represents both problem-specific sparse computational dependencies 

and the program state, which can be modified during execution. Each vertex and 

directed edge in the graph can be allocated an arbitrary block of data by the user. 
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Further, and to support a globally shared state, a shared data table is established by 

implementing an associative map between some given keys and arbitrary blocks of 

data. Computations in GraphLab are conducted using either an update function or 

through the sync mechanism. The update function is analogous to the map function in 

MapReduce, where local computations are performed as instructed by the input data 

graph. A difference here is that the update function in GraphLab can read and update 

overlapping sets of data (program states) in a controlled manner, and this process can 

be permitted to occur in a recursive fashion, thereby enabling dynamic iterative 

computations. GraphLab maintains the prioritised ordering of update functions by 

using powerful scheduling primitives. The sync mechanism is analogous to the 

reduce function in MapReduce, and it enables reductions to occur while update 

functions are in progress. A difference here is that the sync operation in GraphLab, 

unlike Reduce function in MapReduce, can run concurrently with the Update function 

(Low, et. al., 2010). GraphLab 1.0 exhibits very effective ‘scatter’ capability, where 

an update to a single vertex can be efficiently communicated across the network to all 

target machines, thereby minimising the amount of data replication. This is a 

significantly powerful advantage over Pregel, where excessive data replication is 

needed to transmit vertex data modifications. In contrast, GraphLab 1.0 suffers from 

an inefficient ‘gather’ capability that does not allow each vertex to effectively ‘pre-

combine’ its target data. In fact, the update function in GraphLab 1.0 needs full 

access to the entire scope rather than the aggregated value, which in turn results in 

excessive unnecessary communications that waste network bandwidth (Low, et. al, 

2012). Further, the majority of today’s natural graphs have an uneven power-law 

degree distribution (Faloutsos, et. al., 1999), where most vertices have a limited 

number of neighbours and a few vertices have many neighbours (e.g., LinkedIn, 

Facebook, Twitter). GraphLab 1.0 works well on low-degree vertices within small 

neighbourhoods; however, when dealing with power-law graphs in real-life scenarios, 

the job of graph partitioning in GraphLab 1.0 becomes very complex, if not 

impossible, to implement (Gonzalez, et. al., 2012). 
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2.4.6.2 GraphLab 2.2 (PowerGraph Abstraction) 

To address the aforementioned inefficiencies in the design of GraphLab 1.0, the team 

at Carnegie Mellon University introduced GraphLab 2.2, known as PowerGraph 

(Gonzalez, et. al., 2012). PowerGraph brings together the best offerings of both 

GraphLab 1.0 and Pregel (see Figure 2.12). From GraphLab 1.0, PowerGraph 

inherited the data graph concept and the shared-memory approach of computation. 

From Pregel, PowerGraph received commutative, associative and gather concepts as 

part of its implementation strategy. PowerGraph supports both Pregel’s highly 

distributable bulk synchronous form of computation and GraphLab 1.0’s efficient 

asynchronous computational model. PowerGraph achieves better efficiency by 

introducing a new way of partitioning power-law graphs. In the new approach, edges 

in the graph are tied to machines, and high-degree vertices can span machines. 

 

 

 

Figure 2.12: PowerGraph solution to power-law graphs  

(GraphLab Open Source, 2009) 

 
     PowerGraph positions ‘gather’ and ‘scatter’ phases into the abstraction and 

directly exploits the ‘gather-apply-scatter’ (GAS)’ decomposition to factor vertex 

programs over edges (see Figure 2.13). This approach distributes the computation of 

a single vertex program over the entire cluster and eliminates the degree dependence 

of the vertex program (Gonzalez, et. al., 2012). Both GraphLab and PowerGraph 

suffer from varying communication volumes due to power-law fan-in and fan-out 

because they do not take into account edge direction when synchronising data.  
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Figure 2.13: Gather-apply-scatter (GAS) decomposition  

(GraphLab Open Source, 2009) 

 
     However, PowerGraph performs significantly better and communicates 

remarkably less, due to the efficacy of the vertex cuts. While the above discussed 

parallel processing frameworks provide efficient tools for processing large data, 

adding higher and complex data representations within the model will vastly improve 

its usability and provide an important pattern recognition based data analysis option. 

For this purpose, in the following two sections, a detailed discussion on machine 

learning and pattern recognition is provided. This discussion will form the basis for 

the proposals later presented in chapters 3 & 4 to explore new methods for 

partitioning and distributing data in the clouds and propose detailed 

recommendations, with supportive data and prototypes, for optimally developing 

future data management models in the Internet. 

 

2.5 Machine Learning and Pattern Recognition  

Broadly speaking, ML is ‘a branch of artificial intelligence, concerned with the 

construction of programs that learn from experience’ (Daintith & Wright, 2008). A 
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concept closely related to ML in general and classification in particular is ‘pattern 

recognition’. Pattern recognition is the automatic detection of regularities in data 

using computer algorithms and upon detection of such regularities, taking appropriate 

actions (Bishop, 2006). In most cases, the discovered regularities – also referred to as 

patterns – are further utilised to build models to represent real-world scenarios. Based 

on these developed models, which can be viewed as approximations of the real world, 

possible actions include categorising data into different groups and making 

predictions about future data trends based on the observed data (Alpaydin, 2004). 

Past computational experiences have shown that one of the most promising methods 

for building models and designing classifiers involves learning from example patterns 

(Duda, et. al., 2001). The corresponding approaches, which are typically referred to 

as ML, often include large volumes of training data or past experiences in order to 

accomplish their task. Moreover, the schemes utilised for pattern recognition and ML 

often tend to be complicated both in terms of training and computation time. A big 

burden for the adoption and integration of pattern recognition and ML techniques into 

real-world processing systems is the mathematical complexity and sophistication 

involved in adapting them for specific problem domains. Such schemes often have 

many parameters representing concepts that are usually not very straightforward for 

developers, and their performance behaviour is remarkably sensitive to the way the 

underlying pattern recognition modules are deployed and interconnected. 

 

2.5.1 Pre-processing 

Pre-processing is the foundation of a pattern recognition system for which some 

given raw data must be pre-processed and prepared by applying application–specific 

pre-processing algorithms before they can be fed into the system. For instance, 

document images often have to be binarised before conducting any sort of optical 

character recognition (OCR) or layout analysis. In other cases, the input data may be 

incomplete because of missing values, while the intended ML scheme does not 

process incomplete datasets. In this regard, an appropriately designed pre-processing 

stage would help with filling these gaps in the dataset – for example, by averaging or 
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using other proper statistical approaches. The pre-processing phase may also include 

steps to remove outliers or noise from the dataset. Therefore, choosing and applying 

the right pre-processing method will have a significant effect on further steps taken 

by the pattern recognition system. 

 

2.5.2 Feature Selection 

Generally, the patterns to be processed and categorised are represented by various 

measurement metrics referred to as features. To recognise patterns, a proper set of 

features must be chosen. These features must satisfy certain aspects in order to be 

most effective. They must be distinguishing enough for the patterns in the domain, 

invariant to irrelevant modifications of the input data, and sufficiently compact in size 

to minimise memory and resource consumption and computation time. Moreover, 

they should be easily extractable while being insensitive to noise. The selection of 

features may require prior knowledge of the problem domain, but choosing 

appropriate features is often a tricky task, and it sometimes involves lengthy 

evaluations. 

 

2.5.3 Model Selection 

The performance of a classifier also relies on the scheme that is utilised to 

approximate the real-world situations. More accurate approximations result in better 

classification rates and improved predictions. The challenge here is that various 

classes of models offer different real-world approximations for different problem 

domains. It is worth noting that the volume and quality of available sample data are 

important determining factors, as different classes of models exhibit different levels 

of robustness against noisy data. In addition, performance requirements may come 

into play when choosing a model. 

 

2.5.4 Training, Testing and Optimisation 

After selecting a classification scheme, it should be evaluated against example data. 

As a result, it must be applied on a data subset, also referred to as training data. The 
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output of this training phase forms a model that has to be further tested and examined 

in a subsequent testing phase by using a data subset called test data. One issue here is 

that the computation time for each phase may become quite excessive depending on 

the schemes used. In particular, the large number of iterations occurring within the 

training and testing phases during parameter optimisation may require significant 

computational requirements. A solution to this problem for the more effective 

deployment of ML techniques can be achieved by utilising parallelism within the 

system. As a result, the system can be empowered to use many processors, and even 

an excessive number of processing machines, at the same time. This is where the 

concept of distributed computing comes into the picture. 

 

2.6 Distributed Approach for Large-scale Pattern 

Recognition 

Distributed pattern recognition (DPR) can be an effective alternative for large-scale 

data-processing-related problems, where the recognition process is performed across 

a distributed system. Many past DPR approaches looked into creating a distributed 

architecture for pattern matching and placed less emphasis on the algorithmic 

approach. The focus on distributed architecture can create a strong dependency on the 

hardware implementation, resulting in inflexible schemes that cannot scale well to the 

size of today’s data. An algorithmic-based DPR approach, which is scalable and 

independent of any hardware framework implementation, has yet to be fully 

developed. In this regard, the applicability of using a pattern recognition scheme for 

Internet-scale data processing is an open issue that needs to be addressed. To 

overcome this, several techniques are suggested in the literature, including data 

reduction, active learning and distributed models for large-scale recognition. 

Nevertheless, a common denominator of such schemes is buried in the algorithmic 

complexity of the employed recognition models. In fact, any effective DPR scheme 

for large-scale data analysis should be able to extract relevant information in the most 

efficient manner.  
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     DPR for big data processing is a relatively unexplored area because pattern 

recognition is mainly considered problem-specific; until recently, there had been little 

focus on developing scalable recognition solutions for large-scale data analysis and 

processing. In addition, the complexity of existing schemes restricts their application 

for big data domains. A number of initiatives are proposed in the literature to target 

distributing recognition processes across a distributed environment, but they mostly 

suffer from achieving an effective parallelism strategy. In this regard, the neural 

network approach is believed to offer a promising mechanism for providing large-

scale recognition. The scheme can achieve this efficiency by optimally distributing 

parallel computation tasks across the network to be implemented by a large number 

of interconnected neurons. Nevertheless, there are some major issues that need to be 

addressed including, the convergence problem, complicated iterative learning 

processes and low scalability due to training data. Hence, any scalable scheme for 

DPR should handle the following three recognition stages in the most effective 

manner possible: the learning stage, the processing stage and the training stage.      

  

2.6.1 Learning Approach 

The learning approach for pattern recognition schemes is a critical component in 

determining how efficient and effective the approach is when implementing pattern 

matching. Some of the prominent approaches discussed in the literature are Hebbian 

learning (Hebb, 1988), incremental learning (Schlimmer & Granger, 1986) and one-

shot learning. Learning stage for pattern recognition schemes is a critical component 

in determining how efficient and effective the approach is when implementing pattern 

matching. Hebbian learning is a well-recognised learning approach based on the 

synaptic plasticity model. In this technique, the output of a neuron can have a 

significant effect on the input to other neurons. The Hebbian learning scheme is a 

classical approach when dealing with spatio-temporal recognition problems in auto-

associative neural networks. Most of the existing neural network techniques use 

Hebbian learning in their learning stage, including Hopfield (Hopfield & Tank, 1985) 

and feed-forward neural networks (Nadal, 1989). Nevertheless, the technique suffers 
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from potential saturation and catastrophic forgetting, which make the approach not 

scalable for big data processing.  

     The incremental learning technique was developed as a solution to scalability 

issues encountered in pattern recognition applications (Song, Liu, Zhang & Yang, 

2008). Incremental learning works by distributing the training data into a number of 

subsets, with each subset going through the training phase independently. Following 

this, the outputs from each training stage will be combined to yield the final result. 

This approach can simplify the issue of large training sets considerably, specifically 

for ML applications such as SVMs (Mavroforakis & Theodoridis, 2006). Moreover, 

the division of large training sets into smaller chunks helps the scheme to scale better. 

Nevertheless, the incremental learning technique does not function well enough when 

handling large-scale patterns. The reason is that more computational resources are 

needed to deal with larger patterns. In addition, the algorithm is tightly coupled and 

requires the implementation of kernel functions, which makes it computationally 

costly (Schlimmer & Granger, 1986). One-shot learning was developed based on the 

concept of a system using minimal initial data to learn information. Existing 

implantations of this technique use the probabilistic approach; a well-known example 

is the Bayesian classifier (Fei-Fei, Fergus & Perona, 2006; Miller, Matsakis & Viola, 

2000). This one-shot learning method is similar to incremental learning in the sense 

that the learning stage continues with the introduction of new patterns. Graph Neuron 

(GN) (Khan & Mihailescu, 2004) also implements one-shot learning, but from a 

different perspective. The GN executes its learning algorithm using a neuron-

adjacency comparison model that will be discussed later in this chapter. 

 

2.6.2 Processing Approach 

To achieve higher-speed processing for pattern recognition, one alternative is to 

distribute the input space within the scheme by enabling the parallel processing of 

recognition processes. Most of the existing neural network recognition approaches 

are iterative in nature, including the Hopfield network (Hopfield & Tank, 1985), the 

back-propagation neural network (BPNN) (Wythoff, 1993), the convolutional neural 
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network (LeCun & Bengio, 1995) and the fuzzy neural network (Kasabov, 1996). 

This iterative mode of processing makes these techniques time- and resource-

intensive. As a result, they cannot efficiently scale with an increase in the size of the 

pattern domain. Moreover, current neural network approaches have mostly been 

developed for single–processor environments, while they are also tightly coupled. To 

overcome these issues, new approaches, which offer higher distribution and 

parallelism of data and processing, are yet to be realised. 

 

2.6.3 Training Approach 

Training in the recognition context refers to an approach where the scheme starts 

learning from a sample dataset to perform an actual recognition task. This training 

phase can be performed within a single cycle or multi-cycle, and depending on the 

nature of the application and its specific requirements, the training dataset size can be 

small or large. To meet generalisation purposes, current deterministic pattern 

matching approaches usually require very large training datasets to maintain all of the 

necessary characteristics of the actual data. Further, existing schemes usually perform 

multi-cycle training. Single-cycle training can be performed using the GN technique 

introduced by Khan (2002). The learning phase involves recognising adjacency 

values between the GNs rather than calculating weight values between the nodes, as 

is the case in the Hebbian and incremental learning schemes. The training phase in 

the GN is implemented using a single cycle, allowing faster pattern matching and 

recognition. 

  

2.7 Graph Neuron for Scalable Recognition 

Lazy learners mainly pass the computational cost to the recognition phase. Graph 

Neuron (GN) provides a theoretical limit on the number of steps required in the 

recognition stage (Nasution & Khan, 2008), and thus those of interest for this thesis. 

The GN is based on a special type of associative memory (AM) model that is readily 

implemented within distributed architectures. AM is a subset of ANNs that utilises 

the benefits of content-addressable memory (CAM) in microcomputers (Chisvin & 
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Duckworth, 1989). It is also one of the important concepts in associative computing. 

In this regard, the development of AM has been largely influenced by the evolution 

of neural networks. As discussed previously, existing AMs generally apply the 

Hebbian learning rule or kernel-based learning approach. Thus, these AMs remain 

susceptible to the well-known limits of these learning approaches in terms of 

scalability, accuracy and computational complexity. It has been suggested in the 

literature that graph-based algorithms provide various tools for graph-matching 

pattern recognition (Muhamad Amin, Khan, & Mahmood, 2009), while introducing 

universal representation formalism (Baqer & Khan, 2007). The main issue with most 

graph-based approaches lies in the significant increase in the computational expenses 

of the deployed methods as a result of the increase in the size of the pattern database 

(Khan, 2007). This increase places a heavy practical burden on the deployment of 

those algorithms in clouds for data-intensive applications and real-time data 

processing/database updating. However, as will be shown in the next few sections, 

none of the GN-based approaches are very sensitive to an increase in the size of 

pattern databases. This insensitivity is one reason why the GN exists. 

 

2.7.1 Graph Neuron Architecture 

The GN is a finely distributed parallel pattern recognition scheme that maintains data 

relationships in a graph-like memory structure. The GN framework and its data 

representations are analogous to a directed graph, where the processing nodes of the 

GN array are mapped as the vertex set Ѵ of the graph, and the inter-node connections 

(i.e., the communication channels) belong to the set of edges, Е. The communications 

are restricted to the adjacent nodes (of the array); hence, there is no increase in the 

communication overheads with corresponding increases in the number of nodes in the 

network (Khan et al., 2004). The information presented to each of the nodes is in the 

form of a (value, position) pair. Each of these pairs represents a data point in a two-

dimensional pattern space. Hence, the GN array converts spatial/temporal patterns 

into a graph-like structural representation and then compares the edges of the graph 

with subsequent inputs for memorisation or recall (see Figure 2.14). 
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Figure 2.14: An input pattern BABBC is stored in a GN array where each  

row of the array represents a value and each column represents a position 

 
     The graph-based techniques may be applied for pattern recognition at the cost of 

computational cycles exponentially increasing with the increase in the number of 

stored patterns (Trajan & Trojanowski, 1984). The GN avoids these increases by 

performing the computations over a fine-grained parallel processing network, and it 

eases network bottlenecks through adjacent node communications. As far as we are 

aware, there is no other method in the literature that truly implements a scalable and 

accurate single-cycle AM model within neural networks. Morphological associative 

memories (MAM) apparently provide one-shot learning; however, the length of the 

learning cycle cannot be fully estimated a priori, and it depends on the size and 

number of stored patterns (Sussner & Valle, 2006). Single-cycle learning within the 

GN is achieved by sidestepping the commonly used error/energy minimisation 

approaches within ANNs. The GN array is designed to hold all possible solutions for 

the problem domain. The array can thus find the solution in a single cycle (i.e., a 

fixed number of steps). This is in contrast with the error/energy minimisation 

approaches, which generally start from a random point in the problem space and 

progressively close in on the solution. Hence, error/energy minimisation approaches 

tend to become costlier and inaccurate for larger problem sizes. We have successfully 

implemented the GN array in the simplest form for pattern recognition and aim to 

make it readily developed into a fully featured AM system. The resultant single-cycle 
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AM will transform the way complex data are currently processed by replacing 

iterative processes with a fixed number of steps. An abbreviated explanation of the 

approach is provided in the following subsection. 

 

2.7.1.1 Single-cycle Learning Approach 

The GN stores new patterns and recalls previously encountered patterns by executing 

a fixed number of steps. An input pattern Ƥ is represented as a set of ρ(value, 

position) pairs. These inputs are mapped onto a real or virtual processor array by 

using the adjacency characteristics of the input; for example, alphabets and numbers 

would have their inherent adjacency characteristics, and images would have 

frequency bands, intensity and spatial coordinates as the adjacency characteristics per 

pixel. For a reference pattern domain Ʀ, the GN array must represent all possible 

combinations of Ƥ in Ʀ. Hence, each GN node is initialised with a distinct pair ρ from 

the input domain Ʀ. Further, each GN node executes an instance of the full code 

associated with the GN algorithm. Hence, the computation overhead imposed on all 

nodes is the same. Each GN node maintains an updated list, called the ‘bias array’, 

which records the position(s) of its adjacent GN node(s) activated during a pattern 

input. The bias array is populated during the learning phase of the GN. Figure 2.15 

depicts learning of four simple patterns, wherein pattern P1 comprising a string 

‘ABBD’ is learnt by nodes GN(A,1) GN(B,2)  GN(B,3)  GN(D,4) of the 

array. The learning by these GN nodes occurs in the following stages: 

 Mapping of input patterns: Input patterns in the form of ρ(value, position) pairs 

are sequentially broadcast through the network. Based on its predefined position 

and value setting, each node responds to the relevant input pair, disregarding the 

remainder of the pattern. From Figure 2.15, a node with a predefined value = ‘A’ 

and position = 1 will respond to the first sub-pattern/pair of pattern P1 (ABBD) – 

that is, value = ‘A’ occurring at position = 1. It will ignore the rest of the message 

and this will process continues for other patterns. 

 Synchronisation phase: A broadcast signal is sent out to all of the nodes to mark 

the end of the incoming pattern. 
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 Bias array update: During this phase, each activated node contacts all of the 

adjacent nodes to find out which ones responded to the input. Figure 2.15 shows 

that for the input pattern P1(ABBD), Node GN(A,1) will update its local bias 

array with the entry {GN(B,2)}. Similarly, Node GN(B,2) will update its bias 

array with the entry {GN(A,1), GN(B,3)}. Thus, each bias array entry records the 

adjacent nodes being activated within a particular pattern input phase. That is, 

each row of the bias array comprises a list of the adjacent GN nodes activated 

during the input. A new pair is defined as the one that has a different set of 

adjacent GN nodes to all existing rows of the bias array. A new pattern is found 

when at least one GN within the list of activated GNs cannot find a matching 

entry in its bias array. In this stage, new patterns are stored and previously 

encountered patterns are recalled. Our tests show that the memory requirement 

per GN node to maintain the bias array does not increase disproportionately with 

the increase in the number of stored patterns. As shown in Figure 2.15, the 

maximum bias array size (three) occurs only in GN(C,3) after storing all patterns.      

 

 
 

Figure 2.15: Four arbitrarily chosen patterns – P1: ABBD, P2: ACCB, P3: BACA, 

P4: ABCD – have been stored in the GN array.  The maximum bias size is three for 

storing four patterns, indicating that the storage requirement per node would not 

disproportionably increase with the increase in the stored patterns. 
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     The first and second stages of the GN learning phase take place in a parallel and 

decentralised manner. The results must be gathered from all activated GNs in third 

stage to make a memorisation/recall decision. Computational complexity for all three 

stages of the GN is mainly dependent on: (1) inter-node communication delays, (2) 

hardware/software latency per node and (3) delay in updating the local bias arrays. 

Hence, the total time needed to store or recall a pattern generally remains independent 

of the number of nodes present within a GN array. The scalability tests, with up to 

16,384 nodes, show that computational complexity only increases nominally with 

increases in the size of the network (Baqer, Khan, & Baig, 2005). The distributed 

graph-based representation of patterns within the GN bias arrays would be valuable in 

segmenting spatio-temporal databases for classification. Spatio-temporal databases 

are multidimensional in nature. They capture both spatial and temporal relationships 

among stored objects, and they support efficient data retrieval (Theodoridis, et. al., 

1996). These databases may be used to retrieve past information; as well as for future 

predictions based on the current dataset. In contrast with traditional database systems, 

spatio-temporal databases usually represent spatial and temporal data – for example, 

object trajectory – as motion functions and spatial relationships such as distances and 

adjacencies (Tao, et. al., 2003). With its graphical pattern recognition characteristics, 

the GN can act as an ideal platform for the storage (and subsequent retrieval) of 

complex features within the stored patterns. The pattern recognition process itself will 

be efficient, and the storage of large pattern databases will be facilitated by the 

distributed nature of the GN. The order of event occurrence would be preserved by 

the GN owing to its directed graph-based representation of the stored patterns. Hence, 

the temporal aspects of the dataset can be readily analysed alongside the spatial ones 

using the universal graph-based representation of patterns with the GN. Among 

various applications of the GN-based AM, an input pattern in GN pattern recognition 

may represent bit elements of an image (Khan & Muhamad Amin, 2007) or a 

stimulus/signal spike produced within a network intrusion detection application 

(Baig, et. al., 2006). 
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2.7.1.2 GN Pattern Crosstalk Problem 

It may be seen in the bias array update process that each GN only requires its own 

input pair value and the values of its adjacent GNs to analyse a pattern. Hence, the 

limited perspective of GNs can lead to inaccurate results. Several GNs could recall 

their sub-patterns simultaneously, leading to a full recall. However, the recalled 

pattern may not have been presented before. For example, assume that a GN array 

can receive patterns comprising six possible values, a, b, c, d, e and f, and five 

possible positions. After memorising input patterns abcdf and fbcde, the array is 

presented with the pattern abcde. The array would raise a false recall, indicating the 

pattern abcde has already been memorised by the array. To understand this 

occurrence, we need to examine the GN scheme. Under this scheme, five of the GNs 

would recall sub-patterns: ab, abc, bcd, cde and de. Among these five, two of the 

GNs are at edge columns and thus only report shorter sub-patterns (i.e., ab and de). 

The recalls of all five sub-patterns are correct from each active GN’s perspective, but 

the overall recall of the pattern by the array is incorrect. The GN communications 

will need to be extended to a layered communication schema to solve the crosstalk 

problem. In such a schema, each of the GN layers would propagate its local decision 

(i.e., memorisation or recall) to the layer above it. The layers can preserve the original 

GN functionality. In such a scenario, the topmost GN layer will be responsible for the 

fusion of all localised decisions into a final memorisation or recall decision. The 

pattern overlap problem can also be solved by increasing the length of the mapped 

bits to minimise the pattern overlaps. In doing so, we can lower the overall 

computational complexity within our technique without adding to the communication 

cost. The layered approach will handle noisy and distorted patterns by progressively 

adjusting the GN recognition criteria in the layers. 

 

2.7.2 Hierarchical Graph Neuron (HGN) 

The HGN extends the original GN algorithm to form a highly resilient distorted/noisy 

pattern recogniser with an average distortion tolerance within 15% to 20% (Nasution 

& Khan, 2008). The HGN comprises three layers of processing nodes, namely base, 
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middle and top layers (see Figure 2.16). The base layer acts as the input layer for the 

pattern recognition process, with all processing nodes at this layer receiving input 

patterns from the test dataset. The activated HGN nodes in this layer send an index 

value to the upper layers. A unique index value is generated for every new input 

pattern. The middle layers receive indices from the base layer after comparing them 

with the adjacent nodes, and the selected indices are then sent to the upper layer. The 

top layer decides whether the input pattern should be considered a new pattern for 

memorisation, or whether it is classed as an existing pattern for recall.  

 

 

 

Figure 2.16: HGN with pattern size of seven and two possible  

values within the pattern (Nasution & Khan, 2008) 

 
     The HGN expands the capability of ‘perceiving neighbours’ within the network by 

adding higher layers of GNs that see all of the pattern information and provide a 

bird’s eye view of the overall pattern. Figure 2.16 illustrates a HGN structure that is 

only used in pattern recognition applications involving one-dimensional patterns. 

However, for applications that involve complex patterns with higher dimensionality, 

the HGN can easily be expanded to two, three or even multidimensional hierarchies. 

Figure 2.17 depicts examples of a HGN composition for a two-dimensional pattern of 

size 35 (7 × 5) and a three-dimensional pattern of size 105 (7 × 5 × 3).  
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Figure 2.17: HGN compositions of (A) 2-D (7x5) and (B) 3-D (7x5x3)  

for pattern sizes 35 and 105, respectively (Nasution & Khan, 2008) 

 
     In an interesting side effect, increasing the dimensions of a HGN network 

topology results in fewer processing neurons in the hierarchy. This will significantly 

improve the performance of the system when dealing with large-scale patterns. For 

example, given a one-dimensional pattern of size 105, the total number of GNs 

required is: 105 + 103 + 101 + . . . + 3 + 1= 2809. A two-dimensional (15 × 7 = 105) 

GN composition requires: 15 × 7 + 15 × 5 + 15 × 3 + 15 + 13 + . . . + 3 + 1 = 279 

GNs. In this example, increasing the dimensionality by one led to an approximate 

90% reduction in the number of GNs in the composition (Nasution & Khan, 2008).   

 

2.7.2.1 HGN Communication Approach 

HGN implementation follows a graph-based pattern representation approach similar 

to the original GN. However, to end up with a hierarchical structure with a top neuron 

overseeing the overall pattern, there is a requirement to have an odd pattern size. As 

result, for every even-length pattern, a ‘dummy’ value will be inserted at the end of 

the pattern to ensure that the HGN hierarchy can be formed as per requirements. 

There are a number of steps in the HGN pattern-matching model, including a 

recognition process occurring at every layer within the hierarchical structure. The 
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HGN communications procedure is as follows: the base layer of the HGN first 

processes the incoming pattern, where each neuron that receives an input will become 

an active neuron. Each active neuron in the base layer will then send its ρ(value, 

position) pair to all of the adjacent neurons to inform them that it is active. For each 

of the active neurons in the base layer, the ρ(value, position) pairs received from the 

adjacent nodes will form the bias array entry for the current input pattern. At the end 

of this process, each of the non-edge neurons should have received two pairs from its 

adjacent nodes, while the ones on the edges should have received one. At this stage, 

each active neuron must calculate its bias array index. If the incoming pair 

combination is matched with an existing entry in its bias array, then the index of the 

entry will be noted. Otherwise, a new index will be generated and stored to reference 

the new combination. Each of the active non-edge neurons then sends its index to the 

corresponding neuron in the same column but in the higher layer. This process will 

continue until the top-layer neuron is reached. The top-layer neuron will be in the 

position of deciding whether the input pattern should be treated as a new pattern and 

stored, or whether it should be treated as a previously visited pattern and recalled. 

Upon making its decision, a new index value will be sent downward for a stored 

pattern, and an existing index value will be sent downward for a recalled pattern. The 

bias array structure in the HGN follows the same principles as the bias array 

formation in the original GN. Nevertheless, it has been altered to cater for the 

recognition processes of higher-layer neurons based on adjacency comparison 

information provided by lower-layer neurons. The process of forming the bias array 

is as follows: 

 For neurons in the base layer, their bias array entry takes the form {left, right}, 

where left and right represent the row number of left-adjacent and right-adjacent 

neurons, respectively. 

 For neurons in the middle layer, their bias array entry takes the form of 

{left_index, lower_index, right_index}, where left_index, lower_index and 

right_index represent indices obtained from its left, lower (within the same 

column) and right neurons, respectively. 
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 The bias entry structure of the top-layer neuron is in the form of {lower_index}, 

which is obtained from its lower-layer neuron (within the same column). 

 

     The HGN is highly accurate when dealing with noisy patterns, however, the HGN 

implementation requires large computational resources (large number of processing 

nodes). 

 

2.7.3 Distributed Hierarchical Graph Neuron  

The functionality of the HGN is further extended by dividing and distributing the 

recognition processes over the network. This distributed scheme minimises the 

number of processing nodes by reducing the number of levels within the HGN. This 

transformation of the HGN into an equivalent distributed hierarchical graph neuron 

(DHGN) composition allows, on average, an 80% reduction in the number of 

processing nodes required for the recognition process (Khan & Muhamad Amin, 

2007). Therefore, the DHGN can substantially reduce the computational resource 

requirement, from 648 processing nodes to 126 for the case shown in Figure 2.18.  

 

 

 

Figure 2.18: Transformation of the HGN structure (top) into an equivalent  

DHGN structure (bottom) (Khan & Muhamad Amin, 2007) 
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     This figure shows the divide-and-distribute transformation from a monolithic 

HGN composition (top) to a DHGN configuration for processing the same 35-bit 

patterns (bottom). The base of the HGN structure in the figure represents the size of 

the pattern. Note that the base of the HGN structure is equivalent to the cumulative 

base of all DHGN subnets/clusters. The DHGN allows the recognition process to be 

conducted in a smaller sub-pattern domain, hence minimising the number of 

processing nodes, which in turn reduces the complexity of the pattern analysis. In 

addition, each subnet is only responsible for memorising a portion of the pattern 

(rather than the entire pattern). A collection of these subnets can form a distributed 

memory structure for the entire pattern. This feature enables recognition to be 

performed in parallel and independently. The HGN and DHGN provide higher levels 

of accuracy by introducing a hierarchal network topology. Moreover, the 

communication overhead in both schemes is minimal considering the adopted parallel 

and distributed mechanisms. However, the scalability of the HGN and DHGN 

techniques is not well suited for large-scale data-processing problems, as the number 

of required nodes can increase significantly with the increase in the size of the pattern 

space, and none of them can effectively fulfil scalability requirements for Internet-

scale pattern recognition; consequently, new schemes need to be proposed. 

 

2.8 Conclusion 

The efficiency of the cloud system in dealing with data-intensive applications through 

parallel processing essentially lies in how data are partitioned among nodes and how 

collaboration among nodes is handled to accomplish a specific task. As a result, and 

to address the aforementioned concerns in relation to data storage and retrieval in the 

cloud, any data access schemes should aim to handle partitioning between processing 

nodes, as well as node collaborations, in a robust manner. These two features are still 

lacking in current data access mechanisms. Hence, new data management approaches 

need to be investigated for cloud computing environments. This chapter presented a 

comprehensive study of the current data-parallel frameworks for cloud data 



67 
 

processing, and it explored different approaches to large-scale data processing. The 

pros and cons of each approach were examined in relation to the scalability and 

adaptability requirements of big data processing. This chapter also presented a 

detailed analysis of how neural network approaches can open a new pathway for 

accessing data in highly distributed environments by discussing some of the major 

schemes presented in the literature. The investigation revealed that existing neural 

network techniques are far from providing a suitable scalable framework for large-

scale recognition purposes. However, initiatives are currently being undertaken to 

establish more effective approaches using existing neural network algorithms. 

     One of these initiatives is the development of the GN – a single-cycle AM 

algorithm – to implement a scalable AM device through its parallel in-network 

processing framework. The GN uses a graph-based model for pattern learning and 

recognition. One of the peculiarities of this technique is the employment of parallel 

in-network processing capabilities to address scalability issues effectively, which is a 

major concern in graph-based approaches. The limited perspective of GNs, owing to 

purely adjacency-based computations, was widened through the HGN approach for 

distorted pattern recognition, which is the first distributed pattern recognition scheme 

that specifically targets WSN as the platform. The HGN provides a bird’s eye view of 

the overall pattern structure and hence eliminates the crosstalk issue in pattern 

recognition. The HGN is highly accurate regarding noisy patterns. However, HGN 

implementation requires relatively larger computational resources in terms of the 

number of processing nodes. In addressing this limitation, the DHGN has been 

developed as an extension of the HGN. DHGN implementation involves the 

decomposition and distribution of patterns into sub-patterns, and recognition 

processes occur at the sub-pattern level. In doing so, the number of processing nodes 

required is significantly reduced. Nevertheless, the DHGN still suffers from 

scalability issues, as the size of the network increases significantly with the increase 

in the size of input pattern space. 

     The main contribution of this chapter was to conduct a detailed review of scalable 

pattern recognition requirements and the shortcomings of existing techniques in the 
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literature. We hypothesise that fundamental changes and improvements in data access 

and movements are possible and beneficial for cloud-based processing. In this regard, 

AM concepts open a new pathway for accessing data in a highly distributed 

environment that will facilitate a parallel-distributed computational model to 

automatically adapt to the dynamic data environment for optimised performance. The 

problem is to marry such concepts with relevant advanced parallel processing 

patterns. With this in mind, the remaining chapters will target a new type of data-

processing approach that will efficiently partition and distribute data for clouds and 

facilitate content-based access for a wide range of applications. Thus, a fully DPR 

scheme that can work with a parallel-distributed computational model such as 

MapReduce will provide a reusable cloud-based framework for a range of 

applications, from image search and sensor data analysis to planetary monitoring and 

the control of cyber-physical infrastructure, mobile equipment and devices. The 

ability to partition data optimally and automatically will allow elastic scaling of the 

system. Moreover, improved data management, where data are optimally and 

automatically distributed, will improve application performance through efficient 

data access. 
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Chapter 3 
 

 

Edge Detecting Hierarchical Graph 

Neuron (EdgeHGN) 
 

 

 

 

 

 

 

 

The performance of associative learning schemes can be substantially improved by 

dividing patterns into sub-patterns and then distributing them across multiple 

computational networks. This improvement is due to two main reasons: (1) the 

scalability of the recognition scheme will be reasonably improved due to the 

distributed nature of the process, and (2) the distribution of patterns into sub-pattern 

domains enables better-controlled error encapsulation in a specific subnet, resulting 

in a more accurate approach. In this regard, the GN-based schemes have been 

designed and structured based upon two fundamental concepts of graph-matching 

and associative memory, providing them with acceptable levels of scalability for 

implementation. Moreover, their simple one-shot (single-cycle) learning mechanism, 

along with their lightweight algorithm, make them suitable for performing pattern 

recognition on distributed systems while incurring low computational and 

communication costs. In the previous chapter, Graph Neuron (GN), Hierarchical 

Graph Neuron (HGN) and Distributed Hierarchical Graph Neuron (DHGN) 

approaches are discussed.   
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     This chapter will discuss the algorithmic design and architecture of the newly 

proposed scheme, referred to as Edge Detecting Hierarchical Graph Neuron 

(EdgeHGN), and its performance for distributed large-scale data-processing schemes 

will be analysed in detail. To achieve better scalability and higher effectiveness when 

performing pattern matching, EdgeHGN performs its recognition functions using 

fewer processing neurons, resulting in reduced computational complexity and 

minimised processing requirements. It also provides a high level of parallelism by 

enabling recognition processes to be executed as a composition of sub-processes that 

are being handled in parallel across a distributed processing environment. This sub-

process functionality is conducted in a purely independent manner, making the 

scheme less cohesive compared to many other pattern matching algorithms.    

   

3.1 Associative Memory Concept for Pattern Recognition 

Associative Memory (AM) for pattern recognition refers to a set of learning networks 

or functions that provide an association between input and output. According to 

Roman-Godinez, et. al., (2009), Associative Memory М is a system that offers an 

input-output association relationship as follows: α → М → β, where α and β are 

input and output respectively. From this perspective, each input vector will be 

associated with an output vector, which will be well represented in the form of a 

fundamental set of associations: {(αμ
, βμ

) | μ = 1, 2, ..., ρ}. This set is a priori 

knowledge that needs to be known to the AM system. For pattern recognition 

purposes, there will be two types of AM, namely auto-associative memory and 

hetero-associative memory. Auto-associative memories are content-based memories 

that can recall a stored sequence when they are presented with a fragment or a noisy 

version of it. In auto-AM, the system performs a recognition task on an input pattern 

that is presented to the AM system and generates its associated output pattern. As a 

result, for a given set of associations (αμ
, βμ

), the auto-AM rule is true with the 

following condition:  

 

αμ = βμ       ,     ∀μ ∈ {1, 2, ..., ρ}                                             (3.1) 



71 
 

 

 

Figure 3.1: Auto-associative memory network to determine  

whether the input vector is ‘known’ or ‘unknown’ 

 
     Figure 3.1 represents an auto-associative memory network to determine whether 

the input vector is ‘known’ or ‘unknown’ to the system. In this figure, the training 

input and the target output are the same. In this setup, the stored vector can be 

retrieved from the distorted input if the input is sufficiently similar to it. The network 

performance is judged based on its ability to reproduce stored patterns from the noisy 

input. The network recognises the known vector by producing a pattern of activation 

on the output units of the network, which is the same as one of the vectors stored in it. 

The auto-associative framework enables the AM system to pass through input 

patterns towards output patterns without any changes because the input/output 

patterns have similar characteristics. The Hopfield network is an example of an auto-

AM system. Conversely, hetero-AM system follows the rule of association in a way 

that incomplete input patterns can also result in complete output patterns. Here, the 

training input and target output are different. The weights are determined in such a 

way that the network stores a set of pattern associations. Hence, in terms of the 

association set (αμ
, βμ

), the following rule applies where: 
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 αμ ≠ βμ         ,     for ∃μ ∈ {1, 2, ..., ρ}                                      (3.2) 

 

     In this scenario, given a distorted pattern Ṗ of original pattern Ƥ as input, the AM 

system is capable of recalling pattern Ƥ. Bidirectional associative memory (BAM) is 

one of the neural network schemes that adopts this hetero-AM approach. Hetero-AM 

also enables a recognition task to be performed on patterns with different sizes, such 

as the work presented by Kosko (1988). AM approaches such as the Hopfield 

network and fuzzy associative memory (FAM) (Kosko, 1992) are computationally 

intensive and iterative in nature. Conversely, Morphological Associative Memory 

(MAM) (Ritter, et. al., 1998) offers a solution within a single iteration, and hence 

provides single-cycle learning. However, MAM is a tightly coupled algorithm and 

relies on global maximum/minimum computations; thus, it is not readily distributed. 

GN-based schemes including HGN and EdgeHGN implement an auto-AM approach 

in their recognition process. In fact, the GN algorithm can recall patterns that have 

been memorised by the network. The memorisation phase could be executed either in 

the pre-execution stage (supervised recognition) or instantaneously as part of the 

recognition process (unsupervised recognition). The scalability features of EdgeHGN 

and other GN-based algorithms have been further contributed to by the adaptation of 

the auto-AM approach. EdgeHGN features will be further investigated in detail in the 

following sections in this chapter. 

 

3.2 Pre-processing and Dimensionality/Content Reduction  

Pre-processing is an important task that needs to be carried out before any recognition 

procedure. The main objectives of pre-processing are to reduce the quantity of data 

being analysed, while simultaneously enhancing its quality. It is considered a pre-

requisite for most pattern recognition systems due to its critical influence in ensuring 

that pattern data are in the specific form that suits the algorithm or implementation. 

Moreover, raw pattern data might need to be normalised beforehand to ensure that the 

data are well distributed and do not contain any outlier values. When dealing with 

complex data such as images, environmental sensory readings, biomedical and 
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biochemical structural data, the dimensions of the data involved are usually at higher 

dimensions (more than one). The dimension of the data is the number of variables 

that are measured on each observation. High-dimensional datasets present many 

mathematical challenges. One of the problems with high-dimensional datasets is that, 

in many cases, not all of the measured variables are important for understanding the 

underlying phenomena of interest (Donoho, 2000). While certain computationally 

expensive novel methods can construct predictive models with high accuracy from 

high-dimensional data, it is still of interest in many applications to reduce the 

dimension and complexity of the original data prior to any data modeling (Breiman, 

2001). From this perspective, two different approaches could be carried out to reduce 

the data complexity in terms of its dimensionality:  

 Structural reduction: In this approach, the structure of the data will be reduced 

into a lower dimension. This can be achieved by projecting the data by linear 

transformations into lower-dimensional sub-spaces. 

 Content reduction: For high-dimensional data, if no data reduction is carried out 

before inputting the patterns to classifiers, the computation required may be too 

heavy. Hence, by using specific data reduction techniques, we can obtain a 

reduced representation of the dataset that is much smaller in volume, but that also 

produces the same (or almost the same) analytical results.  

 

     In the following section, these two approaches are discussed in relation to 

EdgeHGN implementation. 

 

3.2.1 Structural Reduction 

Structural reduction in EdgeHGN pre-processing involves the reduction of the 

structural composition of patterns from a high-dimensional structure into its 

corresponding low-dimensional representation. In this approach, pattern data 

undergoes structural deformation, while the contents or elements within the pattern 

remain intact. Further, structural reduction works on the basis that the structure of the 

data is unlikely to be significant in determining the characteristics of the pattern. 

Consider two-dimensional binary images with the size of 7 x 5 bits (i.e., 35-bit 
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image), as shown in Figure 3.2. In the structural reduction approach, this image will 

be re-arranged in the form of one-dimensional bit-string. This rearrangement enables 

the algorithm to work on patterns in a low structural dimension. 

 

 

Figure 3.2: Structural reduction on binary character images 

 
     Hence, from the perspective of the EdgeHGN’s implementation, this approach 

enables each subnet to conduct a recognition process using a simple one-dimensional 

EdgeHGN subnet structure. Therefore, it reduces the structural complexity of 

EdgeHGN subnets within the network. An advantage of using this structural 

reduction approach is that it reduces the structural complexity of patterns while 

maintaining the integrity of the contents or elements within these patterns. Hence, the 

content information in each pattern is preserved. A limitation of this approach is that 

it loses the structural information related to the pattern. In this context, the structure 

of the pattern or data is unknown to the system. Consider the same images as in 

Figure 3.2. The EdgeHGN pattern recogniser does not have the knowledge that the 

image represents the character E. Rather, it acknowledges the bit information and its 

association between neighbouring pixels in a one-dimensional formation. 

 

3.2.2 Content Reduction 

Content reduction involves the process of the selection or extraction of features from 

data, to be used in a pattern recognition system. It also transforms the data from high-

dimensional space into its equivalent low-dimensional format. Some examples of 
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dimensionality reduction techniques include principal components analysis (PCA) 

(Abdi & Williams, 2010), linear discriminant analysis (LDA) (Martinez & Kak, 

2001) and local linear embedding (LLE) (Gashler & Martinez, 2011). The 

dimensionality reduction approach allows the recognition system to obtain the best 

and most cost-efficient data representation that has been extracted from the original 

raw data obtained from sensory devices or from surroundings. For this purpose, in 

our proposed EdgeHGN model, and as part of the pre-processing phase, we reduce 

redundant data content for recognition by applying a lightweight hybrid drop-fall 

algorithm on the input pattern. This results in fewer processing neurons, which in turn 

results in a lower communication overhead within the scheme (see Figure 3.3).       

 

 

 

Figure 3.3: EdgeHGN progressively removes unnecessary nodes from  

the two dimensional data using drop-fall for content reduction 

 
     In Figure 3.3, a descending-left drop-fall algorithm is applied on the input pattern, 

reducing the number of processing nodes for each EdgeHGN subnet from 49 to 39. 

This reduction will minimise communication costs, and having an edge detection 

feature within the scheme can improve recognition accuracy to a high degree. 

Further, fewer neurons will result in a lower response time, which is of high interest 

for real-time pattern matching problems. 

 

3.2.2.1 Drop-fall Algorithm 

A drop-fall algorithm is often used for dividing touching pairs of digits into isolated 

characters (Congedo, et. al., 1995). A drop-fall algorithm simulates the path produced 

by a drop of water falling from above the character and sliding downwards along the 

contour under the action of gravity. The dividing path produced by the drop-fall 
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algorithm depends on three aspects: a start point, movement rules and direction. 

Based on this simple description of the method, the main issue that needs to be 

addressed in its implementation is the starting point. There are several methods 

available to decide where to start the drop-falling process. Dimauro, et. al., (2009) 

outlined a method that does this quite robustly. In this method, the pixels are scanned 

row-by-row until a black boundary pixel with another black boundary pixel to the 

right of it is detected, where the two pixels are separated by only white space. This 

pixel is then used as the point from which to start the drop-fall (see Figure 3.4). 

 

 

 

Figure 3.4: Pixel from which to commence the drop-fall 

 
     After the initial pixel is found, the next step is to begin the actual drop fall. The 

drop-falling algorithm is designed to mimic falling, so it will always move 

downwards, diagonally downwards, to the right or to the left. Figure 3.5 shows the 

directions that the algorithm will move in according to the current pixel position and 

its surroundings. The standard version of the drop-fall algorithm described above falls 

down and to the left/right of the pattern character. In other variations of the algorithm, 

they do not necessarily initiate from the top or fall down. Bottom-left or bottom-right 

drop-falls are identical in principle to the original drop-fall algorithm, except that 

they initiate from a pixel at the bottom of the image and fall up and to the left or right 

of the pattern. Despite the apparent similarity between the variations of the drop-fall 

heuristics outlined above, they often provide very different segmentation paths for 

various test examples. 
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Figure 3.5: Movement rules for Drop-fall algorithm 

 
     For any of the drop-fall heuristics, it is easy to find cases where they work well 

and where they do not work well. This principle will provide the basis for the 

construction of a hybrid heuristic method that makes use of all of the aforementioned 

drop-fall variations. In the case of EdgeHGN, a hybrid drop-fall heuristic approach 

will be applied to the pattern to ensure it is producing the least number of processing 

neurons while maintaining all required character data bits for recognition (see Figure 

3.6). 

 

 

 

Figure 3.6: Hybrid drop-fall heuristic approach on character data patterns 
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3.3 EdgeHGN Computational Architecture 

An important aspect in the development of the pattern recognition scheme is in 

algorithmic design. A proper design will lead to high efficiency and will have the 

ability to generate a more accurate classification strategy. GN-based algorithms have 

been developed based on two different concepts, namely graph-matching and 

associative memory. These two concepts provide an added advantage in terms of 

scalability for GN-based algorithm implementations. GN can perform pattern 

recognition processes on distributed systems due to its simple recognition procedure 

and lightweight algorithm. Further, the GN incurs low computational and 

communication costs when deployed in a distributed system. This section presents the 

algorithmic design of a newly proposed Edge Detecting Hierarchical Graph Neuron 

(EdgeHGN) algorithm for distributed pattern recognition scheme for large-scale 

datasets. The proposed approach extends the scalability of the existing GN 

implementations (HGN and DHGN) by reducing computational requirements in 

terms of the number of neurons for recognition processes, while providing 

comparable recognition accuracy. EdgeHGN provides a capability for the recognition 

process to be deployed as a composition of sub-processes that are being executed in 

parallel across a distributed network. Each sub-process is conducted independently, 

making it less cohesive compared to other pattern recognition approaches. 

     As mentioned above, the EdgeHGN scheme formalises a distributed version of the 

HGN by dividing and distributing patterns into sub-patterns and hence utilising a 

clustering approach for pattern recognition. Each of the sub-patterns undergoes a one-

shot recognition procedure, and the results of the sub-recognition tasks will 

cumulatively add up to obtain the final recognition result. The EdgeHGN network 

constitutes a number of EdgeHGN subnets and a stimulator/interpreter module (SI 

module) node. Figure 3.7 shows the complete architecture of the EdgeHGN network. 

It illustrates a decomposition of the binary image pattern A into sub-patterns. The SI 

module node performs this composition process after the hybrid drop-fall pre-

processing scheme is applied to reduce redundant content.  

 



79 
 

 

 

Figure 3.7: EdgeHGN framework for distributed pattern recognition 

 
     The input activates the GN nodes corresponding to the bits of the input pattern. In 

doing so, each pattern element within a sub-pattern is mapped to the relevant GNs in 

the respective subnet. Each subnet integrates its responses and sends the results back 

to the SI module to form an overall response. Figure 3.7 also illustrates the fact that 

communication within the EdgeHGN network occurs in a single-cycle fashion, where 

each pattern is passed through the network only once. This recognition process results 

in either a ‘recall’ (pattern is known) or ‘store’ (pattern is memorised). Moreover, 

within each EdgeHGN subnet, the recognition process involving communication 

between GNs occurs once for each sub-pattern, eliminating the need for any iterative 

mechanism while offering a fast recognition approach. The EdgeHGN disseminates 

the recognition processes at sub-pattern levels, allowing the processes to be 

conducted in a smaller sub-pattern domain. Further, the recognition processes within 

each sub-pattern are independent from other sub-patterns, thereby enabling them to 

be distributed across the network. The EdgeHGN implementation has been already 

conducted in a cloud environment. A further discussion of this will be presented in 

Chapter 4. The cloud environment provides the facilities for the EdgeHGN to 

distribute the recognition functions effectively within multiple networks or domains 

and enables an efficient resource management scheme for its implementation. 
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3.3.1 Two-stage Recognition Procedure 

The EdgeHGN framework introduced in the previous subsection consists of two 

important entities, namely SI module and EdgeHGN subnets. The recognition of 

patterns mainly occurs within each EdgeHGN subnet after the hybrid drop-fall pre-

processing scheme is applied; however, in this instance, all that is known to each 

subnet is only a sub-composition of the overall pattern. This means that there is a 

need for the EdgeHGN system to restructure the overall information of the pattern 

and produce the result for the entire pattern – that is, regardless of whether the input 

pattern is known to the system. In this regard, there is a need for another phase of 

recognition involving the results of the recognition process executed within each of 

the subnets. Thus, the EdgeHGN distributed pattern recognition performs pattern 

analysis upon completion of two different phases: (1) sub-pattern recognition and (2) 

overall pattern reconstruction and recognition. It should be noted that these two 

phases occur consequently and within a single cycle of the recognition process. 

 

3.3.1.1 Sub-pattern Recognition Level 

In EdgeHGN implementation, the core recognition process is conducted at the sub-

pattern level after the hybrid drop-falling scheme is applied for the purpose of 

dimensionality/content reduction. There are four stages involved in this sub-pattern 

recognition level: 

 Stage 1: After receiving an input from the SI module, each of the activated GNs at 

the base layer will send a signal message to other nodes in the adjacent columns 

containing the row number/address of the activated node. The activated nodes at 

the edge of the layer will only send the activation signal messages to the GNs in 

the penultimate columns.  

 Stage 2: All active GNs at the base layer will then update their bias arrays. If the 

bias entry value, biasent(left , right), received from both the activated nodes in the 

preceding and succeeding columns, have been recorded, the index of the entry 

will be sent to the respective GN in the same position at the higher layer. If the 

biasent(left , right) value is not found within the bias array, then a new index will 
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be created and sent to the GN node in the higher layer. Note that active nodes at 

the edges of the base layer will not be communicating with higher-layer nodes 

because there is no node present at the edges of the higher layer due to the 

pyramid-like structure of the EdgeHGN subnets. 

 Stage 3:  The GN nodes at the layer above the base that receive a signal message 

containing the index of the bias entry that has been created or recalled from Stage 

2 will be activated. A similar process as in Stages 1 and 2 will occur. However, 

the contents of the signal messages from the preceding and succeeding columns 

will be in the form of biasent(left , middle , right) for non-edge nodes and either 

biasent(left , middle) or biasent(middle , right) for edge nodes. The values for 

left, middle and right are derived from the indices retrieved from the lower-layer 

nodes. For instance, left is for the preceding GN node’s index received from its 

lower-layer counterpart. After the message communication between adjacent 

nodes has been completed, the active GNs will update their bias arrays and send 

the store/recall index/indices to the node at the same position in the higher layer 

(except for the GNs at the edges). This stage will be repeated for each layer above 

the base layer until it reaches the top-layer GN nodes. 

 Stage 4: One of the top-layer GNs will receive a bias index from a GN in the 

layer underneath it. This top-layer activated node will search its bias array for the 

index. If the index is found, this node will trigger a recall flag with the recalled 

index. Otherwise, it will trigger a store flag and store the new index in its bias 

array. It will then send a signal message to the SI module with the message format 

{subnet_id , status , index}, where the status is either recall or store. The signal 

message sent by the top-layer active GN marks the completion of the recognition 

at the sub-pattern level. In an EdgeHGN implementation, lower bias arrays are 

updated whenever a new entry is found.  

 

3.3.1.2 Pattern Reconstruction and Recognition Level 

Recognition results obtained by the SI module from all subnets within an EdgeHGN 

network require further analysis to derive an overall recall of respective input sub-
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patterns. In accommodating this analysis, two different methods have been 

considered, namely recall percentage and voting methods. These two methods differ 

in terms of the mechanism being adopted. The following section compares and 

contrasts these two approaches from an accuracy perspective. 

 

     Recall percentage method: The recall percentage method underlines the use of 

bias indices obtained from all GNs within each subnet. The main principle of this 

approach is that the recall/store decision is mainly based on the cumulative decisions 

of all GNs within the network. This method requires an additional procedure to be 

conducted by each EdgeHGN subnet for index collection before the final recognition 

result is submitted to the SI module. For each sub-pattern introduced into the subnet, 

and after all recognition processes have been completed, the activated top GN will 

collect all index information from all GNs underneath it. These indices will then be 

compiled and structured with the format (index:count). The outputs will then be sent 

to the SI module using the message format {subnet_id , (index1:count1) , 

(index2:count2) , ... , (index :count )} for all   indices recalled or stored. Some of 

the advantages of recall percentage implementation for recognition at the pattern level 

include its high recall value precision in terms of the percentages of pattern indices 

being recalled. In this context, for a given input pattern, the EdgeHGN can present its 

precise recall value. The EdgeHGN also has the capability to analyse pattern 

composition based on the previous input patterns that have been stored within the 

network. However, the recall percentage method comes with a number of limitations. 

These include its effect on EdgeHGN recognition accuracy, where a slight change in 

the structure of the sub-pattern, due to distortion or noise, will affect the index 

calculation of the entire subnet. The recall percentage method also raises an issue of 

the level of confidence of the outputs of the system.  

 

     Voting method: In the domain of pattern recognition, there has been a recent 

movement towards combining the decisions of several classifiers to arrive at 

improved recognition results. Most of the existing pattern recognition schemes apply 

the rejection technique to remove highly distorted patterns in the classification 
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procedure. This technique adopts the rejection/accuracy rate as a parameter to 

indicate levels of similarity of patterns. The technique offers a precise mean to obtain 

a good classification measurement. However, it is mostly suitable for deployment 

within a single-decision system in which the classification is conducted using a single 

classifier/recogniser. With a move towards distributed pattern recognition and/or 

classification, an important decision-making mechanism is needed to combine all 

decisions (in terms of accuracy/rejection) made by each classifier. A possible method 

for combining decisions on classification is the voting method. There are several 

forms of voting available in the literature, including majority, common-consent, 

unison and unanimity voting (Battiti & Colla, 1994; Kuncheva, 2004). Among all of 

the voting combination methods, majority voting is by far the simplest for 

implementation. It does not assume prior knowledge of the behaviour of the 

individual classifiers, and it does not require training on large quantities of 

representative recognition results from the classifiers. In EdgeHGN implementation, 

majority voting is used to obtain a combined decision on the recalls made by each of 

the subnets within a recognition network. The majority voting concept that has been 

adopted for EdgeHGN implementation follows the work by (Cruz et. al., 2007). For 

each recognition process, the decision of whether the input pattern has been 

recognised (i.e., recall) or is new to the network (i.e., store) is determined by 

obtaining majority consent from all EdgeHGN subnets. From this perspective, for a 

pattern to be recalled, the network should confirm that most of the sub-patterns 

belong to the respective input pattern. In this pattern reconstruction and recognition 

process, the SI module will initially receive all of the results of the recognition at the 

sub-pattern level from all of the EdgeHGN subnets. After all of these messages have 

been received, the actual recognition process is conducted. There are two stages 

involved at this level: 

 Stage 1: All of the indices received from the EdgeHGN subnets for original 

patterns are stored in a two-dimensional vector matrix   = {m11, m12, ..., m  }. 

The width of the matrix is equivalent to the size of the pattern,  , while the height 

corresponds to the number of stored patterns,  . 
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 Stage 2: Calculate the frequency of the indices for each test pattern. All of the 

indices for the test pattern are stored in a vector V = {ν1, ν2, ..., ν }. The width of 

the matrix is also equivalent to the size of the pattern. If an entry in vector V gives 

the list of indices as {1, 2, 2, 2, 1}, this indicates that three subnets have given a 

recall result of pattern 2 while two subnets have given a recall result of pattern 1. 

Therefore, by using the voting approach, the pattern will be recalled as pattern 2. 

 

     Consider that Ƥ is an array of stored patterns Ƥ = {ρ1, ρ2, ..., ρn}, where   

represents the number of patterns being stored. For any pattern ρx to be recalled, 

maximum vote      
  

 , should be obtained using the following equation: 

   

                                        
  

 = arg max (νx)     ,     x ∈                                                (3.3) 

 

     Where νx represents the voting element of pattern ρx in voting vector Vρ. It is 

worth noting that in the EdgeHGN approach, the recognition process for each pattern 

occurs in a single-cycle containing a fixed number of steps.  

 

3.3.2 Bias Array Design 

In EdgeHGN implementation, patterns are stored in the form of associations between 

its elements. This is somewhat different from other neural network approaches, in 

which patterns are stored as the composition of values. The pattern storage 

mechanism adopted by the EdgeHGN is in the form of a bias array, similar to the 

techniques used by the GN and HGN approaches as described in Chapter 2. However, 

the bias array capacity for the EdgeHGN minimises the storage requirement for input 

patterns because the bias array design limits the growth of storage elements within 

each GN through the use of the index(left,  right) format of bias entry for one-

dimensional input patterns. Moreover, the application of the drop-fall pre-processing 

stage reduces the number of GN nodes within each subnet significantly, resulting in 

minimised bias array size for pattern storage. For example, consider a comparison 

between an EdgeHGN bias entry and feed-forward neural network storage 

requirement capacities for each neuron, given different binary pattern sizes used in 
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the networks. In the feed-forward network, each neuron requires input from all of the 

elements within a particular pattern. Given a pattern ρ with   input elements (i.e., 

size) and   dimension, each neuron must be able to memorise    
combinations of 

patterns. Conversely, the EdgeHGN only requires a maximum 2  storage capacity for 

each neuron for memorisation. In this perspective, the EdgeHGN offers significantly 

higher storage efficiency compared to the feed-forward neural network. A further  

evaluation of the storage capacity of the EdgeHGN will be discussed in later sections. 

 

3.4 EdgeHGN Communication Framework 

Each EdgeHGN subnet is derived from a composition of interconnected GNs. The 

size of the subnet depends on the number of different elements in the sub-pattern and 

the size of the sub-pattern after applying the drop-fall scheme. Therefore, to define 

the size of each subnet, we consider the number of GNs   required for a sub-pattern 

of size  , composed of   different elements given by the following equation: 

 

                                                                       
      

 
  2                                                                                  (3.4)

 

 

3.4.1 Network Generation 

For the EdgeHGN scheme to perform the recognition of patterns, it must first be 

generated. Network generation involves the construction of the SI module node and a 

collection of EdgeHGN subnets. The SI module node is a control node that is 

responsible for managing the inputs and outputs among the EdgeHGN subnets. The 

distribution of EdgeHGN subnets within the network depends on the pattern 

decomposition by the SI module. Given a pattern vector Ƥ = {ρ1, ρ2, p3, ..., ρ } of 

size  , and sub-pattern length  sub (after applying the drop-fall scheme), the number 

of EdgeHGN subnets  sub that needs to be generated is determined by the ceiling 

function in Equation (3.5): 

                                                          sub =    
 

    
   ,  sub                                                   (3.5) 
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     The GN nodes within an EdgeHGN subnet are structured hierarchically, where the 

number of GN layers,  GN, required within an EdgeHGN subnet is given by: 

 

                                                                    GN =  
        

 
                                                                                     (3.6) 

 

     At base layer  base, the number of GNs generated,  base, is equal to the size of the 

sub-pattern multiplied by the number of different elements  ,  base =  sub ×  . At 

middle layer   , the number of nodes    varies according to the level of the layer   in 

the hierarchy, except for the top layer. Therefore,    =   ( sub – 2 ). At the top layer 

 top, the number of processing nodes required is equivalent to the number of different 

elements  . Hence,  top =  . In the network generation stage, the SI module is also 

responsible for initialising the EdgeHGN subnets. The initialisation involves the 

communication of possible input values to the base-layer GN nodes before the actual 

store/recall operations can start. The message communication between the SI module 

and base-layer GN nodes (within each EdgeHGN subnet) is conducted using a 

specific message communication protocol that has been developed for bitmap 

patterns. The SI module sends the possible input values to each EdgeHGN subnet 

using the instruction, message format. For example, if binary values are to be 

communicated, then the message would be initialise(0,1). Each initialisation message 

received by the base layer GN nodes is used to coordinate the GN nodes within the 

base-layer, where each node represents a specific position.  

 

3.4.2 EdgeHGN Communications 

The EdgeHGN communications involve a message-passing mechanism, in which a 

single processing node communicates with other nodes to exchange messages. It is 

composed of two different types, namely macro- and micro-communication. In 

macro-communication, communication costs at the system level are taken into 

account (i.e., communications incurred between the SI module and the EdgeHGN 

subnets). Conversely, micro-communication deals with GN communications within a 

particular subnet for each pattern introduced into the system. 
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3.4.2.1 EdgeHGN Macro-communications 

Macro-communication in the EdgeHGN occurs between the SI module node and 

either base- or top-layer GNs in each subnet. It occurs at three different phases: 

 

     Network generation phase: The SI module is responsible for communicating 

possible input values of the patterns to all base-layer GNs within EdgeHGN subnets. 

Equation (3.7) shows the number of messages that need to be communicated by the 

SI module to these GN nodes,  SI → sub: 

 

                                                      SI → sub =  sub ×  sub ×                                                  (3.7) 

 

     In this equation,  sub represents the number of available subnets. This equation is 

based on the assumption that all EdgeHGN subnets are of the same size. The 

messages communicated from SI module to each GN are in the form of (instruction, 

message format) as described earlier. 

 

     Pattern input phase: Upon the generation of all EdgeHGN subnets, the SI module 

starts performing a divide-and-distribute process on the input pattern, decomposing it 

into a number of sub-patterns according to the number of subnets available. 

Consequently, these sub-patterns will be sent to each subnet within the network. 

However, in the actual format, the SI module will communicate directly with each 

GN at the base layer of each EdgeHGN subnet. Hence, the number of messages 

communicated is similar to the number of messages in the network generation phase, 

as in Equation (3.7). 

 

     Result communication phase: After the recognition process in each EdgeHGN 

subnet has been completed, the results (in terms of recall or store) will be 

communicated back to the SI module for further analysis. In this communication, 

messages in the form of (subnet_id , status , index) will be sent to the SI module by 

all top-layer GNs of each subnet. In regards to the communication cost, the total 

number of messages communicated from the subnets to the SI module,  Sub → SI is 

equivalent to the number of subnets available,  sub. Hence,  Sub → SI =  sub. 
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3.4.2.2 EdgeHGN Micro-communications 

The following relations describe the micro-communications involved between GNs 

within each EdgeHGN subnet ( : number of different elements,  : sub-pattern size): 

 

     Base layer: For each GN in the base layer, the number of message 

communications incurred could be derived from the number of messages 

communicated between adjacent neurons for each input sub-pattern. For GNs at the 

edge of the base layer, the number of communication exchanges is equivalent to the 

number of different elements within the sub-pattern. For non-edge GNs, the 

communication is required between adjacent neurons in both the preceding and 

succeeding columns, as well as the communication of bias indices to the GNs at the 

next higher layer. In this context, the number of message exchanges is  2
+1. The 

cumulative communication costs involved for each input recognition process for all 

GNs in the base layer of an EdgeHGN subnet is derived from the following equation: 

 

                                          base = (( 2
+1) (  – 2) + 2 )                                               (3.8) 

 

     Middle layers: While the communication costs for GNs in the middle layers are 

similar to those for the base layer, the difference is in the number of nodes available 

within each layer. For each middle layer  , where 1 ≤   ≤ top−1, the number of 

message exchanges that occurs for sub-pattern recognition could be derived as: 

 

                                         = (( 2 + 1) (  – (2  + 2)) + 2 )                                    (3.9) 

 

     Equation (3.8) presents the cumulative communication costs for all GNs in the 

middle layers: 

                                 
      =   

      
   (( 2 + 1) (  – (2  + 2)) + 2 )                     (3.10)   

               
     Top layer: These GN nodes are only responsible for communicating the final 

index for each sub-pattern stored/recalled to the SI module. The costs for 

communicating these indices have been included in the macro-communication 

evaluation.  
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3.5 EdgeHGN Algorithms and Functions 

The original EdgeHGN implementation comprises four important functions: the SI 

module, voting, adjacency comparison and bias calculation. The SI module function 

deals with how patterns are communicated from the SI node to all other GN nodes 

within all subnets. Three distinguished commands have been used, namely ‘init’, 

‘store’ and ‘abort’. These represent initialisation, recall/store and abort processes, 

respectively. This function communicates directly with each subnet via the base-layer 

GNs (see Algorithm 3.1). 

 

Algorithm 3.1: SI Module Function 

Determine the top GN id from sub-pattern size GNtop = 2 × (
      

 
)
2  

 

 

 

     The voting function implements the voting procedure for the results of the 

recognition performed at the sub-pattern level. Each subnet will communicate each 

index retrieved, idx, to the SI module node. The SI module node will then perform 

this function (see Algorithm 3.2). 
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Algorithm 3.2: Voting Function 

 

 

 

     The adjacency comparison function involves a process of communicating entries 

between adjacent GNs within each EdgeHGN subnet. Once a particular GN is 

activated, it will perform this function to obtain sub-pattern entries from adjacent 

nodes. This function produces bias entries for the bias calculation function. Note that 

in this pseudo-code, we implemented binary pattern recognition, in which each layer 

within the EdgeHGN subnet consists of two levels of GN. Level 0 corresponds to 

value 0, while Level 1 reflects value 1 in binary patterns (see Algorithm 3.3). The 

bias calculation function performs the bias matching process within the bias array 

structure of each GN node. Each bias entry received will be matched with stored 

entries. If an entry is found, then the index will be recalled. Otherwise, a new index 

will be generated (see Algorithm 3.4). 



91 
 

Algorithm 3.3: Adjacency Comparison Function (Base Layer)  

 

 

 

Algorithm 3.4: Bias Calculation Function 
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3.6 EdgeHGN Time Complexity and Scalability Analysis 

A series of analysis for EdgeHGN implementation were conducted. These 

evaluations focus on the recall time, complexity and scalability of the algorithm.  

 

3.6.1 Time Complexity 

Table 3.1 represents the terms that we will use to estimate the time complexity: 

 

Table 3.1: EdgeHGN total recall time complexity terms 

 

Symbol Explanation 

 c Communication time: the time it takes for the network to send or receive a 

message from a GN 

   Interaction time: the time it takes to send messages between nodes within the 

bias array 

   Searching time: the time it takes to search a bias entry in the array per entry 

   Overhead time: it is a small time overhead per node due to hardware latency 

or the time required for a node to parse a message 

 α Access time: the time required for a node to read or write a bias entry in the 

array 

  Sub-pattern size 

   Number of rows of GN nodes within a layer. 

   Number of layers with an EdgeHGN subnet 

  
  Number of columns at the layer level   

  
  Number of columns at the base level in the subnet, equal to sub-pattern size   

  
  Number of entries in the bias array in a node at the layer level   

  
  Number of entries in the bias array in a node at the base layer 

  
  Number of entries in the bias array in a node at an edge of the layer level   

  
  Number of entries in the bias array of a top level node  

  
  Number of total bias entries in all bias arrays for an EdgeHGN subnet 

  
 ,  

 ,  
 ,   

  Times taken by each of the four stages of EdgeHGN sub-pattern recognition at 

level   

      
  Total time taken for performing EdgeHGN sub-pattern recognition stages at 

layer   

 total Total time taken to perform all recognition stages of an EdgeHGN subnet 
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     For a scalable pattern recognition scheme, especially when dealing with large 

datasets, the time complexity of the approach should not be heavily affected by an 

increase in the number of stored patterns. The recall time factor for the EdgeHGN 

distributed pattern recognition scheme could be determined from the total time it 

takes for the scheme to recall/store an input pattern. The following section represents 

the equations for calculating the time complexity of the EdgeHGN algorithm at 

different layers of the scheme. 

 

Base layer (0): 

                                                
  =      

  ( c  +   )                                                (3.11) 

 

                                                
  = 2      

 – 1) × (    +   )                                        (3.12) 

 

     The term    
 – 1) factor instead of   

  is due to the fact that both nodes at the 

edges each send messages to all nodes in one column only. It is assumed that the 

search happening within the bias array is a binary search. Thus, the terms 

        
  –         and        

  –        appear as the average number of steps 

required to perform a binary search for an entry in the bias array. 

 

                      
  =    

  – 2) (   [        
   –         ] +    +  α) +                           (3.13) 

                                  2 (   [        
   –         ] +    +  α)       

 

         
  =    {   

  [        
   –         ] – 2          } +    

   (   +  α)             (3.14)              

                  

     The following equation shows how to obtain the average number of steps: 

 

                                           #steps =        
                                                             (3.15) 

 

     The term  ( ) represents the probability of entry index   being accessed,         

represents the number of steps (worst case) to access the bias entry index  , and   

represents the number of entries in the bias array. Assuming that the access 

distribution of entries is uniform, then the value of  ( ) can be replaced by 1/ . The 

equation can therefore be modified as follows: 
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     #steps = 
 

 
         

 
       

 

 
           

 

 
   

 

      
         

 

 
                (3.16) 

 

            #steps   
      

     
 

 

     
 

 

      
            –         (1 - 

 

 
)               (3.17) 

 

                            for   >> 0    →   #steps           –                                   (3.18) 

 

     It is evident that the average number of steps of the binary search here would be 

considerably less than 0.5  of the exhaustive sequential search.  

 

                                       
  =        

  – 2) (   +   )     
  ( c +   )                            (3.19)       

 

     For the sake of simplicity, the functionality of each node is simulated within a 

thread, and the communication among the threads within the network is implemented 

using sockets. As a result, it is a safe assumption that the value of    and  c are very 

close to each other. For the remaining equations we simply replace them both with  e. 

 

              
  =   

    
    

    
  = (4     

 – 4   +   
 ) ( e  +   )     

                (3.20)       

 

Middle layer ( ): 

     For the next round of iterations at middle layer  , only   
  ,   

  and   
  are the 

contributors to the total value of       
 . As a result, Equations (3.12), (3.14) and 

(3.19) are all still valid for middle layer   as long as appropriate values of  

  
  and   

  are used for the relevant level index  . 

 

  
  = 2       

  – 1) × ( e  +   )                                         (3.21) 

 

            
  =    {   

  [        
   –         ] – 2          } +    

   (   +  α)           (3.22)     

          

                           
  =       

  – 2) ( e+   )     
  ( e  +   )                                       (3.23)       

 

                   
  =   

      
      

  = (3nr   
  – 4nr +   

  ) ( e  +   )     
                    (3.24) 
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Top layer (   -1): 

It is worth noting that at the top level   
     

 = 0. 

 

                          
     

 =    [        
   –         ] + (   +  α) =                             (3.25)       

                           [         –          –         ] + (   +  α) 

 

                                                          
     

 = ( e+   )                                                   (3.26)       

 

      
     

 =   
         

     
=    [       –         –       ]+(2   +  α +  e)     (3.27) 

 

     On the basis of Equations (3.11) to (3.27), we can now calculate the total time it 

takes for an EdgeHGN subnet to perform recognition across all stages of all layers of 

a subnet. Given that EdgeHGN subnets are processed in a purely independent parallel 

fashion using the single-cycle (one-shot) learning approach, this time calculation can 

reasonably stand for the time that it takes for the EdgeHGN to process an input 

pattern through the divide-and-distribute processing mechanism of its subnets.  

 

                                 total =       
          

      
           

     
                                         (3.28)       

              =        
              

  –          
                   

  
     
            

     
 

 

     As a result of the above calculations, the EdgeHGN recall time complexity is 

O( ), which clearly demonstrates the strength of this approach in providing a fast and 

low-complexity scheme for large-scale data analysis. An important aspect of the 

EdgeHGN implementation is the ability of the scheme to perform the recognition 

procedure within a single-cycle pass, without having to conduct an iterative training 

procedure to train the network for adaptation purposes. Rather, the EdgeHGN 

performs in situ recognition in which the training set can be memorised within a 

single pass (or cycle). This gives an edge to the EdgeHGN as a solution for large-

scale pattern recognition. 
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     The estimated recall time of an EdgeHGN network for processing 10,000 patterns 

(using Equation (3.28)) and the EdgeHGN actual recall time for processing the same 

number of patterns is plotted in Figure 3.8. As shown, the experimental findings 

closely match the estimated plot. The flat slope in both figures demonstrates that the 

EdgeHGN response time remains consistently insensitive to the volume of processed 

patterns. The spikes in actual timing of the EdgeHGN network processing is due to 

the time difference occurring in forming EdgeHGN subnets after applying Dropfall 

scheme. As a result, the EdgeHGN as a scalable associative memory framework is a 

suitable choice for processing large volumes of data.   

 

 

 

 

 

Figure 3.8: EdgeHGN estimated and actual recall times  

for processing 10,000 stored patterns  

 

3.6.1.1 Recall Time Comparative Study 

To further demonstrate the efficient time complexity of the EdgeHGN algorithm, the 

two-stage process of network generation and recognition are considered, and 
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comparisons have been made with two different algorithms: The Hopfield network 

and Kohonen Self-Organizing Map. However, it should be noted that the comparative 

study that has been carried out here does not intend to outweigh the capabilities of 

these algorithms. Rather, it indicates that the EdgeHGN has the capacity to acquire 

significantly low computational complexity for its operations. 

 

EdgeHGN v. Hopfield 

Network generation stage: This stage involves the formation of a network that 

comprises computing elements known as neurons. Table 3.2 shows the details of the 

Big-O notation derived for the Hopfield network and EdgeHGN implementations. 

The estimated time derived is based on the assumption that the instruction speed used 

is 1 microsecond (μsec) per instruction. In Hopfield network implementation, the 

number of neurons generated is equivalent to the size of the pattern. On the other 

hand, for EdgeHGN the number of neurons generated during network generation 

phase is equivalent to the number of neurons that are initialized within base layer of 

each EdgeHGN subnet as shown in equation 3.29 ( : number of elements within the 

pattern, Ƥ: pattern size,  : number of EdgeHGN subnets). 

 

                                                                
     =     Ƥ                                                 (3.29) 

 

Table 3.2: Big-O notations for Hopfield and EdgeHGN schemes in the network 

generation stage (Hopfield network, 2012) 

 

Algorithm Big-O Efficiency Iterations(n) Estimated Time (sec) 

EdgeHGN O( ) Linear          
              

                

Hopfield O( ) Linear Ƥ (pattern size)  Ƥ           

 

     The results show that both the EdgeHGN and Hopfield networks acquire 

comparable computational complexity. However, in regards to the number of neurons 

generated, the EdgeHGN incurred higher complexity. Taking parallelism into 
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account, for each EdgeHGN subnet, the number of neurons generated was less than 

the overall neuron initialisation within the network. Hence, the estimated time for 

network generation in EdgeHGN will be lower compared with the Hopfield approach. 

 

Recognition stage: The recognition stage is the core process within the pattern 

recognition application. Each algorithm uses a different approach to handle this 

process. In the Hopfield network, the recognition stage involves three sub-processes, 

namely weight accumulation, weight determination for the whole network and 

network propagation to derive an optimum solution. In contrast, EdgeHGN algorithm 

only implies a single-cycle process of recognition within the recognition stage. This 

process of recognition involves either store or recall process. Table 3.3 shows the 

Big-O notations derived from the analysis on the Hopfield network recognition 

process. Similarly, this is based on the assumption that the instruction speed used is 1 

microsecond (μsec) per instruction. The Hopfield network incurs a considerably high 

computational complexity, as indicated in Table 3.3, with respect to its weight 

determination and network propagation processes. The recognition stage for pattern 

recognition using the EdgeHGN algorithm involves a single-cycle process in which 

each input pattern will be passed through the EdgeHGN subnets once, and the store 

or recall process will be activated according to the instruction given. 

 

Table 3.3: Big-O notations for the Hopfield and EdgeHGN networks in the 

recognition stage (Hopfield network, 2012) 
 

 

Process Big-O Efficiency Iterations(n) Estimated Time (sec) 

Weight 

accumulation 
O( ) Linear Ƥ  Ƥ           

Weight 

determination 
O( 2) Quadratic Ƥ2 Minutes 

Network 

propagation 
O( K) Polynomial Ƥk Hours 

EdgeHGN O( ) Linear          
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     Table 3.3 shows the Big-O notation for the recognition stage using the EdgeHGN 

algorithm. From the Big-O notations derived from the analysis, it is best to conclude 

that the EdgeHGN incurs less computational complexity in pattern recognition 

processes as compared to the Hopfield network implementation. Specifically, the 

EdgeHGN employs a simple linear function, whereas the Hopfield network employs 

expensive polynomial and quadratic functions. 

 
EdgeHGN v. Kohonen SOM 

The Big-O notations for both the SOM and EdgeHGN have been estimated to study 

their complexity levels. The supervised SOM consists of three important stages: (i) 

weight initialisation, (ii) BMU calculation, and (iii) weight adjustment. In the weight 

initialisation stage, nodes are created with a random assigned weight. At this stage, 

the computational complexity depends heavily on the number of created nodes. 

Hence, for a given weight initialisation process  , the complexity of   nodes can be 

simplified as ⨍( ) = O( 3
). In the BMU calculation stage, the complexity depends 

heavily on the number of iterations during training as well as the number of the input 

vector. Hence, for a given BMU calculation process ρ, the complexity of   training 

iterations can be simplified as ⨍(ρ) = O( 4
). In the last stage, the weight adjustments 

are provided not only for the winning neuron, but also for its neighbours in a certain 

neighbourhood.  

     The Big-O for the weight adjustment is similar to the BMU calculation. 

Conversely, the EdgeHGN initialisation stage, as discussed previously, is a low-

computational process, and hence acquires less computational time in comparison to 

the SOM’s weight initialisation process. The computational complexity for the 

classification process is somewhat similar to the network generation process. The 

EdgeHGN classification process requires less computational complexity in 

comparison to the SOM’s BMU calculation and weight adjustment activities. In 

summary, the estimated time graph of the EdgeHGN algorithm is linear, while the 

corresponding graph of the SOM algorithm is exponential. This proves that the 

EdgeHGN provides a lightweight and fast algorithm comparable to the SOM. 
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3.6.2 Scalability Analysis 

Table 3.4 presents the terms used in this thesis to estimate the scalability analysis of 

the EdgeHGN algorithm. 

 

Table 3.4: EdgeHGN storage and communication complexity terms 

Symbol Explanation 

 Sub Size of sub-pattern 

 SI 


 Sub Number of message between SI module and GN nodes in the network generation stage              

   Number of rows of GN nodes within a layer 

   Number of EdgeHGN subnets within a network 

          
     Number of messages communicated from non-edge GN nodes in base layer 

     
     Number of messages communicated from GN nodes at the edge of base layer 

      
     Total number of messages communicated from GN nodes at base layer 

          
  Number of messages communicated from non-edge GN nodes at middle layer   

     
  Number of messages communicated from GN nodes at the edge of middle layer   

      
  Total number of messages communicated from GN nodes at middle layer   

      
       Total number of messages communicated between all GN nodes in subnet 

          
     Maximum size of bias array for each non-edge GN node at base layer 

     
     Maximum size of bias array for each GN node at the edge in base layer 

      
     Total maximum bias array size for all GN nodes in base layer 

          
  Maximum size of bias array for each non-edge GN node at middle layer   

     
  Maximum size of bias array for each GN node at the edge in middle layer   

      
  Total maximum bias array size for all GN nodes in middle layer   

      
   

 Maximum bias array size for all GN nodes in top layer 

      
       Total maximum bias array size for all GN nodes in EdgeHGN subnet 

    
    

 Size of messages in the network generation stage 

    
      Total size of messages communicated in the network generation stage 
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      The scalability factor for the EdgeHGN distributed pattern recognition scheme 

can be determined from two different aspects: storage capacity and communication 

efficiency. A high requirement for storage capacity would affect the scalability of the 

algorithm. For an efficient pattern recognition scheme, the storage requirement 

should not be heavily affected by an increase in the number of stored patterns, and the 

communication should stay relatively contention-free. Analyses have been conducted 

on the computational complexity of the EdgeHGN algorithm for pattern recognition. 

In doing so, the two computational factors mentioned previously: storage capacity 

and communication efficiency have also been considered. 

 

3.6.2.1 Storage Capacity Analysis 

Storage capacity estimation for the EdgeHGN algorithm involves the analysis of the 

bias array capacity for all GN nodes within the distributed architecture, as well as the 

storage capacity of the SI module node. In analysing the capacity of the bias array, 

the size of the bias arrays is observed as different patterns are being stored. The 

number of possible pattern combinations increases exponentially with an increase in 

the pattern size. The effect of the pattern size on the bias array storage is an important 

factor in the bias array scalability analysis. In this regard, the analysis is conducted by 

segregating the bias arrays according to the layers within a particular EdgeHGN 

subnet. The following equations show the bias array size estimation for binary 

patterns. In this analysis, an EdgeHGN implementation for one-dimensional binary 

patterns has been considered, wherein a two-dimensional pattern is represented as a 

string of bits. 

 

Base layer: For each non-edge GN node, the maximum size of the bias array is: 

                                          

                                                               
    = (  )

2 
                                           (3.30) 

 

For each GN node at the edge of the layer: 

 

                                                                       
     =   

 
                                                  (3.31) 
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     The maximum size of the bias array is mostly determined by the number of 

possible combinations of values within a pattern. The cumulative maximum size of 

bias arrays at the base layer in each EdgeHGN subnet could be derived as shown in 

Equation (3.32): 

 

                           
    =    (          

    + (  )2 ( Sub – 2)  + 2     
    )                   (3.32) 

 

Middle layers:  The maximum size of the bias array at a middle layer depends on the 

maximum size of the bias array at the layer below it. For a non-edge GN node in a 

middle layer, the maximum size of its bias array may be derived as follows: 

      

                                               
  =           

      (  )2 
                                  (3.33) 

 

     For each GN node at the edge, the maximum size of the bias array can be given 

by: 

                
                                                        

  =           
                                                (3.34) 

 

     Therefore, the cumulative maximum size of the bias arrays in a middle layer (of a 

subnet) can be estimated using the following equation: 

  

                                                        for  1   i   top-1                                                       (3.35) 

      
 =   

 (          
   Sub – (2i + 2)) + 2     

   

 

Top layer: At the top layer, the maximum size of the bias array can be derived from 

the preceding level non-edge GN node’s maximum bias array size. Hence, the 

maximum size of the bias array of a GN node at the top level is: 

 

      
   

 =           
                                                                                  (3.36) 

 

     From these equations, the total maximum size of all bias arrays within a single 

EdgeHGN subnet can be deduced as shown in Equation (3.37): 

 

      
       =        

     +        
      

    +       
   

                                   (3.37) 
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3.6.2.2 Communication Complexity Analysis 

The EdgeHGN is a distributed pattern recognition algorithm. In any distributed 

algorithm, communication plays an important role in ensuring the efficiency of the 

algorithm. High communication costs will incur an additional overhead for the 

network to support the core functions of the algorithm. Hence, the intention is to 

minimise the communication costs within the EdgeHGN. In conducting an analysis of 

the communication costs, all four steps in the distributed pattern recognition scheme 

have been considered. This subsection estimates the communication costs for the 

implementation. 

 

Network generation step: Network generation in the EdgeHGN implementation 

involves the initialisation of EdgeHGN subnets for recognition processes. Within this 

step, the SI module is responsible for communicating the possible input values of the 

patterns, which will be used in the recognition process, to all of the base-layer GN 

nodes within EdgeHGN subnets. Equation (3.38) shows the number of messages that 

need to be communicated by the SI module to these GN nodes: 

 

                                                 SI 


 Sub                Sub                                                             (3.38) 

 

     This equation is based on the assumption that all EdgeHGN subnets are the same 

size. In addition, the cumulative size of all messages that will be transmitted is shown 

in Equation (3.39): 

 

    
      =     

    
 (           Sub)                                    (3.39) 

 

Pattern input step: As part of this step, the SI module is required to decompose the 

pattern into sub-patterns and distribute these sub-patterns to all available EdgeHGN 

subnets. The distribution of sub-patterns to all EdgeHGN subnets requires 

communication between the SI module and all base-layer GN nodes within the 

subnets. The communication costs incurred during this step are similar to those in the 

previous step. 
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Recognition at the sub-pattern level: The following relations show the 

communication complexity of EdgeHGN scheme at the sub-pattern recognition level. 

 

      Base layer: For each GN node in the base layer, the communication costs can be 

derived from the number of messages communicated between adjacent nodes for 

each input sub-pattern. For GN nodes at the edge of the base layer: 

 

     
     =                                                                           (3.40) 

For non-edge GN nodes: 

          
     = (  )2 + 1                                            (3.41) 

 

     Note that for non-edge GN nodes, communication is required between adjacent 

nodes in both the preceding and succeeding columns, as well as the communication 

of bias indices to the GN nodes at the next higher layer. The cumulative 

communication costs for all GN nodes in the base layer can be derived as: 

 

                                      
     =    (          

       Sub –2) + 2     
                              (3.42) 

 

     Middle layer: The communication costs for the GN nodes in the middle layers are 

similar to those for the GN nodes at the base layer. However, the difference is in the 

number of nodes available within each layer. The cumulative communication costs 

for all GN nodes in each middle layer can be derived as: 

 

                                                           for  1   i   top-1                                                    (3.43) 

      
  =    (          

    Sub – (2i + 2)) + 2     
          

 

     Top layer: These GN nodes are only responsible for communicating the final 

index for each sub-pattern stored/recalled to the SI module. Therefore, there is only 

one message that needs to be passed to the SI module for each input sub-pattern. The 

total cumulative number of communications required for each sub-pattern 

stored/recalled in an EdgeHGN subnet can be derived from Equation (3.44) as: 

 

          
       =       

     +        
      

    + 1                                   (3.44) 
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Recognition at pattern level: The recognition at the pattern level does not require any 

communication because recognition takes place within the SI module. 

 

     The EdgeHGN requires fewer hierarchical layers in comparison with the HGN 

and DHGN due to fewer processing neurons. This in turn minimises the overall 

communication cost, as shown in Figure 3.9. 

 

 

 

Figure 3.9: Comparison of communication costs between  

the HGN, DHGN and EdgeHGN (Khan & Muhamad Amin, 2007) 

 
     The figure compares the communication costs between the EdgeHGN, HGN and 

DHGN. The formation of the EdgeHGN subnets helps to improve the efficiency of 

the GN-based approach for pattern recognition. Further, the EdgeHGN provides high 

scalability towards increasing size and dimension of patterns through the use of the 

divide-and-distribute approach within single-cycle learning. The following section 

will describe these in more detail. 
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3.7 Pattern Recognition Simulation and Results 

A series of recognition tests using the EdgeHGN’s distributed pattern recognition 

approach have been conducted. In this chapter, two different sets of patterns have 

been tested and discussed. The first set of patterns is binary character patterns, while 

the second set is 16KB binary images. These sets were used as the base for generating 

noisy patterns in their respective categories. For this purpose, the EdgeHGN subnets, 

capable of storing either 5-bit or 9-bit binary patterns, were adopted for these tests. 

The subnet size may be calculated by dividing the largest input pattern size with the 

number of available nodes within the computer cloud. Inter-node communications 

and SI-to-subnet communications were implemented using the MPICH-2 library for 

the message-passing interface (MPI) (Gropp, Thakur & Lusk, 1999). 

 

3.7.1 Binary Character Pattern Recognition 

The character patterns used in this recognition test have been grouped into three 

different representations: 5-by-7 bit, 8-by-8 and 16-by-16. For this test, each 

EdgeHGN subnet is used to store/recall 5-bit binary sub-patterns. Each character 

image used has been decomposed by the SI module into 5-bit sub-patterns of various 

sizes. The recall rate using the precision and recall technique with a voting 

mechanism has been used as a classification parameter in these tests. Recall rates  , 

for the tests were obtained using the following equation, where both         
      and 

        
      represent the number of EdgeHGN subnets with correct and incorrect 

recalls respectively. 

  =  
        

    

         
                   

                                               (3.45) 

 

     Figure 3.10 shows the comparison of the recall rates among the three character 

patterns   of different sizes, which have been used in this test. The recall rates are 

similar for all different representations and indicates that EdgeHGN can recognise 

distorted character patterns with up to 20% distortion,   
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Figure 3.10: EdgeHGN recall percentage for the three  

Character patterns   of different sizes 

 
     The recognition test has also been conducted on a set of binary character patterns 

with random distortion. The random distortion applied to the character patterns varies 

according to the level of distortion. For this test, each EdgeHGN subnet can 

store/recall 9-bit binary sub-patterns. Therefore, the SI module is responsible for 

decomposing each character pattern into 9-bit sub-patterns. As shown in Figure 3.11, 

the EdgeHGN can recognise distorted character patterns with up to 20% distortion. 

This shows that EdgeHGN offers a reasonably high level of recall accuracy as a 

single-cycle learning algorithm.  
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Figure 3.11: Seven different levels of random distortion applied  

to binary character patterns 
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     Figure 3.12 depicts the recall accuracy of the EdgeHGN for various distortion 

rates in the input pattern. The figure shows that the EdgeHGN offers a reasonably 

high level of recall accuracy as a single-cycle learning scheme. In fact, for binary 

character patterns with a distortion rate of up to 20%, an exact recall is achieved. 

Moreover, the scheme results in close recalls for distortion rates of 20% – 25%. It 

should be noted that patterns with a random distortion of higher than 20% are 

difficult to identify, even with the human eye. 

 

 

Figure 3.12: EdgeHGN recall accuracy for various distortion rates 

 
     Figure 3.13 shows the percentage of recalled nodes for the EdgeHGN scheme 

operating on patterns with low (<10%), medium (10% - 20%) and high (20% - 30%) 

levels of distortion. As shown in the figure, more than 80% of EdgeHGN nodes are 

recalled when dealing with low-level distorted patterns, and almost 70% of nodes are 

recalled when the distortion rate is between 20% and 30%. Even with the presence of 

highly distorted input patterns, the EdgeHGN can recall almost 50% of nodes, which 

is a significant performance.   
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Figure 3.13: EdgeHGN node recall percentage for various distortion rates 

 
     As part of this testing setup, we have also compared the performance of the 

EdgeHGN with its predecessor scheme, the DHGN. The test patterns used in this 

recognition experiment are represented as 7-by-7 bit binary patterns. A large number 

of randomly generated binary patterns have been used as the test data. The only 

condition for these binary patterns is that each pattern should have at least one bit in 

each row to form the DHGN and EdgeHGN subnets. Each input pattern will be pre-

processed by going through a hybrid drop-fall scheme for the EdgeHGN approach. 

The output with the lowest number of processing neurons will be used as an input to 

the EdgeHGN pattern matching algorithm. As a result, each character image used has 

been decomposed into a maximum of 7-bit sub-patterns (EdgeHGN subnets). The 

recall rate and response time have been used as a classification parameter in these test 
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sets. The recognition test has also been conducted on a set of binary character 

patterns with random distortion. The random distortion applied to the character 

patterns varies according to the level of distortion. As shown in Figure 3.14, the 

EdgeHGN recognition scheme provides a higher recall percentage compared to the 

previous implementation of the DHGN. This higher recall percentage is due to the 

lower number of processing neurons used in the scheme, along with the drop-fall 

module, which enables the results of the recognition process at the sub-pattern level 

to be produced with higher recall accuracy through forming smaller-sized subnets 

along with exploiting edge detection capability. 

 

 

Figure 3.14: Recall percentage rate for EdgeHGN v. DHGN  

 
     In addition, a lower number of GNs within each EdgeHGN subnet results in a 

lower response time. In Figure 3.15, the lower response time is clearly depicted for 

EdgeHGN subnets in comparison with DHGN ones. A lower number of neurons due 

to the drop-falling pre-processing stage in the base layer of each EdgeHGN subnet 

forms a smaller hierarchy with fewer rows in the subnet. This lower number of 

processing neurons will result in less communication overhead and can significantly 

minimise the response time for the overall recognition process while maintaining 

high recall accuracy. 
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Figure 3.15: Response time for EdgeHGN v. DHGN  

 
     In Figure 3.16, the results of the response time per sub-pattern size are given using 

three different-sized datasets. The figure shows that the recognition process for each 

sub-pattern only requires a maximum of less than 100 milliseconds for 10,000 or 

more random patterns. Thus, the EdgeHGN can perform fast recognition, while its 

response time is not significantly affected by an increase in the number of sub-

patterns used. 

     

 
 

Figure 3.16: Recognition time for different sub-pattern sizes  

and different number of random sub-patterns 



113 
 

3.7.2 Recognition Test on Binary Images 

This section plans to evaluate performance of applying EdgeHGN to binary image 

recognition case studies. It should be strongly emphasized that we are not intending 

to do image processing, rather we aim to look at images as multi-dimensional objects 

which can be represented as discrete binary values for the purpose of pattern 

matching for classification. The existing EdgeHGN implementation has been 

focusing on the recognition of the spatio-structural representation of an image via 

pixel-by-pixel analysis. This approach recognises the integrity of the contents of an 

image against any occurrence of random-bit distortion. However, it is insufficient for 

the recognition of images with multidimensional colour representation, including 

grayscale images. The changes in the colour of an image may influence the accuracy 

of the recognition system. Our proposed image recognition approach adopts the 

binary signature scheme for content-based image retrieval (CBIR) in the colour 

recognition process, while maintaining the binary analysis of the image for its spatio-

structural recognition. For this purpose, each sub-signature (i.e., each signature that 

represents each colour) can be fed into a single EdgeHGN subnet. Cumulatively, this 

approach will lead to colour recognition within an image. In our image recognition 

exercise, we will implement a local binary signature approach where each image will 

be divided into grids (see Figure 3.17). 

 

 

Figure 3.17:  Block image with four different colours  

is divided into equally sized grids 
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     Each grid will have its own signature representing each quadrant of the image, in 

which each bit value will correspond to the normalised percentage values of the 

colour within that image (see Table 3.5). 

 
Table 3.5: Binary signatures for the image in Figure 3.17 

 

 
     With localised signatures, the colour distribution representation of an image will 

be further optimised to provide higher possible recall precision for a given set of 

images. It is worth noting that the quantisation level can have a significant effect on 

the recognition accuracy. Figure 3.18 shows the transformation of the global colour 

histogram for the image ‘Lena’ from an original image to various quantisation levels. 

Low quantisation levels produce similar sets of binary signatures for different 

images. Conversely, high quantisation levels can also have an adverse effect on 

recognition accuracy, as it tends to distribute colour frequency to a higher number of 

colour classes, thus reducing the possibilities of colours being grouped into similar 

classes. By analysing recall rates and error value rates, we can pinpoint an optimal 

value for the quantisation level for our recognition purposes.   
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Figure 3.18: Transformation of global colour histogram of image Lena 

from original image to various quantisation levels 
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     As shown in Figure 3.19, for the existing dataset, the EdgeHGN recognition 

scheme performs best with the quantisation level 6. The recognition test conducted 

also demonstrates that the EdgeHGN produces notably high recall rates as a result of 

its simple deterministic approach, while achieving this significant performance using 

single-cycle learning and through a one-shot recognition process. 

 

 

Figure 3.19:  Average recall and error rates for EdgeHGN greyscale image 

recognition on 40 16KB binary images using various quantisation levels 

 
     A study has also been conducted into the EdgeHGN’s performance with respect to 

its recognition time taken for each subnet, with different numbers of sub-patterns 

stored/recalled. These sub-patterns are derived from a similar set of 40 binary images 

used earlier for analysing optimal quantisation value. As shown in Figure 3.20, an 

increase in the number of sub-patterns stored within the network does not have any 

adverse effect on the recall/store time of the EdgeHGN approach. In fact, the 

scalability of the EdgeHGN scheme will not be affected by the number of stored 

patterns within the EdgeHGN network. 
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Figure 3.20: Total recognition time for each EdgeHGN subnet in binary pattern 

recognition with different number of sub-patterns derived from 16KB binary images 
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     To further demonstrate the effectiveness of the EdgeHGN, we conducted a 

comparative study of its performance against Support Vector Machine (SVM) and an 

iterative Hebbian-based learning back propagation neural network (BPNN). For the 

purpose of this experiment, we classified 1000 grayscale facial binary images into 

100 distinct classes corresponding to 100 individuals. Each class contains 10 

grayscale binary images of the same person with 10 different facial expressions. To 

test various schemes, 100 randomly selected individual images were selected as the 

training set to test the remaining images against them for possible recall. Error rate 

was selected as the measurement metric to evaluate the performance of the related 

schemes. In this regard, recall error is defined as the number of wrongly classified 

images from the overall 950 test images when tested against the training dataset. 

 

 

Figure 3.21: Recall error rates for binary image recognition of 100 facial image 

classes when tested against 1000 stored images using  

EdgeHGN, DHGN, SVM & BPNN schemes. 

 

     As depicted in Figure 3.21, the EdgeHGN generally offers the lowest error rate 

compared with the DHGN, SVM and BPNN. The experimental results show that the 



119 
 

SVM and BPNN perform relatively similar, and the SVM performs better for some 

image classes but worse for others. Nevertheless, they both fall behind the EdgeHGN 

in terms of higher recall accuracy and lower error rate. Higher error values for the 

BPNN may be due to the low number of training images fed into the network, 

resulting in fewer chances of achieving optimum outputs, which mostly reflect the 

original trained images. In the same context, the SVM performance deteriorates 

significantly when the size of the training set is much smaller than the number of the 

desired support vectors. While the EdgeHGN and DHGN both perform relatively 

well, EdgeHGN offers better recall accuracy due to its smaller-sized subnet networks, 

as well as the inclusion of edge information within the grayscale image analysis. 

 

3.7.3 Recognition Test on Noisy Binary Images 

In this section, we intend to demonstrate the capabilities of our proposed scheme to 

achieve multi-feature pattern recognition using collaborative-comparison single-cycle 

learning in EdgeHGN within a computational network. This part will demonstrate 

that our distributed pattern recognition scheme is able to include multiple image 

features as inputs within the recognition process. It is also capable of providing 

accurate classification within the bounds of single-cycle learning. The proposed 

multi-feature EdgeHGN is readily deployable within various network environments, 

ranging from coarse-grained computational networks such as computational cloud 

network to fine-grained networks such as the WSN. Our study here involves the 

recognition of noisy 128-by-128 bit binary images. Accuracy in image recognition is 

generally the benchmark that most contemporary schemes are measured against. The 

proposed scheme in this section takes a holistic approach towards incorporating both 

the colour and spatio-structural features into the image recognition process 

simultaneously. A binary signature scheme has been adopted for content-based image 

retrieval (CBIR) proposed by Nascimento and Chitkara (2002) within a pattern 

recognition procedure. The approach here integrates this global binary signature with 

Sobel’s edge detection (Kimmel et al., 2005) for implementing EdgeHGN single-

cycle image recognition. 
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3.7.3.1 Global Binary Signature Scheme for Colour Recognition 

A common approach in representing colour distribution within an image is to use a 

global colour histogram (GCH). Given an n-colour model, a GCH is developed with 

an  -dimensional feature vector {ρ1, ρ2, ..., ρ }, where ρ  represents the normalised 

percentage of colour pixels that corresponds to each colour element within an image. 

Nascimento and Chitkara (2002) proposed an alternative approach for colour 

distribution representation by using a global binary signature scheme, which is a 

compact form of the existing GCH that uses binary bit-strings as a signature. This 

signature is an abstract representation of the image’s colour distribution. The bit-

strings have a pre-determined size, which makes it ideal for use within EdgeHGN 

binary pattern representations. 

 

3.7.3.2 Sobel’s Edge Recognition for Structural Information 

Edges provide important spatio-structural information for image recognition. The 

proposed approach towards image recognition here includes edge detection in the 

colour-based recognition process. Sobel’s edge detection mechanism has been 

adopted, such that outputs from the edge detection process are represented as an edge 

map. Figure 3.22 shows the transformation of a colourful image into the 

corresponding edge map after applying the global binary signature to normalise the 

colour distribution. In our scheme implementation, we have used a common detection 

threshold value of 70 to generate the edge maps. 

 

 
 

Figure 3.22. Edge map after applying Global Binary Signature  

and Sobel’s edge detection 
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     With the ability to capture and convert the two main features of an image – 

namely colours and edges – into binary patterns, the EdgeHGN approach could be 

applied to perform single-cycle binary pattern recognition. 

 

3.7.3.3 Recognition Accuracy Analysis  

There are two important factors that need to be investigated, namely recognition 

accuracy and recognition speed. For recognition accuracy, facial images were chosen 

that include similar background conditions and different structural representations as 

the test dataset. A set of 1000 facial images of 50 different individuals were used in 

this study. They were retrieved from Face Recognition Data, University of Essex, 

U.K. These images were of the size 180 x 200 pixels, as shown in Figure 3.23. 

 

 
 

Figure 3.23. Fifty different individuals in the face image dataset  

obtained from the Face Recognition Data. 

 
For colour recognition, all greyscale images were quantised into four grey levels. 

Ten different ranges of values were used for signature representation. It was 

determined that these values were able to represent distinctive colour features for all 

test images. Forty-bit signatures were created from this process, and each signature 

was decomposed into sub-signatures of 5-bits for building the EdgeHGN network. 

For edge detection, small-scale edge maps were developed for all facial images. Each 

edge map was a binary representation of the image with the size of 18 x 20 pixels, 

and it was developed using 3 x 3 Sobel’s matrix kernel with both horizontal and 
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vertical scanning procedures. All edge maps were then input to a drop-fall algorithm 

to form 5-bit sub-patterns for the EdgeHGN recognition process. The recognition test 

involved classifying 1000 facial images corresponding to 50 distinct individuals into 

their respective classes. Each class consists of 20 images of the same individual with 

different facial expressions. To perform pattern matching, both base and test images 

were initially fed into the Sobel operator. In simple terms, the operator calculates the 

gradient of the image intensity at each point, giving the direction of the largest 

possible increase from light to dark and the rate of change in that direction. The result 

therefore shows how abruptly or smoothly the image changes at that point, and 

therefore how likely it is that that part of the image represents an edge, as well as how 

that edge is likely to be oriented (see Figure 3.24). 

 

 
 

Figure 3.24. Applying the Sobel operator on both the base image  

and the test image before pattern matching 

 
     As discussed previously, there are four possible directions to apply the drop-fall 

scheme on the input pattern, and they generally produce four different paths to divide 

touching digits. They can start on the left or right side and can evolve downwards or 

upwards. One of the four is likely to produce the best result. Therefore, in our 

approach, a drop-fall scheme is chosen in a way that it ensures producing the least 

number of neurons, resulting in the least computational overhead (see Figure 3.25). 
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Figure 3.25. Applying four possible drop-fall directions to the input pattern 

 
Each one of these drop-fall schemes will produce a different output, and the 

number of processing neurons will be different. As a result, EdgeHGN subnets will 

differ in size, which in turn results in varying response times for image processing 

and pattern matching. As shown in Figure 3.26, for 15 test images, the drop-fall 

scheme that is applied from the top direction will produce the lowest number of 

processing neurons, and in turn the lowest response times. Conversely, a drop-fall 

scheme that is applied from the bottom will generate a larger number of neurons in 

the network, resulting in the largest average processing time for pattern matching.    

 

 
 

Figure 3.26. EdgeHGN recognition times after applying  

four drop-fall schemes on a test image 
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     The results shown in Figure 3.27 demonstrate the error values for the EdgeHGN 

scheme processing 50 facial image classes of 1000 test images. The EdgeHGN can 

achieve a very low average error rate of 0.02696% (~2.7%) in classifying 50 facial 

image classes. To improve this error rate value, one option is to use larger 

quantisation values to more accurately represent greyscale values for test images.   

 

 
 

Figure 3.27. Error values for EdgeHGN processing 

50 facial image classes of 1000 test images. 

 

 

 

Figure 3.28. Error values for EdgeHGN and BPNN processing  

50 facial image classes of 1000 test images. 
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     In Figure 3.28, a comparative study on the error rate value of the EdgeHGN and 

iterative Hebbian-based learning back propagation neural network (BPNN) is given 

for processing 50 facial image classes of 1000 test images. The EdgeHGN offers a 

better classification and accuracy rate when compared with the BPNN for all 50 

image classes (error rate of 2.7% for the EdgeHGN compared with an error rate of 

4.4% for the BPNN). The BPNN higher error rate might be due to the fact that the 

BPNN network was training with a low number of training instances, resulting in 

lower optimal classification accuracy for the scheme.   

     The next category of testing in our study is performed for the recognition of noisy 

128-by-128 bit binary images. In this experiment, both Gaussian noise and impulse 

noise are added to the ‘Lena, House, Cameraman and Boat’ images, and the recall 

accuracy of the EdgeHGN scheme is tested against recognising noisy images among 

a dataset of different heterogeneous images. By applying different levels of Gaussian 

distributed noise to the images, the original image pixel value distribution is changed. 

As a result, the pixel value distributions for noisy images are quite different compared 

with the original image. Moreover, adding Gaussian noise to the image will result in 

deterioration in the number of pixels corresponding to pure black and pure white 

values (0 and 255), making them significantly difficult to recognise as the original 

image. By further applying an impulse noise, the recognition task is made even more 

complicated, as the values of damaged pixels contain no information, while the 

positions of damaged pixels are also unknown. There are two important types of 

impulse noise: salt-and-pepper noise and random-valued noise. In general, the pixels 

damaged by salt-and-pepper noise are much easier to find, as the values are either 

 min or  max. The detection of pixels corrupted by random-valued impulse noise is 

more difficult than salt-and-pepper impulse noise because the value of the damaged 

pixels can be any number between  min and  max. 

     This recognition test is divided into two parts. The first part involves the 

recognition of noisy images contaminated by both Gaussian noise and salt-and-

pepper noise (with   = 10 and   = 30%) among 20 heterogeneous binary images 

previously stored within the EdgeHGN network. The second part implies a similar 
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configuration, but with the test images contaminated by both Gaussian noise and 

random-valued noise (with   = 10 and   = 25%). Figure 3.29 and Figure 3.30 show 

the results of the recognition tests. The EdgeHGN pattern recogniser is capable of 

providing high recall accuracy for distorted heterogeneous binary image recognition. 

In addition, the EdgeHGN can store the data of all 20 heterogeneous images within a 

single-cycle learning process without any reductions in its recall accuracy. 

 

 

 

Figure 3.29: (Top) images contaminated by both Gaussian and salt-and-pepper noise 

with   = 10 and   = 30% (bottom) recognition tests using the EdgeHGN scheme 

 

 

 

Figure 3.30: (Top) images contaminated by both Gaussian and random-valued noise 

with   = 10 and   = 25% (bottom) recognition tests using the EdgeHGN scheme 
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3.7.4 Handwritten Object Recognition Test with Multiple Features 

A series of classification tests are performed using the EdgeHGN to evaluate the 

performance of the scheme on handwritten character recognition. These experiments 

will demonstrate the strength of the EdgeHGN as a distributed classifier for complex 

pattern recognition tasks. The experimental results are compared with other methods 

discussed in the literature as part of the research work conducted by Duin and Tax 

(2000). The experimental dataset is taken from Frank and Asuncion (2010) and is 

publicly accessible from the ML repository. The dataset contains 10 classes of 

numerical characters ranging from ‘0’ to ‘9’, where each class holds 200 objects and 

each object is converted to a 30 x 48 binary image. Classification tests are designed 

so they work on the following four feature sets obtained from a similar set of objects 

(Frank & Asuncion, 2010): 

1. Fourier: 76 Fourier coefficients of the character shapes 

2. Pixel: 240 pixel averages in 2 x 3 windows 

3. Zernike: 47 Zernike moments 

4. Morph: 6 morphological features. 

 

3.7.4.1 Classification Procedures 

To perform recognition, the EdgeHGN implements a three-stage process of pre-

processing, classification and result calculation.      

    

Feature Pre-Processing  

As part of the pre-processing phase, a discretisation process using a binning approach 

is applied to all selected data features to ensure that continuous feature values are 

converted into discrete format representations so they can be used and processed by 

the EdgeHGN algorithm. With the exception of the pixel average feature set, where 

all provided data are of a discrete nature, for all other feature sets, the process of 

discretisation is implemented by defining five bins (thresholds) with a different range 

of values. These values are determined based on the maximum, minimum and mean 

values calculated from the overall feature set. Table 3.6 illustrates how these bins are 

defined and formed. 
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Table 3.6: Discretisation of feature data values using variable-binning methods 

 

 

Feature 

 

min 

 

max 

 

μ 

Bins 

1 2 3 4 5 

Zernike 0.0011 777.86 88.64 ≤ 25 26-50 51-90 91-400 401-800 

Fourier 0.0002 0.7965 0.1320 ≤ 0.001 0.002-0.05 0.06-0.14 0.15-0.50 0.51-0.80 

Morph 1.1431 17572.2 2104.4 ≤ 50 51-500 501-2500 2501-10000 10001-18000 

 
     The process of converting the feature dataset from continuous data space to a 

discrete representation will reduce the inherent complexity of the dataset for 

classification at the cost of producing less accurate results because some data values 

are lost in the conversion phase. Nevertheless, the discretisation process yields a set 

of patterns corresponding to each feature, where the size of the patterns denotes the 

number of values for each feature, while the dimension of the patterns represents the 

number of bins (thresholds) used (i.e., five). 

 

Feature Recognition  

To perform classification tasks on the four feature datasets, four separate EdgeHGN 

networks with different sizes are constructed to implement recognition on a specific 

feature set resulting from the pre-processing phase. Table 3.7 illustrates the 

EdgeHGN topology structure used for processing these four feature sets. 

 
Table 3.7: EdgeHGN networks setup details for processing four feature sets  

 

Parameters Values 

Number of EdgeHGN networks 4 

Sub-pattern size 9 

Number of GNs per subnet 25 

 

Number of subnets 

Zernike 5 

Fourier 9 

Morph 1 

Pixel 

Avg. 

27 
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     To perform recognition, the entire feature set is first presented to the SI module 

node on each EdgeHGN network. The SI module node then divides and distributes 

the input data to all available subnets for the recognition process to be conducted at 

the sub-pattern level. The results from all subnets are then relayed back to the SI 

module before they are input to a maximum voting phase where the best fit/match for 

the respective pattern class is determined.     

 

Result Calculation 

The result calculation stage involves identifying the optimal feature as the best 

representative for each pattern class. It should be noted that this last phase of 

processing can be conducted within a coordinator node. For the purpose of this 

exercise, we have calculated error value, precision, recall and accuracy parameters as 

a comparative basis for the classification process. Table 3.8 shows how each of these 

parameters are defined and represented. 

 

Table 3.8: Recognition parameters with their respective definitions 

 

          Recognition Parameters                                               Definitions 

Precision                                             
             

                            
 

                   Recall                                                
             

                            
 

                 Accuracy          
                            

                                                         
 

               Error Value                                          
                             

                            
 

 
3.7.4.2 Recognition Analysis  

Figure 3.31 illustrates the EdgeHGN outputs for multi-feature classification 

decisions, and Figure 3.32 shows average feature values and the best results achieved 

for each object class. The classification results show that for the majority of object 

classes in the test, the morphological and pixel average feature values generate the 

best classification output. 
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Figure 3.31:  EdgeHGN classification results on four different 

features of numeral character objects. 

 

 
 

Figure 3.32:  EdgeHGN classification best average results  

on four different features of numeral character objects 
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     Figure 3.32 shows that morphological features generally exhibit low error values 

while producing reasonably high recall and accuracy rates. By performing a 

comparative study between the EdgeHGN and other classifiers discussed by Duin and 

Tax (2000), we can conclude that the EdgeHGN is capable of producing comparable 

accuracy rates for the same feature sets. Figure 3.33 conducts comparative analysis 

to determine error value rates for different classifiers.        

 

 
 

Figure 3.33:  Comparative study on error rates between EdgeHGN and other 

classifiers for similar dataset with respective features. 

 
     It can be concluded from the results that the EdgeHGN performs remarkably well, 

with the lowest number of error rates for all tested features, with the exception of 

pixel average. However, even for pixel average, the EdgeHGN offers promising 

results when compared with other classifiers. Moreover, the results from the figure 

3.33 indicate that artificial neural network (ANN) produce the least accurate results. 

While other statistical schemes seem to generate acceptable error rates, their 

cumbersome parameter estimation processes make them less favourable for feature 

classification tasks when compared with the EdgeHGN.      
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3.8 Conclusion 

An important aspect in pattern recognition schemes is in their algorithmic design. A 

proper design will lead to higher efficiency and will be able to provide better 

classification accuracies. Our GN based algorithms have been developed with the 

scalability consideration being paramount. GN has the ability to perform pattern 

recognition processes on distributed systems due to its simple recognition procedure 

and lightweight algorithm. Furthermore, GN incurs low computational and 

communication costs when deployed in a distributed environment. In this regard, this 

chapter made an attempt to introduce and discuss a newly proposed approach for 

cloud distributed pattern recognition, known as Edge Detecting Hierarchical Graph 

Neuron (EdgeHGN). EdgeHGN reduces redundant data content for recognition 

through segmentation, by applying a hybrid drop-fall algorithm on the input pattern. 

EdgeHGN allows the recognition process to be conducted in a smaller sub-pattern 

domain, hence minimizing the number of processing nodes, which in turn reduces the 

complexity of pattern analysis. In addition, the recognition process performed using 

the EdgeHGN algorithm is unique in a way that each subnet is only responsible for 

memorising a portion of the pattern (rather than the entire pattern). A collection of 

these subnets is able to form a distributed memory structure for the entire pattern. 

This feature enables recognition to be performed in parallel and independently. The 

decoupled nature of the sub-domains is the key feature that brings dynamic scalability 

to our data processing approach for the cloud. Moreover, EdgeHGN provides a 

capability for a recognition process to be deployed as a composition of sub-processes 

executed in parallel across a distributed network. Sub-processes execute mutually 

independently. This approach is less cohesive compared to any other pattern 

recognition scheme. 

     Our experimental results demonstrate the fact that EdgeHGN is able to achieve 

very low error rate of (~2.7%) in classifying 50 facial image classes. This high 

accuracy rate is accompanied by remarkable scalability features. Our tests show that 

an increase in the number of sub-patterns stored within the network does not have any 

adverse effect on the recall/store time of EdgeHGN approach. In fact, the scalability 
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of EdgeHGN scheme will not affected by the number of stored patterns within the 

EdgeHGN network. 

     In contrast to the rest of hierarchical models already proposed in the literature, 

EdgeHGN’s pattern matching capability and the small response time, that remains 

insensitive to the increases in the number of stored patterns, can make this approach 

remarkably suitable for clouds. Moreover, the EdgeHGN does not require definition 

of rules or manual interventions by the operator for setting of thresholds to achieve 

the desired results, nor does it require heuristics entailing iterative operations for 

memorization and recall of patterns. In addition, our approach allows induction of 

new patterns in a fixed number of steps. Whilst doing so it exhibits a high level of 

scalability i.e. the performance and accuracy do not degrade as the number of stored 

pattern increases over time. Its pattern recognition capability remains comparable 

with contemporary approaches. Furthermore, all computations are completed within 

the pre-defined number of steps and as such the approach implements one-shot, i.e. 

single-cycle or single-pass, learning. 
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EdgeHGN_MR: Edge Detecting 

Hierarchical Graph Neuron based 

MapReduce  
 

 
 

 

 
 

 
 

 

One of the main challenges for large-scale computer clouds dealing with massive 

real-time data is in coping with the rate at which unprocessed data are being 

accumulated. There are many big data demands in scientific and engineering 

applications – including biotechnology (e.g., characterisation using synchrotrons) and 

the global monitoring of fixed and mobile assets in industry, transport and defence – 

that entail massive real-time streams from and to stationary or mobile sensors and 

actuators. As a result of their dynamic and distributed nature, as well as their 

exponential growth, real-time data management is complicated, and storage, updates 

and analytics are costly (Szalay, et. al., 2006). This thesis hypothesises that 

fundamental changes and improvements in data access and movements are possible 

and beneficial for cloud-based processing. To provide improvements particularly 

regarding computational complexity and scalability, this chapter proposes a novel 
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associative-memory-based scheme for big data processing that is scalable, 

distributable and lightweight, and that overcomes some of the issues encountered in 

traditional data access mechanisms for data storage and retrieval. Thus, the primary 

aim of this chapter is to apply an access scheme that will enable fast data retrieval 

across multiple records and data segments associatively. In this regard, associative 

memory concepts open a new pathway for accessing data in a highly distributed 

environment that will facilitate a parallel-distributed computational model to 

automatically adapt to the dynamic data environment for optimised performance.  

 

4.1 Neural Network based Classification Techniques 

As discussed in detail in Chapter 2, high computational complexity and large memory 

requirements are common drawbacks in neural-network-based classification 

techniques such as the back propagation network and the self-organising maps. The 

computational complexity and memory requirements increase substantially with the 

increase in problem size. These algorithms often fail to scale up when presented with 

large and complex datasets, such as the datasets encountered in big data analysis. In 

fact, many of the ML schemes discussed in the literature do not offer acceptable 

levels of scalability and adaptability, making them infeasible for solving large-scale 

pattern recognition problems.  

      Hence, what is really required for any cloud system is a complete data access 

scheme that enables data partitioning on-the-fly and that has the ability to disseminate 

processing nodes for specific data retrieval/storage tasks and consolidate the data 

access scheme using an efficient partitioning approach. This integration within a 

complete end-to-end scheme will enable data storage and retrieval processes to be 

performed effectively, regardless of the distribution of data within the cloud system. 

In this regard, associative memory concepts open a new pathway for accessing data in 

a highly distributed environment that will facilitate a parallel-distributed 

computational model to automatically adapt to the dynamic data environment for 

optimised performance. The problem is to marry such concepts with relevant 

advanced parallel processing patterns. With this in mind, the proposed scheme in 
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this chapter targets a new type of data-processing approach that will efficiently 

partition and distribute data for clouds and facilitate content-based access for a wide 

range of applications. This chapter introduces an associative memory based 

MapReduce, referring to as EdgeHGN-based MapReduce or EdgeHGN_MR. In this 

chapter, three extensions of EdgeHGN_MR are presented, dealing with different 

data-intensive scenarios (EdgeHGN_MRv1, EdgeHGN_MRv2 and 

EdgeHGN_MRv3). EgdeHGN_MRv1 is designed to handle classification tasks 

efficiently when dealing with large datasets. In such cases, the input data are split 

among data chunks so they can be later processed by Mapper functions in parallel 

where each Mapper constructs the same EdgeHGN_MR classifier using a similar set 

of training data. EdgeHGN_MRv2 deals with scenarios where the training data are 

voluminous. To perform effective classification tasks, the training data are split into 

data chunks so they can be processed by Mapper functions in parallel. In such cases, 

each Mapper still creates the same EdgeHGN_MR classifier, but this time using only 

a subset of the training dataset to train the EdgeHGN network. To ensure we can still 

achieve acceptable levels of classification accuracy, EdgeHGN_MRv2 utilises a 

balanced bootstrapping approach (Alham, et. al., 2013) along with a majority voting 

scheme, as part of its processing framework. Lastly, EdgeHGN_MRv3 is designed to 

work with cases with an excessive number of processing neurons in the EdgeHGN 

network. To achieve high classification accuracy, EdgeHGN_MRv3 parallelises and 

distributes EdgeHGN processes across Mapper functions so each Mapper only 

utilises a subset of the processing neurons for training.   

 

4.2 Associative Memory Concept for Implementing Large 

Scale Classification Operations 

Unlike the existing relational, hierarchical and object-oriented schemes, associative 

models can analyse data in similar ways to which our brain links information. When 

implemented in voluminous data clouds, such interactions can assist in searching for 

overarching relations in complex and highly distributed datasets with speed and 
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accuracy. The proposal in this chapter improves MapReduce-based cloud applications 

in a number of different ways by replacing referential data access mechanisms with 

more versatile and distributable associative functions, which allow complex data 

relations to be encoded into the keys as patterns. These patterns can be applied in a 

variety of applications requiring content recognition (e.g., image databases, searches 

within large multimedia files and data mining). The algorithmic strengths of the 

MapReduce approach are investigated in relation to the effectiveness of one-shot 

learning-based parallelism provisioned via our distributed pattern recognition 

approach, EdgeHGN. The principle of AM-based learning will be implemented 

through the use of hierarchically connected layers, with local feature learning at the 

lowest layer and upper layers combining features into higher representations.  

     As we know, existing data access mechanisms for cloud computing such as 

MapReduce have proven the viability of parallel access approaches in cloud 

infrastructure. However, the MapReduce model does not explicitly provide support 

for processing multiple related heterogeneous datasets. While processing data in 

relational models is a common requirement, this restriction limits its functionality 

when dealing with complex and unstructured data such as images. Relational 

databases use a separate, uniquely structured table for each different type of data for 

specific applications, and programmers must know the precise structure of every table 

and the meaning of every column a priori. To overcome this, our proposed scheme 

preserves the strength of the MapReduce model and eliminates/alleviates most of 

these constraints in a well-integrated manner where there is no outward change to 

the way in which MapReduce models are deployed and used. In this context, our 

research will investigate the inclusion of an associative approach in the MapReduce 

model to support application-specific pattern recognition and data-mining operation. 

Hierarchical structures in AM models are of interest because they have been shown to 

improve scalability while preserving accuracy in pattern recognition applications 

(Ohkuma, 1993). Our proposal is based on an EdgeHGN associative memory model 

that has been specially designed for distributed processing and readily implemented 

within distributed architectures. 



139 
 

4.2.1 EdgeHGN Approach for Cloud Data Access 

Through the redesign of the data management architecture, data records are treated as 

patterns. For this purpose, a data access scheme that enables retrieval to be conducted 

across multiple records and data segments in a single-cycle and parallel approach is 

considered. The access mechanism is implemented according to the nature of the 

database. The retrieval process will be conducted on a set of records that reside in a 

particular node. No alterations will be made to the condition of the record itself. A 

parallel retrieval approach is used, in which records in each storage node are analysed 

locally without incurring any communication costs. A distributed pattern 

matching/recognition approach, such as the EdgeHGN, can be used to retrieve data 

from the cloud. The EdgeHGN cloud access scheme relies on communications 

between adjacent nodes. The decentralised content location schemes are implemented 

to discover the adjacent nodes in a minimal number of hops. A GN-based algorithm 

for optimally distributing the EdgeHGN subnets (clusters or sub-domains) across the 

cloud nodes is provided to automate the bootstrapping of the distributed application 

and to investigate dynamic load balancing over the network. Note that the EdgeHGN 

subnets perform data mapping on each of the data nodes within the HDFS 

infrastructure. Within each EdgeHGN subnet, the records are stored in an associative 

pattern; each EdgeHGN neuron corresponds to a single data field. The mapping 

process occurs within the body of the EdgeHGN subnet.  

 

4.3 EdgeHGN based MapReduce 

MapReduce has issues and limitations. One might think that the absence of a rigid 

schema makes MapReduce the preferable option over DBMSs. However,  

 Existing MapReduce implementations provide built-in functionality to handle 

simple key-value pair formats, but the programmer must explicitly write support 

for more complex data structures.  

 In most MapReduce implementations, the map function conducts its operation 

assuming that all related data are distributed vertically (i.e., records are being 
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uniformly distributed across the network). However, it is possible that some parts 

of the related records are being stored at different physical locations – for 

instance, a large database table being split into multiple sub-tables and stored 

among the cloud nodes.  

 In addition to the vertical distribution issue, another issue related to the 

MapReduce function is that the operations produce numerous intermediary 

entities between the map and reduce functions. These entities could be in the form 

of intermediate files. The contents of these files would need to be sorted before 

they are input into the reduce function. This system-wide sort and redistribution 

incurs additional processing and communication costs. Thus, data fragmentation 

can affect MapReduce schemes focused on vertical splitting where data are 

partitioned based on the file structure. In addition, in MapReduce, the underlying 

assumption is that the solution can be expressed in terms of the map and reduce 

functions working on key-value pairs, while in some cases this may not be 

natural, such as multi-stage processes, and this can lead to inefficiencies.  

     As a result, and to address the aforementioned concerns with regards to the 

MapReduce functionality, this section attempts to take the MapReduce key-value 

scheme into a higher level of functionality by simply replacing the scalar key-value 

pair functionally with our AM-based scheme, EdgeHGN. By having an associative 

key-value model, we can deal with data simply by using a pattern matching model 

that treats data records as patterns and provides a distributed data access scheme 

that enables data storage and retrieval by association. Our GN-based algorithms 

have been developed with the scalability consideration being paramount. The GN has 

the ability to perform pattern recognition processes on distributed systems due to its 

simple recognition procedure and lightweight algorithm. Further, it incurs low 

computational and communication costs when deployed in a distributed environment. 

In this regard, the EdgeHGN has been developed for the cloud environment, which 

allows the recognition process to be conducted in a smaller sub-pattern domain, 

hence minimising the number of processing nodes, which in turn reduces the 

complexity of pattern analysis. In addition, the recognition process performed using 
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the EdgeHGN algorithms are unique in that each subnet is only responsible for 

memorising a portion of the pattern (rather than the entire pattern).  

     A collection of these subnets can form a distributed memory structure for the 

entire pattern. This feature enables recognition to be performed in parallel and 

independently. The decoupled nature of the sub-domains is the key feature that brings 

scalability to our data management approach for the cloud. Moreover, the EdgeHGN 

provides capability for a recognition process to be deployed as a composition of sub-

processes executed in parallel across a distributed network. Sub-processes execute 

mutually independently. This approach is less cohesive compared to any other pattern 

recognition scheme.  

     To achieve the aforementioned objectives, an initial step would be to develop a 

distributed data access scheme that enables record storage and retrieval by association 

where data records are treated as patterns. As a result, data storage and retrieval can 

be performed using a distributed pattern recognition approach implemented through 

the integration of loosely coupled computational networks, followed by a divide-and-

distribute approach that facilitates the distribution of these networks within the cloud 

dynamically. Thus, reconciling MapReduce with associated memory concepts, 

particularly for adaptive and fast data access, aggregation and movement is a key 

contribution of this chapter.  

    In the following sections, three EdgeHGN based MapReduce approaches are 

presented to deal with different real-world data intensive scenarios. In particular, we 

have considered scenarios where we are dealing with large datasets, scenarios where 

the training data are voluminous and cases where we deal with an excessive number 

of processing neurons in the EdgeHGN network. 

 

4.3.1 EdgeHGN_MRv1 

EgdeHGN_MRv1 is designed to handle classification tasks efficiently when dealing 

with large datasets. In such cases, the input data are split among data chunks so they 

can later be processed by Mapper functions in parallel, where each Mapper constructs 

the same EdgeHGN_MR classifier using a similar set of training data.  
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Figure 4.1: EdgeHGN_MRv1 architecture 

 

 
     Figure 4.1 shows the architecture of EdgeHGN_MRv1. Consider testing a 

scenario with a large set of testing data to be processed Ʈ = {𝓽𝟭, 𝓽𝟮, 𝓽𝟯 . . . 𝓽𝑖𝑛}, 𝓽𝓲 ∈ Ʈ, 

where 1 ≤ 𝓲 ≤ 𝑖𝑛 

 

i. 𝓽𝓲 denotes a testing instance, 

ii. Ʈ represents a testing dataset, 
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iii. 𝑖𝑛 shows the number of inputs of an EdgeHGN network, it also represents the 

length of Ʈ 

iv. inputs are represented by a format of (instance𝓲, target𝓲, type), 

v. instance𝓲 denotes 𝓽𝓲 that is the input of an EdgeHGN network, 

vi. target𝓲 shows the desirable output in the case of instance𝓲 being a training 

instance, 

vii. type field consists of two values, train and test – which show the type of 

instance𝓲 (if the test value is used, the target𝓲 field value is set to null). 

 

     Testing data files are stored in the HDFS. Each data file contains a subset of 

testing instances along with all of the training data. As a result, the number of files n 

determines the number of Mapper functions used. File data contents are then fed into 

EdgeHGN_MRv1 for classification. When the scheme starts processing, each Mapper 

initialises an EdgeHGN network, which results in the creation of n EdgeHGN 

networks in the cluster. It should be noted that all EdgeHGN networks perform an 

execution on the same set of parameters, and each Mapper function reads the data 

from an input file in the form of (instanceK, targetK, type). Algorithm 4.1 depicts the 

pseudo-code for EdgeHGN_MRv1. When the value of type field is set to train then 

the instance𝓲 is input into the input layer of the EdgeHGN network. The network 

starts processing the input and calculating the result of each EdgeHGN subnet until 

the completion of the EdgeHGN process. Upon completion of the execution phase, 

the result will be recorded in the HDFS. The network then starts processing the next 

instance. This process is continued until all input data with train type values are 

processed by the EdgeHGN network.  If the value of the type field is set to test, the 

network starts performing a recognition test, where each Mapper only classifies a 

subset of the entire testing dataset. The algorithm improves efficiency through 

parallelism. Each Mapper produces intermediary results in the form of (instance , 

outputm𝓲), where instance𝓲 is the key and outputm𝓲 denotes the output of the mth 

Mapper. Upon completion of all Mappers, a Reducer starts processing and merging 

all outputs of Mappers with the same key and writing the result baxk in HDFS. 
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Algorithm 4.1: EdgeHGN_MRv1 (Classification Algorithm for Large Datasets) 

 

Input: Ʈ    Output: AA 

(1) n Mappers and one Reducer, each Mapper constructs an EdgeHGN subnet 

(2) Divide Ʈ into {𝓽𝟭, 𝓽𝟮, 𝓽𝟯 . . . 𝓽n } ,  ⋃ 𝓲=𝟏
𝐧   𝓽𝓲 = Ʈ 

(3) Each Mapper builds an EdgeHGN subnet and inputs 𝓽𝓲 where 𝓽𝓲 ∈ Ʈ 

                 BAA  new GN Bias Associative Array  

                 For all term 𝓽𝓲 ∈ Ʈ do  

                           Calculate Adjacency Comparison Function (algorithm 3.3) 

                           Calculate Bias Index (algorithm 3.4) & Update BAA𝓲   

(4) Mapper outputs ( , BAA𝓲 )  

(5) Reducer collects and merges all ( , BAA𝓲 ) 

                  For all term BAA  (𝓲 = 1, 2, …n)  do 

                           Calculate SI Module function (algorithm 3.1) 

                           Calculate Voting function (algorithm 3.2) 

                           Calculate AA   Store/Recall  

(6) Repeat (3), (4) and (5) until Ʈ is traversed and all testing data are processed 

(7) Reducer outputs (AA) and writes it back into HDFS 

 

4.3.2 EdgeHGN_MRv2 

EdgeHGN_MRv2 deals with scenarios where the training data are voluminous. To 

perform an effective classification task, the training data are split into data chunks so 

they can be processed by Mapper functions in parallel. In such cases, each Mapper 

still creates the same EdgeHGN_MR classifier but this time using only a subset of the 

training dataset to train the EdgeHGN network. Assuming Ʈ represents a training 

dataset, as illustrated in Figure 4.2, EdgeHGN_MRv2 splits Ʈ into n data chunks, 

where each data chunk 𝓽𝓲 is proceeded by a Mapper function as part of the training 

phase: 
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                                  Ʈ =  ⋃ 𝓽𝒊      ,   

𝐧

𝟏

{∀𝓽 ∈ 𝓽𝓲  | 𝓽 ∉  𝓽𝐧 , 𝓲 ≠  𝐧}                             (4.1)  

 

     It is worth noting that each of the Mapper functions in the Hadoop clusters form 

an EdgeHGN subnet where 𝓽𝓲  denotes the training input data to be consumed by the 

Mapper 𝓲. Hence, each EdgeHGN function within a Mapper results in a classifier 

output based on the training data fed into the network:        

 

                        (𝑴𝒂𝒑𝒑𝒆𝒓𝓲 , 𝑬𝒅𝒈𝒆𝑯𝑮𝑵𝓲 , 𝓽𝓲)              𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓𝓲                            (4.2)  

 

 

 

Figure 4.2: EdgeHGN_MRv2 architecture 
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     To minimise the computational costs, each of the classifiers is only trained with a 

subset of the original training data. However, this can result in degradation of 

accuracy because each Mapper is trained using only a subset of the training data and 

the complete training dataset. To ensure we can still achieve acceptable levels of 

classification accuracy, EdgeHGN_MRv2 utilises a balanced bootstrapping approach 

by combining a number of weak learners to produce a much stronger learner.  

 

4.3.2.1 Bootstrapping 

Researchers have already shown that finding a strong learner is more complex than 

training different classifiers using a single training dataset. To overcome this 

complexity, one well-known approach suggested is to conduct re-sampling of the 

training dataset, which can be implemented using bootstrap aggregating techniques 

such as bootstrapping and majority voting. Alham (2011) suggested balanced 

bootstrapping as a promising technique when looking for strong learners. In the 

balanced bootstrapping approach, an effort is made to ensure that bootstrap samples 

contain each training instance equally, but this is not guaranteed, and there might be 

some cases where bootstrap samples do not include all training instances. One 

possible approach for constructing balanced bootstrap samples is to form a sequence 

of instances Α𝟭, Α𝟮, . . ., Α𝚗  that can be repeated К times to yield a sequence of 𝓑𝟭, 𝓑𝟮, 

. . ., 𝓑К𝚗. Then a random permutation integer value ρ is chosen from the range of 

integer values between 1 and К𝚗. As a result, the initial bootstrap sample can be 

constructed from 𝓑ρ(1), 𝓑ρ(2), … 𝓑ρ(𝚗), while the second sample is formed from 

𝓑ρ(n+1), 𝓑ρ(n+2), … 𝓑ρ(2n), and this process goes on until the Кth  bootstrap 

sample is achieved from 𝓑ρ((К -1)n+1), 𝓑ρ((К -1)n+2),  … 𝓑ρ(Кn). 

 

4.3.2.2 Algorithm Design 

EdgeHGN_MRv2 starts functioning by first splitting the training data into a number 

of datasets using the balanced bootstrapping mechanism: 

   Balanced Bootstrappin of Ʈ ∶  {Ʈ𝟏, Ʈ𝟐, Ʈ𝟑, … , Ʈ𝒏}     ,     Ʈ =  ⋃ Ʈ𝓲                   (4.3) 

𝒏

𝟏
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     where Ʈ𝓲 stands for the 𝓲th training subset and 𝑛 denotes the total number of 

training data chunks. It should be noted that each training subset Ʈ𝓲 is stored in one 

file in the HDFS. Each training instance 𝓽k, 𝓽k ∈ Ʈ ,  where 1 ≤ k ≤ length (Ʈ𝓲) is 

defined in the format of (instancek , targetk , type), where:      

i. instancek denotes a bootstrapped training instance 𝓽k that is the input of an 

EdgeHGN subnet 

ii. length (Ʈ𝓲) represents the length of Ʈ𝓲 and it shows the number of inputs of an 

EdgeHGN subnet 

iii. targetk shows the desirable output in the case of instancek being a training 

instance 

iv. type field consists of two values – train and test which illustrates the type of 

instancek; if the test value is used, the targetk field value should be set to null. 

 

     When EdgeHGN_MRv2 starts processing the input, each Mapper function builds 

one EdgeHGN subnet and starts feeding the subnet one record from the HDFS input 

file in the form of (instancek  , targetk  , type). By parsing the input, the Mapper 

function can determine if the type field is set to train or test. If the type indicates the 

value of train, then the input is fed into the base layer of the EdgeHGN subnet for 

processing. The training phase continues working on the input until all instances with 

the type value set to train are processed. Now it is time for the network to start 

processing and classifying all of the testing instances. Upon processing the testing 

instances, each Mapper produces intermediary results showing classification outputs 

in the form of (instancek  , outputnk), where instance𝑘 is the key and outputnk denotes 

the output of the nth Mapper. Upon completion of all Mapper tasks, a Reducer starts 

processing and merging all of the outputs of Mapper functions with the same key. 

Before calculating the store/recall result, the Reducer function performs majority 

voting and produces the output in the form of (instancek , outputvk) where outputvk 

stands for the voted classification decision for instancek. Algorithm 4.2 depicts the 

pseudo-code for EdgeHGN_MRv2.    
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Algorithm 4.2: EdgeHGN_MRv2 (Classification Algorithm for Large Training 

Datasets) 
 

Input: Ʈ     Output: AA 

(1) n Mappers and one Reducer, each Mapper constructs an EdgeHGN subnet  

(2) Bootstrap {Ʈ𝟏, Ʈ𝟐, Ʈ𝟑, … , Ʈ𝐧}   ,   Ʈ =  ⋃ Ʈ𝓲                        
𝐧
𝟏  

(3) Each Mapper builds an EdgeHGN subnet and inputs 𝓽k where 𝓽k ∈ Ʈ𝓲  ,  

       1 ≤ k ≤ length (Ʈ𝓲) 

                 BAA  new GN Bias Associative Array  

                 For all term 𝓽k ∈ Ʈ do  

                           Calculate Adjacency Comparison Function (algorithm 3.3) 

                           Calculate Bias Index (algorithm 3.4) & Update BAAk 

(4) Mapper outputs (𝓽k , BAAk)  

(5) Reducer collects and merges all (𝓽k , BAAkj) , j = (1, 2,…, n) and computes 

BAA         

        using Majority Voting function  

                     𝐂𝐨𝐦𝐩𝐮𝐭𝐞 𝐁𝐀𝐀 =  𝐦𝐚𝐱𝐤=𝟏
𝒍𝒆𝒏𝒈𝒕𝒉 (Ʈ𝓲)

 ∑ 𝐁𝐀𝐀𝐤𝐣

𝐧

𝐣=1

                                       

                            Calculate SI Module function (algorithm 3.1) 

                            Calculate AA   Store/Recall 

 (6) Repeat (3), (4) and (5) until Ʈ is traversed 

(7) Reducer outputs (AA) and writes it back into HDFS 

 

4.3.3 EdgeHGN_MRv3 

EdgeHGN_MRv3 is designed to work with cases where there is a large number of 

processing neurons in the EdgeHGN network. To achieve high classification 

accuracy, EdgeHGN_MRv3 parallelises and distributes EdgeHGN processes across 

Mapper functions so each Mapper only utilises a subset of the processing neurons for 

training. Hence, each Mapper function may contain one or more processing neurons. 

It should be noted that there will be a number of iterations as part of this MapReduce 
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cluster setup to execute the algorithm with L layers. To implement those iterations, 

EdgeHGN_MRv3 utilises L-1 MapReduce jobs as shown in Figure 4.3. 

 

 

 

Figure 4.3: EdgeHGN_MRv3 Architecture 

 

     To guarantee the data flow between the map and reduce operations within each 

iteration layer, data instances will be presented to the network in the form of (indexκ, 

instance𝓲, target𝓲), where: 

i. indexκ denotes the κth Reducer 

ii. instance𝓲 denotes the 𝓲th data instance, which can be either a training or a 

testing instance.  

iii. target𝓲 stands for the expected output if the training instance instance𝓲 is 

fed into the network.   



150 
 

     All data instances and data format entry information are stored in a file in the 

HDFS so that they can be processed when the EdgeHGN_MRv3 starts functioning. 

The number of MapReduce operation layers, L, is determined by the size of the 

EdgeHGN bias array. One major difference between EdgeHGN_MRv3 and its 

predecessor versions, EdgeHGN_MRv1 and EdgeHGN_MRv2, is that 

EdgeHGN_MRv3 aims to maintain the neural network parameters based on the input 

data format entries rather than initialising an explicit EdgeHGN network. When 

EdgeHGN_MRv3 starts its execution cycle, each Mapper function initially reads a 

data record from the HDFS, performs some computations and then generates the <key 

, value> pair output where indexκ will form the MapReduce key, while the 

MapReduce value will be represented in the form of  (indexκ , instance𝓲 , outputj , 

target𝓲), where outputj denotes the computational result for neuron j. The indexκ 

parameter assures that the output of the Mapper functions is collected and processed 

by the κth reducer, maintaining the EdgeHGN network state in a consistent fashion 

during the execution phase of the algorithm. The output from the Mappers will be 

presented to the κth reducer in the form of (indexκˊ , outputj , target𝓲). It is obvious 

that these κ Reducer functions can produce κ number of outputs. The indexκˊ in the 

Reducer output format explicitly instructs the κˊ Mapper function to start processing 

the relevant output data file. As a result, the number of Mappers for the next layer of 

processing can be calculated based on the number of Reducer output files that will 

represent the number of input files for the succeeding layer. Upon receiving the input 

from the previous layer, Mappers start their processing and generate outputs for 

Reducers, and this process continues until the execution phase reaches the last round 

of processing. In this last round of execution, Mapper functions first process (indexκ , 

outputj , target𝓲) and generate output in the form of (outputj , target𝓲). Then one 

single Reducer function gathers the output results from all Mappers in the form of 

(outputj1 , outputj2 . . . outputjκ , target𝓲) and writes the result (output𝓲  , target𝓲) 

back into the HDFS. This process continues by reading the next instance from the 

input data file until all instances are processed. Algorithm 4.3 depicts the pseudo-

code for EdgeHGN_MRv3.        
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Algorithm 4.3: EdgeHGN_MR_3 (Classification Algorithm for Networks with 

Large Processing Neurons) 

 
Input: Ʈ       Output: AA 

(1) n Mappers and n Reducers 

(2) Initially each Mapper inputs (indexκ , instance𝓲 , target𝓲) where instance𝓲 

denotes the 𝓲th data instance, target𝓲 stands for the expected output if the training 

instance instance𝓲 is fed into the network and indexκ denotes the κth Reducer 

(3) Mapper outputs (indexκ  , instance𝓲 , outputj , target𝓲) k = (1, 2 … n) where 

outputj denotes the computational result for neuron j 

(4) The κth Reducer gathers output (indexκˊ , outputj , target𝓲  ), κˊ = (1, 2… n) where 

the indexκˊ in the Reducer output format explicitly instructs the κˊ Mapper function to 

start processing the relevant output data file 

(5) Each Mapper builds an EdgeHGN subnet and inputs 𝓽m where 𝓽m ∈ Ʈ ,  

      1 ≤ m ≤ length (Ʈ) 

                 BAA  new Boolean Associative Array  

                 For all term 𝓽m ∈ Ʈ do  

                            Calculate Adjacency Comparison Function (algorithm 3.3) 

                            Calculate Bias Index (algorithm 3.4) & Update BAAm 

(6) Mapper outputs (BAAm , target𝓲)  

(7) nth reducer collects and merges all (BAAm , target𝓲) from n Mappers 

                 For all term BAAm (1 ≤ m ≤ length (Ʈ)) do 

                           Calculate SI Module function (algorithm 3.1) 

                           Calculate AA   Store/Recall 

                 Writing the result (output  , target𝓲) back into HDFS 

(8) Retrieve instance𝓲+1 and target𝓲+1  

            Update input to (indexκ  , instance𝓲+1  , target𝓲+1) 

(9) Repeat (2), (3), (4), (5), (6), (7), (8) until all input dataset instances are processed 
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4.4 Performance Evaluation 

All three EdgeHGN_MR implementations are set up in a Hadoop-based framework 

to evaluate their respective performance when dealing with real-world big dataset 

examples. The experimental Hadoop cluster was configured with eight DataNodes 

and one NameNode. The NameNode machine acts as both JobTracker and 

NameNode, while each of the eight DataNodes act as both TaskTracker and 

DataNode. The Hadoop cluster configuration details are listed in Table 4.1.              

 

Table 4.1: Hadoop Cluster Details  

 

 

NameNode 

CPU: Core i7 @ 3.2 GHz 

Memory: 16 GB , SSD: 1 TB 

OS:  Redhat Linux  

 

DataNode 

CPU: Core i7 @ 3.8 GHz 

Memory: 32 GB , SSD: 500 GB 

OS: Redhat Linux 

Network bandwidth 1 Gbps 

Hadoop version 2.5.2, 64 bits 

Java version OpenJDK 1.6 

JVM heap size 16 GB 

 

     For the training and testing dataset, the MNIST (Mixed National Institute of 

Standards and Technology) dataset is chosen (MNIST Database, 2012). The MNIST 

is an enormous set of handwritten digits that is commonly used for testing large-scale 

classification systems (see Figure 4.4).  The database includes 60,000 training images 

and 10,000 testing images. Each image sample has 784 dimensions. That is, each 

MNIST data sample is a 28 x 28 array of integers in the range of 0 – 255, depicting 

the intensity of the blackness of the image at that location. The number of instances 

varies from 100 to 10,000 to calculate the accuracy rate of the scheme, and the size of 

the dataset varies between 1MB and 1GB to test the computational efficiency of the 

approaches. To ensure we can achieve a fair experimental result, all tests were 

repeated five times, and the average calculated value of all five attempts was used.     



153 
 

 
 

Figure 4.4: Handwritten digits (MNIST Database)  

 

4.4.1 Classification Accuracy 

To evaluate the accuracy rate of EdgeHGN_MRv1, a different number of training 

instances was used. However, the maximum number of training and testing data 

instances was capped at 10,000. Accuracy rate is calculated as per equation (4.4): 

  

                          Accuracy rate = 
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞

𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞+𝐅𝐚𝐥𝐬𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞
                   (4.4) 

 

     Figure 4.5 illustrates the accuracy rate result of the EdgeHGN_MRv1 classification 

approach when using sixteen Mappers. The results show that increasing the number 

of training instances can result in an improved classification precision rate. To 

evaluate the performance of EdgeHGN_MRv2, the maximum number of training and 

testing data instances was capped at 10,000. Subsets of the training dataset were used 

by 16 Mappers in the scheme to generate classification results of 10,000 testing 

instances, utilising both bootstrapping and majority voting techniques. Each of the 

Mappers in the network inputs various numbers of training instances ranging from 

100 to 1000.      
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Figure 4.5: Accuracy rate of EdgeHGN_MRv1 

 
     Figure 4.6 illustrates the accuracy rate result for EdgeHGN_MRv2. As shown, the 

precision rate of the scheme keeps improving by the increase in the size of the 

training instances in each EdgeHGN network. Considering the same size training 

datasets, EdgeHGN_MRv2 achieves higher accuracy rates compared with 

EdgeHGN_MRv1 for all cases of the training dataset.   

 

 
 

 

Figure 4.6: Accuracy rate of EdgeHGN_MRv2 
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     EdgeHGN_MRv3 utilises a fully distributed Hadoop-based EdgeHGN setup to 

perform a classification task using a large number of processing neurons. Figure 4.7 

illustrates the accuracy rate for an EdgeHGN_MRv3 scheme with 16 Mappers. Again, 

the precision rate improves along with the increase in the size of the training dataset.   

 

 
 
 

Figure 4.7: Accuracy rate of EdgeHGN_MRv3 

 
     Figure 4.8 shows the accuracy rate comparison between all three schemes. While 

EdgeHGN_MRv1 and EdgeHGN_MRv3 perform similarly, EdgeHGN_MRv2 

outperforms the other two because the scheme makes use of strong learners by 

utilising bootstrapping and majority voting techniques.   

 

 
 
 

Figure 4.8: Accuracy rate comparison between  

EdgeHGN_MRv1, EdgeHGN_MRv2 and EdgeHGN_MRv3 



156 
 

     Figure 4.9 illustrates the consistency and stability of all three algorithms for their 

five individual runs. As shown, EdgeHGN_MRv2 exhibits high stability compared 

with the other two approaches, again due to the use of bootstrapping and majority 

voting techniques to achieve strong learners. 

 

 
 

 

 
 

 
 

Figure 4.9: Consistency and stability rate comparison between  

EdgeHGN_MRv1, EdgeHGN_MRv2 and EdgeHGN_MRv3 
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4.4.2 Computational Efficiency 

To evaluate the computational efficiency of the EdgeHGN-based MapReduce scheme 

when dealing with large datasets, a number of experiments have been carried out to 

examine the effect of an increase in the size of the dataset on the execution time of 

the algorithm. Figure 4.10 illustrates the execution time of all three schemes with 16 

Mappers for processing datasets of various sizes, ranging from 1MB to 1GB. 

 

 
 

Figure 4.10: Computational efficiency comparison between  

EdgeHGN_MRv1, EdgeHGN_MRv2 and EdgeHGN_MRv3 

 
     As shown above, the computational cost of EdgeHGN_MRv1 and 

EdgeHGN_MRv2 are reasonably low when dealing with large data sizes because 

both schemes distribute the testing data and computational load among all eight 

DataNodes in the Hadoop cluster and utilise parallel processing to scale with the 

increase in the size of input dataset. However, EdgeHGN_MRv3 incurs an additional 

computational overhead when compared with the other two approaches because both 

EdgeHGN_MRv1 and EdgeHGN_MRv2 implement training and classifications tasks 

within one MapReduce job and, as a result, Mappers and Reducers are required to be 

initialised and started once. Conversely, EdgeHGN_MRv3 includes multi-stage 

Hadoop processes of stopping and starting Mappers and Reducers, resulting in 

extended execution times. This is an area that can be improved in future work by 
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looking into enhancing methods of in-memory processing to better empower 

MapReduce operations working on data-intensive scenarios with many iterations.            

 

4.5 Comparative Performance Results 

Our proposed EdgeHGN-based MapReduce scheme (EdgeHGN_MR) is primarily 

focused for use within the clouds and it is fundamentally different from all published 

approaches in data management. The large heterogeneous datasets created for the case 

studies will provide an excellent resource to compare and contrast the one-shot 

learning, scalability and accuracy of our approach with a number of well-established 

data management techniques, which in turn will generate detailed information on 

trade-offs and benefits. In this regard, performance results already derived from 

various experiments are promising. While EdgeHGN outperforms its former GN 

extensions – HGN and DHGN – in terms of accuracy and processing time, as 

discussed in Chapter 3, it also provides comparable performance benchmarks when 

tested against well-known large-scale data management schemes such as Distributed 

MapReduce (Dean & Ghemawat, 2004), Google Pregel (Percolator, Dremel & Pregel, 

2012), Microsoft Dryad (Isard. et. al., 2007) and GraphLab (GraphLab Open Source, 

2009). To prove this, a series of experiments have been conducted, and the results are 

presented in the following sub-sections. 

 

4.5.1 EdgeHGN-based MapReduce versus Hadoop MapReduce 

In one of the conducted experiments, the aim was to process webserver logs to 

examine the HTTP sessions accessed by users of particular webpages. One important 

factor in this test was to evaluate the overall time spent by the end-user for each 

requested page. This time metric can be utilised later to gain more information about 

visitors and to better design a website structure. For the purpose of this test, the 

extracted log files were from NASA Kennedy Space Center (2014), which stores two 

months’ worth of entire HTTP requests to the NASA Kennedy Space Center WWW 

server in Florida. The file format is in ASCII, with one line per request. In each line, 
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various data fields are captured, representing host, timestamp, request, HTTP reply 

code and bytes in the reply. Traditional data-processing approaches working on 

relational data will not fit the purpose for the processing of this huge log file size of 

more than 50,000,000 request lines due to the semi-structured nature of log data, 

along with its excessive volume. To evaluate the HTTP session information, Internet 

protocol (IP) address, timestamp and URL data are extracted from log files and stored 

in the HDFS. The session affinity data provide all web pages visited by a particular IP 

address with a unique page identity and timeout value. In most cases, this timeout 

value should not exceed 30 minutes; otherwise, a new session with a new identity 

will be generated for that IP address. The session time-span can be determined by 

calculating timestamp differences for the same IP from the time of logging in to the 

point of logging out. All log data fields can be input into map tasks, where the output 

of map tasks includes the session affinity number as the key and all other fields in the 

data log files as values. Then the Reducer function calculates the overall time-span 

for each session ID (key) and generates the final output in the form of (IP, Session 

ID, Time). Table 4.2 illustrates the results of processing the log files using 

EdgeHGN_MR and Hadoop MapReduce run in fully distributed mode. The version 

of Hadoop implementation was 2.2.0 at the time of conducting this test.      

    

Table 4.2: Processing time comparison between EdgeHGN_MR and MapReduce 

 

Data Count (rows) File Size (MB) MapReduce EdgeHGN-based MR 

10,000 2MB 14 Seconds 5 Seconds 

100,000 25MB 68 Seconds 26 Seconds 

1,000,000 246MB 92 Seconds 72 Seconds 

10,000,000 2412MB 173 Seconds 119 Seconds 

   
     As shown in table 4.2, the distributed operation suits better for processing large 

data volumes. In fact, processing small data with the distributed operation is not 
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desirable because the time it takes to collect the distributed data during a reduce 

operation within the same processing node outweighs the advantages of distributing 

data chunks between map functions. Conversely, EdgeHGN-based MapReduce works 

well in dealing with both small and large size data counts due to its parallel one-shot 

learning mechanism, where the size of the input data has a minimal effect on the time 

of its single-cycle in-network processing.   

 

4.5.2 EdgeHGN-based MapReduce versus Pregel-like Graph 

Processing Systems (Giraph, GPS, Mizan and GraphLab) 

Pregel is an efficient, scalable and fault-tolerant framework that enables large-scale 

graph processing using simple code, and it is capable of performing computations 

over large graphs in a very fast fashion while hiding relevant distribution details 

behind an abstract API (Malewicz, et. al., 2010). Its architecture is inspired and 

developed by the Bulk Synchronous Parallel (BSP) model (Valiant, 1990), which 

empowers the programmer to come up with parallel-computing solutions for a 

specific problem without the hassle of knowing how communication and memory 

allocations are performed in a distributed setup. To minimise the communication 

overhead, Pregel tries to preserve the data locality by moving the computations to 

where the data reside. Pregel is considered a simple parallel processing framework 

with many opportunities for improvement, and it has led to the invention of several 

other graph processing approaches, including Apache Giraph (Apache Giraph, 2013), 

GPS (Salihoglu & Widom, 2013), Mizan (Khayyat, et. al., 2013) and GraphLab 

(Low, et. al. 2010) which is now referred to as PowerGraph (Gonzalez, et. al. 2012). 

     Apache Giraph is one of the schemes selected for the purpose of performance 

evaluations. The reason Apache Giraph was selected as one of the processing 

frameworks to compare EdgeHGN_MR against is that it offers an open-source 

alternative for Pregel where worker processes are run as map-only tasks on top of the 

HDFS data structure (Apache Giraph, 2013). Apache Giraph v1.0.0 is chosen due to 

its voluminous developer and user base, which includes Facebook. GPS is another 
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open-source implementation of the Pregel scheme taken for our experiments. The 

reason for this selection is that GPS has been implemented in many graph processing 

experimental systems, thereby providing confidence in the approach. It also performs 

comparatively with Giraph v1.0.0, and it previously outperformed Giraph 0.1 (12 x 

faster) (Salihoglu & Widom, 2013). Mizan is another open-source implementation of 

Pregel selected for our performance benchmarking. As it provides similar graph data-

processing approach as Giraph and GPS, it is a good candidate for our performance 

evaluation (Khayyat, et. al., 2013). Finally, GraphLab is chosen as another open-

source implementation for large-scale graph processing, mainly due to its popularity 

and maturity for handling graph processing tasks (Low, et. al. 2010). 

 

4.5.2.1 System Setup and Datasets 

All Experiments are designed to run on setups of two, four and eight Amazon EC2 

spot instances. Table 4.3 lists the setup details for our experiment. 

 

Table 4.3: Experiments Setup Details  

 

Amazon EC2 Instances 

(2 , 4 , 8) 

 

4 Virtual CPUs: 8 Xeon 1.7GHz 

Memory: 16GB 

OS:  Ubuntu 12.04.1 

 

Tested Frameworks 

 

Giraph v1.0.0 

GPS rev 110 

Mizan 0.1bu1 

GraphLab 2.2 

Network bandwidth 1Gbps 

Hadoop version 1.0.4 

Java Version jdk1.6.0 30 

JVM Heap Size 16GB 

 

     Table 4.4 illustrates the datasets eT and eF used for evaluating the performance of 

each scheme. These datasets are taken from Stanford Network Analysis Project 

(2015). All datasets are recorded in the HDFS as uncompressed ASCII formatted text 

files. 
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Table 4.4: Dataset Details  

ego-Facebook (eF) 
(Social circles from Facebook) 

 

4K vertices 

88K edges 

ego-Twitter (eT) 
(Social circles from Twitter) 

 

81K vertices 

 1.77M edges 

 

 

4.5.2.2 PageRank Algorithm 

PageRank is one of the first selected algorithms to evaluate the performance of 

schemes in-scope due to its popularity and simplicity. It could also represent the 

memory, computation and communication challenges when processing large scale 

data. The PageRank algorithm is a well-known scheme used to express the relative 

importance of webpages computed based on the hyperlink structure and by weighting 

each incoming link to a page (Brin & Page, 1998). The PageRank of the webpage 𝔁 is 

calculated by the recurrence equation as: 

 

                           𝐏𝐑[𝔁] =
𝟏− 𝛌 

𝐧
+  𝛌 ∑

𝐏𝐑[𝔁]

𝐎𝐮𝐭𝐋𝐢𝐧𝐤𝐬[𝐲]𝐲 𝐥𝐢𝐧𝐤𝐬 𝐭𝐨 𝔁 
                              (4.5) 

 

     Where 𝛌 is the random reset probability and 𝒏 is the number of WebPages.  Since 

the PageRank value for page 𝓲 is dependent on the PageRank of those pages which 

are linked to page 𝓲, the recurrence formula is applied in an iterative fashion until the 

PageRank of each page converges. For this performance testing, a PageRank scheme 

with damping factor (λ) of 0.85 is selected, the same value as it is taken in (Malewicz, 

et. al., 2010). This damping factor value means that, assuming a user is browsing a 

webpage, there is an 85% chance of switching to a random webpage link from the 

outgoing links of the current visited page, and a 15% chance of switching to a random 

webpage taken from the entire web (the input graph). The PageRank algorithm has an 

elegant MapReduce implementation. The mapper emits initial PageRank values for 

every node. The reducer receives all PageRank contributions for a given node, adds 

them up, and emits its contribution to its own outgoing links (See Figure 4.11). 
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Figure 4.11: MapReduce implementation of PageRank algorithm where the mapper 

emits initial PageRank values for every node. The reducer receives all PageRank 

contributions for a given node, adds them up, and emits its contribution to its own 

outgoing links. 

 

     As shown in Figures 4.12 and 4.13, for processing ego-Facebook and ego-Twitter 

datasets using the PageRank algorithm, GraphLab outperforms all other schemes due 

to being capable of performing adaptive computations. Conversely, Mizan performs 

poorly for all conducted experiments. The reason for this slow computational time is 

that Mizan implements a slow graph partitioning process separately from 

computation, in which it tries to process the graph by conducting multiple large reads 

and writes to the HDFS. Giraph and GPS also perform very closely, while Giraph 

takes slightly longer than GPS to conduct computations. EdgeHGN_MR outperforms 

Giraph and Mizan for both datasets in most setups, but it consumes more time 

conducting computations compared with GPS and GraphLab. The reason for this 

slower computational time is mainly because of longer initialisation and start-up 

times. In fact, while EdgeHGN is capable of producing parallel single-cycle 

computations, due to the utilisation of the number of Mappers and Reducers, 

initialisation and start-up times contribute to longer computation times. Nevertheless, 

EdgeHGN’s execution time is comparable with other state-of-the-art techniques in 

the literature. 



164 
 

 

 

Figure 4.12: Computing time comparison between Giraph, GPS, Mizan, GraphLab 

and EdgeHGN_MR using PageRank algorithm for ego-Facebook Dataset 

 
 

 

 

 

Figure 4.13: Computing time comparison between Giraph, GPS, Mizan, GraphLab 

and EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset 
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        Figures 4.14 and 4.15 show the maximum memory usage for the Giraph, GPS, 

Mizan, GraphLab and EdgeHGN_MR schemes processing ego-Facebook (eF) and 

ego-Twitter (eT) datasets using PageRank algorithm with Amazon EC2 cluster setups 

of two, four and eight machine instances. As shown, GPS demonstrates remarkable 

memory efficiency across all experiments due to its built-in scheme optimisations 

such as canonical objects, reducing the cost of allocating multiple java objects 

(Salihoglu & Widom, 2013). Mizan’s memory usage efficiency is improved by 

adding more resources, but it downgrades when larger graphs are being processed. 

This is again due to its lack of built-in system optimisations. In terms of memory 

requirements, Giraph performs poorly when compared with most schemes, with the 

exception of Mizan. The reason for this poor memory usage efficiency is that it 

utilises memory-inefficient adjacency list data structures to implement graph 

mutations. GraphLab generally performs reasonably well across all experiments in 

terms of memory usage due to its wide built-in system optimisations. Similar to 

GraphLab, EdgeHGN_MR demonstrates efficient memory usage across all 

experiments. This is because in EdgeHGN_MR, memory requirements per GN node 

to maintain the bias array do not increase disproportionately with the increase in the 

number of stored graphs.  

 

 

Figure 4.14: Maximum memory usage comparison between Giraph, GPS, Mizan, 

GraphLab and EdgeHGN_MR using PageRank algorithm for ego-Facebook Dataset 
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Figure 4.15: Maximum memory usage comparison between Giraph, GPS, Mizan, 

GraphLab and EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset 

 

 4.6 Conclusion 

Existing large-scale data-processing schemes such as MapReduce involve isolating 

basic operations within an application for data distribution and partitioning. This 

excludes their applicability to many applications with complex data dependency 

considerations. MapReduce models when used with complex data requirements 

generally entail additional difficult and error-prone application-level customisations. 

Adding higher and complex data representations within the model will vastly 

improve its usability and provide an important – pattern recognition based – data 

analysis option. Also our loosely coupled associative computing (GN-based) method, 

EdgeHGN, as discussed in Chapter 3, provides means to deliver dynamic data 

management. Hence, the goal of this chapter was to create a formal model, methods 

and prototypical realisations of a combination of MapReduce – as architectural 

patterns for parallel processing structures for widely distributed computing – with 

AM concepts, represented in EdgeHGN scheme. The aim was to achieve algorithms 

that provide demonstrably more efficient, robust and scalable end-to-end data access 

to distributed real-time information for clouds through applying an access scheme 
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that can enable fast data retrieval across multiple records and data segments 

associatively, utilising a parallel approach.  

     To address these, in this chapter, three parallel EdgeHGN based MapReduce 

schemes were introduced and discussed in detail. EdgeHGN_MRv1, 

EdgeHGN_MRv2 and EdgeHGN_MRv3 each utilise EdgeHGN network processing 

model in conjunction with MapReduce computational framework to effectively deal 

with data-intensive scenarios in the face of excessive amount of classification data to 

process, voluminous training datasets or massive number of processing neurons in the 

network, respectively. Proposed schemes in this chapter preserve the strengths of the 

MapReduce model and eliminate/alleviate most of its constraints in a well-integrated 

manner by replacing referential data access mechanisms with more versatile and 

distributable associative functions, which allow complex data relations to be easily 

encoded into the keys as patterns. These patterns can be applied in a variety of 

applications requiring content recognition e.g., image databases, search within large 

machine log files and data mining. Algorithmic strengths of the MapReduce approach 

was investigated for the first time in context with the effectiveness of one-shot 

learning-based parallelism provisioned via our distributed pattern recognition 

approach, EdgeHGN. The principle of associative-memory-based learning was 

implemented through the use of hierarchically connected layers, with local feature 

learning at the lowest layer and upper layers combining features into higher 

representations. The EdgeHGN-based MapReduce approach to cloud-based data 

processing is unique. It elevates the MapReduce key-value scheme to a higher level 

of functionality by replacing the purely quantitative key-value pairs with higher-order 

data structures that will improve the parallel processing of data with complex 

associations (or dependencies). By using an associative key-value framework, we can 

deal with data in any form and in any representation simply by using a pattern 

matching model (including fuzziness) that treats data records as patterns and provides 

a distributed data access scheme that enables balanced data storage and retrieval by 

association.  
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     Our experimental results show that EdgeHGN based MapReduce works 

exceptionally well in dealing with both small to large size data counts due to its 

parallel one-shot learning mechanism where the size of input data has minimal effect 

on the time of its single-cycle in-network processing. Performance evaluation results 

against state-of-the-art parallel processing techniques in the literature (Distributed 

MapReduce, Giraph, GPS, Mizan and GraphLab) demonstrate that the performance 

of MapReduce parallelism as a scalable scheme for data processing in clouds can be 

significantly improved by transforming the data processing operations into one-shot 

distributed pattern matching sub-tasks, in which distributed computations are 

performed in-network, enabling data storage and retrieval by association (instead of 

pre-set referential data access mechanisms). In the next chapter we will further 

demonstrate applicability of EdgeHGN_MR approach to distributed data processing 

within fine-grained wireless sensor networks with limited resource considerations.   
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Chapter 5 
 

 
 

 

EdgeHGN Application in Fine-

grained Wireless Sensor Networks 

(WSNs)  
 
 

 

 

This chapter investigates the capabilities of the proposed EdgeHGN scheme in the 

context of distributed data processing in large-scale cloud of wireless sensor networks 

(WSNs). The chapter will examine WSNs as a platform of operation for EdgeHGN 

distributed pattern matching to demonstrate the ability of the proposed recognition 

technique to learn and recognise complex patterns using minimal information and 

resources to effectively perform classification tasks. The rapid technological 

advancement of wireless technologies and the increasing miniaturization of RF micro 

electro-mechanical systems have resulted in the advancement of small and tiny 

computational systems, such as WSN technology. These inter-connected computing 

devices create a computational network that is capable of offering a frontline 

processing platform for various purposes, such as event detection and remote 

monitoring. Such networks are mainly referred to as fine-grained networks since they 

normally consist of a large group of connected tiny computing nodes with limited on-

board resources for power, storage, and processing. In their widely acclaimed article, 
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Wireless sensor networks 2010 – 2020, Peter Harrop and Raghu Das write about 

billions of sensors guarding us against events such as avalanches, hurricanes, forest 

fires, failures of critical services and assisting in hospitals and with traffic through the 

use of the wireless sensor network (WSN) (Harrop & Das, 2010). In spite of the 

enormous potential existing for WSN use, the fact is that so far WSN technology has 

been mostly implemented for humble applications such as meter reading in buildings 

and simple forms of ecological monitoring. Current approaches mainly address the 

issue of conveying retrieved sensory data to a central entity referred to as base station 

for most of the processing which can create bottlenecks in the system, resulting in 

less scalable networks. As a result, and to address scalability concerns, WSN 

networks require new generation of processing schemes which are capable of 

processing their sensory findings internally to produce highly condensed and 

sophisticated outputs within the network. This approach can eliminate the bottleneck 

problem by offering on-site computations through adoption of a completely 

distributed and decentralised technique. 

     In order to build such a framework as stated above, the first step will be to 

establish a level of computability within the WSN in a way that sensory readings can 

be immediately translated into and represented as event patterns, so that they can later 

be locally processed and analysed by the network in a purely distributed fashion. This 

approach will entail two-fold benefit. On one hand, translation of sensory data into 

patterns can improve event detection (e.g. surveillance) and on the other hand due to 

the distributed nature of pattern matching techniques deployed with the WSN 

network, this approach can yield scalable processing schemes for future large-scale 

networks. The main challenge here is to evolve a real-time approach, which is 

capable of processing complex real-life patterns generated from various types of 

sensors, and to create an efficient computational model for processing WSN 

heterogeneous datasets. For this purpose, events of interest initially need to be 

correlated to particular pattern classes of our definition. Upon completion of this 

translation phase, implementing a distributed pattern matching approach, such as 

EdgeHGN, would assist us with integrating large volume of sensor nodes into a smart 
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monitoring platform for observing phenomenon of interest which in turn can bring 

unprecedented functionalities within our reach for performing large-scale distributed 

data processing within resource-constrained WSNs.  

     Application of parallel pattern matching approach within fine-grained WSN 

networks has been previously discussed by Khan and Mihailescu (2004). As part of 

their research findings, they presented a distributed recognition technique for locating 

stress patterns from a basic finite element model stored within WSN network. In the 

research work conducted by Baqer, et. al. (2005) and Baig, et. al. (2006), pattern 

recognition schemes in WSN are further investigated with a major focus on GN-

based pattern matching/event detection approach. Later, Nasution and Khan (2008) 

proposed a more advanced distributed pattern recognition technique for event 

detection based on their Hierarchical Graph Neuron (HGN) associative memory 

model offering. 

     The motivation for this chapter lies in the aforementioned applications using GN-

based algorithms. In this regard, EdgeHGN, with its light-weight distributable 

computational model along with its high scalability features can be a suitable 

candidate for performing distributed on-site computations within WSNs. With the 

ability of parallelising the computational process within the body of the network, 

EdgeHGN enables recognition scheme to be implemented on tiny resource-

constrained computing devices such as sensor nodes in WSN network. In a complete 

distributed setup, each GN is assigned to a single compute node, and the 

collaborations of such inter-connected compute nodes form an EdgeHGN subnet. The 

simple EdgeHGN light-weight bias array search mechanism makes this configuration 

well-suited for fine-grained WSN networks that suffer from limited processing and 

storage capabilities. In this chapter we will demonstrate EdgeHGN as a lightweight 

and distributed event detection scheme that simplifies the existing WSN 

infrastructure and develops a single-cycle learning pattern recognition capability 

within the WSN for event detection. In this chapter, we will also demonstrate the 

robustness and scalability of the EdgeHGN for performing distributed recognition 

tasks over a fine-grained network. 
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5.1 Distributed Data Processing Scheme for WSNs 

Many of existing data processing approaches deployed in WSNs suffer from highly 

complex computations, iterative learning procedures and large training set 

requirements which restrict their use as a suitable method that can easily scale up to 

meet large-scale WSN resource-constrained operational requirements. In fact, 

majority of such schemes often apply conventional neural network techniques or 

machine learning methods that need extensive amount of retraining as well as large 

number of training datasets for their effective generalisation. Furthermore, the 

centralised processing or single-processing approach used in existing methods puts a 

practical burden on developing scalable schemes for WSNs. As an example, the 

constant flow of retrieved sensory data will produce extensive communication 

overheads. In addition, re-routing procedures and relocation activities of sensor nodes 

that regularly happen in real-time applications will result in significantly long delays 

in detecting critical events and these even get worse when computational bottlenecks 

are present in the network. These limitations make WSN even a less suitable 

candidate for applications with large-scale data processing requirements. Therefore, 

we are in need of a new approach for data processing within WSN that enables 

processing to be conducted within the body of the network in situ and with 

decentralised manner and generates highly condensed data outputs internally within 

WSN. Having such an internal processing setup will alleviate the bottleneck issue 

within WSN through on-site computations, and improves performance by minimising 

the processing delay experienced using the existing methods. Artificial neural 

networks (ANNs) and other machine learning schemes are the most commonly 

deployed classification methods for performing event detection in WSNs. Some of 

these approaches implement the Kohonen Self-Organizing Map (SOM) (Kohonen, 

2000) or other activation-based neural networks, such as the Radial Basis Function 

(RBF) neural network (Yang & Paindavoine 2003). However, due to their extensive 

learning complexity as well as their highly cohesive training-validation approach, 

these methods cannot scale up effectively to the dynamics of the WSN. 
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5.1.1 WSN Event Detection 

On a macro scale, a WSN comprises a network of wireless sensor nodes that are 

linked and connected together through a common entity, referred to as the base 

station or sink. Because of restricted on-board resources available in terms of limited 

power and processing capabilities, communications between sensor nodes and the 

base station usually involve a series of data aggregation techniques to reduce data 

exchange and minimise the volume of traffic routed to the base station. In fact, issues 

with WSN deployment are mainly due to their resource-constrained characteristics, 

which include restricted communication bandwidth, limited power and processing 

capability and limited memory capacity (Culler, Estrin and Srivastava, 2004). 

Research in the area of event detection in WSN is commonly classified into 

performance-specific research and application-specific research. The performance-

specific research is more concerned with the efficiency of the event detection method. 

The main research goal in this area is to develop event classification techniques with 

minimum energy consumption and extended lifetime of the WSN network. On the 

other hand, application specific research focuses on the development of event 

detection methods that provide accurate and reliable detection strategy for predefined 

applications such as intrusion detection or phenomenon detection. The following 

section will further describe these two common research areas. 

 

5.1.1.1 Performance-specific Event Detection Schemes 

Most of the recent research works on performance-specific event detection schemes 

are focused on developing efficient localisation and routing mechanisms for WSN. 

Localisation and routing are the two important factors in determining the optimum 

coverage and performance of a WSN network. A collaborative event detection and 

tracking in wireless heterogeneous sensor networks has been proposed by Shih, 

Wang, Chen and Yang (2008). In this research, emphasis has been put into tracking 

procedure and localization of sensors attribute region for event detection. Banerjee, 

Xie and Agrawal (2008) introduces multiple-event detection scheme with fault 

tolerant within WSN. They propose the use of polynomial-based scheme that 
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addresses the problems of Event Region Detection (PERD). There are two-

components involved, including event recognition and event report with boundary 

detection. For event recognition, they adopt min-max classification scheme which 

classifies event according to the sensor reading values. These values would then be 

transformed into polynomial coefficients and passed through a data aggregation 

scheme. The proposed event detection scheme has enabled a 33% savings in the 

communication overhead experienced by the network. The development of energy-

efficient scheme for event detection within WSN has also been carried out by Baqer 

(2008) using GN pattern recognition scheme with voting capabilities. This work 

provides a foundation for energy-efficient pattern recognition scheme to be deployed 

within WSN infrastructure for real-time applications such as structural health 

monitoring (SHM). Cellular Weighted Graph Neuron (CwGN) was later proposed by 

Alfehaid (2013), as a distributed in-network processing paradigm that depends on local 

computations and adopts weighting technique that searches for pattern edges and 

boundaries. The model addresses the constraints of timing requirements by allowing a 

number of CwGN networks to perform recognition operations in a parallel paradigm. 

The research in this chapter intends to extend the capabilities of parallel pattern 

recognition scheme using a more scalable EdgeHGN distributed approach. 

 

5.1.1.2 Application-specific Event Detection Schemes 

Application-specific schemes for event detection refer to the area of research 

involving development of application middleware for WSN. This middleware 

provides enhanced capability and accuracy for event detection using sensor networks. 

Several machine learning algorithms have been applied by a number of research 

studies, including Fuzzy-ART neural network, multi-layer perceptrons (MLPs), and 

Self-Organizing Maps (SOMs). The use of Adaptive Resonance Theory (ART) neural 

network for event tracking was introduced by Kulakov and Davcev (2005). In these 

research, the use of artificial neural networks (ANNs) in the form of an ART network 

has been used as pattern classifier for event detection and classification. The scheme 

offers reduction in communication overhead with only cluster labels being sent to the 
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sink, instead of the overall sensory data. However, the implementation of ART neural 

network incurs excessive iterative cycle to achieve optimum cluster matches. The 

research by Kulakov and Davcev (2005) on ART neural network for event tracking 

has also been further researched by Li and Parker (2008) in their study on intruder 

detection using a WSN with fuzzy-ART neural networks. Self-organisation for event 

detection has also been a major focus in application specific research within WSN 

networks. Catterall et. al., (2003) propose a concept of distributed event classification 

through the use of Kohonen self-organising map (SOM) approach (Kohonen, 2000). 

The occurrence of events, which are signified by changes in sensor parameter values, 

could be mapped into clusters representation. The proposed scheme however, 

imposes significant iterative learning procedure and the classification process is 

carried out on each input unit, rather than collective input units. 

 

5.1.1.3 Distributed Pattern Recognition Scheme within WSN 

It should be noted that, any algorithm that may entail computations, communications, 

and storage resources within a sensor node would lead to a rapid exhaustion of the 

limited battery power available per node. This implies the simple fact that the data 

processing and communication must be minimal in order to conserve limited energy 

and computational resources of sensors (Khan & Muhamad Amin, 2009). To address 

this concern, system designers must be able to come up with a well-managed setup 

for WSN deployment that includes principles such as data-centric processing 

approach, localised algorithms and lightweight middleware. Current schemes 

deployed for event detection in WSN commonly involves a centralised processing 

phase at the sink or base station. Efforts to reduce the tendency for this singular 

processing stage base have been shown in both performance and application-specific 

research works. However, a complete decentralisation strategy has yet to be realised. 

This new scheme should solve the existing issues of complex learning algorithms and 

tightly-coupled techniques that are currently being deployed for event detection.  

     In the following sections, a new design for event detection in WSN is introduced 

and discussed that incorporates the above discussed principles for highly-scalable 
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sensor networks. This chapter proposes a holistic solution for event detection in 

WSN. The proposed scheme incorporates a distributed pattern recognition approach 

within WSN network and provides on-site and localised computation. The remaining 

of this chapter details the implementation of EdgeHGN single-cycle learning 

distributed pattern recognition algorithm. Within this scheme, a dimensionality 

reduction approach has been employed for minimising the need for complex 

computations. The proposed scheme is also capable of providing scalable detection, 

enabling allowance for the outgrowth of event classes. Details of the EdgeHGN 

distributed pattern recognition scheme can be further referred to as in Chapter 3. 

 

5.2 Integrated EdgeHGN-WSN Processing Scheme  

Using distributed nature and lightweight features of EdgeHGN, an event detection 

scheme for WSN network is able to be carried out at the sensor node level. In fact, it 

acts as a front-end middleware that could be deployed within each sensor nodes in the 

network, building a network of event detectors. As a result, our proposed scheme 

minimises the processing load at the base station and provides near real-time 

detection capability. Preliminary work on EdgeHGN integration for WSN has been 

conducted in (Basirat & Khan, 2013). In a fully distributed EdgeHGN configuration, 

a collection of sensor nodes collaborate and form an EdgeHGN subnet to perform 

event detection based on the sensory readings obtained from the environment (See 

Figure 5.1). Note that the SI module will be implemented in a controlling node, such 

as the base station, or a super-node. The EdgeHGN subnet module is located within 

each WSN subnet that is located in a specific sensory region. The event classification 

process (evaluation of event/non-event signals) in the EdgeHGN event detection 

scheme is a dual-layer process. The first layer focuses on the sub-pattern recognition 

in the EdgeHGN subnet, whereas the second layer involves pattern classification 

using a voting scheme that is conducted by the SI module. Sub-pattern recognition is 

the process of determining the recall/store status of an input sub-pattern that is 

conducted in EdgeHGN subnets. 
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Figure 5.1: EdgeHGN distributed event detection framework 

 
     The output of this process is either a recalled index of the stored sub-pattern or a 

new index for the input sub-pattern. This index is sent to the SI module for pattern 

classification. Note that the EdgeHGN considers an event as a pattern that represents 

a state of normality or abnormality for the entire sensory network. For complex event 

detection (multiple sensory schemes), each EdgeHGN subnet is mapped to a sensor 

node using a clustered configuration. We examine the deployment of the WSN in a 

two-dimensional plane with 𝒏 sensors, represented by a set 𝓢 = (𝓢1, 𝓢2, ... 𝓢𝑛), where 

𝓢𝓲 denotes the 𝓲th sensor. The sensors are uniformly placed in a grid-like area, Α = 

(𝔁 ∗ 𝒚), where 𝔁 represents the x-axis coordinate of the grid area, and 𝒚 represents 

the y-axis. Each sensor node is assigned to a specific grid area (See Figure 5.2). The 

location of each sensor node is represented by the coordinates of its grid area (𝔁𝓲 , 

𝒚𝓲). For the communication model, a single-hop mechanism for data transmission 

from the sensor node to the sink is proposed. The “auto-send” approach is also used 

to minimise errors associated with the loss of packets during data transmission (Saha 

& Bajcsy, 2003). Communication between the sink and the sensor nodes is performed 

using a broadcast method. It should be noted that due to the front-end processing 

approach, the proposed scheme does not involve massive transmissions of sensory 

readings to the sink. 
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Figure 5.2: Sensor node placement in a Cartesian grid where  

each node is allocated to a specific grid area 

 

5.2.1 Dimensionality Reduction in Sensory Data 

Event detection usually involves the process of recognising significant changes or 

abnormalities in sensory readings. In heterogeneous sensor networks, sensory 

readings are of different types and values, e.g., temperature, light intensity and 

pressure. For the EdgeHGN implementation, the input sensory data must be first pre-

processed and translated into a proper format while maintaining the integrity and 

accuracy of the readings. For this purpose, in our EdgeHGN implementation and to 

perform dimensionality reduction, adaptive threshold binary signature scheme is used 

to produce standardised format for the input pattern from various sensory readings. 

The binary signature is a condensed representation of various types of data with 

different values in a binary format (Nascimento & Chitkara, 2002). Given a set of 𝒏 

sensory readings 𝓢 = (𝓢1, 𝓢2, ... 𝓢𝑛), each reading 𝓢𝓲 would have its own set of К 

threshold values Т(𝓢𝓲) = (Т1, Т2, ..., ТК), showing different levels of acceptance. 

These values could also represent acceptable value range for the input. The following 

steps show how the adaptive threshold binary signature method is being 

implemented: 
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i. Each sensor reading 𝓢𝓲 is first discretised into ϳ binary bins (𝓑𝓲 = 𝒃𝟏
𝓲  𝒃𝟐

𝓲 … 𝒃𝒋
𝒊) 

of equal or varying capacities. The number of bins used for each data is 

determined by the number of threshold values Т(𝓢𝓲). In fact, 𝓑𝓲 is used to 

signify the presence of data that is either equivalent to the threshold value or 

within a range of the specified Т𝓲 values using a binary representation. 

ii. Each bin would correspond to each of the threshold values. Consider a simple 

data as shown in Table 5.1. If the temperature reading is between the range 

40-45 degrees Celsius, the third bin would be activated. Thus, a signature for 

this reading would be 00100.  

iii. The final format of the binary signature for all sensory readings could be 

represented as a list of binary values that correspond to a specific data value, 

in the form of 𝓢 = 𝒃𝟏
𝟏 𝒃𝟐

𝟏 𝒃𝟏
𝟐 𝒃𝟐

𝟐 … 𝒃 𝐣
𝐧, where 𝒃 𝐣

𝐤 represents the binary bin for 

Κth sensory reading and ϳth threshold value. 

 

Table 5.1: Temperature readings example with their respective binary signature 

 

Temperature Threshold Range (◦C) Binary Signature 

0 – 20 10000 

21 – 40 01000 

41 – 60 00100 

61 – 80 00010 

81 – 100 00001 

    
5.2.2 EdgeHGN Event Classification 

The EdgeHGN distributed event detection method conducts a bottom-up 

classification approach, in which the classification of events is determined from the 

sensory readings obtained through the WSN. The approach first pre-processes the 

input patterns and implements dimensionality reduction technique using the adaptive 

threshold binary signature method. These input patterns are propagated to all 

available EdgeHGN subnets for performing recognition and classification tasks. The 

recognition process involves determining differences between the input patterns and 
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the previously stored ones. While similar patterns will be recalled by the EdgeHGN 

network, any dissimilar pattern will trigger a response for further analysis. This 

scheme uses the supervised single-cycle learning approach in EdgeHGN processing 

algorithm to perform event classification based on the previously stored patterns. It 

should be noted that the stored patterns in our proposed model include a set of 

ordinary events that are transformed into regular surrounding/environmental 

conditions. These patterns are determined from the analysis conducted at the base 

station and is based on the continuous feedback from the sensor nodes. The event 

classification approach using the EdgeHGN incorporates twos levels of recognition: 

the front-end recognition and the back-end recognition. EdgeHGN Front-end 

recognition is the process of pattern matching that determines if the sensory readings 

retrieved from the sensor network indicate an abnormal reading or a normal 

surrounding condition. On the other hand, the spatial occurrence detection is 

performed as part of the back-end recognition phase where signals (patterns) sent by 

sensor nodes are processed for classifying event occurrences in a particular area or 

location. 

 

5.2.2.1 Pattern Matching at Sensor Level 

The determination of abnormal events is conducted by deploying a pattern matching 

approach. Sensory readings are represented as patterns and any significant changes in 

the structure of normal patterns are of interest and should be classified as events or 

critical events that must be reported back to the sink (or other master node). By 

having a clustered EdgeHGN network configuration, each sensor node in the network 

can be mapped with a particular EdgeHGN subnet. In this network setup, Each 

EdgeHGN subnet is capable of accepting a number of different sensory readings as a 

single input sub-pattern. The following algorithm (algorithm 5.1) shows our proposed 

pattern matching method for event classification at the sensor level. In this scheme, 

the output of the pattern matching process is a signal that alerts the SI module of the 

detection/occurrence of a new event. The base station will respond by conducting a 

spatio-temporal analysis on the readings obtained. 
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Algorithm 5.1: Pattern Matching Algorithm at the Sensor Level 

 

(1) given 𝒏 sensory readings for time 𝒕: 𝓢𝓽 = (𝓢1, 𝓢2, ... 𝓢𝑛) 

       convert 𝓢𝓽 to a binary signature 𝓑𝓽. Therefore, ⨍(𝒃𝒊𝒏𝒔𝒊𝒈): 𝓢𝓽 ↦ 𝓑𝓽 

(3) 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 𝐹𝐴𝐿𝑆𝐸 

(4) 𝑒𝑣𝑒𝑛𝑡𝐴𝑙𝑒𝑟𝑡. 𝑆𝑒𝑛𝑠𝑜𝑟 =  𝐹𝐴𝐿𝑆𝐸 

(5) 𝑟𝑒𝑝𝑒𝑎𝑡 

            𝑓𝑜𝑟 𝑖 = 0 to 𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 do 

                 {check for matched sensory reading sub-patterns in sensor data} 

                 𝑖𝑓 𝑛𝑒𝑤.𝓑𝓽 = 𝓢[𝑖]. 𝑆𝑒𝑛𝑠𝑜𝑟 then 

                      {𝑛𝑒𝑤.𝓑𝓽 : new readings, matching process conducted using 

EdgeHGN}                       

                      𝑒𝑥𝑖𝑡 𝑓𝑜𝑟 

                 𝑒𝑙𝑠𝑒 

                      𝓢[𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 + 1]. 𝑒𝑣𝑒𝑛𝑡𝐴𝑙𝑒𝑟𝑡. 𝑆𝑒𝑛𝑠𝑜𝑟 = 𝑛𝑒𝑤.𝓑𝓽 

                      𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 𝑇𝑅𝑈𝐸 

                      𝑒𝑣𝑒𝑛𝑡𝐴𝑙𝑒𝑟𝑡. 𝑆𝑒𝑛𝑠𝑜𝑟 = 𝑇𝑅𝑈𝐸 

                 𝑒𝑛𝑑 𝑖𝑓 

            𝑒𝑛𝑑 𝑓𝑜𝑟 

       𝑢𝑛𝑡𝑖𝑙 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 𝑇𝑅𝑈𝐸 

(6) send 𝑒𝑣𝑒𝑛𝑡𝐴𝑙𝑒𝑟𝑡. 𝑆𝑒𝑛𝑠𝑜𝑟 and 𝓢[𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 + 1]. 𝑆𝑒𝑛𝑠𝑜𝑟 to SI module       

        function at base station 

(7) 𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 = 𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 + 1 

 
5.2.2.2 EdgeHGN Classification Approach 

The pattern matching process within EdgeHGN approach is a dual-layer process. The 

first layer focuses on the sub-pattern recognition at EdgeHGN subnets, while the 

second layer involves pattern matching using a voting scheme that is performed by 

the SI Module. Sub-pattern recognition at EdgeHGN subnets is the process of 

determining the recall/store status of an input sub-pattern. The result of this process is 

either a recalled index of the previously stored sub-pattern or a new index generated 

for the respective input sub-pattern. The results of sub-pattern recognition phase are 

then sent out to the SI module for implementing pattern classification. Each of the 

sub-pattern indexes received from EdgeHGN subnets is proceeded and the result of 

this analysis process are recorded in the form of class labels. It is worth noting that 
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for supervised classification, the number of class label is fixed, while in unsupervised 

classification, this number can be incremented. The proposed approach only needs 

binary input patterns and accepts multiple sensory readings that are used to detect the 

occurrence of critical events. Given a set of 𝒏 sensory readings 𝓢 = (𝓢1, 𝓢2, ... 𝓢𝑛), a 

dimensionality-reduction technique such as binary threshold-signature is used to 

convert each reading value to its respective binary signature. The threshold binary 

signature method utilises threshold classes to translate a single data range into a 

binary format. Given a sensory reading 𝓢𝓲 where 𝓲 = 1, 2, ... 𝒏 and with К -threshold 

class, the equivalent binary signature that implies 𝓑𝓲 → 𝓢𝓲 is in the form of 𝓑𝓲 ∈ {0, 

1}К. Hence, 𝒏-set sensory readings 𝓢 = (𝓢1, 𝓢2, ... 𝓢𝑛) will be converted into a set of 

binary signatures (𝓑1, 𝓑2, ..., 𝓑𝑛). If the output index from EdgeHGN subnet matches 

the previously stored pattern for the critical event, then a signal is sent to the base 

station in the form of a data packet represented by (node_id, timestamp, class_id). 

The class_id parameter stands for the class identification of the event that has been 

detected by the scheme. 

 

5.3 EdgeHGN-WSN Performance Evaluation  

The analysis of EdgeHGN distributed event classification scheme is performed by 

using a simulation approach. The sensory data taken from the research by Catterall et. 

al., (2003) have been used to evaluate the performance of our proposed classifier. The 

test data includes three Smart-It wireless sensor node readings that for various 

environmental conditions such as light (Smart-It 1), temperature (Smart-It 2) and 

pressure (Smart-It 3). The first recognition test is performed over Smart-It 1 sensory 

reading that represented light. The test involves assigning an EdgeHGN subnet to 

each Smart-It sensor dataset. EdgeHGN retrieves sensory readings in the form of 

binary representation using the discussed threshold-signature technique. Figure (5.3) 

shows the results of the recognition test conducted on light sensor dataset Smart-It 1 

for 1800 sensory datasets. As it is clearly shown, EdgeHGN is capable of detecting 

light event occurrences with remarkable accuracy. 
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Figure 5.3: EdgeHGN event detection result for a test using 1800 light sensor 

datasets (Smart-It 1) (x-axis) with a threshold of 100 (Basirat & Khan, 2013) 

 
     For performance benchmarking, similar experiments are conducted using support 

vector machine (SVM) and self-organizing map (SOM). For this comparison test, 

SVMLight implementation (Joachims, 2008) with both linear-type and 2-degree 

polynomial kernel and SOM Toolbox with default configuration (Vesanto, et. al., 

2010) are used. For the purpose of this exercise, we have calculated precision, recall, 

accuracy and error value parameters as a comparative basis for the classification 

process. Table 5.2 shows how each of these parameters are defined and represented. 

 
Table 5.2: Recognition parameters with their respective definitions 

 

          Recognition Parameters                                               Definitions 

Precision                                             
True Positive

True Positive+False Positive
 

                  Recall                                                
True Positive

True Positive+False Negative
 

                  Accuracy         
True Positive+True Negative

True Positive+True Negative+False Positive+False Negative
 

                  Error Value                                      
False Positive+False Negative

Total Number of Test Objects
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     In this experiment, SVM and SOM classifiers use a set of six readings in their 

training set, while EdgeHGN only uses datasets with two entries. For both SVM 

classifiers (linear SVM and poly-2 SVM), six support vectors have been initialized 

and implemented for classification purposes. Table 5.3 shows the results of the 

recognition test performed on Smart-It 1, 2, 3 datasets using different performance 

parameters for sensory data. The value of the best result (selected feature) for each 

parameter is underlined. From the results obtained, EdgeHGN shows high recognition 

accuracy with very low error value and very high recall rate. Both SVM and SOM 

classifiers have also demonstrated reasonably high precision and accuracy. However, 

their recall value is comparatively low when compared against EdgeHGN. This low 

recall value is mainly due to the low true positive values obtained during the 

classification process. In addition, both schemes produce higher error values.  

  
Table 5.3: Comparative analysis on recognition accuracy parameters between 

EdgeHGN and other classifiers for event recognition using three sensory data 

obtained from Catterall et al. (2003) (Smart-It 1, Smart-It 2, and Smart-It 3). 
 

 

Smart-It Classifier Precision Recall Accuracy Error 

 

 

 

1 

EdgeHGN 1.0000 0.8851 0.9973 0.0023 

Linear SVM 0.9375 0.7419 0.9888 0.0112 

Poly-2 SVM 1.0000 0.7538 0.9905 0.0095 

SOM 1.0000 0.8367 0.9953 0.0047 

 

 

2 

EdgeHGN 0.9486 0.7825 0.9652 0.0011 

Linear SVM 0.9268 0.7218 0.9475 0.0198 

Poly-2 SVM 0.9430 0.7082 0.9528 0.0189 

SOM 0.9392 0.6852 0.9564 0.0148 

 

 

3 

EdgeHGN 0.9388 0.8692 0.9750 0.0038 

Linear SVM 0.8932 0.8485 0.9442 0.0116 

Poly-2 SVM 0.9072 0.7836 0.9644 0.0072 

SOM 0.9218 0.8206 0.9672 0.0064 
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Figure 5.4: Comparative analysis on recognition parameters rates between 
EdgeHGN and other classifiers for event recognition using three sensory data obtained 

from Catterall et. al. (2003) (Smart-It 1, Smart-It 2, and Smart-It 3). 
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     Overall, as shown in Figure 5.4, EdgeHGN scheme offers better recognition 

accuracy than the other two algorithms. In regards to the precision value, SOM and 

polynomial SVM also exhibit rather similar performances for Smart-It 1 and Smart-It 

2. However, for Smart-It 3 SOM precision rate outperforms polynomial SVM. The 

polynomial SVM however produces slightly better results than the linear approach 

(for Smart-It 1, Smart-It 2 and Smart-It 3). This shows that SVM scheme 

performance is heavily reliant on the type of kernel that is being implemented (either 

linear or polynomial) as well as the nature of data being used. This data dependency 

problem restricts the flexibility of SVM approach for event classification in WSN. 

Although SOM shows better overall performance when compared with SVM, but its 

iterative algorithm is resource intensive and hence not practically feasible to be 

deployed in the resource-constrained wireless sensor networks. EdgeHGN on the 

other hand, is a lightweight, single-cycle learning algorithm that is shown to offer 

high detection accuracy when used in conjunction with a simple threshold binary 

signature technique.    As part of this experiment, a performance analysis to measure 

the recognition time incurred for each sensor dataset is also conducted. The 

simulation was implemented using a fully-distributed MPI configuration using 

MPICH-2 package under GNU C program. Figure 5.5 shows the recall/store time for 

EdgeHGN recognition scheme dealing with three wireless sensor datasets (Smart-It 1, 

Smart It 2 & Smart-It 3).  

 

 
 

Figure 5.5: EdgeHGN Recognition time for 1800 sensor data (x-axis)  

taken from Smart-It 1, Smart It 2 and Smart It 3 datasets.  
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     The recognition scheme only takes up to 6msec (average result of less than 3msec) 

for a sensor data to be recalled or memorised. As it is shown in the figure, the 

average recall time for each sensor data remains highly consistent for the entire 

sensor data collection that makes this approach a suitable candidate for applications 

involving large amount of data. The performance results also indicate a potential for 

real-time pattern recognition schemes within resource-constrained WSNs.  

 

5.3.1 EdgeHGN-WSN Memory Utilization  

Memory utilisation estimation for the EdgeHGN algorithm is calculated by 

performing an analysis of the bias array capacity for all of the GNs in the distributed 

architecture setup as well as the storage capacity of the SI module node. A detailed 

analysis of the bias array capacity for EdgeHGN algorithm was previously discussed 

in Chapter 3 (section 3.6.2.1). As concluded from that analysis and considering that 

EdgeHGN only uses memory to store newly discovered patterns rather than storing 

all input patterns, the storage/recall mechanism of EdgeHGN offers efficient memory 

utilisation. Figure 5.6 shows the estimated maximum memory usage for EdgeHGN 

when processing different pattern sizes and it compares that estimated value with the 

maximum memory size of a typical Berkeley Mica Mote senor node (128KB Flash 

and 4KB RAM).  

 

 
 

Figure 5.6: Maximum memory consumption for each EdgeHGN subnet for different 

pattern sizes. EdgeHGN uses minimum memory space with small pattern size 
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     The EdgeHGN memory capacity estimation shown in Figure 5.6 is derived from 

equations (3.30) to (3.37) in Chapter 3. As the size of input sub-pattern increases for 

more than 13 bits, the requirement for memory space increases significantly. It is 

worth noting that small sub-pattern sizes (sub-pattern sizes of 9 bits or smaller) only 

consume less than 10% of the total memory space available. Hence, EdgeHGN 

scheme for WSN is best suited for processing inputs with small sub-pattern sizes. 

 

5.4 Conclusions   

The proposed use of EdgeHGN for event detection in WSN, outlines a new type of 

the WSN that detects macroscopic events by collating diverse sensor data, locally and 

in real-time, into meaningful patterns. As such, the research in this chapter performed 

a detailed study on EdgeHGN pattern recognition for event detection within WSN. 

The performance of EdgeHGN recognition approach in WSN was evaluated and 

benchmarked against SVM (linear and poly-2) and SOM in relation to its precision, 

recall, accuracy and error rates. From performance results, EdgeHGN shows high 

recognition accuracy with very low error value and very high recall rate which 

demonstrates the capabilities of EdgeHGN to implement a light-weight distributed 

event detection scheme within a resource-constrained network such as WSN. 

Furthermore, EdgeHGN approach offers very low memory consumption for event 

data storage mainly due to its simple bias array representation. This memory 

efficiency is best achieved when dealing with small input sub-pattern sizes, as 

EdgeHGN utilises only a small portion of the memory space in a typical physical 

sensor node in WSN network. The distributed nature of the scheme also lowers 

storage capacity requirements per node. In addition to this efficient memory usage, 

EdgeHGN reduces complexity of the WSN by eliminating the need for complex 

computations for event classification which increases its potential for wide-spread 

use. By adopting single-cycle learning and using adjacency comparison method, 

EdgeHGN offers a non-iterative and light-weight computational framework for event 

recognition and classification. EdgeHGN is a distributed computational model in 

nature and hence it can be readily deployed over a distributed network setup such as 
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WSN to provide an effective front-end recognition scheme for event detection within 

a WSN network. 

     Despite all the benefits that EdgeHGN offers, the scheme also suffers from certain 

limitations. EdgeHGN in its current form uses a simple data representation and for 

this matter the approach requires significant pre-processing to be conducted at the 

front-end system. This may not practically feasible for strictly resource-constrained 

sensor networks, where computing resources are very limited. Furthermore, 

EdgeHGN single-hop communication model may not suit WSN networks which 

cover a large geographical area or areas which are error prone due to potentially high 

packet loss rate during transmission phase. The current EdgeHGN implementation is 

also more focused on supervised classification while there is certainly a need for 

unsupervised classification for addressing requirements of rapid event detection. 

Addressing these limitations can all be the path for future research (i.e. providing 

unsupervised classification or utilising a multi-hop communication strategy).   
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Chapter 6 

 

Case Study: Applying EdgeHGN based 

MapReduce Approach to Real World 

Big Data Processing Scenarios 

 

Transforming big data into valuable information requires a fundamental rethink of 

how future data management models will need to be developed on the Internet. The 

efficiency of the cloud system in dealing with data-intensive applications through 

parallel processing essentially lies in how data are partitioned and processing is 

divided among nodes. As a result, data access schemes must be able to efficiently 

handle this partitioning automatically and support the collaboration of nodes in a 

reliable manner. This automatic data partitioning is what was previously known as 

domain decomposition problem, where data was divided on the basis of either 

geometrical or algorithmic considerations (Toselli & Widlund, 2005). Geometric 

considerations were efficient for spatial datasets e.g. finite element meshes (image-

like) and algorithmic considerations were for data being partitioned in such a way that 

the computational load was equally divided in terms of equations to be solved (i.e. 

complexity).  In cloud the consideration is data access rather than CPU parallelism. 

However, the fundamental data partitioning considerations remain the same. 
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     In this regard, Google’s MapReduce, was designed for large-scale data processing 

in a massively parallel manner that could solve issues involving the parallelisation of 

computational processes and data distribution across heterogeneous networks (Dean 

& Ghemawat, 2004). The MapReduce implementation also addresses load balancing, 

network performance and fault tolerance issues, and it has achieved greater scalability 

than parallel databases. However, this comes at a cost; time-consuming analysis and 

code customisations are required when dealing with complex data inter-dependencies. 

Moreover, existing large-scale data processing schemes such as MapReduce involve 

isolating basic operations within an application for data distribution and partitioning. 

This excludes their applicability to many applications with complex data dependency 

considerations. MapReduce models when used with complex data requirements 

generally entail additional difficult and error-prone application-level customisations. 

Adding higher and complex data representations within the model will vastly improve 

its usability and provide an important – pattern recognition based – data analysis 

option. To date, all implementations of MapReduce, including the Hadoop version, 

have interpreted data in a relational model. Utilising a single-cycle associative 

memory based method, which have so far not been investigated for MapReduce, will 

provide means to deliver efficient data processing. In light of the above issues, in 

chapter 4 we explored possibilities to evolve a novel processing scheme that could 

efficiently partition and distribute data for clouds. In this regards, loosely coupled 

associative techniques could be pivotal in effectively partitioning and distributing 

data in the clouds. Thus, the aim in this research was to develop a distributed data 

access scheme that could enable data access to be conducted effectively by means of 

the distributed pattern recognition (DPR) approach.  

     To achieve this, a distributed data access scheme referred to as EdgeHGN, is first 

developed to circumvent the partitioning issue experienced within referential data 

access mechanisms. In this model, data records are treated as patterns and as a result, 

data storage and retrieval are performed using a distributed pattern recognition 

approach. Furthermore, to reconcile MapReduce with associated memory concepts, in 

particular for adaptive and fast data access, an associative-memory-based MapReduce 
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is introduced to elevate the MapReduce key-value scheme to a higher level of 

functionality by replacing the purely quantitative key-value pairs with scalable 

associative-memory-based data structures that will improve parallel processing of 

data with complex relations. By having an associative key-value model, we can deal 

with data in any form and in any representation simply by using a pattern-matching 

model that treats data records as patterns and provides a distributed data access 

scheme that enables data storage and retrieval by association, thereby circumventing 

the scaling issue experienced within referential data access mechanisms.  

 
6.1 EdgeHGN based MapReduce – High Level Framework 

As discussed in detail in chapter 3, EdgeHGN allows the recognition process to be 

conducted in a smaller sub-pattern domain, hence minimising the number of 

processing nodes, which in turn reduces the complexity of pattern analysis. In 

addition, the recognition process performed using the EdgeHGN algorithms is unique 

in a way that each subnet is only responsible for memorising a portion of the pattern 

(rather than the entire pattern). A collection of these subnets is able to form a 

distributed memory structure for the entire pattern. This feature enables recognition to 

be performed in parallel and independently. The decoupled nature of the sub-domains 

is the key feature that brings scalability to our data management approach for the 

cloud. Moreover, EdgeHGN provides a capability for a recognition process to be 

deployed as a composition of sub-processes executed in parallel across a distributed 

network. Sub-processes execute mutually independently which makes this approach 

less cohesive compared to other pattern recognition schemes.  

     In chapter 4, we demonstrated that the effectiveness of MapReduce parallelism as 

a scalable scheme for data processing in the cloud can be improved by transforming 

the data-processing operation into a single-cycle distributed pattern matching 

approach in which distributed computations are performed in-network, thereby 

enabling data storage and retrieval by association rather than deploying a referential 

data access mechanism. In this context, processing the database and handling the 

dynamic load could be performed using a distributed pattern recognition approach. In 
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EdgeHGN_MR approach, the principle of associative-memory-based learning is 

implemented through the use of connected layers in a hierarchical fashion; with local 

feature learning happening at the lowest layer while features are combined to form 

higher representations at upper layers. This approach envisages data retrieval being 

implemented as a distributed pattern recognition process that is implemented through 

the integration of associative memory based computational networks. In a high-level 

EdgeHGN_MR design framework, the map function takes EdgeHGN subnets as the 

key and the object itself as the value, performs sub-pattern matching, calculates the 

bias index and emits a set of intermediate key-value pairs as output. Intermediate 

keys are EdgeHGN subnets and intermediate values are GN bias arrays, holding store 

or recall decisions for each subnet. It is worth noting that all map functions can be run 

and implemented in parallel. The class reducer then works on EdgeHGN subnets as 

keys and intermediate GN bias associative arrays as values, calculates the final 

decision and then emits the final store or recall decision. Algorithm 6.1 shows a high-

level framework for our proposed EdgeHGN_MR scheme. A practical way to test the 

usefulness of our approach is to apply the EdgeHGN_MR processing scheme to real-

world big data processing problems. For this reason, in the remaining sections of this 

chapter, we present the results of a 6-month AMSI internship project conducted at a 

major pharmaceutical company to showcase a study on the adoption of 

EdgeHGN_MR distributed data processing scheme for analysing large-scale 

environmental monitoring data and IT service management data. 

     The remaining part of this chapter has been structured as follows. Section 6.2 

discusses the overall setup and design model for our case study. Section 6.3 presents 

the results of processing merged Solarwinds datasets using MapReduce scheme. 

Section 6.4 discusses the results of analysing ITSM data using MapReduce approach. 

Section 6.5 shows the results of pattern matching between ITSM and Solarwinds 

datasets utilising EdgeHGN_MR algorithm and finally section 6.6 concludes this 

chapter by offering some comparative performance benchmarking results between 

MR and EdgeHGN_MR implementations. 
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Algorithm 6.1: EdgeHGN based MapReduce – High level framework 

 

Class Mapper 

          method Map(EdgeHGNSubnet 𝓢 , Obj 𝓞) 

          BAA  new GN Bias Associative Array 

          for all term Ʈ ∈ EdgeHGNSubnet 𝓢 do  

                    Calculate Adjacency Comparison Function (algorithm 3.3) 

                    Calculate Bias Index (algorithm 3.4) 

                    Update BAA 

          Emit(EdgeHGNSubnet 𝓢 , BiasAssociativeArray BAA)  

 

Class Reducer 

          method Reduce(EdgeHGNSubnet 𝓢 , BiasAssociativeArray BAA) 

          for all 𝑏 ∈ BiasAssociativeArray [𝑏𝟣, 𝑏𝟤, . . .] do  

                    Calculate SI Module function (algorithm 3.1) 

                    Calculate Voting function (algorithm 3.2) 

                    Calculate result  Store/Recall 

          Emit (Obj 𝓞, Boolean result)    

      
6.2 Case Study: Solarwinds and ITSM Big Data Processing 

using MapReduce and EdgeHGN based MapReduce 

Data alignment in a high-tech complex environment is critical for the productivity 

and profitability. The case study project work was conducted at a high-tech 

pharmaceutical company in Melbourne with data being produced at each step of the 

process, but in disparate systems where data in scope is of excessive size and joining 

the dots across all the data sources is critical for success. The company senior 

leadership was striving to improve productivity by readily converting the data into 

information. The success of the project had to be measured on the actionable insights. 

Participating in this real world large data analysis could also help management team 
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to learn from their data and make informed decisions to deliver tangible results. In 

summary, the purpose of the research project was to develop proof points allowing to:  

 Perform some sort of data processing and data alignment to uncover hidden 

patterns, unknown correlations and other usefull information that could be used to 

make better decisions, improve monitoring and increase efficiency. 

 Trend environmental monitoring data (Solarwinds) against IT service 

management data (ITSM) to find correlations between the two to aid engineering 

team take a pro-active approach and minimise production failures.    

     Solarwinds offers infrastructure management software to monitor various 

components like network performance, application performance and database 

performance, storage and disk performance. IT service management data or ITSM 

data on the other hand mostly captures requests, problems and incidents reported 

mainly by end users or clients. It is mainly a manual data capture process but in some 

cases automated tickets can be raised as the result of Solarwinds alerts. To perform 

data analysis, both MapReduce and EdgeHGN based MapReduce implementations 

are setup within a Hadoop based framework to evaluate their respective performance 

when dealing with ITSM and Solarwinds dataset examples. Table 6.1 lists 

characteristics of the given database snapshots for ITSM and Solarwinds for this data 

processing exercise.    

 
 Table 6.1: ITSM and Solarwinds data snapshots for data processing exercise 

 

 
 

Data Sources 

 

Solarwinds: Production environment monitoring data 

 

ITSM: Production incident/request data 

 

Data Volume 

 

ITSM: 116 MB 

Solarwinds: 382 MB 

 

History 

 

35 days (08/02/2015 to 11/03/2015) 
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     The experimental Hadoop cluster was configured with four DataNodes and one 

NameNode. The NameNode machine acts as both JobTracker and NameNode while 

each of the four DataNodes act as both TaskTracker and DataNode. The Hadoop 

cluster configuration details are listed in Table 6.2. 

 

Table 6.2: Hadoop 4-node cluster details for implementing MR and EdgeHGN_MR  
 
 

NameNode 

apaubmwapp12 

172.21.92.38 

4 Virtual CPU (VP) 

Memory: 8GB, SSD: 1.5TB 

OS:  SUSE Linux 11 

4  DataNodes 

apaubmwapp13/14/15/16 

172.21.92.39/172.21.92.40/172.21.92.41/172.21.92.42 

4 Virtual CPU (VP) 

Memory: 8GB, SSD: 1.5TB 

OS:  SUSE Linux 11 

Network bandwidth 1Gbps 

Hadoop version 2.5.2, 64 bits 

Java Version OpenJDK 1.6 

JVM Heap Size 16GB 

     
6.2.1 Solarwinds and ITSM Data Correlation Design Model 

The end goal of this project was to perform data analysis on ITSM and Solarwinds 

datasets in isolation and in conjunction to find correlations and common patterns. As 

Solarwinds monitoring data was captured and stored across a few separate database 

tables, merging and linking relevant data from different sources could provide us with 

meaningful insights. Moreover, searching for common patterns and finding 

correlations between ITSM and Solarwinds data could provide monitoring team with 

meaningful insights that were not achievable before due to their lack of proper big 

data processing tools in place. To perform this data correlation exercise between 

ITSM and Solarwinds data we could search for some shared keys or similar patterns. 

To perform this task, one of the possibilities was to do some sort of text analysis on 

free-text entry fields in ITSM data logs. In fact, for ITSM data we had a few free-text 

entry fields like subject and incident summary that users could use to put their 
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comments in. By writing some simple text-mining scripts we could extract some 

unique identifiers like object names to correlate ITSM and Solarwinds data using 

them utilizing MapReduce (MR) and EdgeHGN based MapReduce (EdgeHGN_MR) 

schemes. Figure 6.1 illustrates the SPSS modelling process of extracting such unique 

identifiers (patterns) from ITSM data and searching for those patterns within 

Solarwinds data using MR and EdgeHGN_MR approaches. It should be noted that 

Solarwinds alert log database identifies each alert with an AlertDefID tag, but does 

not explicitly identify the Object Type/Object Name that each alert belongs to. To 

solve this issue as shown in Figure 6.1, a reference table was created by extracting the 

AlertDefID from the AlertLog, AlertStatus and AlertDefinition tables to have a 

complete view of all Solarwinds alert data entries. 

 

 

 

Figure 6.1: SPSS modelling process of linking ITSM and Solarwinds  

using EdgeHGN_MR scheme 

 
     In the next step, distinct identifiers are extracted for the Solarwinds object name 

data fields and EdgeHGN network is trained using those identifiers. Unique 

identifiers are also extracted from ITSM free-text entry fields (subject and incident 

summary) where these identifiers are used by EdgeHGN_MR approach to search 

through Solarwinds datasets to find possible correlations between ITSM and 

Solarwinds data. Figure 6.2 illustrates an architectural overview of the project setup. 

ITSM and Solarwinds data are extracted from relevant databases and fed into Hadoop 

distributed file system (HDFS) using scoop database connectivity technology. Scoop 

is simply a tool designed for efficiently transferring bulk data between Apache 
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Hadoop and structured data stores such as relational databases to enable MapReduce 

functions. To build and develop MapReduce functions we also use Apache Hive 

which gives us required tools for doing query and analysis on top of HDFS. Apache 

Hive is the preferred choice here because it provides HiveQL, a SQL-like query 

language that we can utilise to convert queries to Map and Reduce. 

 

Figure 6.2: Architectural overview of ITSM  

and Solarwinds data correlation project 

 

6.3 ITSM & Solarwinds Data Correlation Using 

EdgeHGN_MR 

In this section, the data analysis results of pattern matching between Solarwinds and 

ITSM datasets using both MR and EdgeHGN_MR schemes are presented. For this 

particular exercise, we look at Solarwinds alerts from 8th of February to 11th of March 

2015 which are just a snapshot of Solarwinds data stored in the database. We have 

about 20 thousand alerts generated for that 35-day period. We also look at ITSM 

requests/incidents for the same period of time to perform data correlation task 
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between the two. We have about 5110 incident/request tickets raised for that 35-day 

period. It should be noted that each ITSM ticket has 19 entry fields (IncidentNumber, 

CreatedDateTime, CreatedBy, Department, IsVIP, LastModBy, LastModDateTime, 

OwnerDisplay, OwnerTeam, Priority, Category, Service, ProfileFullName, Source, 

Status, Subject, IncidentSite, ResolvedBy, and resolution) from which “subject” and 

“resolution” fields are free-text entry forms that users of the system can utilise to put 

their comments in. In summary, the following steps are followed to perform ITSM 

and Solarwinds data correlation: 

 

i. Cleansing and pre-processing ITSM and Solarwinds data to remove outliers 

(observation points that are distant from other observations).  

ii. ITSM and Solarwinds data ingestion and integration into Hadoop platform 

(HDFS) using scoop database connectivity technology. 

iii. Creating a merged dataset of Solarwinds alerts from AlertLog, AlertStatus and 

AlertDefinition datasets using AlertDefID tag value. 

iv. Developing simple text mining extractor scripts to find unique identifiers in the 

free-text entry fields of ITSM data (subject and incident summary). 

v. Initializing eight Mapper functions where each Mapper constructs an EdgeHGN 

subnet. 

vi. Training EdgeHGN network with those unique identifiers extracted from ITSM 

datasets. 

vii. Input data (merged Solarwinds dataset) is split among eight data chunks so that 

later they can be processed by Mapper functions in parallel where each Mapper 

constructs the same EdgeHGN classifier using similar set of training data. 

viii. Each Mapper inputs a subset of Solarwinds testing instances. When the network 

starts performing recognition test, each Mapper starts classifying only a subset of 

the entire testing dataset. This approach improves efficiency through parallelism. 

ix. Upon completion of all Mapper tasks, the Reducer starts processing and merging 

all the outputs of Mappers using the same key (calculating the output for each 

unique identifier) and writing the result back into HDFS. 
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     Algorithm (6.2) depicts the pseudo-code for EdgeHGN_MR scheme and Figure 

(6.3) shows the architecture of EdgeHGN_MR approach used in this experiment. 

 
Algorithm 6.2: EdgeHGN_MR scheme for implementing pattern matching between 

ITSM & Solarwinds 

 

Input: Solarwinds Dataset (Ʈ)          Output: Pattern matching result (AA) 

(1) eight Mappers and one Reducer, each Mapper constructs an EdgeHGN subnet  

(2) Train EdgeHGN network with unique identifiers from ITSM data 

(3) Divide Ʈ into {𝓽𝟭, 𝓽𝟮, 𝓽𝟯 . . . 𝓽8 } ,  ⋃ 𝓲=𝟏
𝟖   𝓽𝓲 = Ʈ 

(4) Each Mapper builds an EdgeHGN subnet and inputs 𝓽𝓲 where 𝓽𝓲 ∈ Ʈ 

                 BAA  new Boolean Associative Array  

                 For all term 𝓽𝓲 ∈ Ʈ do  

                           Calculate Adjacency Comparison Function (algorithm 3.3) 

                           Calculate Bias Index (algorithm 3.4) & Update BAA𝓲   

(5) Mapper outputs ( , BAA𝓲 )  

(6) Reducer collects and merges all ( , BAA𝓲 ) 

                  For all term BAA  (𝓲 = 1, …8)  do 

                           Calculate SI Module function (algorithm 3.1) 

                           Calculate Voting function (algorithm 3.2) 

                           Calculate AA   Store/Recall  

(7) Repeat (3), (4) and (5) until Ʈ is traversed and all testing data are processed 

(8) Reducer outputs (AA) and writes it back into HDFS 

     By implementing this approach, we could identify 206 tickets in ITSM as the 

result of Solarwinds alerts (See Figure 6.4). However, due to the poor data quality for 

ITSM, there is a good chance that we have more tickets in ITSM system due to 

Solarwinds alerts. 
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Figure 6.3: EdgeHGN_MR architecture for pattern matching  

between ITSM and Solarwinds datasets 

 

 

 

 

Figure 6.4: ITSM tickets raised due to Solarwinds alerts 
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     Figure 6.5 shows that out of 206 ITSM tickets raised due to Solarwinds alerts, 

53% have their service listed as data management. 

 

 
 

 

Figure 6.5: Service field for ITSM tickets raised due to Solarwinds alerts 

 
     Figure 6.6 illustrates the main causes of alert. As shown in this figure, almost 43% 

of alerts are due to high disk I/O latency. The second most common cause of alerts is 

Node down alert. It can be safely assumed that some of these node down alerts are 

happening during a maintenance window where for instance a server goes down due 

to a scheduled change but for some reason Solarwinds alerts are not properly blacked 

out, hence there is some opportunity to reduce noise for improvement here. 

 

 

Figure 6.6: Main causes of Solarwinds alerts 
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     Figure 6.7 shows average distribution of Solarwinds alerts during day. This graph 

is interesting as it shows most number of alerts are generated around 1pm (2057 alerts 

over that 35-day period) and almost 10% around mid-day. The other interesting 

observation here is that 7% of alerts are generated around 11pm which is normally 

due to weekly bounces or scheduled changes.  

 

 

Figure 6.7: Average distribution of Solarwinds alerts during day 

 
6.4 Data Correlation Results  

Table 6.3 illustrates the processing time of performing data correlation between 

ITSM and Solarwinds datasets using both MR and EdgeHGN_MR schemes. The 

version of 4-node Hadoop cluster implementation was 2.5.2 at the time of conducting 

this test (see Table 6.2).   

 
Table 6.3. ITSM & Solarwinds data processing time using MR & EdgeHGN_MR 

Solarwinds (MB) MR 
 

EdgeHGN_MR 

50MB 18 secs 16 secs 
 

100MB 31 secs 26 secs 
 

200MB 55 secs 48 secs 
 

300MB 81 sec 72 secs 
 

382MB 103 secs 92 secs 
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     As shown in Figure 6.8, EdgeHGN_MR outperforms MR for both small and large 

data volumes. In fact, processing small data with MR operation is undesirable 

because the time it takes to collect distributed data during a Reduce operation within 

the same processing node outweighs the advantages of distributing data between Map 

functions. On the other hand, EdgeHGN_MR works well in dealing with both small to 

large size data counts due to its parallel single-cycle learning mechanism where the 

size of input data has minimal effect on the time of its single-cycle in-network 

processing.   

 

 

 

Figure 6.8: Processing time of performing data correlation between ITSM and 

Solarwinds datasets using both MR and EdgeHGN_MR schemes 

 
6.5 Conclusion 

In this chapter, the results of a 6-month big data AMSI internship project at a major 

pharmaceutical company was presented as a case study to evaluate performance of 

EdgeHGN_MR when applied to real-world big data processing scenarios. Both MR 

and EdgeHGN_MR schemes were utilised to perform data correlation between two 

sets of environmental monitoring data and IT service management data. Comparative 

results demonstrate the improved response time when using EdgeHGN_MR 

approach. Nevertheless, this comparison was not intended for a replacement of 

MapReduce with EdgeHGN_MR, but more of comparative indication of 
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EdgeHGN_MR ability for large-scale data processing. EdeHGN_MR online-learning 

AM scheme is conceived on the principle that ‘moving computation is much cheaper 

than moving data’. Hence, it will provide methods for automatic aggregation and 

partitioning of associated data and redefines the reduction phase by forming a 

hierarchical adjacency based computing model to produce the final result. 

Furthermore, when using EdgeHGN_MR programmers can work at a higher level of 

abstraction without having to know the structural details of every data item. This is 

due to the fact that EdgeHGN model uses a universal structure for all data types. In 

fact, information about the logical structure of the data – metadata – and the rules that 

govern it can be stored alongside the data. The approach is not only scalable and 

supports single-cycle learning, but it is also generic where large and complex data 

sets from a variety of sources and representing diverse pattern recognition 

requirements can be analysed in real-time. The scheme thus demonstrates that large-

scale pattern recognition is possible through the distributed processing.  
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Chapter 7 

 

Conclusion 
 

 

 

Supporting data intensive applications is an essential requirement for the clouds. 

However, dynamic and distributed nature of cloud computing environments makes 

data management processes very complicated, especially in the case of real-time data 

processing/database updating. With emerging interest to leverage massive amounts of 

data available in open sources such as the Web for solving long standing information 

retrieval problems, the question as how to effectively incorporate and efficiently 

exploit immense data sets is an open one. To cope with today’s intensive data 

workloads, initial proposed schemes include distributed databases for update 

intensive application workloads and parallel database systems for descriptive and 

deep analytics. Although distributed data management has been the vision of the 

database research community for a long period of time, but much of this research has 

been focussed on designing scalable schemes for intensive workloads in traditional 

large-scale data processing settings, and lesser impetus on re-designing the processing 

architecture to keep up with big data. While the opportunities for parallelisation and 

distribution of data in clouds make storage and retrieval processes very complex, 

especially in facing with real-time data processing, the challenge of processing 

voluminous data sets in a scalable and cost-efficient manner has rendered traditional 
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database solutions prohibitively expensive. Due to changes in the data access patterns 

of applications and necessity to use thousands of compute nodes, major cloud 

computing companies have started to integrate frameworks for parallel data 

processing in their product portfolio; making it easier for customers to access these 

services and to deploy their applications. Thus efficiencies through widespread use of 

multi-core CPUs, cost reduction for commodity hardware, enhanced performance, 

and higher reliability in use are derived from an architectural paradigm which favours 

a massively distributed data processing framework running on a large number of 

inexpensive compute nodes. Large data operations such as processing crawled 

documents or regenerating a web index are split into several independent subtasks, 

distributed among the available nodes, and computed in parallel within the network.  

     To simplify the development of distributed applications on top of such highly 

distributed architectures, customised data processing frameworks such as MapReduce 

are developed and deployed on large clusters of shared-nothing compute nodes rather 

than relying on traditional database management systems (DBMSs). Although these 

schemes differ in structure, their design concepts share similar objectives, namely 

hiding complexity of parallel programming, fault tolerance, and execution 

optimisation issues from the developer. In fact, developers can typically proceed with 

writing sequential programs and it is the processing framework which takes care of 

distributing the program among the available compute nodes and executing each 

instance of the program on the appropriate fragment of data set. Nevertheless, 

MapReduce have achieved greater scalability than parallel databases at the cost of 

avoiding complex transaction support but these still require customisation of the 

analysis code. It is also worth noting that in MapReduce computational model, not 

only the maximum parallelism of the parallel map phase is limited by the number of 

input pairs, but also the parallelism in the reduction phase is also limited by the 

number of different output keys of the map phase, which in turn highly depends on 

the implemented algorithm and the input data. These limitations require that 

MapReduce model is significantly enhanced in a way that preserves the strength of 

the model and eliminates these constraints. 
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7.1 Research Summary 

Our proposed scheme in this research does so in a well-integrated manner where there 

is no outward change in way of its deployment and use. The research conducted in 

this thesis has focused on evolving a new type of data processing approach that will 

efficiently partition and distribute data for clouds. For this matter, loosely-coupled 

associative techniques, not considered so far, can be the key to effectively 

partitioning and distributing data in the clouds. Unlike the existing relational 

schemes, associative models of data can analyse data in similar ways to which our 

brain links information. Such interactions when implemented in voluminous data 

clouds can assist in finding overarching relations in large and complex data sets. In 

this context our proposal in this research investigated an associative memory model 

for use with the MapReduce based search schemes for uncovering new patterns. In 

order to achieve this, an initial step taken was to develop a distributed data access 

scheme that enables data storage and retrieval by association, and thereby 

circumvents the partitioning issue experienced within referential data access 

mechanisms. In our proposed scheme, data records are treated as patterns. As a result, 

data storage and retrieval can be performed using a distributed pattern recognition 

approach that is implemented through the integration of loosely-coupled 

computational networks, followed by a divide-and-distribute approach that allows 

distribution of these networks within the cloud dynamically. Our proposed approach 

is based on a special type of Associative Memory (AM) model, which is readily 

implemented within distributed architectures. Hierarchical structures in associative 

memory models are of interest as these have been shown to improve the rate of recall 

in pattern recognition applications. As we know, existing data access mechanisms for 

cloud computing such as MapReduce has proven the viability of parallel access 

approach in cloud infrastructure. Thus, our aim in this thesis was to apply an access 

scheme that enables data retrieval across multiple records and data segments within a 

single-cycle, utilising a parallel approach. It should be noted that a framework that 

meets this goal will provide vast improvements to MR model, further reduced costs, 

improved functionality, and will extend the application space.  
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To achieve our research objectives in this thesis, the below steps are followed: 

 

 Redesigning data management architecture to treat data records as patterns, and 

thus, enabling data storage and retrieval by association over and above the 

existing simple data referential mechanisms. 

 Processing the database and handling the dynamic load using a distributed pattern 

recognition approach that is implemented through the integration of loosely-

coupled computational networks, followed by a divide-and-distribute approach 

that allows distribution of these networks within the cloud dynamically. 

 Developing a scalable MapReduce framework that allows complex data 

representations to be used as keys for Map and Reduce operations; allowing 

content-association based data retrieval and storage within cloud. 

 Validation of results and finding asymptotical limits of the technique through 

rigorous testing. 

 

A summary of the contents of this thesis is as follows: 

 

i. In chapters 1 and 2, a comprehensive review has been conducted on current 

implementations of scalable pattern recognition. The study determined three 

fundamental approaches towards addressing the scalability concerns within PR 

schemes, namely data, learning, and distributed approaches. As described in 

section 1.4, the data approach performs reduction or modification of data, while 

the learning approach aims to reduce the complexity of memorisation and 

recognition phases. Nevertheless, both the data and learning approaches do not 

fully meet the scalability requirements, mainly due to loss of data integrity, low 

recognition accuracy and high computational costs. On the other hand, the 

distributed approach, due to its ability to distribute data and processes within 

computational networks, has been shown to exhibit high scalability to scale up 

with today’s outgrowth of data, that involves large and complex datasets. 

Nevertheless, some of the existing models are extremely complex and highly 

cumbersome to parallelise. 



211 
 

ii. Furthermore, in chapter 2, a comprehensive study on the current data-parallel 

frameworks for cloud data processing has been presented and different kinds of 

approaches to large-scale data processing have been explored. The pros and cons 

of each approach are also examined in relation to scalability and adaptability 

requirements of big data processing. This chapter has also presented a detailed 

analysis on how neural network approaches can open a new pathway for 

accessing data in highly distributed environments by discussing some major 

schemes presented in the literature. The investigation carried in chapter 2 revealed 

the fact that existing neural network techniques in their current forms are far from 

providing a suitable scalable framework for large scale recognition purposes.  

 

iii. In chapter 3, we established the thesis position by proposing an associative 

memory based scheme, referred to as edge detecting hierarchical graph neuron 

(EdgeHGN) that utilises single-cycle learning and implements a bottom-up 

approach. Our proposed distributed pattern recognition approach remains scalable 

for any given size or dimensions of data, if sufficient computational resources are 

available. It is not only applicable to numerical and textual data processing 

problems but also it is effectively capable of processing complex patterns, such as 

high-dimensional images. EdgeHGN allows the recognition process to be 

conducted in a smaller sub-pattern domain, hence minimising the number of 

processing nodes, which in turn reduces the complexity of pattern analysis. In 

addition, the recognition process performed using the EdgeHGN algorithm is 

unique in a way that each subnet is only responsible for memorising a portion of 

the pattern (rather than the entire pattern). A collection of these subnets is able to 

form a distributed memory structure for the entire pattern. This feature enables 

recognition to be performed in parallel and independently. The decoupled nature 

of the sub-domains is the key feature that brings dynamic scalability to our data 

processing approach for the cloud. Moreover, EdgeHGN provides a capability for 

a recognition process to be deployed as a composition of sub-processes executed 

in parallel across a distributed network. Sub-processes execute mutually 
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independently. This approach is less cohesive compared to any other pattern 

recognition scheme. Furthermore, the conducted complexity analysis of the 

proposed scheme indicates that the approach is highly scalable and incurs low 

computational costs as part of its recognition procedure. 

 

iv. In chapter 4, we formulated a distributed data management approach, referred to 

as EdgeHGN based MapReduce, that enables seamless data access and 

distribution using single-cycle learning associative memory-based algorithms. 

This is achieved by designing a scalable MapReduce framework that allows 

complex data representations to be used as keys for Map and Reduce operations; 

allowing content-association based data retrieval and storage within cloud. 

EdgeHGN_MR elevates the MapReduce key-value scheme to a higher level of 

functionality by replacing the purely quantitative key-value pairs with more 

complex data structures that empowers the parallel processing of data with 

complex associations (or dependencies). By having an associative key-value 

framework, we can deal with data in any form and in any representation simply 

by using a pattern matching model (including fuzziness) that treats data records as 

patterns and provides a distributed data access scheme that enables balanced data 

storage and retrieval by association. Our proposed scheme preserves the strength 

of the MapReduce model and eliminates/alleviates most of its constraints in a 

well-integrated manner where there is no outward change to the way in which 

MapReduce models are deployed and used. The experimental results conducted in 

chapter 4 demonstrate that EdgeHGN_MR provides comparable performance 

benchmarks (high accuracy rate with low response time) when tested against 

well-known Pregel-like graph processing systems such as Giraph, GPS, Mizan 

and GraphLab. 

 

v. In chapter 5, a study on capability of the proposed EdgeHGN scheme to perform 

pattern recognition in fine-grained wireless sensor networks (WSNs) was 

established through the use of simple recognition procedure with low processing 

and memory requirements. From performance results, EdgeHGN shows high 
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recognition accuracy with very low error value and very high recall rate which 

demonstrates the capabilities of EdgeHGN to implement a lightweight distributed 

event detection scheme within a resource-constrained network such as WSN. By 

adopting single-cycle learning and using adjacency comparison method, 

EdgeHGN offers a non-iterative and scalable computational framework to provide 

an effective front-end recognition scheme for event detection within a WSN 

network. 

 

vi. In chapters 6, the results of a 6-month big data processing AMSI internship 

project at a major pharmaceutical company are provided as a proof of concept that 

our approach will indeed work when applied to real-world large scale data 

processing problems. For this exercise, EdgeHGN_MR scheme was implemented 

to perform data correlation between IT service management data and 

environmental monitoring data. The conducted experimental results show that 

EdgeHGN_MR approach incurs lower processing time when compared with 

standard MapReduce implementation. This can firmly establish the credentials of 

our technique as an innovative and viable approach for addressing real-world big 

data processing problems. 

 

     Our proposed data processing scheme in this thesis is primarily focused for use 

within the MapReduce framework and is fundamentally different from all published 

approaches in data management. It has the potential of wider applicability, provided 

we can benchmark its characteristics against some of the discipline specific 

techniques, e.g. parallel finite elements and more broadly, the Parallel Dwarfs 

Project. The large heterogeneous data sets already gathered from various experiments 

and case studies provide an excellent resource to compare and contrast the one-shot 

learning, scalability, and accuracy of our approach with a number of well-established 

data management techniques. In this regard, performance results already derived from 

various experiments are very promising. 
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7.2 Research Contributions 

In this thesis, four key contributions have been made that are recapitulated below, in 

the sequence that they appear in the thesis. 

i. A distributed data access scheme, referred to as EdgeHGN, is proposed that 

enables data storage and retrieval by association where data records are treated as 

patterns; hence, finding overarching relationships among distributed datasets 

becomes easier for a variety of pattern recognition and data-mining applications. 

EdgeHGN does not require definition of rules or manual interventions by the 

operator for setting of thresholds to achieve the desired results, nor does it require 

heuristics entailing iterative operations for memorisation and recall of patterns. In 

addition, our approach allows induction of new patterns in a fixed number of 

steps. Whilst doing so it exhibits a high level of scalability i.e. the performance 

and accuracy do not degrade as the number of stored pattern increases over time. 

Its pattern recognition capability remains comparable with contemporary 

approaches. Furthermore, all computations are completed within the pre-defined 

number of steps and as such the approach implements one shot, i.e. single-cycle 

or single-pass, learning. The proposed scheme will be suitable for the operational 

requirements of clouds and will enable relevant data to be readily available for 

large-scale computations. 

     EdgeHGN imposes low computational complexity. Comparative analysis of 

recognition accuracy and complexity between EdgeHGN and other 

recognisers/classifiers such as Hopfield Network and Kohonen SOM (Section 

3.6) demonstrate EdgeHGN’s low complexity in performing recognition 

processes. In terms of Big-O complexity estimation, EdgeHGN only imposes 

linear complexity as low as Ο(𝑛) in its recognition process, where 𝑛 represents a 

single executable instruction within the procedure (section 3.6). The results 

obtained from a number of experiments have demonstrated that EdgeHGN recall 

accuracy is considerably high for distorted pattern recognition. In evaluating the 

accuracy of EdgeHGN recogniser, it was determined that the proposed approach 

is capable of producing perfect recall for up to 20% distortion on binary character 
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images (Section 3.7.1). At this scale of distortion, even human eye can barely 

associate the original pattern with distorted ones.  Our tests show that an increase 

in the number of sub-patterns stored within the network does not have any 

adverse effect on the recall/store time of EdgeHGN approach (section 3.7.2). In 

fact, the scalability of EdgeHGN scheme will not affected by the number of 

stored patterns within the EdgeHGN network. Our experimental results 

demonstrate the fact that EdgeHGN is able to achieve very low error rate of 

(∿2.7%) in classifying 50 facial image classes of 1000 test images (section 3.7.3). 

This high accuracy rate is accompanied by remarkable scalability features. In 

contrast to the rest of hierarchical models already proposed in the literature, 

EdgeHGN’s pattern matching capability and the small response time, that remains 

insensitive to the increases in the number of stored patterns, can make this 

approach remarkably suitable for clouds. 

 

ii. A distributed scalable cloud data management, referred to as EdgeHGN_MR, is 

formulated that enables seamless data access and distribution using single-cycle 

learning associative memory-based algorithms. EdgeHGN_MR scheme allows 

complex data representations to be used as keys for Map and Reduce operations; 

allowing content-association based data retrieval and storage within cloud. This 

will improve MapReduce-based parallel processing by replacing referential data 

access mechanisms with more versatile and distributable associative functions 

that allow complex data relations such as images to be easily encoded into the 

keys as patterns. These patterns can be applied in a variety of applications that 

require content recognition, such as image databases, searches within large 

multimedia files and data mining. In this regards, three extensions of EdgeHGN 

based MapReduce, referred to as EddgeHGN_MRv1, EdgeHGN_MRv2 and 

EdgeHGN_MRv3, are introduced that each utilise EdgeHGN network processing 

model in conjunction with MapReduce computational framework to effectively 

deal with data-intensive scenarios in the face of excessive amount of classification 

data to process, voluminous training datasets or massive number of processing 
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neurons in the network, respectively (section 4.3). The algorithmic strengths of 

the MapReduce approach are investigated for the first time in regards to the 

effectiveness of one-shot learning-based parallelism provisioned via our 

distributed pattern recognition approach, EdgeHGN. The principle of associative-

memory-based learning was implemented through the use of hierarchically 

connected layers, with local feature learning at the lowest layer and upper layers 

combining features into higher representations. The EdgeHGN-based MapReduce 

approach to cloud-based data processing is unique.  

     Our experimental results show that EdgeHGN based MapReduce works 

exceptionally well in dealing with both small to large size data counts due to its 

parallel one-shot learning mechanism where the size of input data has minimal 

effect on the time of its single-cycle in-network processing (section 4.4.1). 

Performance evaluation results against state-of-the-art parallel processing 

techniques such as Giraph, GPS, Mizan and GraphLab demonstrate that the 

performance of MapReduce parallelism as a scalable scheme for data processing 

in clouds can be significantly improved by transforming the data processing 

operations into one-shot distributed pattern matching sub-tasks, in which 

distributed computations are performed in-network, enabling data storage and 

retrieval by association (instead of pre-set referential data access mechanisms) 

(section 4.5.2). Moreover, EdgeHGN_MR demonstrates efficient memory usage 

across all experiments as memory requirements per GN node to maintain the bias 

array do not increase disproportionately with the increase in the number of stored 

patterns (section 4.5.2). 

 

iii. The capabilities of the proposed EdgeHGN scheme is investigated in the context 

of distributed data processing in wireless sensor networks (WSNs). We 

demonstrated the ability of the proposed recognition technique to learn and 

recognise complex patterns using minimal information and resources to 

effectively perform classification tasks. This distributed pattern matching 

approach outlines a new type of the WSN that detects macroscopic events by 
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collating diverse sensor data, locally and in real-time, into meaningful patterns. 

EdgeHGN reduces complexity of the WSN by eliminating the need for complex 

computations for event classification which increases its potential for wide-spread 

use. EdgeHGN is a distributed computational model in nature and hence it can be 

readily deployed over a distributed network setup such as WSN to provide an 

effective front-end recognition scheme for event detection. 

     The performance of EdgeHGN recognition approach in WSN was evaluated 

and benchmarked against SVM (linear and poly-2) and SOM in relation to its 

precision, recall, accuracy and error rates. Experimental results show that 

EdgeHGN scheme offers better recognition accuracy and higher recall value with 

very low error rate (section 5.3). Moreover, EdgeHGN demonstrates fast 

recognition performance, where it takes only up to 6msec (average result of less 

than 3msec) for a sensor data to be recalled or memorised. This in turn makes this 

approach a feasible strategy for implementing real-time even detection within 

WSNs (section 5.3). Furthermore, EdgeHGN approach offers very low memory 

consumption for event data storage mainly due to its simple bias array 

representation (section 5.3.1). This memory efficiency is best achieved when 

dealing with small input sub-pattern sizes, as EdgeHGN utilises only a small 

portion of the memory space in a typical physical sensor node in WSN network. 

The distributed nature of the scheme also lowers storage capacity requirements 

per node and incurs lesser communication cost, thus improving the response-time 

characteristic. 

 

7.3 Future Research 

With the current technological advancements under the label of Internet-of-Things 

(IoT) and System-of-Systems (SoS), fully integrated large-scale systems are possible. 

However, the question of discovering the knowledge potentials of such systems must 

be addressed effectively. One solution can be achieved using distributed pattern 

recognition schemes when dealing with such Internet-scale environments. In this 
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regard, the research conducted in this PhD thesis has mainly aimed at developing a 

capability for large-scale pattern recognition involving complex and large-scale data. 

As a result, EdgeHGN_MR approach has been proposed as a scalable scheme for 

distributed pattern recognition, that incorporates in-network processing mechanism 

along with single-cycle learning capability. EdgeHGN demonstrated high recall 

accuracy with low computational complexity for distributed pattern recognition. To 

further improve upon EdgeHGN_MR approach, we can propose the following future 

research directions with main focus on algorithm and application improvements:    

 

7.3.1 Algorithm-Specific Research 

The following two potential future improvements on EdgeHGN algorithmic design 

have been identified: 

i. Bias array design: The current bias array architecture is heavily reliant upon 

storing unique entries within the bias array to address memory efficiency 

requirements. Further research on bias array design can lead to better memory 

management as the size of bias array will grow in size as more and more unique 

patterned are being stored. 

ii. Structural representation: EdgeHGN reduces the required number of processing 

GN nodes significantly by utilising Dropfall scheme within a hierarchical 

structure. However, the number of GN nodes can still increase dealing with large 

pattern sizes and dimensions. As a result, further study can be carried out on 

finding potential structural representations, other than the existing hierarchical 

form. 

 

7.3.2 Application-Specific Research 

The following four potential future improvements on EdgeHGN application related 

design have been identified: 

i. Movement and tracking: In the evaluation of the EdgeHGN distributed pattern 

recognition, this research did not look at object movement and tracking. Potential 
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future works can be carried out on the recognition of patterns that may involve 

some structural changes, such as rotation, transformation or relocation. 

ii. Heterogeneous clouds: Extension of the proposed EdgeHGN_MR distributed data 

management scheme to heterogeneous clouds (with different processing capacity 

nodes). This work will investigate the proposed distributed data management 

scheme at different levels of granularity. Improving upon the existing cloud data 

management models for fault-tolerance and scalability and reducing MapReduce 

communication overheads by introducing data locality. Moreover, investigating 

innovative cloud applications that benefit from such schemes, benchmarking and 

validating the results to find asymptotical limits of the technique through rigorous 

testing and simulation. 

iii. Combinational logic: MapReduce is only one of a dozen or so patterns of parallel 

processing, massive communication and data distribution. Asanovic (2006) 

classifies 13 such patterns or dwarfs. Another important pattern of these thirteen 

is Combinational Logic, so named after networks of logical functions 

implemented in electronic designs, however generalised to networks of stream 

processing functions for software architectures dealing with massive amounts of 

data and large processing tasks of varying duration. Reconciling combinational 

logic with associated memory concepts, such as EdgeHGN, in particular for 

adaptive and fast data access, aggregation and movement can be another potential 

field of future research. 

iv. Spatio-temporal event detection: Distributed event classification within resource-

constrained WSNs has been proposed in chapter 5 by offering a front-end 

recognition mechanism at the sensory level. To further extend this for WSNs, 

potential future research can be carried out to include spatio-temporal analysis of 

events by observing the frequency and distribution of events within the network. 
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