

Distributed Associative Memory Approach for

Cloud Computing Environments

Amir Hossein Basirat

B.Sc. in Electrical Engineering (IUT)

Master of Information Technology (Adelaide)

M.Sc. (Minor Thesis) in Computer Science (Monash)

A thesis submitted for the degree of

Doctor of Philosophy (0190)

at Monash University in 2016

Faculty of Information Technology

 ii

Copyright Notice

©Amir Hossein Basirat (2016). Except as provided in the Copyright Act 1968, this thesis may not

be reproduced in any form without the written permission of the author.

I certify that I have made all reasonable efforts to secure copyright permissions for third-party

content included in this thesis and have not knowingly added copyright content to my work without

the owner’s permission.

 iii

Abstract

One of the main challenges for large-scale computer clouds dealing with massive real-time data is

in coping with the rate at which unprocessed data is being accumulated. “Big data” demands

abound in scientific and engineering applications including biotechnology (e.g., characterisation

using synchrotrons) and global monitoring of fixed and mobile assets in industry, transport and

defence that entail massive real-time streams from and to stationary or mobile sensors and

actuators. Their dynamic and distributed nature, and not least their exponential growth make real-

time data management complicated, and storage, updates and analytics costly. With emerging

interest to leverage massive amounts of data that are available in open sources, such as the Web

for solving long-standing information retrieval problems, the question as how to effectively process

immense datasets is becoming increasingly relevant. This raises the question of whether our

capability to recognise and process such immense data copes with our ability to generate them.

 This question will be addressed in this thesis by first examining the capability of existing large-

scale data-processing schemes to scale up with this outgrowth of data. To address some of their

highlighted limitations, particularly regarding computational complexity and scalability, this

research proposes a novel associative-memory-based scheme for big data processing that is

scalable, distributable and lightweight, and that overcomes some of the issues encountered in

traditional data access mechanisms for data storage and retrieval. Thus, the primary aim of this

thesis is to apply an access scheme that will enable fast data retrieval across multiple records and

data segments associatively. This will result in a new type of database-like functionality that is

capable of scaling up or down over the available infrastructure continuously and dynamically

without degradation. Having a highly distributable computational framework that operates with

simple processing elements and adapts to the conditions will provide a scalable framework for

managing cloud data deluge. In this regard, associative memory concepts open a new pathway for

accessing data in a highly distributed environment that will facilitate a parallel-distributed

computational model to automatically adapt to the dynamic data environment for optimised

performance.

 iv

 To achieve the above goal, a distributed data access scheme that enables data storage and

retrieval by association is first developed to circumvent the partitioning issue experienced within

referential data access mechanisms. In our model, data records are treated as patterns. As a result,

data storage and retrieval are performed using a distributed pattern recognition approach that is

implemented through the integration of loosely coupled computational networks, followed by a

divide-and-distribute approach that facilitates the distribution of these networks within the cloud

dynamically. To date, all implementations of MapReduce, including the Hadoop version, have

interpreted data in a relational model, which limits its functionality when dealing with complex

and unstructured data such as images. To address this, an associative-memory-based MapReduce

is introduced to elevate the MapReduce key-value scheme to a higher level of functionality by

replacing the purely quantitative key-value pairs with scalable associative-memory-based data

structures that will improve parallel processing of data with complex relations. By having an

associative key-value model, we can deal with data in any form and in any representation simply

by using a pattern-matching model that treats data records as patterns and provides a distributed

data access scheme that enables data storage and retrieval by association, thereby circumventing

the scaling issue experienced within referential data access mechanisms. The principle of

associative-memory-based learning is implemented through the use of connected layers in a

hierarchical fashion; with local feature learning happening at the lowest layer while features are

combined to form higher representations at upper layers. While the proposed scheme is

fundamentally different from published approaches in data management, it provides comparable

performance benchmarks when tested against well-known large-scale data management schemes

like Distributed MapReduce, Pregel and GraphLab. For this purpose, a comprehensive series of

analyses have been performed on recognition accuracy and computational complexity using

various types of patterns ranging from facial images to sensory readings. These analyses were

conducted to validate the proposed scheme as final proof of concept by developing a suitable test

environment to ensure the applicability of the model for real-life datasets.

 In addition, this thesis investigates the extension of the proposed distributed data management

scheme for different data-intensive scenarios by improving upon the existing cloud data

management models for fault tolerance and scalability and reducing MapReduce communication

overheads by introducing data locality. In particular, three data-intensive scenarios are considered

in detail: dealing with large datasets, handling large training volumes and a neural network with an

 v

excessive number of processing neurons. We also investigate a number of innovative cloud

applications that benefit from data that are universally available within the network, benchmarking

and validating the results to find the asymptotical limits of the technique through rigorous testing

and simulation. Moreover, the application of our associative-memory-based approach is examined

as a case study in a cloud of wireless sensor networks (Cloud-WSNs) to investigate the capabilities

of the scheme in performing large-scale pattern recognition operations in resource-constrained

WSNs, and extending the scheme applicability to various platform types, from coarse-grained

computer clouds to fine-grained wireless sensor networks. The outcomes of this study indicate that

our distributed parallel processing model is highly capable of processing Internet-scale data using

lightweight associative-memory-based techniques where data recognition results are obtained in

real-time using computationally inexpensive parallel operations within the body of the network.

 vi

Declaration

This thesis contains no material which has been accepted for the award of any other degree or

diploma at any university or equivalent institution and that, to the best of my knowledge and belief,

this thesis contains no material previously published or written by another person, except where

due reference is made in the text of the thesis.

Signature:

Print Name: Amirhossein Basirat

Date: 06/09/2016

 vii

This thesis is dedicated to my beloved wife, my lovely parents, my gorgeous daughter, and my

supporting brother and sister, who have inspired and supported me in my pursuit of higher

education.

 viii

This page intentionally left blank.

 ix

Acknowledgements

Primarily, my humble thanks to God, who is the most Beneficent and the most Merciful, for the

endless help He has given me to complete this thesis.

 My PhD has been a rewarding journey full of wonderful experiences that would not have been

possible without the support and encouragement of many people. Now that my journey is near its

end, I would like to take the opportunity to express my sincere thanks to all of the amazing people

who have helped me along the way. First, I offer my profoundest gratitude to my supervisors, Dr

Asad I. Khan and Professor Bala Srinivasan, who gave me the opportunity to pursue my studies in

their group. I would like to thank them both for their continuous help, guidance, support and

encouragement throughout all of the difficult and enjoyable moments of my PhD endeavour.

Special thanks and deep appreciation go to Dr Asad I. Khan for all of his advice and support

throughout the duration of my study. You have been an inspiration and guide to me. I acknowledge

and highly value your expertise and experience.

 My deep gratitude goes to my family for being there with me throughout this journey. In

particular, I want to thank my precious wife, Fatima, for standing beside me, and for her endurance,

support and unwavering love that will always be in my heart. These few words are not enough to

express my deepest appreciation for her efforts during the past few years. My never-ending thanks

and love are conveyed to my kind dad, my lovely mom, my supportive brother and my gorgeous

sister for their continuous love and support, and for always being there for me through easy and

difficult times. Finally, I would like to thank all of my friends and colleagues who helped to make

this possible. It has been an incredible journey of self-discovery. Thank you all for making my

dreams come true.

Amir Hossein Basirat

September 2016

 x

This page intentionally left blank.

 xi

Contents

Copyright Notice .. ii

Abstract .. iii

Declaration ... vi

Acknowledgements .. ix

Contents ... x

List of Tables .. xiv

List of Algorithms ... xv

List of Figures .. xvi

List of Abbreviations ... xxi

List of Publications .. xxiii

Chapter 1: Introduction... 1
1.1 Recognition at Large-scale and Big Data ... 2

1.2 Cloud Computing and Large-scale Data Processing .. 4
1.3 Big Data, Feature Extraction and Pattern Recognition .. 5

1.4 Pattern Recognition for Large-scale Data Processing .. 6

1.4.1 Common Barriers .. 7

1.4.2 Possible Solutions ... 8
1.5 Motivation and Research Objectives .. 10

1.6 Hypotheses and Methodologies ... 12
1.7 Research Contributions .. 15
1.8 Thesis Outline .. 16

Chapter 2: Distributed Pattern Recognition and Data Management at Internet-scale .. 19
2.1 Definition and Characteristics of Big Data .. 22

2.1.1 Data Volume ... 24
2.1.2 Data Velocity... 24

2.1.3 Data Variety .. 25

2.2 Neural Network Schemes for Big Data Processing ... 26

2.2.1 Feed-forward Neural Network .. 27
2.2.2 Recurrent Neural Networks ... 28
2.2.3 Hopfield Network .. 29
2.2.4 Self-organising Maps .. 30
2.2.5 Support Vector Machine ... 31

2.3 Neural Network/Machine Learning Requirements for Large-scale Pattern Recognition

and Data Processing .. 33
2.4 Parallel Data-processing Frameworks .. 35

2.4.1 Hadoop and Hadoop Distributed File Systems ... 35
2.4.1.1 HDFS Features .. 35
2.4.1.2 HDFS Architecture ... 36

 xii

2.4.2 MapReduce.. 38
2.4.3 Hadoop YARN .. 40
2.4.4 Apache Mahout ... 42

2.4.5 Google Pregel .. 44
2.4.6 GraphLab ... 46

2.4.6.1 GraphLab 1.0 ... 46
2.4.6.2 GraphLab 2.2 (PowerGraph Abstraction) ... 48

2.5 Machine Learning and Pattern Recognition ... 49

2.5.1 Pre-processing ... 50
2.5.2 Feature Selection ... 51
2.5.3 Model Selection... 51
2.5.4 Training, Testing and Optimisation .. 51

2.6 Distributed Approach for Large-scale Pattern Recognition and Data Processing 52
2.6.1 Learning Approach .. 53
2.6.2 Processing Approach ... 54

2.6.3 Training Approach .. 55

2.7 Graph Neuron for Scalable Recognition .. 55
2.7.1 Graph Neuron Architecture ... 56

2.7.1.1 Single-cycle Learning Approach .. 58

2.7.1.2 GN Pattern Crosstalk Problem .. 61
2.7.2 Hierarchical Graph Neuron ... 61

2.7.2.1 HGN Communication Approach .. 63
2.7.3 Distributed Hierarchical Graph Neuron .. 65

2.8 Conclusion .. 66

Chapter 3: Edge Detecting Hierarchical Graph Neuron .. 69
3.1 Associative Memory Concept for Pattern Recognition .. 70
3.2 Pre-processing and Dimensionality/Content Reduction .. 72

3.2.1 Structural Reduction .. 73

3.2.2 Content Reduction ... 74
3.2.2.1 Drop-fall Algorithm .. 75

3.3 EdgeHGN Computational Architecture ... 78
3.3.1 Two-stage Recognition Procedure .. 80

3.3.1.1 Sub-pattern Recognition Level ... 80
3.3.1.2 Pattern Reconstruction and Recognition Level .. 81

3.3.2 Bias Array Design ... 84
3.4 EdgeHGN Communication Framework ... 85

3.4.1 Network Generation .. 85
3.4.2 EdgeHGN Communications .. 86

3.4.2.1 EdgeHGN Macro-communications .. 87

3.4.2.2 EdgeHGN Micro-communications ... 88
3.5 EdgeHGN Algorithms and Functions .. 89
3.6 EdgeHGN Time Complexity and Scalability Analysis .. 92

3.6.1 Time Complexity... 92
3.6.1.1 Recall Time Comparative Study ... 96

3.6.2 Scalability Analysis ... 100
3.6.2.1 Storage Capacity Analysis ... 101

 xiii

3.6.2.2 Communication Complexity Analysis ... 103
3.7 Pattern Recognition Simulation and Results .. 106

3.7.1 Binary Character Pattern Recognition... 106

3.7.2 Recognition Test on Binary Images .. 113
3.7.3 Recognition Test on Noisy Binary Images ... 119

3.7.3.1 Global Binary Signature Scheme for Colour Recognition 120
3.7.3.2 Sobel’s Edge Recognition for Structural Information.................................... 120
3.7.3.3 Recognition Accuracy Analysis .. 121

3.7.4 Handwritten Object Recognition Test with Multiple Features 127
3.7.4.1 Classification Procedures .. 127
3.7.4.2 Recognition Analysis .. 129

3.8 Conclusion .. 132

Chapter 4: EdgeHGN_MR: Edge Detecting Hierarchical Graph Neuron-based

MapReduce ... 135
4.1 Neural Network based Classification Techniques ... 136
4.2 Associative Memory Concept for Implementing Large-scale Classification 137

4.2.1 EdgeHGN Approach for Cloud Data Access .. 139
4.3 EdgeHGN-based MapReduce .. 139

4.3.1 EdgeHGN_MRv1 .. 141

4.3.2 EdgeHGN_MRv2 .. 144
4.3.2.1 Bootstrapping ... 146

4.3.2.2 Algorithm Design ... 146
4.3.3 EdgeHGN_MRv3 .. 148

4.4 Performance Evaluation ... 152
4.4.1 Classification Accuracy... 153

4.4.2 Computational Efficiency ... 157
4.5 Comparative Performance Results ... 158

4.5.1 EdgeHGN-based MapReduce versus Distributed MapReduce 158

4.5.2 EdgeHGN-based MapReduce versus Pregel-like Graph Processing Systems

(Giraph, GPS, Mizan and GraphLab) ... 160

4.5.2.1 System Setup and Datasets ... 161
4.5.2.2 PageRank Algorithm .. 162

4.6 Conclusion .. 166

Chapter 5: EdgeHGN Application in Fine-grained Wireless Sensor Networks 169
5.1 Distributed Data Processing Scheme for Wireless Sensor Networks 172

5.1.1 WSN Event Detection ... 173
5.1.1.1 Performance-specific Event Detection Schemes .. 173
5.1.1.2 Application-specific Event Detection Schemes .. 174

5.1.1.3 Distributed Pattern Recognition Scheme within WSN 175

5.2 Integrated EdgeHGN-WSN Processing Scheme .. 176
5.2.1 Dimensionality Reduction in Sensory Data .. 178

5.2.2 EdgeHGN Event Classification ... 179
5.2.2.1 Pattern Matching at Sensor Level .. 180
5.2.2.2 EdgeHGN Classification Approach ... 181

5.3 EdgeHGN-WSN Performance Evaluation ... 182

5.3.1 EdgeHGN-WSN Memory Utilization ... 187

 xiv

5.4 Conclusions .. 188

Chapter 6: Case Study: Applying EdgeHGN based MapReduce Approach to Real World

Big Data Processing Scenarios .. 191
6.1 EdgeHGN based MapReduce – High Level Framework ... 193

6.2 Case Study: Solarwinds and ITSM Big Data Processing using MapReduce and

EdgeHGN based MapReduce ... 195

6.2.1 Solarwinds and ITSM Data Correlation Design Model .. 197
6.3 ITSM & Solarwinds Data Correlation Using EdgeHGN_MR 199

6.4 Comparing MR & EdgeHGN_MR for Data Correlation ... 204

6.5 Conclusions .. 205

Chapter 7: Conclusion ... 207
7.1 Research Summary ... 208

7.2 Research Contributions .. 213

7.3 Future Research .. 217

7.3.1 Algorithm-Specific Research .. 218

7.3.2 Application-Specific Research .. 218

Vita ... 221

References ... 223

 xv

List of Tables

Table 3.1: EdgeHGN total recall time complexity terms ... 92

Table 3.2: Big-O notations for Hopfield and EdgeHGN schemes in the network generation

stage (Hopfield network, 2012) ... 97

Table 3.3: Big-O notations for the Hopfield and EdgeHGN networks in the recognition stage

(Hopfield network, 2012) .. 98

Table 3.4: EdgeHGN storage and communication complexity terms 100

Table 3.5: Binary signatures for the image in Figure 3.17 ... 114

Table 3.6: Discretisation of feature data values using variable-binning methods 128

Table 3.7: EdgeHGN networks setup details for processing four feature sets 128

Table 3.8: Recognition parameters with their respective definitions 129

Table 4.1: Hadoop Cluster Details ... 155

Table 4.2: Processing time comparison between EdgeHGN_MR and MapReduce 162

Table 4.3: Experiments Setup Details .. 164

Table 4.4: Dataset Details .. 165

Table 5.1: Temperature readings example with their respective binary signature 183

Table 5.2: Recognition parameters with their respective definitions 187

Table 5.3: Comparative analysis on recognition accuracy parameters between EdgeHGN and

other classifiers for event recognition using three sensory data obtained from

Catterall et al. (2003) (Smart-It 1, Smart-It 2, and Smart-It 3) 188

Table 6.1: ITSM and Solarwinds given data snapshots for data processing exercise 200

Table 6.2: Hadoop 4-node cluster setup for implementing MR and EdgeHGN_MR 201

Table 6.3: ITSM & Solarwinds data correlation processing time using MR & EdgeHGN_MR208

 xvi

List of Algorithms

Algorithm 3.1: SI Module Function ... 89

Algorithm 3.2: Voting Function ... 90

Algorithm 3.3: Adjacency Comparison Function (Base Layer) .. 91

Algorithm 3.4: Bias Calculation Function ... 91

Algorithm 4.1: EdgeHGN_MRv1 .. 147

Algorithm 4.2: EdgeHGN_MRv2 .. 151

Algorithm 4.3: EdgeHGN_MR_3 .. 154

Algorithm 5.1: Pattern Matching Algorithm at the Sensor Level .. 185

Algorithm 6.1: EdgeHGN based MapReduce – High level framework 199

Algorithm 6.2: EdgeHGN_MR scheme for pattern matching between ITSM & Solarwinds 205

 xvii

List of Figures

Figure 1.1: Pattern recognition through the characterisation of patterns in data 6

Figure 2.1: Feed-forward neural network model (Feed-forward neural network, 2011) 28

Figure 2.2: RNN with feedback link (Recurrent Neural Networks in Ruby, 2012) 28

Figure 2.3: A Hopfield network with four nodes (Hopfield network, 2012) 29

Figure 2.4: Schematic view of a self-organising map network (Schlegel, 2011) 31

Figure 2.5: SVM classification process (Introduction to SVM, 2012) 32

Figure 2.6: HDFS with multiple data nodes for storing data (Apache Hadoop, 2010) 37

Figure 2.7: MapReduce data flow structure (OpenSource Forum, 2011) 38

Figure 2.8: Apache Hadoop 2.0 (Apache Hadoop YARN, 2013) .. 40

Figure 2.9: YARN, Apache next-generation MapReduce (Apache Hadoop YARN, 2013) ... 41

Figure 2.10: Apache Mahout (Apache Mahout Software Foundation, 2012) 43

Figure 2.11: Pregel data model (Percolator, Dremel & Pregel, 2012) 45

Figure 2.12: PowerGraph solution to power-law graphs (GraphLab Open Source, 2009) 48

Figure 2.13: Gather-apply-scatter decomposition (GraphLab Open Source, 2009) 49

Figure 2.14: An input pattern BABBC is stored in a GN array where each row of the array

represents a value and each column represents a position 57

Figure 2.15: Four arbitrarily chosen patterns – P1: ABBD, P2: ACCB, P3: BACA, P4: ABCD –

have been stored in the GN array. The maximum bias size is three for storing four

patterns, indicating that the storage requirement per node would not disproportionably

increase with the increase in the stored patterns. ... 59

Figure 2.16: HGN with pattern size of seven and two possible values within the pattern

(Nasution & Khan, 2008) .. 62

Figure 2.17: HGN compositions of (a) 2-D (7x5) and (b) 3-D (7x5x3) for pattern sizes 35 and

105, respectively (Nasution & Khan, 2008) .. 63

Figure 2.18: Transformation of the HGN structure (top) into an equivalent DHGN structure

(bottom) (Khan & Muhamad Amin, 2007) ... 65

Figure 3.1: Auto-AM network to determine whether the input vector is ‘known’ or ‘unknown’

 ... 71

Figure 3.2: Structural reduction on binary character images ... 74

 xviii

Figure 3.3: EdgeHGN progressively removes unnecessary nodes from the two dimensional

data using drop-fall for content reduction ... 75

Figure 3.4: Pixel from which to commence the drop-fall .. 76

Figure 3.5: Movement rules for the drop-fall algorithm .. 77

Figure 3.6: Hybrid drop-fall heuristic approach on character data patterns 77

Figure 3.7: EdgeHGN framework for distributed pattern recognition 79

Figure 3.8: EdgeHGN estimated and actual recall times for processing 10,000 stored patterns96

Figure 3.9: Comparison of communication costs between the HGN, DHGN and EdgeHGN

(Khan & Muhamad Amin, 2007) .. 105

Figure 3.10: EdgeHGN recall percentage for the three character patterns ‘A’ of different sizes107

Figure 3.11: Seven different levels of random distortion applied to binary character patterns108

Figure 3.12: EdgeHGN recall accuracy for various distortion rates 109

Figure 3.13: EdgeHGN node recall percentage for various distortion rates 110

Figure 3.14: Recall percentage rate for EdgeHGN v. DHGN .. 111

Figure 3.15: Response time for EdgeHGN v. DHGN .. 112

Figure 3.16: Recognition time for different sub-pattern sizes and different number of random

sub-patterns ... 112

Figure 3.17: Block image with four different colours is divided into equally sized grids 113

Figure 3.18: Transformation of global colour histogram of image Lena from original image to

various quantisation levels .. 115

Figure 3.19: Average recall and error rates for EdgeHGN greyscale image recognition on 40

16 KB binary images using various quantisation levels 116

Figure 3.20: Total recognition time for each EdgeHGN subnet in binary pattern recognition

with different number of sub-patterns derived from 16 KB binary images 117

Figure 3.21: Recall error rates for binary image recognition of 100 facial image classes when

tested against 1000 stored images using EdgeHGN, DHGN, SVM & BPNN

schemes. .. 118

Figure 3.22. Edge map after applying Global Binary Signature and Sobel’s edge detection 120

Figure 3.23. Fifty different individuals in the face image dataset obtained from the Face

Recognition Data ... 121

 xix

Figure 3.24. Applying the Sobel operator on both the base image and the test image before

pattern matching .. 122

Figure 3.25. Applying four possible drop-fall directions to the input pattern 123

Figure 3.26. EdgeHGN recognition times after applying four drop-fall schemes on a test image

 ... 123

Figure 3.27. Error values for EdgeHGN processing 50 facial image classes of 1000 test images

 ... 124

Figure 3.28. Error values for EdgeHGN and BPNN processing 50 facial image classes of 1000

test images ... 124

Figure 3.29: (Top) images contaminated by both Gaussian noise and salt-and-pepper noise with

σ = 10 and s = 30% (bottom) recognition results using the EdgeHGN scheme ... 126

Figure 3.30: (Top) images contaminated by both Gaussian noise and random-valued noise with

σ = 10 and s = 25% (bottom) recognition results using the EdgeHGN scheme ... 126

Figure 3.31:EdgeHGN classification results on four different features of numeral character

objects .. 130

Figure 3.32: EdgeHGN classification best average results on four different features of numeral

character objects .. 130

Figure 3.33: Comparative study on error rates between EdgeHGN and other classifiers for

similar dataset with respective features ... 131

Figure 4.1: EdgeHGN_MRv1 Architecture ... 145

Figure 4.2: EdgeHGN_MRv2 architecture .. 148

Figure 4.3: EdgeHGN_MRv3 Architecture ... 152

Figure 4.4: Handwritten digits (MNIST Database) .. 156

Figure 4.5: Accuracy rate of EdgeHGN_MRv1 ... 157

Figure 4.6: Accuracy rate of EdgeHGN_MRv2 ... 157

Figure 4.7: Accuracy rate of EdgeHGN_MRv3 ... 158

Figure 4.8: Accuracy rate comparison between EdgeHGN_MRv1, EdgeHGN_MRv2 and

EdgeHGN_MRv3 .. 158

Figure 4.9: Accuracy rate stability comparison between EdgeHGN_MRv1, EdgeHGN_MRv2

and EdgeHGN_MRv3 ... 159

 xx

Figure 4.10: Computational efficiency comparison between EdgeHGN_MRv1,

EdgeHGN_MRv2 and EdgeHGN_MRv3 ... 160

Figure 4.11: MapReduce implementation of PageRank algorithm where the mapper emits

initial PageRank values for every node. The reducer receives all PageRank

contributions for a given node, adds them up, and emits its contribution to its own

outgoing links .. 166

Figure 4.12: Computing time comparison between Giraph, GPS, Mizan, GraphLab and

EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset 167

Figure 4.13: Computing time comparison between Giraph, GPS, Mizan, GraphLab and

EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset 167

Figure 4.14: Maximum memory usage comparison between Giraph, GPS, Mizan, GraphLab

and EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset 168

Figure 4.15: Maximum memory usage comparison between Giraph, GPS, Mizan, GraphLab

and EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset 169

Figure 5.1: EdgeHGN distributed event detection framework .. 181

Figure 5.2: Sensor node placement in a Cartesian grid where each node is allocated to a specific

grid area ... 182

Figure 5.3: EdgeHGN event detection result for a test using 1800 light sensor datasets (Smart-

It 1) (x-axis) with a threshold of 100 (Basirat & Khan, 2013) 187

Figure 5.4: Comparative analysis on recognition parameters rates between EdgeHGN and other

classifiers for event recognition using three sensory data obtained from Catterall et

al. (2003) (Smart-It 1, Smart-It 2, and Smart-It 3) .. 189

Figure 5.5: EdgeHGN Recognition time for 1800 sensor data (x-axis) taken from Smart-It 1,

Smart It 2 and Smart It 3 datasets ... 190

Figure 5.6: Maximum memory consumption for each EdgeHGN subnet for different pattern

sizes. EdgeHGN uses minimum memory space with small pattern size 191

Figure 6.1: SPSS modelling process of linking ITSM and Solarwinds using EdgeHGN_MR

scheme ... 202

Figure 6.2: Architectural overview of ITSM and Solarwinds data correlation project 203

Figure 6.3: EdgeHGN_MR architecture for pattern matching between ITSM and Solarwinds

datasets .. 206

 xxi

Figure 6.4: ITSM tickets raised due to Solarwinds alerts .. 206

Figure 6.5: Service field for ITSM tickets raised due to Solarwinds alerts 207

Figure 6.6: Main causes of Solarwinds alerts .. 207

Figure 6.7: Average distribution of Solarwinds alerts during day ... 208

Figure 6.8: Processing time of performing data correlation between ITSM and Solarwinds

datasets using both MR and EdgeHGN_MR schemes .. 209

 xxii

List of Abbreviations

AM Associative Memory

ANN Artificial Neural Network

API Application Programming Interface

BAA Bias Associative Array

BAM Bidirectional Associative Memory

BMU Best Matching Unit

BPNN Back-Propagation Neural Network

BSP Bulk Synchronous Parallel

CAM Content-Addressable Memory

CBIR Content-Based Image Retrieval

CF Collaborative Filtering

CHN Continuous Hopfield Network

CPU Computer Processing Units

DBMS Database Management Systems

DDOS Distributed Denial of Service

DHGN Distributed Hierarchical Graph Neuron

DHN Discrete Hopfield Network

DPR Distributed Pattern Recognition

EBI European Bioinformatics Institute

EdgeHGN Edge Detecting Hierarchical Graph Neuron

FAM Fuzzy Associative Memory

GAS Gather-Apply-Scatter

GCH Global Colour Histogram

GIS Geographical Information System

GN Graph Neuron

GPS Global Positioning System

GPU Graphical Processing Unit

HDFS Hadoop Distributed File System

HGN Hierarchical Graph Neuron

 xxiii

HPC High-Performance Computing

InSAR Interferometric Synthetic Aperture Radar

ITSM IT Service Management

IoT Internet-of-Things

IP Internet Protocol

JVM Java Virtual Machine

KNN K-Nearest Neighbour

LDA Linear Discriminant Analysis

LLE Local Linear Embedding

MAM Morphological Associative Memories

MGI McKinsey Global Institute

ML Machine Learning

MNIST Mixed National Institute of Standards and Technology

MPI Message-Passing Interface

MRI Magnetic Resonance Imaging

NM NodeManager

OCR Optical Character Recognition

PCA Principal Components Analysis

RDBMS Relational Database Management System

RM ResourceManager

RNN Recurrent Neural Network

SI Stimulator/Interpreter

SOM Self-Organising Map

SoS System-of-Systems

SPIE Society of Photo-optical Instrumentation Engineers

SPSS Statistical Package for the Social Sciences

SV Support Vector

SVM Support Vector Machine

TSP Travelling Salesman Problem

UAI Uncertainty in Artificial Intelligence

WSN Wireless Sensor Network

 xxiv

List of Publications

Publications arising from this thesis include:

Book Chapters

Basirat, A. H., & Khan, A. I. (2010). Building context aware network of wireless sensors using a

scalable distributed estimation scheme for real-time data manipulation, in Wireless Sensor

Network. Chapter 22, In-Tech Publication, DOI: 10.5772/13756.

Basirat, A. H., Khan, A. I., & Schmidt, H. W. (2015). Pattern recognition for large-scale data

processing, in Strategic Data-Based Wisdom in the Big Data Era, IGI Global Publication, pp. 198–

208.

Conference Proceedings

Basirat, A. H., & Khan, A. I. (2009). Building context aware network of wireless sensors using a

novel pattern recognition scheme called Hierarchical Graph Neuron. Proceedings of the 2009 IEEE

International Conference on Semantic Computing (ICSC 2009), 14–16 September, IEEE Computer

Society, San Francisco, CA, pp. 487–494.

Basirat, A. H., Muhamad Amin, A., & Khan, A. I. (2010). Under the cloud: A novel content

addressable data framework for cloud parallelization to create and virtualise new breeds of cloud

applications. Proceedings of the Ninth IEEE International Symposium on Network Computing and

Applications, 15–17 July, IEEE Computer Society, Cambridge, MA, pp. 168–173.

Basirat, A. H., & Khan, A. I. (2010). Evolution of information retrieval in cloud computing by

redesigning data management architecture from a scalable associative computing perspective.

Neural Information Processing. Models and Applications, Lecture Notes in Computer Science,

volume 6444, pp. 275–282.

Basirat, A., & Khan, A. (2011). Introducing a novel data management approach for distributed

large-scale data processing in future computer clouds. Neural Information Processing, Lecture

Notes in Computer Science, volume 7063, pp. 391–398.

Basirat, A. H., & Khan, A. I. (2012). A novel associative model of data: Toward a distributed

large-scale data processing scheme for future computer clouds. Proceedings of the IEEE 11th

International Symposium on Network Computing and Applications, 23–25 August, IEEE Computer

Society, Cambridge, MA, pp. 163–166.

 xxv

Basirat, A. H., & Khan, A. I. (2013). Scalable event detection in wireless sensor networks using

a novel content-based pattern recognition scheme. Proceedings of the 3rd International Conference

on Parallel, Distributed, Grid and Cloud Computing for Engineering (PARENG 2013), Civil-

Comp Press, Stirlingshire, UK, pp. 53–59.

Basirat, A. H., & Khan, A. I. (2013). Introducing an intelligent MapReduce framework for

distributed data processing in clouds. Proceedings of the 12th IEEE International Symposium on

Network Computing and Applications (NCA 2013), Cambridge, MA, pp. 61–64.

Basirat, A. H., Khan, A. I., & Srinivasan, B. (2014). Highly distributable associative memory

based computational framework for parallel data processing in cloud. Lecture Notes in Computer

Science, Social Informatics and Telecommunications Engineering, volume 131, pp. 66–77.

Basirat, A. H., & Khan, A. I. (2015). A highly distributable computational framework for fast

cloud data retrieval. Proceedings of the 14th IEEE International Conference on Machine Learning

and Applications (ICMLA 2015), Miami, FL, USA, pp. 246 – 250.

1

Chapter 1

Introduction

Recent advancements in computing technology and data analysis have resulted in the

generation of massive volumes of highly complex data, leading to a call for a

paradigm shift in computing architectures and large-scale data processing

frameworks. Jim Gray, a distinguished database researcher and the manager of

Microsoft Research’s e-Science group, referred to this shift as the ‘fourth paradigm’

(Hey. et. al., 2009), with the first three shifts representing experimental, theoretical

and computational science. Gray suggested that the only solution to this outgrowth of

big data, commonly known as ‘data deluge’, is to develop a new set of computing,

processing and analysing tools. He also argued that current computing frameworks

are becoming more incapable of handling data-intensive tasks over time due to the

constantly and rapidly growing latency gaps between multi-core computer processing

units (CPUs) and mechanical hard disks (Gray. et. al., 2006). In fact, with emerging

interest to leverage massive amounts of data that are available in open sources, such

as the Web for solving long-standing information retrieval problems, the question of

how to effectively process immense datasets is becoming increasingly relevant. The

outgrowth of big data has significant implications for the development of computing

2

applications (Hey & Trefethen, 2003). According to Anderson (2008), the chief editor

of Wired magazine:

Sixty years ago, digital computers made information readable. Twenty

years ago, the Internet made it reachable. Ten years ago, the first search

engine crawlers made it a single database. Now Google and like-minded

companies are sifting through the most measured age in history, treating

this massive corpus as a laboratory of the human condition. They are the

children of the Petabyte Age. Kilobytes were stored on floppy disks.

Megabytes were stored on hard disks. Terabytes were stored in disk

arrays. Petabytes are stored in the cloud. As we moved along that

progression, we went from the folder analogy to the file cabinet analogy

to the library analogy to – well, at petabytes we ran out of organizational

analogies.

 Thus, the world of big data is in need of high levels of scalability. As human

beings, our brains could be represented as a large-scale distributed and interconnected

network of sensory systems and memories. Observing, recognising and recalling what

we have seen all form a considerable portion of the activities performed within these

large-scale interconnected networks. Provided that an optimal solution is found for

the scalability problem, the Internet can provide us with levels of interconnectivity

and complexity that bear a resemblance to the human brain. Harnessing the massive

potential embodied within these distributed networks of interconnected high-

performance machines may provide recognition and processing capabilities for large-

scale and highly complex data.

1.1 Recognition at Large Scale and Big Data

Transforming big data into valuable information is a significant challenge that real-

world systems must deal with. In fact, more data translates into more effective and

efficient algorithms; hence it is quite reasonable to take advantage of the tremendous

amounts of data that surround us. In this regard, the development of powerful high-

3

resolution data-capture instruments and sensors in areas such as satellite and

biomedical imaging has resulted in a massive production of voluminous and complex

data. In satellite imaging applications, including the geographical information system

(GIS) and the global positioning system (GPS), depending on the resolution of the

images captured, the size of data generated can be enormous.

 These large datasets need to be properly processed before they can be used in

relevant applications. In biomedical imaging, intelligent processing schemes are

usually deployed to extract critical information from high-dimensional images

obtained through complex imaging approaches, such as Magnetic Resonance Imaging

(MRI), to help medical experts with their diagnoses. With the advent of high-

resolution imaging techniques and recent technological developments in high-speed

networking and storage fields, medical experts can conduct a collaborative diagnosis

by collecting data from various sensory and imaging equipments over large scattered

networks and storing and accessing these data within distributed repositories. With all

these capabilities available, the amount of data produced and processed can be at the

Internet-scale. In addition, significant advancements in large-scale scientific analysis

activities have resulted in the introduction of complex and state-of-the-art

technologies. One example is the advent of next-generation DNA sequencing

technology producing an excessive amount of sequence data. This enormous amount

of data must be properly and efficiently stored, indexed and delivered to scientists for

further processing. Given that, in the modern science of genetics, genotypes can

explain phenotypes, the effects of this advanced technology are nothing but

transformative (Elaine, 2008). The European Bioinformatics Institute (EBI), which

holds a huge central repository of sequence data called EMBL-bank, increased its

storage capacity from 2.5 petabytes in 2008 to 18 petabytes in 2013 (EBI, 2013).

Medical experts believe that in not a very distant future, sequencing an individual’s

genome will be as easy as getting a simple blood test, thereby introducing a new era

of personalised medicine, where prescriptions can be specifically developed and

targeted for an individual. As mentioned in the work of (Fox. et. al., 2005), the

development of sophisticated data-capture instruments and sensors, such as the Large

4

Hadron Collider and Interferometric Synthetic Aperture Radar (InSAR), in high-

energy physics has resulted in the consistent generation of large volumes of highly

complex multi-dimensional data.

 In fact, Petabyte datasets are rapidly becoming the norm, and the trends are

obvious; our ability to produce and store data is quickly overwhelming our ability to

process what we generate and store. In this regard, the need for highly sophisticated

computational schemes is somehow prevalent, as the volumes of generated data make

it absolutely impractical for data analysts to conduct any form of data processing

without having the right tools available. However, existing data mining schemes are

mostly suffering from various shortcomings such as the algorithmic complexity of

deployed methods. For example, depending on the form of pruning applied the order

of complexity for the decision tree classification tool can range from 𝖮(𝒏log𝒏) to

𝖮(𝒏2) or even worse (Kamath & Musick, 1998). This in turn makes it practically

infeasible for use in large-scale data processing approaches. Moreover, the rapid

expansion of integration between various computational devices and sensor networks

with the Internet has created a pervasive computational framework known as the

Internet-of-Things (IoT) (Kopetz, 2011). This development builds a bridge between

the physical and information domains and creates a smart space where a large number

of high-performance computational devices can interact in real time to provide

various services – a model that is analogous to the human biological nervous system.

The problem arises when an enormous amount of data has been captured from

various computing systems and there is an urgent need to process this data load

somewhat in real time.

1.2 Cloud Computing and Large-scale Data Processing

Cloud computing offers a pay-per-use paradigm for providing services over the

Internet in a scalable and distributed manner. In this regard, supporting data-intensive

applications is an essential requirement for computer clouds. However, the dynamic

and distributed nature of cloud computing environments leads to complex and

5

cumbersome data management processes, especially in the presence of real-time data-

processing/database-updating tasks. While the possibilities provided by the

parallelisation and distribution of data in clouds have introduced some efficiency,

existing relational and object-oriented data models in particular result in complicated

storage and retrieval processes, especially when dealing with large parallel real-time

data. Chaiken et al. (2008) observed that the challenge of processing large datasets in

a scalable and cost-efficient manner has rendered traditional database solutions

prohibitively expensive. At the other end of the spectrum, high-performance

computing (HPC) has advanced rapidly but has generally focused on computational

complexity and performance improvements. Virtual HPC in the cloud has significant

limitations, especially when big data is involved. According to Shiers et al. (2009), ‘it

is hard to understand how data-intensive applications; such as those that exploit

today’s production grid infrastructures; could achieve adequate performance through

the very high-level interfaces that are exposed in clouds’. Thus, the question of how

to effectively process large-scale datasets is becoming increasingly relevant. Further,

existing data management schemes do not work well when data is partitioned among

numerous available nodes dynamically. Approaches towards parallel data processing

in the cloud, which offer greater portability, manageability and compatibility of

applications and data, are yet to be fully explored.

1.3 Big Data, Feature Extraction and Pattern Recognition

A practical solution to the challenge of voluminous datasets can be implemented

through the use of pattern recognition/matching models where patterns represent a set

of data captured over a certain period. To extract useful information from the

captured data, feature extraction needs to be implemented in an efficient manner.

Feature extraction can be viewed as a mapping from a typically high-dimensional

data space to a reduced dimension space, while maintaining some key properties of

the data. This approach for feature/pattern extraction is commonly referred to as data

mining, which involves the process of uncovering patterns, determining associations

6

between data objects, detecting anomalies and even predicting future data trends. In

this regard, pattern recognition is a common processing tool used in a wide range of

applications, including medical diagnosis, environment and condition monitoring,

decision-making, and various types of scientific explorations. However, when it

comes to processing an enormous amount of data, common pattern recognition

schemes that operate within a CPU-centric environment may not scale well to deal

with data in the order of gigabyte or petabyte scales. Hence, a paradigm shift in data-

processing approaches is essential to handle recognition at the Internet-scale.

1.4 Pattern Recognition for Large-Scale Data Processing

In recent years, interest in pattern recognition has been dramatically renewed mainly

due to the data explosion phenomenon that is currently taking place. In simple terms,

a pattern may be expressed through the use of a common denominator among

multiple instances of an entity. In this regard, pattern recognition schemes aim to

make the process of observing and detecting these common characteristics explicit in

such a way that they can be employed in computational devices to facilitate data

processing by learning and adapting to its characteristics (see Figure 1.1).

Figure 1.1: Pattern recognition through the characterisation of patterns in data

7

 The data deluge, along with rapid advancements in data capture technologies, such

as in sensor networks, has led to a call for a paradigm shift in recognition approaches

and analytical schemes. In fact, current recognition schemes must be reconsidered

from a larger perspective to scale with the rapid growth of the data (i.e. from an

Internet-scale perspective). Scalability is one of the most important factors to

consider when deploying an efficient pattern recognition model. To meet the

requirements of existing Internet-scale data, the capability of pattern recognition

schemes should continue to grow and scale to minimise the risk of becoming

obsolete. In this regard, Pal and Mitra (2004) restated the question of scalability as

follows:

‘Can the pattern recognition algorithm process large data sets efficiently,

while building from them the best possible models?’

 The recent surge in interest for scalable pattern recognition schemes has

been accompanied by exponential growth of data sizes generated by digital

media (images/audio/video), web authoring, scientific instruments and physical

simulations. Thus, the question of how to effectively process these immense

datasets is becoming increasingly important. Nevertheless, most of existing

models suffer from excessive computational complexity when dealing with

highly complex datasets.

1.4.1 Common Barriers

To achieve an adequate level of efficiency, a numbers of barriers must be overcome

when implementing pattern recognition. These include, but are not limited to:

i. Large Data: As the size of the data generated/stored increases over time, pattern

recognition approaches should become more capable of coping with this

outgrowth of the data in the most efficient and effective way. This requires taking

into account all relevant data considerations from storage and transport

perspectives.

ii. Hi-dimensional Data: With current advancements in data capture technologies,

there are many application domains where data to be extracted from the

8

environment is of considerably higher dimensionality and is not basically spatial

(e.g., biological data measuring gene features). In this context, pattern-modelling

schemes should be able to incorporate higher dimensionalities of data in their

processing/implementation.

iii. Algorithmic Complexity: To measure the performance of existing pattern

recognition models, we need to consider two aspects of algorithm performance,

namely time and space. First, how fast does the algorithm perform, and what

affects its runtime? Second, what type of data structure can or should be used to

maximise performance? Although existing pattern recognition models are very

powerful and are capable of providing efficient solutions, they suffer from

excessive complexity, mainly due to their iterative nature along, with complex

mathematical foundations. A large portion of them are exponential and hence

infeasible for implementation in large-scale data scenarios. Moreover, their high

cost of implementation in terms of time and space makes them operationally

costly for large-scale data.

 Hence, any scheme for processing big data should be capable of addressing

increasing size and dimensionality of data while minimising implementation

complexity.

1.4.2 Possible Solutions

There are some major techniques available for scaling up pattern recognition in

dealing with big data:

i. Data Approach: In this model, captured data are pre-processed and modified in

preparation for the recognition process. A number of techniques have been

proposed in the literature for this purpose, including data reduction (Chow &

Huang, 2008), dimensionality reduction (Rueda & Herrera, 2008), and data

partitioning (Kbir, et. al., 2000). The ultimate goal is to reduce/minimise the size

and dimension of the data for faster and more efficient recognition; however, the

approach is liable to overlook the importance of data integrity by reducing the

size of the data domain.

9

ii. Learning Approach: A learning mechanism is a common component among

pattern recognition schemes, and researchers have made many attempts to reduce

the computational complexity of the learning phase in favour of achieving

scalable models with a faster recognition speed. Examples include active learning

(Cheng & Wang, 2007) and incremental learning (Schlimmer & Granger, 1986).

A risk associated with this approach is that recognition accuracy will be

compromised to reach faster recognition. Moreover, in many cases of learning

approach, the issue of over-fitting is still present. This is mainly due to the fact

that a model is more inclined to ‘memorise’ training data while putting less effort

into ‘learning’ to generalise from data trends.

iii. Distributed Computing Approach: Advancements in parallel processing

technologies and improved networking capabilities have resulted in shifting large-

scale computations to be performed within the body of the network exploiting

resource-sharing capabilities of distributed systems to cope with the incremental

growth of resource demands. This approach benefits from guaranteed levels of

reliability, availability and scalability due to its large-scale distributed nature of

operations. In this regard, cloud computing may be viewed as a good example of

a distributed computing system that is capable of providing scalable services

using largely distributed resources to perform complex and computationally

expensive tasks (e.g., recognition at the Internet-scale level).

 Of the above three computing approaches, distributed processing is more

promising for scaling up with today’s outgrowth of data. This technique is

fundamentally different in the sense that adaptation to bio-inspired modelling of the

brain being readily possible under parallel distributed processing when dealing with

an excessive amount of data. However, this is not the case for the data and learning

approaches. In effect, major advancements in parallel computing technology from

simple multi-threading computational models to multi-core and graphical processing

unit (GPU) forms of distributed computing have enabled large-scale processing to be

performed in more elegant and efficient ways. Nevertheless, some existing models

are extremely complex and highly cumbersome to parallelise. Moreover, the

10

scalability of deployed methods for processing voluminous data is still an open

problem that needs to be addressed. Further, existing data management schemes do

not work well when data is partitioned among numerous available nodes dynamically.

Thus, the question of how to effectively process large-scale datasets is becoming

increasingly relevant.

1.5 Motivation and Research Objectives

The dynamic and distributed nature of cloud computing environments, as well as

their exponential growth, makes real-time data management complicated and storage,

updates and analytics costly (Szalay. et. Al., 2006). This thesis hypothesises that

fundamental changes and improvements in data access and movements are possible

and beneficial for cloud-based data processing. That is, transforming big data into

valuable information requires a fundamental rethink of how future data management

models will need to be developed on the Internet. As previously discussed, distributed

pattern recognition approaches can be investigated as an alternative solution for

large-scale data processing. Nevertheless, some major obstacles must be overcome

before these approaches are considered suitable for cloud environments. In fact,

existing distributed pattern recognition models have been mainly formed along a top-

down approach – that is, from the interface design towards hardware and computing

resources development and management. In this approach, relatively CPU-centric (or

sequential-based) algorithms are instrumented and enhanced to function in a

distributed manner. In addition to this limitation, most of current approaches

implement distribution partially – that is, in the context of training and validation

(e.g., feed-forward neural networks and self-organising maps).

 In regards to distributed pattern recognition schemes dealing with large-scale data,

the main motivation for the research work conducted in this thesis lies in the need for

a bottom-up approach – that is, from existing heterogeneous resources to the

development of abstraction layers for general usage. For this purpose, associative

memory concepts open a new pathway for accessing data in a highly distributed

environment that will facilitate a parallel-distributed computational model to

11

automatically adapt to the dynamic data environment for optimised performance. The

problem lies in marrying such concepts with relevant advanced parallel processing

patterns. With this in mind, this thesis targets a new type of data processing approach

that will efficiently partition and distribute data for clouds and facilitate content-

based access for a wide range of applications. Thus, a fully distributed pattern

recognition scheme that can work with a parallel-distributed computational model

such as MapReduce will provide a reusable cloud-based framework for a range of

applications, from image search and sensor data analysis to the control of cyber-

physical infrastructure, mobile equipment and devices.

 The ability to partition data efficiently and automatically will allow elastic scaling

of system resources and remove one of the main obstacles in provisioning data-

centric software-as-a-service in clouds. Improved data management, where data are

optimally and automatically distributed – stands to improve application performance

through efficient data access. In a nutshell, the fundamental motivation for this

research work is to establish a fully distributable and highly scalable pattern

recognition scheme for Internet-scale data analysis that can enable fast large-data

retrieval across voluminous datasets associatively, utilising a parallel approach.

Doing so will yield a new form of database-like functionality that can scale up or

down over the available infrastructure without interruption or degradation,

dynamically and automatically. In summary, the research work conducted in this

thesis aims to meet the following objectives:

i. Provide a distributed data access scheme that enables data storage and retrieval by

association where data points are treated as patterns, thereby circumventing the

scaling issue experienced within referential data access mechanisms. This will

also enhance the overarching relationships among distributed datasets for a

variety of pattern recognition and data-mining applications.

ii. Provide a distributed data management scheme that is beneficial for the

operational requirements of big data processing, thereby enabling relevant data to

be readily available for large-scale computations. This can be achieved by

redesigning the data management architecture from a scalable associative

12

computing perspective to create a database-like functionality that can scale up or

down dynamically over the available infrastructure without any interruption or

degradation.

iii. Significantly reduce the number of processing messages and increase tolerance to

failure by adapting higher data representation techniques.

iv. Validate results and find asymptotical limits of the technique through simulation

environments and real-world examples to establish the usefulness of our

approach.

1.6 Hypotheses and Methodologies

Scalability in the context of large-scale pattern recognition can be defined as ‘the

ability to either handle growing amounts of patterns in a graceful manner or to be

readily enlarged’ (Bonndi, 2000). In this context, this thesis examines fundamental

research on scalability for pattern recognition in association with big data. A number

of different large-scale data processing approaches will be extensively reviewed and

examined, and an effective solution for the scalability problem will be proposed.

 Associative Memory Hypothesis: The main hypothesis of this research is that

loosely-coupled associative techniques, which have not widely considered to date,

can provide an efficient framework for cloud data management. This approach will

entail two-fold benefit. First, applications based on associative computing models can

efficiently utilise the underlying hardware to scale up and down the system resources

dynamically. Second, it will remove the main obstacle to providing scalable

partitioning and data distribution in the cloud, thereby providing a superior solution

for handling data-intensive applications and the system infrastructure to support a

pay-per-use basis. This thesis aims to design a neural networking computational

framework that will result in an architecture that can scale up to use many neural

network nodes operating in parallel, capable of performing large-scale data

processing using neural computations in real-time. As this thesis aims to perform

13

computation at a scale that greatly exceeds the capacity of any single device, it

proposes the scalability hypothesis.

 Scalability Hypothesis: Neural networking computational systems must be able to

be increased in real-time by scaling the system to multiple devices. The scalability

hypothesis indicates that a neural computation system must be a parallel processing

system. If a neural network is considered a parallel processing system, then neurons

can be considered computing resources, while connections can be considered

communication resources. This leads to the communication-centric Hypothesis.

 Communication-Centric Hypothesis: The scalability of a neural computation

system is communication-bound, not compute-bound. The communication-centric

hypothesis means that the work involved in modelling communication in a neural

computation system dominates the work involved in modelling the behaviour of

neurons. It also means that the scale of the neural network that can be handled by a

neural computation system in real-time is bounded by the availability of

communication resources in this system rather than the availability of compute

resources. This leads to the inter-node and intra-node bandwidth hypothesis.

 Inter-node and Intra-node Bandwidth Hypothesis: The scale of the neural

network that can be handled by a neural computation system in real-time is bounded

by inter-node and intra-node communication bandwidths. These provide important

considerations when designing a massively parallel neural computation system where

it is necessary to employ an implementation platform that provides effective inter-

node and intra-node communication to maximise the scale of the neural network.

 This thesis will provide justification for these hypotheses. To address the broad

aims targeted in this research and prove its hypotheses, a number of objectives have

been formulated:

i. Conduct a comprehensive review of current cloud data management schemes and

existing large-scale data processing models. The ultimate goal for this objective is

to create a repository of knowledge playing the role as a foundation for the

process of creating algorithms that provide demonstrably more efficient, robust

14

and scalable end-to-end data access for distributed real-time information

processing in computer clouds through distributed pattern analysis.

ii. Conduct an extensive study of a distributable recognition scheme for big data and

benchmark the proposed model against other established big data processing

schemes such as Hadoop MapReduce, Pregel and GraphLab. To achieve this,

comprehensive analysis will be undertaken to best represent the learning and

distribution mechanisms. This will enable us to better evaluate the computational

complexity, scalability and fault tolerance of the proposed scheme. Further

studies will be carried out to test the applicability of this technique in performing

Internet-scale data processing, provided we can compare its characteristics with

state-of-the-art techniques in cloud data management. This will in turn enable us

to create a proposal for large-scale distributed data processing for cloud

environments.

iii. Scalability is an important factor when dealing with Internet-scale data. As a

result, any scheme for large-scale data processing should have the ability to scale

up for any given amount and dimension of data. Hence, a detailed study will be

conducted of the scalability aspects of the proposed model to ensure that the

scheme will be applicable to large-scale data scenarios. To achieve this, we will

examine processing time and accuracy as two fundamental parameters for this

study.

iv. Formulate a distributed intelligent cloud data management model that enables

seamless data access and distribution using single-cycle learning associative

memory-based algorithms. This is done by developing an associative MapReduce

framework that allows complex data representations to be used as keys for map

and reduce operations. This will allow content-association-based data retrieval

and storage within the cloud.

v. Establish the veracity of the datasets through rigorous testing, and benchmark the

results against state-of-the-art techniques used in the literature. This will enable us

to identify novel scheme usages for big data processing in computer clouds.

15

1.7 Research Contributions

The contributions of this thesis can be summarised as follows:

i. A distributed data access scheme is proposed that enables data storage and

retrieval by association where data records are treated as patterns; hence, finding

overarching relationships among distributed datasets becomes easier for a variety

of pattern recognition and data-mining applications. The proposed scheme will be

suitable for the operational requirements of computer clouds and will enable

relevant data to be readily available for large-scale computations. An extension

towards data representation for distributed pattern recognition algorithms will be

presented, which will significantly reduce the number of messages and increase

tolerance to failure by adapting higher data representation techniques.

ii. This thesis will reconcile MapReduce with associative memory concepts, in

particular for adaptive and fast data access, aggregation and movement will be a

key contribution of this thesis. This will improve MapReduce-based parallel

processing by uniformly formatting data in a standard two-dimensional

representation. It will eliminate data imbalances and complete the transition to

cloud by replacing referential data access mechanisms with more versatile and

distributable associative functions that allow complex data relations such as

images to be easily encoded into the keys as patterns. These patterns can be

applied in a variety of applications that require content recognition, such as image

databases, searches within large multimedia files and data mining. The

algorithmic strengths of the MapReduce approach are investigated for the first

time in regards to the effectiveness of one-shot learning-based parallelism

provisioned via our distributed pattern recognition approach.

iii. This thesis will investigate the capabilities of the proposed scalable pattern

recognition scheme in the context of distributed data processing in large-scale

cloud of wireless sensor networks (WSNs). The research looks specifically into

the applications of associative-memory based approaches in a resource-

constrained WSN network to demonstrate the ability of the proposed technique to

provide an effective front-end recognition scheme for event detection. This

16

approach outlines a new type of the WSN that detects macroscopic events by

collating diverse sensor data, locally and in real-time, into meaningful patterns

and eliminates the bottleneck problem by offering on-site computations through

adoption of a completely distributed and decentralised technique.

1.8 Thesis Outline

The rest of this thesis is organised as follows.

 Chapter 2 will undertake a comprehensive review of various pattern recognition

approaches to determine their computational complexity and how effectively they can

address scalability concerns. Moreover, different state-of-the-art techniques used in

the literature for Internet-scale data will be discussed, along with their pros and cons.

The chapter will also provide a detailed introduction to graph neuron (GN) and

hierarchical graph neuron (HGN), which implement an effective scalable associative

memory scheme through their parallel in-network processing frameworks. The

chapter will also discuss their strengths and limitations. The primary goal of this

chapter is to provide some background information and build a strong foundation for

upcoming chapters, where we propose novel associative-memory-based schemes for

large-scale data processing.

 Chapter 3 will present a novel distributed single-cycle pattern matching scheme,

referred to as edge detecting hierarchical graph neuron (EdgeHGN). The chapter will

detail all of the features and characteristics of the scheme that we use throughout this

thesis. The study will include discussions on required pre-processing steps, scheme

architecture, data representation, communication and learning mechanisms, accuracy,

and speed of implementation. In addition to scalability and computational complexity

evaluations, various experiments are performed to examine the applicability of the

scheme to large-scale datasets.

 Chapter 4 will present a detailed discussion of a novel distributed pattern

recognition model for Internet-scale data processing. The chapter will examine the

capabilities of our evolved EdgeHGN based MapReduce scheme in different real-life

testing scenarios. The applicability and efficiency of the proposed model for multiple

17

pattern recognition domains will be analysed in further detail. Further, this chapter

will investigate an extension of our proposed distributed data management scheme

for different data-intensive scenarios. In particular, three data-intensive scenarios are

considered: dealing with large datasets, handling large training volumes and a neural

network with an excessive number of processing neurons. In addition, a

comprehensive evaluation of the proposed model will be conducted, to benchmark

the proposed scheme’s performance against some of the state-of-the-art techniques

used in the literature. This will include scalability tests and performance tests for

large-scale datasets, and recognition accuracy tests using distorted and noisy patterns.

 Chapter 5 will investigate the capabilities of the proposed scheme in the context of

distributed data processing in large-scale cloud of wireless sensor networks (WSNs).

The chapter will examine WSNs as a platform of operation for EdgeHGN distributed

pattern matching, and it will provide an extensive set of performance benchmarks.

The aim of this chapter is to demonstrate the ability of the proposed recognition

technique to learn and recognise complex patterns using minimal information and

resources to effectively perform classification tasks.

 Chapter 6 will present the results of a 6-month AMSI internship project conducted

at a major pharmaceutical company to showcase a study on the adoption of our

proposed distributed data processing scheme for analysing real-world large-scale

environmental monitoring data and IT service management data. The results

presented in this chapter will validate the research findings by providing access to

large-scale commercial data to test the effectiveness of our approach as a crucial

element in the cross-validation of research contributions.

 Finally, Chapter 7 will conclude this thesis by summarising its contributions and

discussing potential future works.

18

This Page Intentionally Left Blank

19

Chapter 2

Distributed Pattern Recognition and

Data Management at Internet-scale

To deal with the voluminous data gathered from the entire Internet in an efficient

form and at a reasonable cost, search engines utilise a customised distributed data-

processing framework that is deployed on large clusters of computing nodes rather

than relying on traditional database management systems (DBMSs). Relying on his

previous experience as Inktomi (now part of Yahoo!) co-founder, Eric Brewer

claimed that novel data-intensive frameworks (e.g., search engines) should ‘apply the

principles of databases, rather than the artifacts’ (Brewer, 2005), as typical DBMSs

are mostly overly generalised with some redundant features that, in the case of search

engines, could introduce redundancy with costly overheads. As a result, search

engines work better with simplified distributed and parallel data-processing schemes

when dealing with large-scale data. Moreover, due to changes in the data access

patterns of applications and the necessity to use thousands of compute nodes, the

20

main cloud computing providers have integrated specific frameworks for parallel-

distributed data processing in their product offerings, making them more suitable for

end-users to access their services and deploy their applications. Thus, efficiencies

through the widespread use of multi-core CPUs, cost reductions for commodity

hardware, enhanced performance and higher reliability in use are derived from an

architectural paradigm that favours a massively distributed data-processing platform

running on an extensive number of cheap computing nodes. Large data operations,

such as processing crawled documents or reproducing a web index, are divided into

several independent jobs that are distributed across the network among the available

processing nodes and computed in parallel within the network. To simplify the

development of distributed applications on top of such highly distributed

architectures, customised data-processing frameworks are developed and deployed.

Well-known examples are Google’s MapReduce (Dean & Ghemawat, 2004), Hadoop

YARN (Apache Hadoop YARN, 2013), Apache Mahout (Apache Mahout Software

Foundation, 2012), Apache Spark (Apache Spark, 2013), Microsoft Dryad (Isard. et.

al., 2007), Google Pregel (Grzegorz, et. al., 2010) and GraphLab (Low, et. al., 2010).

 While these approaches are different in structure, their design principles share

similar objectives – mainly reducing the task complexity of implementing parallel

processing, fault tolerance and execution optimisation for the developer. In most

cases, developers can write sequential programs without worrying about parallelising

their code, and it is the compute framework’s responsibility to take care of

distributing the program among the available processing nodes and executing each

instance of the program on the proper segment of the dataset. Hence, the emergence

of successful cloud computing projects can mainly be attributed to commoditising

parallelism for solving the data management problem. However, the dynamic and

distributed nature of cloud computing environments makes data management

processes complicated, especially in the case of real-time data processing/database

updating (Szalay. et. al., 2006). To cope with today’s intensive data workloads,

Scalable Database Management Systems (DBMSs) are a critical component of the

cloud infrastructure and play an important role in ensuring the smooth transition of

21

applications from traditional enterprise frameworks to the next generation of cloud

computing services. Although distributed data management has been the vision of the

database research community for a long time, much of the research has been focused

on designing scalable schemes for intensive workloads in traditional large-scale data-

processing settings, and there has been little impetus on redesigning the processing

architecture to keep up with big data.

 The efficiency of the cloud system in dealing with data-intensive applications

through parallel processing essentially lies in how data is partitioned and how

processing is divided among nodes. As a result, data access schemes are sought to

efficiently handle this partitioning automatically and to support the collaboration of

nodes in a reliable manner. The majority of current data-parallel frameworks have

achieved greater scalability than parallel databases. However, this comes at a cost, as

time-consuming analysis and code customisation are required when dealing with

complex data interdependencies. Moreover, real-time reliability guarantees remain

elusive. Further, existing data management schemes do not work well when data is

partitioned among numerous available nodes dynamically. Thus, the question of how

to effectively process large-scale datasets is becoming increasingly relevant. Neural

network approaches can provide effective tools needed for cloud-based data

management. One of the main problems within artificial neural networks (ANN) is

that the computational complexity increases substantially with increases in the

problem size, and these algorithms often fail to scale up for large and complex

datasets (Jain et al., 2000). Further, there is no clear solution to optimally segmenting

multidimensional datasets such as images. Addressing these shortcomings for large-

scale data analysis will transform the way big data processing is done at present, and

it will create a new path for fast data classification.

 In this regard, pattern recognition will be an important element in addressing

afore-noted shortcomings. However, a number of problems have prevented use of

pattern recognition so far, mainly being CPU centric algorithms. To overcome this,

Graph Neuron (GN), a scheme that was primarily developed for event detection in

WSN (Khan, 2002), is identified as a potential candidate to benefit distributed

22

frameworks in cloud to process big data. The GN has been tested in pattern

recognition applications within different types of distributed environments

(Muhammad Amin & Khan, 2008). GN uses a graph-based model for pattern learning

and recognition. One of the strengths of this technique is the employment of parallel

in-network processing to address scalability issues effectively, which is a primary

concern in distributed approaches. This research intends to further extend this scheme

to establish an efficient scalable model for Internet-scale pattern recognition and data

processing.

 The aim of this chapter is to conduct a comprehensive review of current state-of-

the-art techniques for large-scale data processing. For this purpose, a number of data-

parallel frameworks are discussed in detail, along with their pros and cons. Further,

the algorithmic strengths of various neural network approaches for scalable data

processing are investigated in regards to the effectiveness of one-shot learning-based

parallelism provisioned via graph neuron scheme. The objectives of this chapter are

as follows:

i. Conduct a comprehensive review of current data-parallel frameworks and

machine learning schemes that deal with Internet-scale data and discuss how

neural network approaches can open a new pathway for accessing data in highly

distributed environments.

ii. Conduct a detailed review of scalable data-processing requirements and the

shortcomings of existing techniques in the literature.

iii. Discuss single-cycle learning and in-network processing for removing the main

hurdles towards providing the scalable partitioning and distribution of cloud data.

2.1 Definition and Characteristics of Big Data

There are many discussions on the topic of large-scale data processing – both within

industry and academia – as well as the definition of ‘big data’ and how the term

should be used. In a well-executed commercial study entitled ‘Big data: The next

frontier for innovation, competition, and productivity’, the McKinsey Global Institute

(MGI) defined the term ‘big data’ as follows (Manyika, et. al., 2011):

23

Big data refers to datasets whose size is beyond the ability of typical database

software tools to capture, store, manage, and analyse. This definition is

intentionally subjective and incorporates a moving definition of how big a

dataset needs to be in order to be considered big data.

 In this definition, the MGI claims that there is no certain volume threshold to

classify data as ‘big’; rather, it depends on the context. However, the definition uses

size or volume of data as the only criterion. In fact, the usage of the term ‘big data’

can be misleading in the sense that it mainly highlights the volume criterion. The

question of how to deal with large datasets is an ongoing topic of discussion in the

database community, and it led to the invention of parallel database systems with

‘shared-nothing’ architectures (DeWitt & Gray, 1992). As a result, there should be

more to the definition than just size and volume, and most publications elaborate

further on this definition. One of these definitions is offered in IDC’s ‘The Digital

Universe’ (Gantz & Reinsel, 2012):

IDC defines Big Data technologies as a new generation of technologies and

architectures, designed to economically extract value from very large volumes

of a wide variety of data by enabling high-velocity capture, discovery, and/or

analysis. There are three main characteristics of Big Data: the data itself, the

analytics of the data, and the presentation of the results of the analytics.

 This definition relies on the 3Vs model suggested by Doug Laney in 2001 (Laney,

2001). Instead of using the term ‘big data’, Laney predicted that data management

would become more important and difficult over time. This led him to identify 3Vs –

data volume, data velocity and data variety – as the major challenges facing data

management. Data volume refers to the size of the data, data velocity defines the

speed at which new data is introduced to the system, and variety confirms that data

can be extracted from different sources and can be unstructured or semi-structured.

Later, a 5Vs model was suggested in the literature to capture variability

(inconsistency of the data set) and veracity (the quality of captured data) as well

24

(Hilbert, 2015). However, when the discussion about big data started, different

sources decided to adopt the 3Vs definition of big data to highlight the fact that any

solution offered should effectively tackle all three to be successful (Russom, 2011).

Overall, the 3Vs model of big data seems to be well accepted within both the industry

and academia. Moreover, it is helpful when describing characteristics that can be

exploited to derive the requirements for the relevant technologies. Therefore, the 3V

model is used as a guiding definition for this thesis. The following section details the

characteristics which are of fundamental nature and thus more relevant to our

approach.

2.1.1 Data Volume

Dealing with voluminous data is the first and most important challenge. However,

there is no obvious or concrete point at which data should be considered ‘big’. This is

similar to a moving target that moves with a rapid pace over time as computing

power increases. While a few hundred terabytes were considered big data almost 10

years ago, petabyte datasets are now considered big, and the trend is shifting towards

exabyte and even zettabyte data volumes (Gantz & Reinsel, 2012). In addition, more

data results in better outcomes, especially in the case of complex analytic tasks.

Halevy et al. (Halevy, et. al., 2009) stated that for big data challenges that involve

machine learning and statistical approaches, generating larger datasets is the preferred

method over designing sophisticated models and schemes. The authors referred to

this as ‘the unreasonable effectiveness of data’, which means that, for machine-

learning-specific tasks, larger training sets of freely available, even noisy data

typically provide a better result than smaller training sets of carefully cleaned data

with complicated schemes.

2.1.2 Data Velocity

Velocity refers to the speed of data, which can be either the rate of new data coming

into the system or the existing data being updated (Chen, et. al., 2013). Agrawal et al.

25

(2012) name this the ‘acquisition rate challenge’. Data velocity can also refer to the

time it takes to conduct analysis while data is still receiving new feeds and updates,

called the ‘timeliness challenge’. These two challenges are two separate issues in

nature; they typically occur at the same time, but they do not necessarily need to

(Agrawal, et. al., 2012). Tim Kraska referred to the first challenge as ‘big throughput’

(Kraska, 2013). In most cases, the workload is transactional, and the main task is to

receive, filter, store and process fast and continuously incoming data in an effective

way. Stonebraker et. al., (2013) also claimed that traditional relational database

management approaches are not suitable for these types of processing tasks because

they involve significant overhead due to excessive locking, logging and buffer pool

control for multi-threaded operations. The main challenge here is to maintain a

somewhat consistent and persistent state while handling a large number of typically

small write operations. A possible solution to this problem is to conduct some pre-

processing and filter redundant data to make the process more manageable. However,

this filtering stage requires an intelligent mechanism to dismiss unnecessary

information without losing important data, and it comes at a cost because pre-

processing consumes time and resources to perform the task. Further, it is not always

feasible to filter data due to its nature and properties. Another requirement is to

extract and keep metadata along with the streaming data so that data lineage can be

managed, thereby enabling us to track which data should be kept and how they

should be measured (Agrawal, et. al., 2012).

2.1.3 Data Variety

One reason why big data has gained so much attention is that data from diverse

sources can provide significant value when properly aggregated and integrated for

analytics. Data variety refers to a general diversity of data sources, including both

excessive data gathered from various sources and considerable structural differences

among those sources. On a higher level, this leads to the requirement of processing

structured data, semi-structured data and unstructured data (Kaisler, et. al., 2013).

However, on a lower level, while data sources can be structured or semi-structured,

26

they can still be heterogeneous and their schema may not be compatible, resulting in

inconsistent semantics (Helland, 2011). Integrating and processing this collection of

structurally different data can introduce several challenges. One of these challenges

relates to the actual mechanism that should be used to store and manage this type of

data in a database-type platform. For this purpose, relational database management

systems (RDBMSs) may not be a good fit to cater for all types and formats of data.

For example, Stonebraker et. al., (2013) claimed that RDBMSs offer a poor choice

for array or graph data, where array data is typically important in scientific research

and graph data is of high importance for social networks analytics (Stonebraker, et.

al., 2013). Another important challenge when dealing with semi-structured or

unstructured data is that before these data types can be of much use for analysis, some

type of structure should be imposed on them to enable the researchers to extract

entities, relationships and other relevant information. There are some existing

machine learning, information retrieval, natural language processing and data-mining

techniques available for this purpose; however, due to the variety of unstructured data

sources (e.g., images and videos), new data extraction schemes should be developed

to provide more feasible and effective ways of processing, as many of the existing

processing tools fail when facing unstructured data (Agrawal, et. al., 2012).

2.2 Neural Network Schemes for Big Data Processing

Neural networks can be defined as interconnected parallel-computing networks of a

massive number of processing nodes known as neurons (Jain, et. al., 2000). One of

the main benefits of using neural network techniques for data processing is that they

allow the system to learn from the data and progressively adapt to the nature of the

data. This adaptive feature provides a promising tool for scalable Internet-scale

recognition. However, a number of issues need to be overcome in relation to their

implementation and deployment. This section provides an overview of some of the

most well-known neural network schemes for pattern recognition. The techniques

discussed here are widely used across many applications of pattern recognition;

however, the focus here is on the scalability and adaptability of these approaches for

27

large-scale pattern matching tasks. An evaluation of the neural network and machine

learning algorithms discussed in the literature suggests that these schemes can offer

promising tools for deterministic pattern recognition (Vivanco, et. al., 2005).

Moreover, they can let the system to learn from data and adopt itself to its conditions.

However, the relative computational complexity of current schemes places a heavy

burden on their widespread use for large-scale pattern processing. This is mainly due

to their excessive and highly iterative training procedures.

2.2.1 Feed-forward Neural Network

The feed-forward neural network scheme provides a well-defined approach for

building auto-associations between an input layer and an output layer in a large

domain of computational problems such as pattern recognition (Nadal, 1989) (see

Figure 2.1). However, its classification process faces some limitations relating to its

implementation. These implantation barriers include: its relative sensitivity towards

the training parameters, training speed, non-linear classification function,

overtraining sensitivity and regularisation requirements (Jain et al., 2000). As

described by Kalos (2005), it is difficult to incorporate feed-forward neural networks

for mainstream applications because they are highly specialised. Moreover, he

highlighted a few implementation-related issues for such networks, including the

difficult process of interpreting the results, as well as the trial-and-error approach

needed to build their architecture. The cumbersome nature of predicting the results is

due to the fact that the intermediate results obtained from the network should first be

cross-validated before they can produce the best output. In addition, the algorithm

design is a complex process because of the instability that is present in the number of

hidden layers required for a given dataset. Given their intensive computational

operations, they require excessive training procedures to achieve optimum

recognition accuracy for a given dataset. As a result, feed-forward neural networks

suffer from scalability and adaptability issues. Although their design permits parallel

processing to improve upon scalability, the complex computational operations

prevent them from being suitable candidates for scalable pattern recognition schemes.

28

Figure 2.1: Feed-forward neural network model

(Feed-forward neural network, 2011)

2.2.2 Recurrent Neural Networks (RNN)

A recurrent neural network (RNN), also referred to as a feedback neural network, is a

multi-layered network structure where the input receives feedback from an RNN

output to increase recognition accuracy (Duda, et. al., 2001) (see Figure 2.2).

Figure 2.2: RNN with feedback link (Recurrent Neural Networks in Ruby, 2012)

29

 RNNs can be categorised into two main categories, namely standard and

relaxation RNNs (Connor, et. al., 1994). Standard RNNs follow the same principles

as standard neural networks and incorporate feedback links within their design.

Relaxation RNNs continuously implement learning and recognition stages until

feedback inputs reach a predefined threshold. While RNNs are simple and powerful

schemes, they may get stuck in calculating local minima during gradient descent,

achieving sub-optimal results (Bengio, et. al., 1994). This limits their applicability to

large-scale pattern recognition problems requiring optimal results in minimal time.

2.2.3 Hopfield Network

Hopfield and Tank (1985) introduced the Hopfield network as a type of supervised

neural network, offering an alternative solution to complex computational tasks such

as combinatorial optimisation. The Hopfield network has also provided an efficient

approach for solving the Travelling Salesman Problem (TSP) and other pattern

recognition tasks (see Figure 2.3).

Figure 2.3: A Hopfield network with four nodes (Hopfield network, 2012)

30

 Hopfield networks can be divided into two main categories: Discrete Hopfield

Network (DHN) and Continuous Hopfield Network (CHN) (Kim, et. al., 1992). DHN

is a fast-processing stochastic approach that is simple to implement. As the scheme

uses binary values to represent the states of neurons, it does not produce accurate

results. Hence, DHN is not capable of providing sufficient levels of accuracy for

pattern recognition applications. Conversely, CHN uses a differential equation

scheme to achieve a near-optimal result. This approach requires more time to produce

acceptable results, which in turn places a practical burden on its implementation. As a

result, CHN cannot offer an efficient solution to pattern recognition applications that

require fast processing. Moreover, the Hopfield network suffers from a convergence

problem, which results in producing less-than-optimal solutions (Li et. al., 2005). It

also does not scale well due to scalability issues associated with the storage of biased

patterns (Lowe, 1999). These prevent the Hopfield approach from being a suitable

candidate for solving large-scale pattern recognition problems, regardless of its

ability to perform parallel recognition (Wilson, 2009).

2.2.4 Self-Organizing Maps

A self-organising map (SOM), also referred to as a Kohonen map, is an unsupervised

neural network approach used for performing pattern clustering and classification

(Kohonen, 2000). Kohonen maps are formed based on the competitive learning

algorithm (Rumelhart & Zipser, 1988). As part of the classification process, SOM

offers a mapping of high-dimensional data space to lower-dimensional data space

using dimension reduction (see Figure 2.4). A peculiarity of this technique is that the

neurons are well-placed and well-represented in the form of a geometrical dimension

(Giorgetti, et. al, 2007). The SOM scheme also exhibits a high level of adaptability,

as it can represent various types of data using a single form of representation.

Kohonen networks have been extensively used in a wide range of applications

including, geo-informatics (Zaremba, et. al., 2000), bioinformatics (Wang, et. al.,

2007), finance (Blazejewski & Coggins, 2004), information retrieval (Lin, et. al.,

1991) and wireless technology (Giorgetti et. al., 2007).

31

Figure 2.4: Schematic view of SOM Network (Schlegel, 2011)

 One of the main drawbacks of the standard SOM approach is its high

computational complexity and its inability to scale efficiently with increases in the

map size. While SOM is a well-established method for clustering high-dimensional

data, its training and classification process requires numerous iterations to be

performed on each neuron, which makes the scheme computationally costly when

dealing with high-dimensional data. To address this shortcoming, various dimension

reduction techniques are adopted at the cost of increased processing time. Moreover,

determining the learning rate of SOM-based schemes to estimate the efficiency of the

approach is a non-trivial task (Cheung & Law, 2007). These limitations restrict the

applicability of SOM-based techniques in solving large-scale pattern recognition

problems.

2.2.5 Support Vector Machine (SVM)

Support vector machines (SVMs) have gained a lot of attention recently due to their

ability to perform effective data classification and regression tasks (Casali, et. al.,

2006). The scheme implements classification by creating a mapping of input vectors

to a high-dimensional feature space in a non-linear shape and form, and then forming

32

a linear decision surface by building one or more hyper-planes to enable class

separation (Cortes & Vapnik, 1995). The classification process will be performed by

determining the optimal separating hyper-plane. This approach is illustrated in Figure

2.5, where the problem is simply defined as finding an optimal solution to a problem.

In this example, the optimal solution is to find the best line passing as far as possible

from all of the points. As a result, the SVM target here is to determine the hyper-

plane that provides the largest minimum distance to the training examples. This

optimal separating hyper-plane maximises the margin of the training data. SVM was

originally deployed and tested for binary problems because it offers unique solutions

along with good generalisation properties of the solution (Mavroforakis &

Theodoridis, 2006). However, the technique suffers from a slow test phase compared

to other learning schemes presented in the literature (Huang, et. al., 2005). Moreover,

the computational costs can become excessive with an increased number of support

vectors (SVs) (Dong, et. al., 2005). In addition to that, SVM does not scale

effectively, as the SVM training kernel matrix size increases quadratically with the

size of the dataset; this results in a dramatic increase for big datasets, making it

impractical for large-scale pattern processing problems (Nguyen & Ho, 2006).

Figure 2.5: SVM classification process (Introduction to SVM, 2012)

33

2.3 Neural Network/Machine Learning Requirements for

Large-scale Pattern Recognition and Data Processing

Artificial neural network techniques have been extensively used for different pattern

matching and classification tasks. For instance, Jiang et. al. (2010), introduced a back

propagation neural network scheme to perform the processing of high-resolution

sensory images to identify roads. In another example, Khoa et. al. (2006) presented a

stock price forecasting scheme utilising the BPNN approach. Previously, ANN

schemes were mainly used to deal with small-size datasets. However, with the

emergence of large-scale data-processing applications, their potential use for big data-

processing tasks can be restricted in their current shape and form as they become

computationally intensive, with large memory requirements when applied to large-

scale datasets. One of the main benefits of using neural network techniques for data

processing is that they enable the system to learn from data and progressively adapt to

that nature of data. This adaptive feature provides a promising tool for scalable

Internet-scale recognition (Vivanco, et. al., 2005). However, a number of issues need

to be overcome in relation to their implementation and deployment. Wang et al.

(2014) claimed that ANN schemes can be considered one of the major tools for large-

scale data analysis if the fundamental challenges of dealing with big data can be faced

effectively within the two phases, namely the training phase and operation phase. As

an example, back-propagation neural network (BPNN) is one of the most widely used

ANN techniques that can potentially approximate any sort of continuous non-linear

function by arbitrary precision if enough neurons are available for computation

(Hagan, et.al., 1996). In most cases, BPNN uses the back-propagation algorithm as

part of the training stage, which can be time-consuming when dealing with large

volume of training data (Gu, et. al., 2013). To take advantage of the potentials of

neural networks for big data processing, an alternative is to use parallel processing

approaches to speed up computational work – for example, the use of Message

Passing Interface (MPI) (Kumar, et. al., 2002). Long and Gupta (2008) introduced a

parallel ANN with an MPI technique for providing computational parallelism. While

34

MPI was originally designed for data-intensive applications, it does not offer great

deal of support for fault tolerance. In fact, in many fault-occurring cases, MPI

processes should be re-initiated, which makes them unsuitable for big data processing

scenarios where failures can occur at any time in the system (Long & Gupta, 2008).

Furthermore, many of the existing neural network techniques suffer from the over-

fitting problem, where a small-sized training dataset cannot effectively represent the

actual characteristics of the large dataset.

 A comprehensive study of the existing pattern recognition techniques in the

literature shows that they are capable of offering acceptable levels of scalability and

adaptability, but at the cost of introducing excessive computational costs with

increased complexity. In this regard, some attempts have been made in the literature

to offer faster neural network computations by either trying to better select the initial

weights (Nguyen & Widrow, 2010) or better control the learning parameters (Kanan

& Khanian, 2012). In recent years, many researchers have started focusing on

utilising the potential embedded in parallel processing techniques and distributed

computing approaches to come up with scalable methods to work around the

computational bottlenecks of existing large neural network schemes (Ikram, et. al.,

2013) (Huqqani, et. al., 2014). Gu et. al., (2013) introduced a computationally fast

parallel neural network approach utilising some in-memory data processing at the

cost of providing less accurate results. They achieved a faster scheme through

parallelism by splitting the training data into data chunks and processing them in

parallel. In another work, Liu. et. al., (2010) demonstrated the application of a

MapReduce-based BPNN in classifying an excessive amount of mobile data. In their

proposed parallel neural network classification approach, they utilised AdaBoosting

to compensate for the accuracy shortfall. Despite achieving higher accuracy rates,

their approach suffers from computationally expensive operations within both

training and classification phases. In addition, the AdaBoosting approach has the risk

of increasing the weight of potential poor classified instances, resulting in less

accurate results (Freund, et. al., 1998).

35

2.4 Parallel Data-processing Frameworks

To simplify the development of distributed applications on top of such highly

distributed architectures, customised data-processing frameworks are developed and

deployed.

2.4.1 Hadoop and Hadoop Distributed File System

Hadoop has been extensively used for large-scale data processing in the clouds

(Chen, et. al., 2008), and it is widely utilised by the industry’s major web players –

Google, Yahoo, Microsoft and Facebook – as the platform to enable the cloud. As in

the cloud, the computing unit is mostly VM (virtual machine) based, such that

Amazon Elastic Cloud Computing (Amazon Elastic Cloud Computing, 2011) and

GoGrid (GoGrid Cloud Hosting, 2011) offer VM-based computing infrastructure as a

service. It is therefore possible to use cloud data-processing schemes in a virtualised

data centre. Although poor functionality and significant load imbalances exist, VMs

can still be employed to assist with utilising the system resources and provide better

management and control while improving reliability (Figueiredo, et. al., 2003).

Existing cloud systems often rely on Hadoop Distributed File Systems (HDFS) and

the parallel scanning procedure as their underlying platform to manage data. HDFS is

a kind of distributed file system that offers high throughput access to application data,

and it is built and developed to function on commodity hardware (Apache Hadoop,

2010).

2.4.1.1 HDFS Features

HDFS has many common characteristics with other distributed file systems, but its

high level of fault tolerance makes it an efficient approach to support the

development of Hadoop on large clusters of machines, providing high throughput

access to deal with Internet-scale datasets (Apache Hadoop, 2010). In summary, the

features of HDFS can be categorised as follows:

 Very large datasets: HDFS enables the processing of massive amounts of data in

the order of petabyte scales on distributed file systems.

36

 Streaming data access: The HDFS process follows the model of write once and

then read many times. This approach not only minimises data coherency issues,

but it also over-simplifies high throughput data access, making it efficient and

suitable for MapReduce applications, which is discussed later in this chapter.

 Commodity hardware: Hadoop can run on inexpensive machines with noticeably

low power consumption. This brings the power of fault tolerance to the scheme,

where basic failures can be recovered and compensated with minimum or no

effects on the total functionality.

 Data reliability: As data is stored on multiple nodes and racks in HDFS

architecture, data will be easily accessible in case of sudden failures. In fact, the

placement of replicas is one of the key differentiators between HDFS and other

distributed file system mechanisms.

 Portability: HDFS is designed so that it can be easily moved from one platform to

another, thereby facilitating its use as a platform of choice for many applications.

2.4.1.2 HDFS Architecture

HDFS consists of one NameNode and a number of DataNodes, and it has

master/slave architecture. The master server, referred to as the NameNode, divides

files into blocks and distributes them among the cluster members with replication to

cater for fault tolerance. It also keeps all metadata about stored files and arranges the

system namespace. The slaves, referred to as DataNodes, are the actual repository of

the data blocks; they respond to read/write requests from clients and distribute

replication tasks as instructed by the NameNode. In response to a request, the relevant

data is retrieved from the HDFS and sent to a set of pre-allocated compute nodes to

implement parallel scanning. To achieve its goal, HDFS uses the JobTracker and

TaskTracker functions. JobTracker is responsible for scheduling and assigning the

relevant tasks to TaskTrackers, while TaskTrackers are only responsible for

accomplishing the jobs they are assigned to. Upon completion of the job,

TaskTrackers notifies JobTracker about the result of the work (success/failure), and

in case of failure, the JobTracker reschedules the failed operations (see Figure 2.6).

37

Figure 2.6: HDFS with multiple data nodes for storing data

(Apache Hadoop, 2010)

 With this HDFS architecture, we may face some technical challenges, including:

 Adapting ourselves to writing application codes in a new programming paradigm.

 NameNodes do not scale effectively. In fact, HDFS runs a secondary NameNode

for faster recovery, but the secondary NameNode plays the role of a log server

rather than a failover server. In case of failure, the primary NameNode will

eventually need to be restarted, and some of the actions should be replayed.

 Similar to TaskTrackers with regards to their immediate effect on job

performance, the poor performance of the NameNode or particular set of

DataNodes can have a significant deteriorating effect on the overall functionality

of the whole data cluster.

 Based on experimental results, NameNode can be a bottleneck for linear scaling.

In fact, a 10,000-node HDFS cluster with a single NameNode is expected to

handle a workload of 100,000 readers (memory-only operation); however,

practical experiments have shown that even 10,000 writers (bounded by the local

hard drive performance) can produce a sufficient workload to saturate the

NameNode and degrade the overall performance (NameNode Performance, 2008).

38

2.4.2 MapReduce

MapReduce is a parallel processing framework for the distributed processing of large

datasets among compute cluster nodes (Dean & Ghemawat, 2004), and the Hadoop

version of it relies on HDFS as its underlying platform (Apache Hadoop MapReduce,

2011). The MapReduce and HDFS frameworks both perform processing on the same

set of nodes. That is, the majority of computational tasks are performed where the

data already resides (data locality). This approach significantly speeds up processing

because it is computationally much cheaper to move the computations and not the

data. In the MapReduce data-processing approach, all processing operations are

expressed using two main primitives – (a) a map function to accept a key-value pair,

perform some computations and generate a set of intermediate key-value pairs as

output, and (b) a reduce function to aggregate all intermediate results associated with

the same intermediate key, perform some computations and emit the final output (see

Figure 2.7). These simplified functions permit users to build and deploy parallel data-

processing jobs without the need to explicitly coordinate parallel sub-tasks with

distributed file storage. As a result, the MapReduce abstraction can vastly improve

user productivity and experience (Apache Hadoop MapReduce, 2011).

Figure 2.7: MapReduce data flow structure (OpenSource Forum, 2011)

39

 MapReduce applications usually process large volumes of cloud data. This

requires two critical data movements: gathering the input data for the map phase, and

reorganising and redistributing the output of the map tasks as input for the reduce

phase. The MapReduce data movement approach heavily depends on the

parallelisation strategy used. It should be noted that maximum parallelism of the

(parallel) map phase is bounded by the number of input pairs while the parallelism in

the reduction phase is also restricted by the number of various output keys of the map

phase, which in turn highly depends on the deployed algorithms and the nature of the

input data. Moreover, the approach suffers from certain key limitations:

 In the MapReduce type of query processing, the map tasks are assumed to be

fully independent. However, when applied to massive relational or object-

oriented data, large records or objects resulting from aggregation and analytics are

often broken into parts and distributed, thereby creating dependencies and

requiring trade-offs between redundancy (for speed), coherence (for integrity

under frequent updates) and compromises to parallel schedulability, as they break

assumptions of mutual independence.

 In practice, MapReduce functions are implemented imperatively and produce an

excessive number of intermediary entities between the map and reduce stages

(e.g., in the form of intermediate files). In many cases, these intermediate files

must be first sorted and indexed before they can be entered as input to the reduce

function. This system’s extensive sort and redistribution tasks incur significantly

high processing and communication costs, and the system is either fundamentally

non-scalable or requires fine-tuned architecture-aware access mechanisms.

 While assisting designers and developers with few predefined architectural

patterns for many applications (Gamma, et. al., 1995), the MapReduce data flow

model is also rigid, limits variation and hence increases the complexities of

dealing with errors, fault tolerance, performance and other end-to-end non-

functional issues. Some exploratory research implementations use key-value pairs

with distributed ‘spaces’, such as JavaSpaces or other derivatives of Linda tuple

spaces (Gelernter & Carriero, 1985), to simplify data sharing and conceptually

40

separate shared data from computational tasks. However, this simplification

comes with significant efficiency loss and exacerbates the uncertainty of

predicting reliability and real-time behaviour.

 Hence, in practice, MapReduce cannot automatically scale up for many

applications and datasets.

2.4.3 Hadoop YARN

In its original design, MapReduce suffers from various issues, including scalability

concerns, as the maximum practical cluster size could achieve about 4000 nodes with

coarse synchronisation processes for the JobTracker (Yahoo Developer Network,

2008). In addition, the partitioning of resources into map and reduce slots results in

inefficient utilisation. Moreover, the rigid design of the MapReduce framework,

along with its lack of support for alternate paradigms, makes it impractical for some

applications, in particular those that are iterative in nature. As a result, the

MapReduce scheme has been significantly reinvented in Hadoop-0.23, and the

current version is referred to as MapReduce 2.0 (MRv2) or YARN. YARN was

originally introduced by Apache as a newly designed resource manager, but in its

current form it is considered the next generation compute and resource management

framework for big data applications (Apache Hadoop YARN, 2013) (see Figure 2.8).

Figure 2.8: Apache Hadoop 2.0 (Apache Hadoop YARN, 2013)

41

 YARN has a master/slave architecture in which the JobTracker’s two main

functionalities are executed within separate daemons, namely resource management

and job scheduling/monitoring. YARN introduces a global ResourceManager (RM)

and an ApplicationMaster for each application. In simple terms, the YARN data

framework consists of the global ResourceManager and a per node slave called

NodeManager (NM). For each application, the ApplicationMaster component looks

after the implementation and monitoring of the dedicated tasks after negotiating

required resources with the ResourceManager (see Figure 2.9).

Figure 2.9: YARN, Apache next generation MapReduce

(Apache Hadoop YARN, 2013)

 This new computational framework design in YARN will eliminate MapReduce

bottlenecks where pre-YARN jobs were forced to be executed through a single

JobTracker daemon (as batch processes), thereby limiting MapReduce scalability

while reducing processing speed (Apache Hadoop YARN, 2013). The

ResourceManager in YARN plays the role of global coordination, which in turn

creates a single point of failure in the system. Any planned (upgrades) or unplanned

(node crashes) outages for ResourceManager can render YARN unavailable.

42

2.4.4 Apache Mahout

Apache Mahout was initially started as a sub-component of the Apache Lucene

project in 2008 (Apache Lucene Core, 2008) and became a big project by itself in

2010. The goal of Apache Mahout is to build Apache-licensed machine learning

libraries that can scale up with big data. Machine learning in the context of big data is

simply to create computational intelligence using example data or by observing past

experiences (Alpaydin, 2004). Building applications that intelligently learn from

input data is of high interest, and such applications require machine learning schemes

to achieve this. Apache Mahout is designed to address this requirement by enabling

users to employ highly scalable machine learning approaches on multicore, such as

collaborative filtering (CF) (Resnick & Varian, 1997) and random forest decision-

tree-based classifiers (Breiman, 2001). The goal of Apache Mahout for big data

processing is to deliver a scheme that is as fast and efficient as possible given the

intrinsic design of the algorithm. It must be capable of addressing the major

shortcomings of many machine learning approaches, which do not scale effectively to

massive machine clusters. Given its multicore implementation model, Mahout uses

Hadoop’s HDFS and MapReduce frameworks. Mahout introduces a number of

techniques – many of which are still in the development phase. However, Mahout’s

three core themes are recommender engines, clustering and classification (Apache

Mahout Software Foundation, 2012) (see Figure 2.10). The recommender system is

probably the most noticeable machine learning scheme in use today. It recommends

services and products based on historical actions and preferences. For this purpose,

Mahout uses an extensive framework for collaborative filtering where top-level

implementation packages define the Mahout interfaces to the following key

abstractions: data model, user similarity, item similarity, user neighbourhood (nearest

N-user neighbourhood or threshold-user neighbourhood) and recommender

abstraction (Ricci, et. al., 2011). A clustering algorithm is an unsupervised machine

learning technique that facilitates grouping a large number of entities together that

share a similarity. This clustering approach helps in discovering patterns within

complex unstructured datasets and assists in forming a hierarchy of datasets to

43

discover relationships. To perform clustering, Mahout calculates small intra-cluster

distances by determining local and global minima and then calculates large inter-

cluster distances using Mahout’s Canopy clustering MapReduce algorithm to

compute initial cluster centroids (Apache Mahout Canopy Clustering, 2012).

Figure 2.10: Apache Mahout (Apache Mahout Software Foundation, 2012)

 In contrast, classification algorithms are supervised machine learning

techniques that aim to determine whether a certain entity belongs to a group or

category, or whether it does or does not have some attribute. To achieve this, Mahout

initially performs some training on labelled data and then runs a classifier algorithm

against unlabelled data to implement the classification. In this regard, Mahout can

choose from a large number of classification algorithms, such as the maximum

entropy classifier (Ratnaparkhi, 1997), the naïve Bayes classifier (Friedman, et. al.,

1997), decision trees (Kamath & Musick, 1998), SVMs (Cortes & Vapnik, 1995),

KNN algorithms (Dasarathy, 2002) and the perceptron scheme (Freund, 1999). While

Mahout provides an effective approach for implementing machine learning

techniques in a scalable fashion over multicore architectures, it suffers from certain

key limitations (Apache Mahout Software Foundation, 2012):

44

 Mahout does not always scale as well as expected. Experimental results show that

different data sizes with different algorithms can occasionally produce inefficient

results, sometimes minus percentage speed-ups.

 Experiments show that using Mahout for recommender systems can be inefficient

in terms of high memory and resource consumption.

 Its performance may not be comparable with specifically optimised schemes for

certain datasets, but it still offers a great speed-up.

 Moreover, in its current form, Mahout only works with a limited range of standard

machine learning approaches, and it should be further optimised for specific

algorithms.

2.4.5 Google Pregel

Pregel is an efficient, scalable and fault-tolerant framework that enables large-scale

graph processing using a simple code. It is capable of performing computations over

large graphs in a very fast fashion while hiding relevant distribution details behind an

abstract application programming interface (API) (Malewicz, et. al., 2010). Its

architecture is inspired and developed by the Bulk Synchronous Parallel (BSP) model

(Valiant, 1990) that empowers the programmer to find parallel-computing solutions

for a specific problem without having to know how communication and memory

allocations are performed in a distributed setup. To minimise communication

overhead, Pregel also tries to preserve data locality by moving the computations to

where the data reside. The input-directed graph is loaded once during the start-up

phase, and all following computations are performed in-memory. Pregel takes a

directed graph as an input in which each vertex is uniquely identified with a string

vertex identifier. Pregel has a master/slave model architecture where each worker

receives a subset of the directed graph’s vertices to work with. Each vertex has an

arbitrary value that can be get/set, and it also maintains a list of its outgoing edges.

The directed edges are linked with their source vertices, and each edge is lined with a

user-defined modifiable value and a target vertex identifier. A typical Pregel

45

implementation starts with the graph input, where the graph is first initialised. A

sequence of processing iterations (super steps) is then performed, separated by a

global synchronisation checkpoint, and this process continues until the algorithm

terminates with an output (see Figure 2.11). As discussed previously, Pregel

implements the BSP model when the master initiates an iteration, referred to as a

super step. At every super step, workers execute a user-defined function on all of its

vertices. Vertices can send/receive messages to other vertices, and those messages

will be delivered in the next super step. Within each of the super step iterations,

vertices can update their value, make changes to the value of edges or even modify

the topology of the graph by adding or removing vertices/edges. Vertices also have

the power of ‘vote to halt’. The execution is terminated when all vertices vote to halt

and there are no more messages to be delivered. A problem arising from this type of

processing is that a vertex program should keep running in the background to send

out update messages, but there is a chance that some vertices converge earlier than

others, resulting in a waste of CPU resources.

Figure 2.11: Pregel data model (Percolator, Dremel & Pregel, 2012)

46

 In addition, algorithms like Pregel, which follow the BSP computational model,

can suffer from the straggler problem, where the transient slowdown of any

processing thread can slow down the whole system. In fact, in the BSP approach,

tight synchronisation requirements in each iteration can have a significant adverse

effect on the overall performance of the scheme. Pregel is a simple parallel

processing framework with many opportunities for improvement, and it has led to the

invention of several other graph processing approaches, including Apache Giraph

(Apache Giraph, 2013), GPS (Salihoglu & Widom, 2013) and Mizan (Khayyat, et.

al., 2013).

2.4.6 GraphLab

A team from Carnegie Mellon University started the GraphLab project in 2009 to

create a scalable computing framework for large-scale data processing, incorporating

the requirements of parallel abstractions tailor-made for machine learning (ML)

applications (GraphLab Open Source, 2009). They initially suggested a shared-

memory approach referred to as GraphLab 1.0, and they later introduced GraphLab

2.1 for distributed environments. The latest release, GraphLab PowerGraph version

2.2, introduces a new set of capabilities through the use of a new API to increase

usability. The GraphLab algorithm was initially developed based on the common

computational characteristics of machine learning approaches to provide an effective

and scalable framework for building machine learning schemes. GraphLab achieves

its goal by targeting common patterns in ML, such as sparse computational

dependencies, asynchronous iterative computation along with sequential consistency

and prioritised ordering (Low, et. al., 2010).

2.4.6.1 GraphLab 1.0

The GraphLab data structure consists of a directed data graph and a shared data table.

The data graph represents both problem-specific sparse computational dependencies

and the program state, which can be modified during execution. Each vertex and

directed edge in the graph can be allocated an arbitrary block of data by the user.

47

Further, and to support a globally shared state, a shared data table is established by

implementing an associative map between some given keys and arbitrary blocks of

data. Computations in GraphLab are conducted using either an update function or

through the sync mechanism. The update function is analogous to the map function in

MapReduce, where local computations are performed as instructed by the input data

graph. A difference here is that the update function in GraphLab can read and update

overlapping sets of data (program states) in a controlled manner, and this process can

be permitted to occur in a recursive fashion, thereby enabling dynamic iterative

computations. GraphLab maintains the prioritised ordering of update functions by

using powerful scheduling primitives. The sync mechanism is analogous to the

reduce function in MapReduce, and it enables reductions to occur while update

functions are in progress. A difference here is that the sync operation in GraphLab,

unlike Reduce function in MapReduce, can run concurrently with the Update function

(Low, et. al., 2010). GraphLab 1.0 exhibits very effective ‘scatter’ capability, where

an update to a single vertex can be efficiently communicated across the network to all

target machines, thereby minimising the amount of data replication. This is a

significantly powerful advantage over Pregel, where excessive data replication is

needed to transmit vertex data modifications. In contrast, GraphLab 1.0 suffers from

an inefficient ‘gather’ capability that does not allow each vertex to effectively ‘pre-

combine’ its target data. In fact, the update function in GraphLab 1.0 needs full

access to the entire scope rather than the aggregated value, which in turn results in

excessive unnecessary communications that waste network bandwidth (Low, et. al,

2012). Further, the majority of today’s natural graphs have an uneven power-law

degree distribution (Faloutsos, et. al., 1999), where most vertices have a limited

number of neighbours and a few vertices have many neighbours (e.g., LinkedIn,

Facebook, Twitter). GraphLab 1.0 works well on low-degree vertices within small

neighbourhoods; however, when dealing with power-law graphs in real-life scenarios,

the job of graph partitioning in GraphLab 1.0 becomes very complex, if not

impossible, to implement (Gonzalez, et. al., 2012).

48

2.4.6.2 GraphLab 2.2 (PowerGraph Abstraction)

To address the aforementioned inefficiencies in the design of GraphLab 1.0, the team

at Carnegie Mellon University introduced GraphLab 2.2, known as PowerGraph

(Gonzalez, et. al., 2012). PowerGraph brings together the best offerings of both

GraphLab 1.0 and Pregel (see Figure 2.12). From GraphLab 1.0, PowerGraph

inherited the data graph concept and the shared-memory approach of computation.

From Pregel, PowerGraph received commutative, associative and gather concepts as

part of its implementation strategy. PowerGraph supports both Pregel’s highly

distributable bulk synchronous form of computation and GraphLab 1.0’s efficient

asynchronous computational model. PowerGraph achieves better efficiency by

introducing a new way of partitioning power-law graphs. In the new approach, edges

in the graph are tied to machines, and high-degree vertices can span machines.

Figure 2.12: PowerGraph solution to power-law graphs

(GraphLab Open Source, 2009)

 PowerGraph positions ‘gather’ and ‘scatter’ phases into the abstraction and

directly exploits the ‘gather-apply-scatter’ (GAS)’ decomposition to factor vertex

programs over edges (see Figure 2.13). This approach distributes the computation of

a single vertex program over the entire cluster and eliminates the degree dependence

of the vertex program (Gonzalez, et. al., 2012). Both GraphLab and PowerGraph

suffer from varying communication volumes due to power-law fan-in and fan-out

because they do not take into account edge direction when synchronising data.

49

Figure 2.13: Gather-apply-scatter (GAS) decomposition

(GraphLab Open Source, 2009)

 However, PowerGraph performs significantly better and communicates

remarkably less, due to the efficacy of the vertex cuts. While the above discussed

parallel processing frameworks provide efficient tools for processing large data,

adding higher and complex data representations within the model will vastly improve

its usability and provide an important pattern recognition based data analysis option.

For this purpose, in the following two sections, a detailed discussion on machine

learning and pattern recognition is provided. This discussion will form the basis for

the proposals later presented in chapters 3 & 4 to explore new methods for

partitioning and distributing data in the clouds and propose detailed

recommendations, with supportive data and prototypes, for optimally developing

future data management models in the Internet.

2.5 Machine Learning and Pattern Recognition

Broadly speaking, ML is ‘a branch of artificial intelligence, concerned with the

construction of programs that learn from experience’ (Daintith & Wright, 2008). A

50

concept closely related to ML in general and classification in particular is ‘pattern

recognition’. Pattern recognition is the automatic detection of regularities in data

using computer algorithms and upon detection of such regularities, taking appropriate

actions (Bishop, 2006). In most cases, the discovered regularities – also referred to as

patterns – are further utilised to build models to represent real-world scenarios. Based

on these developed models, which can be viewed as approximations of the real world,

possible actions include categorising data into different groups and making

predictions about future data trends based on the observed data (Alpaydin, 2004).

Past computational experiences have shown that one of the most promising methods

for building models and designing classifiers involves learning from example patterns

(Duda, et. al., 2001). The corresponding approaches, which are typically referred to

as ML, often include large volumes of training data or past experiences in order to

accomplish their task. Moreover, the schemes utilised for pattern recognition and ML

often tend to be complicated both in terms of training and computation time. A big

burden for the adoption and integration of pattern recognition and ML techniques into

real-world processing systems is the mathematical complexity and sophistication

involved in adapting them for specific problem domains. Such schemes often have

many parameters representing concepts that are usually not very straightforward for

developers, and their performance behaviour is remarkably sensitive to the way the

underlying pattern recognition modules are deployed and interconnected.

2.5.1 Pre-processing

Pre-processing is the foundation of a pattern recognition system for which some

given raw data must be pre-processed and prepared by applying application–specific

pre-processing algorithms before they can be fed into the system. For instance,

document images often have to be binarised before conducting any sort of optical

character recognition (OCR) or layout analysis. In other cases, the input data may be

incomplete because of missing values, while the intended ML scheme does not

process incomplete datasets. In this regard, an appropriately designed pre-processing

stage would help with filling these gaps in the dataset – for example, by averaging or

51

using other proper statistical approaches. The pre-processing phase may also include

steps to remove outliers or noise from the dataset. Therefore, choosing and applying

the right pre-processing method will have a significant effect on further steps taken

by the pattern recognition system.

2.5.2 Feature Selection

Generally, the patterns to be processed and categorised are represented by various

measurement metrics referred to as features. To recognise patterns, a proper set of

features must be chosen. These features must satisfy certain aspects in order to be

most effective. They must be distinguishing enough for the patterns in the domain,

invariant to irrelevant modifications of the input data, and sufficiently compact in size

to minimise memory and resource consumption and computation time. Moreover,

they should be easily extractable while being insensitive to noise. The selection of

features may require prior knowledge of the problem domain, but choosing

appropriate features is often a tricky task, and it sometimes involves lengthy

evaluations.

2.5.3 Model Selection

The performance of a classifier also relies on the scheme that is utilised to

approximate the real-world situations. More accurate approximations result in better

classification rates and improved predictions. The challenge here is that various

classes of models offer different real-world approximations for different problem

domains. It is worth noting that the volume and quality of available sample data are

important determining factors, as different classes of models exhibit different levels

of robustness against noisy data. In addition, performance requirements may come

into play when choosing a model.

2.5.4 Training, Testing and Optimisation

After selecting a classification scheme, it should be evaluated against example data.

As a result, it must be applied on a data subset, also referred to as training data. The

52

output of this training phase forms a model that has to be further tested and examined

in a subsequent testing phase by using a data subset called test data. One issue here is

that the computation time for each phase may become quite excessive depending on

the schemes used. In particular, the large number of iterations occurring within the

training and testing phases during parameter optimisation may require significant

computational requirements. A solution to this problem for the more effective

deployment of ML techniques can be achieved by utilising parallelism within the

system. As a result, the system can be empowered to use many processors, and even

an excessive number of processing machines, at the same time. This is where the

concept of distributed computing comes into the picture.

2.6 Distributed Approach for Large-scale Pattern

Recognition

Distributed pattern recognition (DPR) can be an effective alternative for large-scale

data-processing-related problems, where the recognition process is performed across

a distributed system. Many past DPR approaches looked into creating a distributed

architecture for pattern matching and placed less emphasis on the algorithmic

approach. The focus on distributed architecture can create a strong dependency on the

hardware implementation, resulting in inflexible schemes that cannot scale well to the

size of today’s data. An algorithmic-based DPR approach, which is scalable and

independent of any hardware framework implementation, has yet to be fully

developed. In this regard, the applicability of using a pattern recognition scheme for

Internet-scale data processing is an open issue that needs to be addressed. To

overcome this, several techniques are suggested in the literature, including data

reduction, active learning and distributed models for large-scale recognition.

Nevertheless, a common denominator of such schemes is buried in the algorithmic

complexity of the employed recognition models. In fact, any effective DPR scheme

for large-scale data analysis should be able to extract relevant information in the most

efficient manner.

53

 DPR for big data processing is a relatively unexplored area because pattern

recognition is mainly considered problem-specific; until recently, there had been little

focus on developing scalable recognition solutions for large-scale data analysis and

processing. In addition, the complexity of existing schemes restricts their application

for big data domains. A number of initiatives are proposed in the literature to target

distributing recognition processes across a distributed environment, but they mostly

suffer from achieving an effective parallelism strategy. In this regard, the neural

network approach is believed to offer a promising mechanism for providing large-

scale recognition. The scheme can achieve this efficiency by optimally distributing

parallel computation tasks across the network to be implemented by a large number

of interconnected neurons. Nevertheless, there are some major issues that need to be

addressed including, the convergence problem, complicated iterative learning

processes and low scalability due to training data. Hence, any scalable scheme for

DPR should handle the following three recognition stages in the most effective

manner possible: the learning stage, the processing stage and the training stage.

2.6.1 Learning Approach

The learning approach for pattern recognition schemes is a critical component in

determining how efficient and effective the approach is when implementing pattern

matching. Some of the prominent approaches discussed in the literature are Hebbian

learning (Hebb, 1988), incremental learning (Schlimmer & Granger, 1986) and one-

shot learning. Learning stage for pattern recognition schemes is a critical component

in determining how efficient and effective the approach is when implementing pattern

matching. Hebbian learning is a well-recognised learning approach based on the

synaptic plasticity model. In this technique, the output of a neuron can have a

significant effect on the input to other neurons. The Hebbian learning scheme is a

classical approach when dealing with spatio-temporal recognition problems in auto-

associative neural networks. Most of the existing neural network techniques use

Hebbian learning in their learning stage, including Hopfield (Hopfield & Tank, 1985)

and feed-forward neural networks (Nadal, 1989). Nevertheless, the technique suffers

54

from potential saturation and catastrophic forgetting, which make the approach not

scalable for big data processing.

 The incremental learning technique was developed as a solution to scalability

issues encountered in pattern recognition applications (Song, Liu, Zhang & Yang,

2008). Incremental learning works by distributing the training data into a number of

subsets, with each subset going through the training phase independently. Following

this, the outputs from each training stage will be combined to yield the final result.

This approach can simplify the issue of large training sets considerably, specifically

for ML applications such as SVMs (Mavroforakis & Theodoridis, 2006). Moreover,

the division of large training sets into smaller chunks helps the scheme to scale better.

Nevertheless, the incremental learning technique does not function well enough when

handling large-scale patterns. The reason is that more computational resources are

needed to deal with larger patterns. In addition, the algorithm is tightly coupled and

requires the implementation of kernel functions, which makes it computationally

costly (Schlimmer & Granger, 1986). One-shot learning was developed based on the

concept of a system using minimal initial data to learn information. Existing

implantations of this technique use the probabilistic approach; a well-known example

is the Bayesian classifier (Fei-Fei, Fergus & Perona, 2006; Miller, Matsakis & Viola,

2000). This one-shot learning method is similar to incremental learning in the sense

that the learning stage continues with the introduction of new patterns. Graph Neuron

(GN) (Khan & Mihailescu, 2004) also implements one-shot learning, but from a

different perspective. The GN executes its learning algorithm using a neuron-

adjacency comparison model that will be discussed later in this chapter.

2.6.2 Processing Approach

To achieve higher-speed processing for pattern recognition, one alternative is to

distribute the input space within the scheme by enabling the parallel processing of

recognition processes. Most of the existing neural network recognition approaches

are iterative in nature, including the Hopfield network (Hopfield & Tank, 1985), the

back-propagation neural network (BPNN) (Wythoff, 1993), the convolutional neural

55

network (LeCun & Bengio, 1995) and the fuzzy neural network (Kasabov, 1996).

This iterative mode of processing makes these techniques time- and resource-

intensive. As a result, they cannot efficiently scale with an increase in the size of the

pattern domain. Moreover, current neural network approaches have mostly been

developed for single–processor environments, while they are also tightly coupled. To

overcome these issues, new approaches, which offer higher distribution and

parallelism of data and processing, are yet to be realised.

2.6.3 Training Approach

Training in the recognition context refers to an approach where the scheme starts

learning from a sample dataset to perform an actual recognition task. This training

phase can be performed within a single cycle or multi-cycle, and depending on the

nature of the application and its specific requirements, the training dataset size can be

small or large. To meet generalisation purposes, current deterministic pattern

matching approaches usually require very large training datasets to maintain all of the

necessary characteristics of the actual data. Further, existing schemes usually perform

multi-cycle training. Single-cycle training can be performed using the GN technique

introduced by Khan (2002). The learning phase involves recognising adjacency

values between the GNs rather than calculating weight values between the nodes, as

is the case in the Hebbian and incremental learning schemes. The training phase in

the GN is implemented using a single cycle, allowing faster pattern matching and

recognition.

2.7 Graph Neuron for Scalable Recognition

Lazy learners mainly pass the computational cost to the recognition phase. Graph

Neuron (GN) provides a theoretical limit on the number of steps required in the

recognition stage (Nasution & Khan, 2008), and thus those of interest for this thesis.

The GN is based on a special type of associative memory (AM) model that is readily

implemented within distributed architectures. AM is a subset of ANNs that utilises

the benefits of content-addressable memory (CAM) in microcomputers (Chisvin &

56

Duckworth, 1989). It is also one of the important concepts in associative computing.

In this regard, the development of AM has been largely influenced by the evolution

of neural networks. As discussed previously, existing AMs generally apply the

Hebbian learning rule or kernel-based learning approach. Thus, these AMs remain

susceptible to the well-known limits of these learning approaches in terms of

scalability, accuracy and computational complexity. It has been suggested in the

literature that graph-based algorithms provide various tools for graph-matching

pattern recognition (Muhamad Amin, Khan, & Mahmood, 2009), while introducing

universal representation formalism (Baqer & Khan, 2007). The main issue with most

graph-based approaches lies in the significant increase in the computational expenses

of the deployed methods as a result of the increase in the size of the pattern database

(Khan, 2007). This increase places a heavy practical burden on the deployment of

those algorithms in clouds for data-intensive applications and real-time data

processing/database updating. However, as will be shown in the next few sections,

none of the GN-based approaches are very sensitive to an increase in the size of

pattern databases. This insensitivity is one reason why the GN exists.

2.7.1 Graph Neuron Architecture

The GN is a finely distributed parallel pattern recognition scheme that maintains data

relationships in a graph-like memory structure. The GN framework and its data

representations are analogous to a directed graph, where the processing nodes of the

GN array are mapped as the vertex set Ѵ of the graph, and the inter-node connections

(i.e., the communication channels) belong to the set of edges, Е. The communications

are restricted to the adjacent nodes (of the array); hence, there is no increase in the

communication overheads with corresponding increases in the number of nodes in the

network (Khan et al., 2004). The information presented to each of the nodes is in the

form of a (value, position) pair. Each of these pairs represents a data point in a two-

dimensional pattern space. Hence, the GN array converts spatial/temporal patterns

into a graph-like structural representation and then compares the edges of the graph

with subsequent inputs for memorisation or recall (see Figure 2.14).

57

Figure 2.14: An input pattern BABBC is stored in a GN array where each

row of the array represents a value and each column represents a position

 The graph-based techniques may be applied for pattern recognition at the cost of

computational cycles exponentially increasing with the increase in the number of

stored patterns (Trajan & Trojanowski, 1984). The GN avoids these increases by

performing the computations over a fine-grained parallel processing network, and it

eases network bottlenecks through adjacent node communications. As far as we are

aware, there is no other method in the literature that truly implements a scalable and

accurate single-cycle AM model within neural networks. Morphological associative

memories (MAM) apparently provide one-shot learning; however, the length of the

learning cycle cannot be fully estimated a priori, and it depends on the size and

number of stored patterns (Sussner & Valle, 2006). Single-cycle learning within the

GN is achieved by sidestepping the commonly used error/energy minimisation

approaches within ANNs. The GN array is designed to hold all possible solutions for

the problem domain. The array can thus find the solution in a single cycle (i.e., a

fixed number of steps). This is in contrast with the error/energy minimisation

approaches, which generally start from a random point in the problem space and

progressively close in on the solution. Hence, error/energy minimisation approaches

tend to become costlier and inaccurate for larger problem sizes. We have successfully

implemented the GN array in the simplest form for pattern recognition and aim to

make it readily developed into a fully featured AM system. The resultant single-cycle

58

AM will transform the way complex data are currently processed by replacing

iterative processes with a fixed number of steps. An abbreviated explanation of the

approach is provided in the following subsection.

2.7.1.1 Single-cycle Learning Approach

The GN stores new patterns and recalls previously encountered patterns by executing

a fixed number of steps. An input pattern Ƥ is represented as a set of ρ(value,

position) pairs. These inputs are mapped onto a real or virtual processor array by

using the adjacency characteristics of the input; for example, alphabets and numbers

would have their inherent adjacency characteristics, and images would have

frequency bands, intensity and spatial coordinates as the adjacency characteristics per

pixel. For a reference pattern domain Ʀ, the GN array must represent all possible

combinations of Ƥ in Ʀ. Hence, each GN node is initialised with a distinct pair ρ from

the input domain Ʀ. Further, each GN node executes an instance of the full code

associated with the GN algorithm. Hence, the computation overhead imposed on all

nodes is the same. Each GN node maintains an updated list, called the ‘bias array’,

which records the position(s) of its adjacent GN node(s) activated during a pattern

input. The bias array is populated during the learning phase of the GN. Figure 2.15

depicts learning of four simple patterns, wherein pattern P1 comprising a string

‘ABBD’ is learnt by nodes GN(A,1) GN(B,2)  GN(B,3)  GN(D,4) of the

array. The learning by these GN nodes occurs in the following stages:

 Mapping of input patterns: Input patterns in the form of ρ(value, position) pairs

are sequentially broadcast through the network. Based on its predefined position

and value setting, each node responds to the relevant input pair, disregarding the

remainder of the pattern. From Figure 2.15, a node with a predefined value = ‘A’

and position = 1 will respond to the first sub-pattern/pair of pattern P1 (ABBD) –

that is, value = ‘A’ occurring at position = 1. It will ignore the rest of the message

and this will process continues for other patterns.

 Synchronisation phase: A broadcast signal is sent out to all of the nodes to mark

the end of the incoming pattern.

59

 Bias array update: During this phase, each activated node contacts all of the

adjacent nodes to find out which ones responded to the input. Figure 2.15 shows

that for the input pattern P1(ABBD), Node GN(A,1) will update its local bias

array with the entry {GN(B,2)}. Similarly, Node GN(B,2) will update its bias

array with the entry {GN(A,1), GN(B,3)}. Thus, each bias array entry records the

adjacent nodes being activated within a particular pattern input phase. That is,

each row of the bias array comprises a list of the adjacent GN nodes activated

during the input. A new pair is defined as the one that has a different set of

adjacent GN nodes to all existing rows of the bias array. A new pattern is found

when at least one GN within the list of activated GNs cannot find a matching

entry in its bias array. In this stage, new patterns are stored and previously

encountered patterns are recalled. Our tests show that the memory requirement

per GN node to maintain the bias array does not increase disproportionately with

the increase in the number of stored patterns. As shown in Figure 2.15, the

maximum bias array size (three) occurs only in GN(C,3) after storing all patterns.

Figure 2.15: Four arbitrarily chosen patterns – P1: ABBD, P2: ACCB, P3: BACA,

P4: ABCD – have been stored in the GN array. The maximum bias size is three for

storing four patterns, indicating that the storage requirement per node would not

disproportionably increase with the increase in the stored patterns.

60

 The first and second stages of the GN learning phase take place in a parallel and

decentralised manner. The results must be gathered from all activated GNs in third

stage to make a memorisation/recall decision. Computational complexity for all three

stages of the GN is mainly dependent on: (1) inter-node communication delays, (2)

hardware/software latency per node and (3) delay in updating the local bias arrays.

Hence, the total time needed to store or recall a pattern generally remains independent

of the number of nodes present within a GN array. The scalability tests, with up to

16,384 nodes, show that computational complexity only increases nominally with

increases in the size of the network (Baqer, Khan, & Baig, 2005). The distributed

graph-based representation of patterns within the GN bias arrays would be valuable in

segmenting spatio-temporal databases for classification. Spatio-temporal databases

are multidimensional in nature. They capture both spatial and temporal relationships

among stored objects, and they support efficient data retrieval (Theodoridis, et. al.,

1996). These databases may be used to retrieve past information; as well as for future

predictions based on the current dataset. In contrast with traditional database systems,

spatio-temporal databases usually represent spatial and temporal data – for example,

object trajectory – as motion functions and spatial relationships such as distances and

adjacencies (Tao, et. al., 2003). With its graphical pattern recognition characteristics,

the GN can act as an ideal platform for the storage (and subsequent retrieval) of

complex features within the stored patterns. The pattern recognition process itself will

be efficient, and the storage of large pattern databases will be facilitated by the

distributed nature of the GN. The order of event occurrence would be preserved by

the GN owing to its directed graph-based representation of the stored patterns. Hence,

the temporal aspects of the dataset can be readily analysed alongside the spatial ones

using the universal graph-based representation of patterns with the GN. Among

various applications of the GN-based AM, an input pattern in GN pattern recognition

may represent bit elements of an image (Khan & Muhamad Amin, 2007) or a

stimulus/signal spike produced within a network intrusion detection application

(Baig, et. al., 2006).

61

2.7.1.2 GN Pattern Crosstalk Problem

It may be seen in the bias array update process that each GN only requires its own

input pair value and the values of its adjacent GNs to analyse a pattern. Hence, the

limited perspective of GNs can lead to inaccurate results. Several GNs could recall

their sub-patterns simultaneously, leading to a full recall. However, the recalled

pattern may not have been presented before. For example, assume that a GN array

can receive patterns comprising six possible values, a, b, c, d, e and f, and five

possible positions. After memorising input patterns abcdf and fbcde, the array is

presented with the pattern abcde. The array would raise a false recall, indicating the

pattern abcde has already been memorised by the array. To understand this

occurrence, we need to examine the GN scheme. Under this scheme, five of the GNs

would recall sub-patterns: ab, abc, bcd, cde and de. Among these five, two of the

GNs are at edge columns and thus only report shorter sub-patterns (i.e., ab and de).

The recalls of all five sub-patterns are correct from each active GN’s perspective, but

the overall recall of the pattern by the array is incorrect. The GN communications

will need to be extended to a layered communication schema to solve the crosstalk

problem. In such a schema, each of the GN layers would propagate its local decision

(i.e., memorisation or recall) to the layer above it. The layers can preserve the original

GN functionality. In such a scenario, the topmost GN layer will be responsible for the

fusion of all localised decisions into a final memorisation or recall decision. The

pattern overlap problem can also be solved by increasing the length of the mapped

bits to minimise the pattern overlaps. In doing so, we can lower the overall

computational complexity within our technique without adding to the communication

cost. The layered approach will handle noisy and distorted patterns by progressively

adjusting the GN recognition criteria in the layers.

2.7.2 Hierarchical Graph Neuron (HGN)

The HGN extends the original GN algorithm to form a highly resilient distorted/noisy

pattern recogniser with an average distortion tolerance within 15% to 20% (Nasution

& Khan, 2008). The HGN comprises three layers of processing nodes, namely base,

62

middle and top layers (see Figure 2.16). The base layer acts as the input layer for the

pattern recognition process, with all processing nodes at this layer receiving input

patterns from the test dataset. The activated HGN nodes in this layer send an index

value to the upper layers. A unique index value is generated for every new input

pattern. The middle layers receive indices from the base layer after comparing them

with the adjacent nodes, and the selected indices are then sent to the upper layer. The

top layer decides whether the input pattern should be considered a new pattern for

memorisation, or whether it is classed as an existing pattern for recall.

Figure 2.16: HGN with pattern size of seven and two possible

values within the pattern (Nasution & Khan, 2008)

 The HGN expands the capability of ‘perceiving neighbours’ within the network by

adding higher layers of GNs that see all of the pattern information and provide a

bird’s eye view of the overall pattern. Figure 2.16 illustrates a HGN structure that is

only used in pattern recognition applications involving one-dimensional patterns.

However, for applications that involve complex patterns with higher dimensionality,

the HGN can easily be expanded to two, three or even multidimensional hierarchies.

Figure 2.17 depicts examples of a HGN composition for a two-dimensional pattern of

size 35 (7 × 5) and a three-dimensional pattern of size 105 (7 × 5 × 3).

63

Figure 2.17: HGN compositions of (A) 2-D (7x5) and (B) 3-D (7x5x3)

for pattern sizes 35 and 105, respectively (Nasution & Khan, 2008)

 In an interesting side effect, increasing the dimensions of a HGN network

topology results in fewer processing neurons in the hierarchy. This will significantly

improve the performance of the system when dealing with large-scale patterns. For

example, given a one-dimensional pattern of size 105, the total number of GNs

required is: 105 + 103 + 101 + . . . + 3 + 1= 2809. A two-dimensional (15 × 7 = 105)

GN composition requires: 15 × 7 + 15 × 5 + 15 × 3 + 15 + 13 + . . . + 3 + 1 = 279

GNs. In this example, increasing the dimensionality by one led to an approximate

90% reduction in the number of GNs in the composition (Nasution & Khan, 2008).

2.7.2.1 HGN Communication Approach

HGN implementation follows a graph-based pattern representation approach similar

to the original GN. However, to end up with a hierarchical structure with a top neuron

overseeing the overall pattern, there is a requirement to have an odd pattern size. As

result, for every even-length pattern, a ‘dummy’ value will be inserted at the end of

the pattern to ensure that the HGN hierarchy can be formed as per requirements.

There are a number of steps in the HGN pattern-matching model, including a

recognition process occurring at every layer within the hierarchical structure. The

64

HGN communications procedure is as follows: the base layer of the HGN first

processes the incoming pattern, where each neuron that receives an input will become

an active neuron. Each active neuron in the base layer will then send its ρ(value,

position) pair to all of the adjacent neurons to inform them that it is active. For each

of the active neurons in the base layer, the ρ(value, position) pairs received from the

adjacent nodes will form the bias array entry for the current input pattern. At the end

of this process, each of the non-edge neurons should have received two pairs from its

adjacent nodes, while the ones on the edges should have received one. At this stage,

each active neuron must calculate its bias array index. If the incoming pair

combination is matched with an existing entry in its bias array, then the index of the

entry will be noted. Otherwise, a new index will be generated and stored to reference

the new combination. Each of the active non-edge neurons then sends its index to the

corresponding neuron in the same column but in the higher layer. This process will

continue until the top-layer neuron is reached. The top-layer neuron will be in the

position of deciding whether the input pattern should be treated as a new pattern and

stored, or whether it should be treated as a previously visited pattern and recalled.

Upon making its decision, a new index value will be sent downward for a stored

pattern, and an existing index value will be sent downward for a recalled pattern. The

bias array structure in the HGN follows the same principles as the bias array

formation in the original GN. Nevertheless, it has been altered to cater for the

recognition processes of higher-layer neurons based on adjacency comparison

information provided by lower-layer neurons. The process of forming the bias array

is as follows:

 For neurons in the base layer, their bias array entry takes the form {left, right},

where left and right represent the row number of left-adjacent and right-adjacent

neurons, respectively.

 For neurons in the middle layer, their bias array entry takes the form of

{left_index, lower_index, right_index}, where left_index, lower_index and

right_index represent indices obtained from its left, lower (within the same

column) and right neurons, respectively.

65

 The bias entry structure of the top-layer neuron is in the form of {lower_index},

which is obtained from its lower-layer neuron (within the same column).

 The HGN is highly accurate when dealing with noisy patterns, however, the HGN

implementation requires large computational resources (large number of processing

nodes).

2.7.3 Distributed Hierarchical Graph Neuron

The functionality of the HGN is further extended by dividing and distributing the

recognition processes over the network. This distributed scheme minimises the

number of processing nodes by reducing the number of levels within the HGN. This

transformation of the HGN into an equivalent distributed hierarchical graph neuron

(DHGN) composition allows, on average, an 80% reduction in the number of

processing nodes required for the recognition process (Khan & Muhamad Amin,

2007). Therefore, the DHGN can substantially reduce the computational resource

requirement, from 648 processing nodes to 126 for the case shown in Figure 2.18.

Figure 2.18: Transformation of the HGN structure (top) into an equivalent

DHGN structure (bottom) (Khan & Muhamad Amin, 2007)

66

 This figure shows the divide-and-distribute transformation from a monolithic

HGN composition (top) to a DHGN configuration for processing the same 35-bit

patterns (bottom). The base of the HGN structure in the figure represents the size of

the pattern. Note that the base of the HGN structure is equivalent to the cumulative

base of all DHGN subnets/clusters. The DHGN allows the recognition process to be

conducted in a smaller sub-pattern domain, hence minimising the number of

processing nodes, which in turn reduces the complexity of the pattern analysis. In

addition, each subnet is only responsible for memorising a portion of the pattern

(rather than the entire pattern). A collection of these subnets can form a distributed

memory structure for the entire pattern. This feature enables recognition to be

performed in parallel and independently. The HGN and DHGN provide higher levels

of accuracy by introducing a hierarchal network topology. Moreover, the

communication overhead in both schemes is minimal considering the adopted parallel

and distributed mechanisms. However, the scalability of the HGN and DHGN

techniques is not well suited for large-scale data-processing problems, as the number

of required nodes can increase significantly with the increase in the size of the pattern

space, and none of them can effectively fulfil scalability requirements for Internet-

scale pattern recognition; consequently, new schemes need to be proposed.

2.8 Conclusion

The efficiency of the cloud system in dealing with data-intensive applications through

parallel processing essentially lies in how data are partitioned among nodes and how

collaboration among nodes is handled to accomplish a specific task. As a result, and

to address the aforementioned concerns in relation to data storage and retrieval in the

cloud, any data access schemes should aim to handle partitioning between processing

nodes, as well as node collaborations, in a robust manner. These two features are still

lacking in current data access mechanisms. Hence, new data management approaches

need to be investigated for cloud computing environments. This chapter presented a

comprehensive study of the current data-parallel frameworks for cloud data

67

processing, and it explored different approaches to large-scale data processing. The

pros and cons of each approach were examined in relation to the scalability and

adaptability requirements of big data processing. This chapter also presented a

detailed analysis of how neural network approaches can open a new pathway for

accessing data in highly distributed environments by discussing some of the major

schemes presented in the literature. The investigation revealed that existing neural

network techniques are far from providing a suitable scalable framework for large-

scale recognition purposes. However, initiatives are currently being undertaken to

establish more effective approaches using existing neural network algorithms.

 One of these initiatives is the development of the GN – a single-cycle AM

algorithm – to implement a scalable AM device through its parallel in-network

processing framework. The GN uses a graph-based model for pattern learning and

recognition. One of the peculiarities of this technique is the employment of parallel

in-network processing capabilities to address scalability issues effectively, which is a

major concern in graph-based approaches. The limited perspective of GNs, owing to

purely adjacency-based computations, was widened through the HGN approach for

distorted pattern recognition, which is the first distributed pattern recognition scheme

that specifically targets WSN as the platform. The HGN provides a bird’s eye view of

the overall pattern structure and hence eliminates the crosstalk issue in pattern

recognition. The HGN is highly accurate regarding noisy patterns. However, HGN

implementation requires relatively larger computational resources in terms of the

number of processing nodes. In addressing this limitation, the DHGN has been

developed as an extension of the HGN. DHGN implementation involves the

decomposition and distribution of patterns into sub-patterns, and recognition

processes occur at the sub-pattern level. In doing so, the number of processing nodes

required is significantly reduced. Nevertheless, the DHGN still suffers from

scalability issues, as the size of the network increases significantly with the increase

in the size of input pattern space.

 The main contribution of this chapter was to conduct a detailed review of scalable

pattern recognition requirements and the shortcomings of existing techniques in the

68

literature. We hypothesise that fundamental changes and improvements in data access

and movements are possible and beneficial for cloud-based processing. In this regard,

AM concepts open a new pathway for accessing data in a highly distributed

environment that will facilitate a parallel-distributed computational model to

automatically adapt to the dynamic data environment for optimised performance. The

problem is to marry such concepts with relevant advanced parallel processing

patterns. With this in mind, the remaining chapters will target a new type of data-

processing approach that will efficiently partition and distribute data for clouds and

facilitate content-based access for a wide range of applications. Thus, a fully DPR

scheme that can work with a parallel-distributed computational model such as

MapReduce will provide a reusable cloud-based framework for a range of

applications, from image search and sensor data analysis to planetary monitoring and

the control of cyber-physical infrastructure, mobile equipment and devices. The

ability to partition data optimally and automatically will allow elastic scaling of the

system. Moreover, improved data management, where data are optimally and

automatically distributed, will improve application performance through efficient

data access.

69

Chapter 3

Edge Detecting Hierarchical Graph

Neuron (EdgeHGN)

The performance of associative learning schemes can be substantially improved by

dividing patterns into sub-patterns and then distributing them across multiple

computational networks. This improvement is due to two main reasons: (1) the

scalability of the recognition scheme will be reasonably improved due to the

distributed nature of the process, and (2) the distribution of patterns into sub-pattern

domains enables better-controlled error encapsulation in a specific subnet, resulting

in a more accurate approach. In this regard, the GN-based schemes have been

designed and structured based upon two fundamental concepts of graph-matching

and associative memory, providing them with acceptable levels of scalability for

implementation. Moreover, their simple one-shot (single-cycle) learning mechanism,

along with their lightweight algorithm, make them suitable for performing pattern

recognition on distributed systems while incurring low computational and

communication costs. In the previous chapter, Graph Neuron (GN), Hierarchical

Graph Neuron (HGN) and Distributed Hierarchical Graph Neuron (DHGN)

approaches are discussed.

70

 This chapter will discuss the algorithmic design and architecture of the newly

proposed scheme, referred to as Edge Detecting Hierarchical Graph Neuron

(EdgeHGN), and its performance for distributed large-scale data-processing schemes

will be analysed in detail. To achieve better scalability and higher effectiveness when

performing pattern matching, EdgeHGN performs its recognition functions using

fewer processing neurons, resulting in reduced computational complexity and

minimised processing requirements. It also provides a high level of parallelism by

enabling recognition processes to be executed as a composition of sub-processes that

are being handled in parallel across a distributed processing environment. This sub-

process functionality is conducted in a purely independent manner, making the

scheme less cohesive compared to many other pattern matching algorithms.

3.1 Associative Memory Concept for Pattern Recognition

Associative Memory (AM) for pattern recognition refers to a set of learning networks

or functions that provide an association between input and output. According to

Roman-Godinez, et. al., (2009), Associative Memory М is a system that offers an

input-output association relationship as follows: α → М → β, where α and β are

input and output respectively. From this perspective, each input vector will be

associated with an output vector, which will be well represented in the form of a

fundamental set of associations: {(αμ
, βμ

) | μ = 1, 2, ..., ρ}. This set is a priori

knowledge that needs to be known to the AM system. For pattern recognition

purposes, there will be two types of AM, namely auto-associative memory and

hetero-associative memory. Auto-associative memories are content-based memories

that can recall a stored sequence when they are presented with a fragment or a noisy

version of it. In auto-AM, the system performs a recognition task on an input pattern

that is presented to the AM system and generates its associated output pattern. As a

result, for a given set of associations (αμ
, βμ

), the auto-AM rule is true with the

following condition:

αμ = βμ , ∀μ ∈ {1, 2, ..., ρ} (3.1)

71

Figure 3.1: Auto-associative memory network to determine

whether the input vector is ‘known’ or ‘unknown’

 Figure 3.1 represents an auto-associative memory network to determine whether

the input vector is ‘known’ or ‘unknown’ to the system. In this figure, the training

input and the target output are the same. In this setup, the stored vector can be

retrieved from the distorted input if the input is sufficiently similar to it. The network

performance is judged based on its ability to reproduce stored patterns from the noisy

input. The network recognises the known vector by producing a pattern of activation

on the output units of the network, which is the same as one of the vectors stored in it.

The auto-associative framework enables the AM system to pass through input

patterns towards output patterns without any changes because the input/output

patterns have similar characteristics. The Hopfield network is an example of an auto-

AM system. Conversely, hetero-AM system follows the rule of association in a way

that incomplete input patterns can also result in complete output patterns. Here, the

training input and target output are different. The weights are determined in such a

way that the network stores a set of pattern associations. Hence, in terms of the

association set (αμ
, βμ

), the following rule applies where:

72

 αμ ≠ βμ , for ∃μ ∈ {1, 2, ..., ρ} (3.2)

 In this scenario, given a distorted pattern Ṗ of original pattern Ƥ as input, the AM

system is capable of recalling pattern Ƥ. Bidirectional associative memory (BAM) is

one of the neural network schemes that adopts this hetero-AM approach. Hetero-AM

also enables a recognition task to be performed on patterns with different sizes, such

as the work presented by Kosko (1988). AM approaches such as the Hopfield

network and fuzzy associative memory (FAM) (Kosko, 1992) are computationally

intensive and iterative in nature. Conversely, Morphological Associative Memory

(MAM) (Ritter, et. al., 1998) offers a solution within a single iteration, and hence

provides single-cycle learning. However, MAM is a tightly coupled algorithm and

relies on global maximum/minimum computations; thus, it is not readily distributed.

GN-based schemes including HGN and EdgeHGN implement an auto-AM approach

in their recognition process. In fact, the GN algorithm can recall patterns that have

been memorised by the network. The memorisation phase could be executed either in

the pre-execution stage (supervised recognition) or instantaneously as part of the

recognition process (unsupervised recognition). The scalability features of EdgeHGN

and other GN-based algorithms have been further contributed to by the adaptation of

the auto-AM approach. EdgeHGN features will be further investigated in detail in the

following sections in this chapter.

3.2 Pre-processing and Dimensionality/Content Reduction

Pre-processing is an important task that needs to be carried out before any recognition

procedure. The main objectives of pre-processing are to reduce the quantity of data

being analysed, while simultaneously enhancing its quality. It is considered a pre-

requisite for most pattern recognition systems due to its critical influence in ensuring

that pattern data are in the specific form that suits the algorithm or implementation.

Moreover, raw pattern data might need to be normalised beforehand to ensure that the

data are well distributed and do not contain any outlier values. When dealing with

complex data such as images, environmental sensory readings, biomedical and

73

biochemical structural data, the dimensions of the data involved are usually at higher

dimensions (more than one). The dimension of the data is the number of variables

that are measured on each observation. High-dimensional datasets present many

mathematical challenges. One of the problems with high-dimensional datasets is that,

in many cases, not all of the measured variables are important for understanding the

underlying phenomena of interest (Donoho, 2000). While certain computationally

expensive novel methods can construct predictive models with high accuracy from

high-dimensional data, it is still of interest in many applications to reduce the

dimension and complexity of the original data prior to any data modeling (Breiman,

2001). From this perspective, two different approaches could be carried out to reduce

the data complexity in terms of its dimensionality:

 Structural reduction: In this approach, the structure of the data will be reduced

into a lower dimension. This can be achieved by projecting the data by linear

transformations into lower-dimensional sub-spaces.

 Content reduction: For high-dimensional data, if no data reduction is carried out

before inputting the patterns to classifiers, the computation required may be too

heavy. Hence, by using specific data reduction techniques, we can obtain a

reduced representation of the dataset that is much smaller in volume, but that also

produces the same (or almost the same) analytical results.

 In the following section, these two approaches are discussed in relation to

EdgeHGN implementation.

3.2.1 Structural Reduction

Structural reduction in EdgeHGN pre-processing involves the reduction of the

structural composition of patterns from a high-dimensional structure into its

corresponding low-dimensional representation. In this approach, pattern data

undergoes structural deformation, while the contents or elements within the pattern

remain intact. Further, structural reduction works on the basis that the structure of the

data is unlikely to be significant in determining the characteristics of the pattern.

Consider two-dimensional binary images with the size of 7 x 5 bits (i.e., 35-bit

74

image), as shown in Figure 3.2. In the structural reduction approach, this image will

be re-arranged in the form of one-dimensional bit-string. This rearrangement enables

the algorithm to work on patterns in a low structural dimension.

Figure 3.2: Structural reduction on binary character images

 Hence, from the perspective of the EdgeHGN’s implementation, this approach

enables each subnet to conduct a recognition process using a simple one-dimensional

EdgeHGN subnet structure. Therefore, it reduces the structural complexity of

EdgeHGN subnets within the network. An advantage of using this structural

reduction approach is that it reduces the structural complexity of patterns while

maintaining the integrity of the contents or elements within these patterns. Hence, the

content information in each pattern is preserved. A limitation of this approach is that

it loses the structural information related to the pattern. In this context, the structure

of the pattern or data is unknown to the system. Consider the same images as in

Figure 3.2. The EdgeHGN pattern recogniser does not have the knowledge that the

image represents the character E. Rather, it acknowledges the bit information and its

association between neighbouring pixels in a one-dimensional formation.

3.2.2 Content Reduction

Content reduction involves the process of the selection or extraction of features from

data, to be used in a pattern recognition system. It also transforms the data from high-

dimensional space into its equivalent low-dimensional format. Some examples of

75

dimensionality reduction techniques include principal components analysis (PCA)

(Abdi & Williams, 2010), linear discriminant analysis (LDA) (Martinez & Kak,

2001) and local linear embedding (LLE) (Gashler & Martinez, 2011). The

dimensionality reduction approach allows the recognition system to obtain the best

and most cost-efficient data representation that has been extracted from the original

raw data obtained from sensory devices or from surroundings. For this purpose, in

our proposed EdgeHGN model, and as part of the pre-processing phase, we reduce

redundant data content for recognition by applying a lightweight hybrid drop-fall

algorithm on the input pattern. This results in fewer processing neurons, which in turn

results in a lower communication overhead within the scheme (see Figure 3.3).

Figure 3.3: EdgeHGN progressively removes unnecessary nodes from

the two dimensional data using drop-fall for content reduction

 In Figure 3.3, a descending-left drop-fall algorithm is applied on the input pattern,

reducing the number of processing nodes for each EdgeHGN subnet from 49 to 39.

This reduction will minimise communication costs, and having an edge detection

feature within the scheme can improve recognition accuracy to a high degree.

Further, fewer neurons will result in a lower response time, which is of high interest

for real-time pattern matching problems.

3.2.2.1 Drop-fall Algorithm

A drop-fall algorithm is often used for dividing touching pairs of digits into isolated

characters (Congedo, et. al., 1995). A drop-fall algorithm simulates the path produced

by a drop of water falling from above the character and sliding downwards along the

contour under the action of gravity. The dividing path produced by the drop-fall

76

algorithm depends on three aspects: a start point, movement rules and direction.

Based on this simple description of the method, the main issue that needs to be

addressed in its implementation is the starting point. There are several methods

available to decide where to start the drop-falling process. Dimauro, et. al., (2009)

outlined a method that does this quite robustly. In this method, the pixels are scanned

row-by-row until a black boundary pixel with another black boundary pixel to the

right of it is detected, where the two pixels are separated by only white space. This

pixel is then used as the point from which to start the drop-fall (see Figure 3.4).

Figure 3.4: Pixel from which to commence the drop-fall

 After the initial pixel is found, the next step is to begin the actual drop fall. The

drop-falling algorithm is designed to mimic falling, so it will always move

downwards, diagonally downwards, to the right or to the left. Figure 3.5 shows the

directions that the algorithm will move in according to the current pixel position and

its surroundings. The standard version of the drop-fall algorithm described above falls

down and to the left/right of the pattern character. In other variations of the algorithm,

they do not necessarily initiate from the top or fall down. Bottom-left or bottom-right

drop-falls are identical in principle to the original drop-fall algorithm, except that

they initiate from a pixel at the bottom of the image and fall up and to the left or right

of the pattern. Despite the apparent similarity between the variations of the drop-fall

heuristics outlined above, they often provide very different segmentation paths for

various test examples.

77

Figure 3.5: Movement rules for Drop-fall algorithm

 For any of the drop-fall heuristics, it is easy to find cases where they work well

and where they do not work well. This principle will provide the basis for the

construction of a hybrid heuristic method that makes use of all of the aforementioned

drop-fall variations. In the case of EdgeHGN, a hybrid drop-fall heuristic approach

will be applied to the pattern to ensure it is producing the least number of processing

neurons while maintaining all required character data bits for recognition (see Figure

3.6).

Figure 3.6: Hybrid drop-fall heuristic approach on character data patterns

78

3.3 EdgeHGN Computational Architecture

An important aspect in the development of the pattern recognition scheme is in

algorithmic design. A proper design will lead to high efficiency and will have the

ability to generate a more accurate classification strategy. GN-based algorithms have

been developed based on two different concepts, namely graph-matching and

associative memory. These two concepts provide an added advantage in terms of

scalability for GN-based algorithm implementations. GN can perform pattern

recognition processes on distributed systems due to its simple recognition procedure

and lightweight algorithm. Further, the GN incurs low computational and

communication costs when deployed in a distributed system. This section presents the

algorithmic design of a newly proposed Edge Detecting Hierarchical Graph Neuron

(EdgeHGN) algorithm for distributed pattern recognition scheme for large-scale

datasets. The proposed approach extends the scalability of the existing GN

implementations (HGN and DHGN) by reducing computational requirements in

terms of the number of neurons for recognition processes, while providing

comparable recognition accuracy. EdgeHGN provides a capability for the recognition

process to be deployed as a composition of sub-processes that are being executed in

parallel across a distributed network. Each sub-process is conducted independently,

making it less cohesive compared to other pattern recognition approaches.

 As mentioned above, the EdgeHGN scheme formalises a distributed version of the

HGN by dividing and distributing patterns into sub-patterns and hence utilising a

clustering approach for pattern recognition. Each of the sub-patterns undergoes a one-

shot recognition procedure, and the results of the sub-recognition tasks will

cumulatively add up to obtain the final recognition result. The EdgeHGN network

constitutes a number of EdgeHGN subnets and a stimulator/interpreter module (SI

module) node. Figure 3.7 shows the complete architecture of the EdgeHGN network.

It illustrates a decomposition of the binary image pattern A into sub-patterns. The SI

module node performs this composition process after the hybrid drop-fall pre-

processing scheme is applied to reduce redundant content.

79

Figure 3.7: EdgeHGN framework for distributed pattern recognition

 The input activates the GN nodes corresponding to the bits of the input pattern. In

doing so, each pattern element within a sub-pattern is mapped to the relevant GNs in

the respective subnet. Each subnet integrates its responses and sends the results back

to the SI module to form an overall response. Figure 3.7 also illustrates the fact that

communication within the EdgeHGN network occurs in a single-cycle fashion, where

each pattern is passed through the network only once. This recognition process results

in either a ‘recall’ (pattern is known) or ‘store’ (pattern is memorised). Moreover,

within each EdgeHGN subnet, the recognition process involving communication

between GNs occurs once for each sub-pattern, eliminating the need for any iterative

mechanism while offering a fast recognition approach. The EdgeHGN disseminates

the recognition processes at sub-pattern levels, allowing the processes to be

conducted in a smaller sub-pattern domain. Further, the recognition processes within

each sub-pattern are independent from other sub-patterns, thereby enabling them to

be distributed across the network. The EdgeHGN implementation has been already

conducted in a cloud environment. A further discussion of this will be presented in

Chapter 4. The cloud environment provides the facilities for the EdgeHGN to

distribute the recognition functions effectively within multiple networks or domains

and enables an efficient resource management scheme for its implementation.

80

3.3.1 Two-stage Recognition Procedure

The EdgeHGN framework introduced in the previous subsection consists of two

important entities, namely SI module and EdgeHGN subnets. The recognition of

patterns mainly occurs within each EdgeHGN subnet after the hybrid drop-fall pre-

processing scheme is applied; however, in this instance, all that is known to each

subnet is only a sub-composition of the overall pattern. This means that there is a

need for the EdgeHGN system to restructure the overall information of the pattern

and produce the result for the entire pattern – that is, regardless of whether the input

pattern is known to the system. In this regard, there is a need for another phase of

recognition involving the results of the recognition process executed within each of

the subnets. Thus, the EdgeHGN distributed pattern recognition performs pattern

analysis upon completion of two different phases: (1) sub-pattern recognition and (2)

overall pattern reconstruction and recognition. It should be noted that these two

phases occur consequently and within a single cycle of the recognition process.

3.3.1.1 Sub-pattern Recognition Level

In EdgeHGN implementation, the core recognition process is conducted at the sub-

pattern level after the hybrid drop-falling scheme is applied for the purpose of

dimensionality/content reduction. There are four stages involved in this sub-pattern

recognition level:

 Stage 1: After receiving an input from the SI module, each of the activated GNs at

the base layer will send a signal message to other nodes in the adjacent columns

containing the row number/address of the activated node. The activated nodes at

the edge of the layer will only send the activation signal messages to the GNs in

the penultimate columns.

 Stage 2: All active GNs at the base layer will then update their bias arrays. If the

bias entry value, biasent(left , right), received from both the activated nodes in the

preceding and succeeding columns, have been recorded, the index of the entry

will be sent to the respective GN in the same position at the higher layer. If the

biasent(left , right) value is not found within the bias array, then a new index will

81

be created and sent to the GN node in the higher layer. Note that active nodes at

the edges of the base layer will not be communicating with higher-layer nodes

because there is no node present at the edges of the higher layer due to the

pyramid-like structure of the EdgeHGN subnets.

 Stage 3: The GN nodes at the layer above the base that receive a signal message

containing the index of the bias entry that has been created or recalled from Stage

2 will be activated. A similar process as in Stages 1 and 2 will occur. However,

the contents of the signal messages from the preceding and succeeding columns

will be in the form of biasent(left , middle , right) for non-edge nodes and either

biasent(left , middle) or biasent(middle , right) for edge nodes. The values for

left, middle and right are derived from the indices retrieved from the lower-layer

nodes. For instance, left is for the preceding GN node’s index received from its

lower-layer counterpart. After the message communication between adjacent

nodes has been completed, the active GNs will update their bias arrays and send

the store/recall index/indices to the node at the same position in the higher layer

(except for the GNs at the edges). This stage will be repeated for each layer above

the base layer until it reaches the top-layer GN nodes.

 Stage 4: One of the top-layer GNs will receive a bias index from a GN in the

layer underneath it. This top-layer activated node will search its bias array for the

index. If the index is found, this node will trigger a recall flag with the recalled

index. Otherwise, it will trigger a store flag and store the new index in its bias

array. It will then send a signal message to the SI module with the message format

{subnet_id , status , index}, where the status is either recall or store. The signal

message sent by the top-layer active GN marks the completion of the recognition

at the sub-pattern level. In an EdgeHGN implementation, lower bias arrays are

updated whenever a new entry is found.

3.3.1.2 Pattern Reconstruction and Recognition Level

Recognition results obtained by the SI module from all subnets within an EdgeHGN

network require further analysis to derive an overall recall of respective input sub-

82

patterns. In accommodating this analysis, two different methods have been

considered, namely recall percentage and voting methods. These two methods differ

in terms of the mechanism being adopted. The following section compares and

contrasts these two approaches from an accuracy perspective.

 Recall percentage method: The recall percentage method underlines the use of

bias indices obtained from all GNs within each subnet. The main principle of this

approach is that the recall/store decision is mainly based on the cumulative decisions

of all GNs within the network. This method requires an additional procedure to be

conducted by each EdgeHGN subnet for index collection before the final recognition

result is submitted to the SI module. For each sub-pattern introduced into the subnet,

and after all recognition processes have been completed, the activated top GN will

collect all index information from all GNs underneath it. These indices will then be

compiled and structured with the format (index:count). The outputs will then be sent

to the SI module using the message format {subnet_id , (index1:count1) ,

(index2:count2) , ... , (index :count)} for all indices recalled or stored. Some of

the advantages of recall percentage implementation for recognition at the pattern level

include its high recall value precision in terms of the percentages of pattern indices

being recalled. In this context, for a given input pattern, the EdgeHGN can present its

precise recall value. The EdgeHGN also has the capability to analyse pattern

composition based on the previous input patterns that have been stored within the

network. However, the recall percentage method comes with a number of limitations.

These include its effect on EdgeHGN recognition accuracy, where a slight change in

the structure of the sub-pattern, due to distortion or noise, will affect the index

calculation of the entire subnet. The recall percentage method also raises an issue of

the level of confidence of the outputs of the system.

 Voting method: In the domain of pattern recognition, there has been a recent

movement towards combining the decisions of several classifiers to arrive at

improved recognition results. Most of the existing pattern recognition schemes apply

the rejection technique to remove highly distorted patterns in the classification

83

procedure. This technique adopts the rejection/accuracy rate as a parameter to

indicate levels of similarity of patterns. The technique offers a precise mean to obtain

a good classification measurement. However, it is mostly suitable for deployment

within a single-decision system in which the classification is conducted using a single

classifier/recogniser. With a move towards distributed pattern recognition and/or

classification, an important decision-making mechanism is needed to combine all

decisions (in terms of accuracy/rejection) made by each classifier. A possible method

for combining decisions on classification is the voting method. There are several

forms of voting available in the literature, including majority, common-consent,

unison and unanimity voting (Battiti & Colla, 1994; Kuncheva, 2004). Among all of

the voting combination methods, majority voting is by far the simplest for

implementation. It does not assume prior knowledge of the behaviour of the

individual classifiers, and it does not require training on large quantities of

representative recognition results from the classifiers. In EdgeHGN implementation,

majority voting is used to obtain a combined decision on the recalls made by each of

the subnets within a recognition network. The majority voting concept that has been

adopted for EdgeHGN implementation follows the work by (Cruz et. al., 2007). For

each recognition process, the decision of whether the input pattern has been

recognised (i.e., recall) or is new to the network (i.e., store) is determined by

obtaining majority consent from all EdgeHGN subnets. From this perspective, for a

pattern to be recalled, the network should confirm that most of the sub-patterns

belong to the respective input pattern. In this pattern reconstruction and recognition

process, the SI module will initially receive all of the results of the recognition at the

sub-pattern level from all of the EdgeHGN subnets. After all of these messages have

been received, the actual recognition process is conducted. There are two stages

involved at this level:

 Stage 1: All of the indices received from the EdgeHGN subnets for original

patterns are stored in a two-dimensional vector matrix = {m11, m12, ..., m }.

The width of the matrix is equivalent to the size of the pattern, , while the height

corresponds to the number of stored patterns, .

84

 Stage 2: Calculate the frequency of the indices for each test pattern. All of the

indices for the test pattern are stored in a vector V = {ν1, ν2, ..., ν }. The width of

the matrix is also equivalent to the size of the pattern. If an entry in vector V gives

the list of indices as {1, 2, 2, 2, 1}, this indicates that three subnets have given a

recall result of pattern 2 while two subnets have given a recall result of pattern 1.

Therefore, by using the voting approach, the pattern will be recalled as pattern 2.

 Consider that Ƥ is an array of stored patterns Ƥ = {ρ1, ρ2, ..., ρn}, where

represents the number of patterns being stored. For any pattern ρx to be recalled,

maximum vote

 , should be obtained using the following equation:

 = arg max (νx) , x ∈ (3.3)

 Where νx represents the voting element of pattern ρx in voting vector Vρ. It is

worth noting that in the EdgeHGN approach, the recognition process for each pattern

occurs in a single-cycle containing a fixed number of steps.

3.3.2 Bias Array Design

In EdgeHGN implementation, patterns are stored in the form of associations between

its elements. This is somewhat different from other neural network approaches, in

which patterns are stored as the composition of values. The pattern storage

mechanism adopted by the EdgeHGN is in the form of a bias array, similar to the

techniques used by the GN and HGN approaches as described in Chapter 2. However,

the bias array capacity for the EdgeHGN minimises the storage requirement for input

patterns because the bias array design limits the growth of storage elements within

each GN through the use of the index(left, right) format of bias entry for one-

dimensional input patterns. Moreover, the application of the drop-fall pre-processing

stage reduces the number of GN nodes within each subnet significantly, resulting in

minimised bias array size for pattern storage. For example, consider a comparison

between an EdgeHGN bias entry and feed-forward neural network storage

requirement capacities for each neuron, given different binary pattern sizes used in

85

the networks. In the feed-forward network, each neuron requires input from all of the

elements within a particular pattern. Given a pattern ρ with input elements (i.e.,

size) and dimension, each neuron must be able to memorise
combinations of

patterns. Conversely, the EdgeHGN only requires a maximum 2 storage capacity for

each neuron for memorisation. In this perspective, the EdgeHGN offers significantly

higher storage efficiency compared to the feed-forward neural network. A further

evaluation of the storage capacity of the EdgeHGN will be discussed in later sections.

3.4 EdgeHGN Communication Framework

Each EdgeHGN subnet is derived from a composition of interconnected GNs. The

size of the subnet depends on the number of different elements in the sub-pattern and

the size of the sub-pattern after applying the drop-fall scheme. Therefore, to define

the size of each subnet, we consider the number of GNs required for a sub-pattern

of size , composed of different elements given by the following equation:

 2 (3.4)

3.4.1 Network Generation

For the EdgeHGN scheme to perform the recognition of patterns, it must first be

generated. Network generation involves the construction of the SI module node and a

collection of EdgeHGN subnets. The SI module node is a control node that is

responsible for managing the inputs and outputs among the EdgeHGN subnets. The

distribution of EdgeHGN subnets within the network depends on the pattern

decomposition by the SI module. Given a pattern vector Ƥ = {ρ1, ρ2, p3, ..., ρ } of

size , and sub-pattern length sub (after applying the drop-fall scheme), the number

of EdgeHGN subnets sub that needs to be generated is determined by the ceiling

function in Equation (3.5):

 sub =

 , sub (3.5)

86

 The GN nodes within an EdgeHGN subnet are structured hierarchically, where the

number of GN layers, GN, required within an EdgeHGN subnet is given by:

 GN =

 (3.6)

 At base layer base, the number of GNs generated, base, is equal to the size of the

sub-pattern multiplied by the number of different elements , base = sub × . At

middle layer , the number of nodes varies according to the level of the layer in

the hierarchy, except for the top layer. Therefore, = (sub – 2). At the top layer

 top, the number of processing nodes required is equivalent to the number of different

elements . Hence, top = . In the network generation stage, the SI module is also

responsible for initialising the EdgeHGN subnets. The initialisation involves the

communication of possible input values to the base-layer GN nodes before the actual

store/recall operations can start. The message communication between the SI module

and base-layer GN nodes (within each EdgeHGN subnet) is conducted using a

specific message communication protocol that has been developed for bitmap

patterns. The SI module sends the possible input values to each EdgeHGN subnet

using the instruction, message format. For example, if binary values are to be

communicated, then the message would be initialise(0,1). Each initialisation message

received by the base layer GN nodes is used to coordinate the GN nodes within the

base-layer, where each node represents a specific position.

3.4.2 EdgeHGN Communications

The EdgeHGN communications involve a message-passing mechanism, in which a

single processing node communicates with other nodes to exchange messages. It is

composed of two different types, namely macro- and micro-communication. In

macro-communication, communication costs at the system level are taken into

account (i.e., communications incurred between the SI module and the EdgeHGN

subnets). Conversely, micro-communication deals with GN communications within a

particular subnet for each pattern introduced into the system.

87

3.4.2.1 EdgeHGN Macro-communications

Macro-communication in the EdgeHGN occurs between the SI module node and

either base- or top-layer GNs in each subnet. It occurs at three different phases:

 Network generation phase: The SI module is responsible for communicating

possible input values of the patterns to all base-layer GNs within EdgeHGN subnets.

Equation (3.7) shows the number of messages that need to be communicated by the

SI module to these GN nodes, SI → sub:

 SI → sub = sub × sub × (3.7)

 In this equation, sub represents the number of available subnets. This equation is

based on the assumption that all EdgeHGN subnets are of the same size. The

messages communicated from SI module to each GN are in the form of (instruction,

message format) as described earlier.

 Pattern input phase: Upon the generation of all EdgeHGN subnets, the SI module

starts performing a divide-and-distribute process on the input pattern, decomposing it

into a number of sub-patterns according to the number of subnets available.

Consequently, these sub-patterns will be sent to each subnet within the network.

However, in the actual format, the SI module will communicate directly with each

GN at the base layer of each EdgeHGN subnet. Hence, the number of messages

communicated is similar to the number of messages in the network generation phase,

as in Equation (3.7).

 Result communication phase: After the recognition process in each EdgeHGN

subnet has been completed, the results (in terms of recall or store) will be

communicated back to the SI module for further analysis. In this communication,

messages in the form of (subnet_id , status , index) will be sent to the SI module by

all top-layer GNs of each subnet. In regards to the communication cost, the total

number of messages communicated from the subnets to the SI module, Sub → SI is

equivalent to the number of subnets available, sub. Hence, Sub → SI = sub.

88

3.4.2.2 EdgeHGN Micro-communications

The following relations describe the micro-communications involved between GNs

within each EdgeHGN subnet (: number of different elements, : sub-pattern size):

 Base layer: For each GN in the base layer, the number of message

communications incurred could be derived from the number of messages

communicated between adjacent neurons for each input sub-pattern. For GNs at the

edge of the base layer, the number of communication exchanges is equivalent to the

number of different elements within the sub-pattern. For non-edge GNs, the

communication is required between adjacent neurons in both the preceding and

succeeding columns, as well as the communication of bias indices to the GNs at the

next higher layer. In this context, the number of message exchanges is 2
+1. The

cumulative communication costs involved for each input recognition process for all

GNs in the base layer of an EdgeHGN subnet is derived from the following equation:

 base = ((2
+1) (– 2) + 2) (3.8)

 Middle layers: While the communication costs for GNs in the middle layers are

similar to those for the base layer, the difference is in the number of nodes available

within each layer. For each middle layer , where 1 ≤ ≤ top−1, the number of

message exchanges that occurs for sub-pattern recognition could be derived as:

 = ((2 + 1) (– (2 + 2)) + 2) (3.9)

 Equation (3.8) presents the cumulative communication costs for all GNs in the

middle layers:

 =

 ((2 + 1) (– (2 + 2)) + 2) (3.10)

 Top layer: These GN nodes are only responsible for communicating the final

index for each sub-pattern stored/recalled to the SI module. The costs for

communicating these indices have been included in the macro-communication

evaluation.

89

3.5 EdgeHGN Algorithms and Functions

The original EdgeHGN implementation comprises four important functions: the SI

module, voting, adjacency comparison and bias calculation. The SI module function

deals with how patterns are communicated from the SI node to all other GN nodes

within all subnets. Three distinguished commands have been used, namely ‘init’,

‘store’ and ‘abort’. These represent initialisation, recall/store and abort processes,

respectively. This function communicates directly with each subnet via the base-layer

GNs (see Algorithm 3.1).

Algorithm 3.1: SI Module Function

Determine the top GN id from sub-pattern size GNtop = 2 × (

)
2

 The voting function implements the voting procedure for the results of the

recognition performed at the sub-pattern level. Each subnet will communicate each

index retrieved, idx, to the SI module node. The SI module node will then perform

this function (see Algorithm 3.2).

90

Algorithm 3.2: Voting Function

 The adjacency comparison function involves a process of communicating entries

between adjacent GNs within each EdgeHGN subnet. Once a particular GN is

activated, it will perform this function to obtain sub-pattern entries from adjacent

nodes. This function produces bias entries for the bias calculation function. Note that

in this pseudo-code, we implemented binary pattern recognition, in which each layer

within the EdgeHGN subnet consists of two levels of GN. Level 0 corresponds to

value 0, while Level 1 reflects value 1 in binary patterns (see Algorithm 3.3). The

bias calculation function performs the bias matching process within the bias array

structure of each GN node. Each bias entry received will be matched with stored

entries. If an entry is found, then the index will be recalled. Otherwise, a new index

will be generated (see Algorithm 3.4).

91

Algorithm 3.3: Adjacency Comparison Function (Base Layer)

Algorithm 3.4: Bias Calculation Function

92

3.6 EdgeHGN Time Complexity and Scalability Analysis

A series of analysis for EdgeHGN implementation were conducted. These

evaluations focus on the recall time, complexity and scalability of the algorithm.

3.6.1 Time Complexity

Table 3.1 represents the terms that we will use to estimate the time complexity:

Table 3.1: EdgeHGN total recall time complexity terms

Symbol Explanation

 c Communication time: the time it takes for the network to send or receive a

message from a GN

 Interaction time: the time it takes to send messages between nodes within the

bias array

 Searching time: the time it takes to search a bias entry in the array per entry

 Overhead time: it is a small time overhead per node due to hardware latency

or the time required for a node to parse a message

 α Access time: the time required for a node to read or write a bias entry in the

array

 Sub-pattern size

 Number of rows of GN nodes within a layer.

 Number of layers with an EdgeHGN subnet

 Number of columns at the layer level

 Number of columns at the base level in the subnet, equal to sub-pattern size

 Number of entries in the bias array in a node at the layer level

 Number of entries in the bias array in a node at the base layer

 Number of entries in the bias array in a node at an edge of the layer level

 Number of entries in the bias array of a top level node

 Number of total bias entries in all bias arrays for an EdgeHGN subnet

 ,

 ,
 ,

 Times taken by each of the four stages of EdgeHGN sub-pattern recognition at

level

 Total time taken for performing EdgeHGN sub-pattern recognition stages at

layer

 total Total time taken to perform all recognition stages of an EdgeHGN subnet

93

 For a scalable pattern recognition scheme, especially when dealing with large

datasets, the time complexity of the approach should not be heavily affected by an

increase in the number of stored patterns. The recall time factor for the EdgeHGN

distributed pattern recognition scheme could be determined from the total time it

takes for the scheme to recall/store an input pattern. The following section represents

the equations for calculating the time complexity of the EdgeHGN algorithm at

different layers of the scheme.

Base layer (0):

 =

 (c +) (3.11)

 = 2

 – 1) × (+) (3.12)

 The term
 – 1) factor instead of

 is due to the fact that both nodes at the

edges each send messages to all nodes in one column only. It is assumed that the

search happening within the bias array is a binary search. Thus, the terms

 – and

 – appear as the average number of steps

required to perform a binary search for an entry in the bias array.

 =

 – 2) ([
 –] + + α) + (3.13)

 2 ([
 –] + + α)

 = {

 [
 –] – 2 } +

 (+ α) (3.14)

 The following equation shows how to obtain the average number of steps:

 #steps =
 (3.15)

 The term () represents the probability of entry index being accessed,

represents the number of steps (worst case) to access the bias entry index , and

represents the number of entries in the bias array. Assuming that the access

distribution of entries is uniform, then the value of () can be replaced by 1/ . The

equation can therefore be modified as follows:

94

 #steps =

 (3.16)

 #steps

 – (1 -

) (3.17)

 for >> 0 → #steps – (3.18)

 It is evident that the average number of steps of the binary search here would be

considerably less than 0.5 of the exhaustive sequential search.

 =

 – 2) (+)
 (c +) (3.19)

 For the sake of simplicity, the functionality of each node is simulated within a

thread, and the communication among the threads within the network is implemented

using sockets. As a result, it is a safe assumption that the value of and c are very

close to each other. For the remaining equations we simply replace them both with e.

 =

 = (4

 – 4 +
) (e +)

 (3.20)

Middle layer ():

 For the next round of iterations at middle layer , only
 ,

 and
 are the

contributors to the total value of
 . As a result, Equations (3.12), (3.14) and

(3.19) are all still valid for middle layer as long as appropriate values of

 and

 are used for the relevant level index .

 = 2

 – 1) × (e +) (3.21)

 = {

 [
 –] – 2 } +

 (+ α) (3.22)

 =

 – 2) (e+)
 (e +) (3.23)

 =

 = (3nr
 – 4nr +

) (e +)
 (3.24)

95

Top layer (-1):

It is worth noting that at the top level

 = 0.

 = [
 –] + (+ α) = (3.25)

 [– –] + (+ α)

 = (e+) (3.26)

 =

= [– –]+(2 + α + e) (3.27)

 On the basis of Equations (3.11) to (3.27), we can now calculate the total time it

takes for an EdgeHGN subnet to perform recognition across all stages of all layers of

a subnet. Given that EdgeHGN subnets are processed in a purely independent parallel

fashion using the single-cycle (one-shot) learning approach, this time calculation can

reasonably stand for the time that it takes for the EdgeHGN to process an input

pattern through the divide-and-distribute processing mechanism of its subnets.

 total =

 (3.28)

 =

 –

 As a result of the above calculations, the EdgeHGN recall time complexity is

O(), which clearly demonstrates the strength of this approach in providing a fast and

low-complexity scheme for large-scale data analysis. An important aspect of the

EdgeHGN implementation is the ability of the scheme to perform the recognition

procedure within a single-cycle pass, without having to conduct an iterative training

procedure to train the network for adaptation purposes. Rather, the EdgeHGN

performs in situ recognition in which the training set can be memorised within a

single pass (or cycle). This gives an edge to the EdgeHGN as a solution for large-

scale pattern recognition.

96

 The estimated recall time of an EdgeHGN network for processing 10,000 patterns

(using Equation (3.28)) and the EdgeHGN actual recall time for processing the same

number of patterns is plotted in Figure 3.8. As shown, the experimental findings

closely match the estimated plot. The flat slope in both figures demonstrates that the

EdgeHGN response time remains consistently insensitive to the volume of processed

patterns. The spikes in actual timing of the EdgeHGN network processing is due to

the time difference occurring in forming EdgeHGN subnets after applying Dropfall

scheme. As a result, the EdgeHGN as a scalable associative memory framework is a

suitable choice for processing large volumes of data.

Figure 3.8: EdgeHGN estimated and actual recall times

for processing 10,000 stored patterns

3.6.1.1 Recall Time Comparative Study

To further demonstrate the efficient time complexity of the EdgeHGN algorithm, the

two-stage process of network generation and recognition are considered, and

97

comparisons have been made with two different algorithms: The Hopfield network

and Kohonen Self-Organizing Map. However, it should be noted that the comparative

study that has been carried out here does not intend to outweigh the capabilities of

these algorithms. Rather, it indicates that the EdgeHGN has the capacity to acquire

significantly low computational complexity for its operations.

EdgeHGN v. Hopfield

Network generation stage: This stage involves the formation of a network that

comprises computing elements known as neurons. Table 3.2 shows the details of the

Big-O notation derived for the Hopfield network and EdgeHGN implementations.

The estimated time derived is based on the assumption that the instruction speed used

is 1 microsecond (μsec) per instruction. In Hopfield network implementation, the

number of neurons generated is equivalent to the size of the pattern. On the other

hand, for EdgeHGN the number of neurons generated during network generation

phase is equivalent to the number of neurons that are initialized within base layer of

each EdgeHGN subnet as shown in equation 3.29 (: number of elements within the

pattern, Ƥ: pattern size, : number of EdgeHGN subnets).

 = Ƥ (3.29)

Table 3.2: Big-O notations for Hopfield and EdgeHGN schemes in the network

generation stage (Hopfield network, 2012)

Algorithm Big-O Efficiency Iterations(n) Estimated Time (sec)

EdgeHGN O() Linear

Hopfield O() Linear Ƥ (pattern size) Ƥ

 The results show that both the EdgeHGN and Hopfield networks acquire

comparable computational complexity. However, in regards to the number of neurons

generated, the EdgeHGN incurred higher complexity. Taking parallelism into

98

account, for each EdgeHGN subnet, the number of neurons generated was less than

the overall neuron initialisation within the network. Hence, the estimated time for

network generation in EdgeHGN will be lower compared with the Hopfield approach.

Recognition stage: The recognition stage is the core process within the pattern

recognition application. Each algorithm uses a different approach to handle this

process. In the Hopfield network, the recognition stage involves three sub-processes,

namely weight accumulation, weight determination for the whole network and

network propagation to derive an optimum solution. In contrast, EdgeHGN algorithm

only implies a single-cycle process of recognition within the recognition stage. This

process of recognition involves either store or recall process. Table 3.3 shows the

Big-O notations derived from the analysis on the Hopfield network recognition

process. Similarly, this is based on the assumption that the instruction speed used is 1

microsecond (μsec) per instruction. The Hopfield network incurs a considerably high

computational complexity, as indicated in Table 3.3, with respect to its weight

determination and network propagation processes. The recognition stage for pattern

recognition using the EdgeHGN algorithm involves a single-cycle process in which

each input pattern will be passed through the EdgeHGN subnets once, and the store

or recall process will be activated according to the instruction given.

Table 3.3: Big-O notations for the Hopfield and EdgeHGN networks in the

recognition stage (Hopfield network, 2012)

Process Big-O Efficiency Iterations(n) Estimated Time (sec)

Weight

accumulation
O() Linear Ƥ Ƥ

Weight

determination
O(2) Quadratic Ƥ2 Minutes

Network

propagation
O(K) Polynomial Ƥk Hours

EdgeHGN O() Linear

99

 Table 3.3 shows the Big-O notation for the recognition stage using the EdgeHGN

algorithm. From the Big-O notations derived from the analysis, it is best to conclude

that the EdgeHGN incurs less computational complexity in pattern recognition

processes as compared to the Hopfield network implementation. Specifically, the

EdgeHGN employs a simple linear function, whereas the Hopfield network employs

expensive polynomial and quadratic functions.

EdgeHGN v. Kohonen SOM

The Big-O notations for both the SOM and EdgeHGN have been estimated to study

their complexity levels. The supervised SOM consists of three important stages: (i)

weight initialisation, (ii) BMU calculation, and (iii) weight adjustment. In the weight

initialisation stage, nodes are created with a random assigned weight. At this stage,

the computational complexity depends heavily on the number of created nodes.

Hence, for a given weight initialisation process , the complexity of nodes can be

simplified as ⨍() = O(3
). In the BMU calculation stage, the complexity depends

heavily on the number of iterations during training as well as the number of the input

vector. Hence, for a given BMU calculation process ρ, the complexity of training

iterations can be simplified as ⨍(ρ) = O(4
). In the last stage, the weight adjustments

are provided not only for the winning neuron, but also for its neighbours in a certain

neighbourhood.

 The Big-O for the weight adjustment is similar to the BMU calculation.

Conversely, the EdgeHGN initialisation stage, as discussed previously, is a low-

computational process, and hence acquires less computational time in comparison to

the SOM’s weight initialisation process. The computational complexity for the

classification process is somewhat similar to the network generation process. The

EdgeHGN classification process requires less computational complexity in

comparison to the SOM’s BMU calculation and weight adjustment activities. In

summary, the estimated time graph of the EdgeHGN algorithm is linear, while the

corresponding graph of the SOM algorithm is exponential. This proves that the

EdgeHGN provides a lightweight and fast algorithm comparable to the SOM.

100

3.6.2 Scalability Analysis

Table 3.4 presents the terms used in this thesis to estimate the scalability analysis of

the EdgeHGN algorithm.

Table 3.4: EdgeHGN storage and communication complexity terms

Symbol Explanation

 Sub Size of sub-pattern

 SI


 Sub Number of message between SI module and GN nodes in the network generation stage

 Number of rows of GN nodes within a layer

 Number of EdgeHGN subnets within a network

 Number of messages communicated from non-edge GN nodes in base layer

 Number of messages communicated from GN nodes at the edge of base layer

 Total number of messages communicated from GN nodes at base layer

 Number of messages communicated from non-edge GN nodes at middle layer

 Number of messages communicated from GN nodes at the edge of middle layer

 Total number of messages communicated from GN nodes at middle layer

 Total number of messages communicated between all GN nodes in subnet

 Maximum size of bias array for each non-edge GN node at base layer

 Maximum size of bias array for each GN node at the edge in base layer

 Total maximum bias array size for all GN nodes in base layer

 Maximum size of bias array for each non-edge GN node at middle layer

 Maximum size of bias array for each GN node at the edge in middle layer

 Total maximum bias array size for all GN nodes in middle layer

 Maximum bias array size for all GN nodes in top layer

 Total maximum bias array size for all GN nodes in EdgeHGN subnet

 Size of messages in the network generation stage

 Total size of messages communicated in the network generation stage

101

 The scalability factor for the EdgeHGN distributed pattern recognition scheme

can be determined from two different aspects: storage capacity and communication

efficiency. A high requirement for storage capacity would affect the scalability of the

algorithm. For an efficient pattern recognition scheme, the storage requirement

should not be heavily affected by an increase in the number of stored patterns, and the

communication should stay relatively contention-free. Analyses have been conducted

on the computational complexity of the EdgeHGN algorithm for pattern recognition.

In doing so, the two computational factors mentioned previously: storage capacity

and communication efficiency have also been considered.

3.6.2.1 Storage Capacity Analysis

Storage capacity estimation for the EdgeHGN algorithm involves the analysis of the

bias array capacity for all GN nodes within the distributed architecture, as well as the

storage capacity of the SI module node. In analysing the capacity of the bias array,

the size of the bias arrays is observed as different patterns are being stored. The

number of possible pattern combinations increases exponentially with an increase in

the pattern size. The effect of the pattern size on the bias array storage is an important

factor in the bias array scalability analysis. In this regard, the analysis is conducted by

segregating the bias arrays according to the layers within a particular EdgeHGN

subnet. The following equations show the bias array size estimation for binary

patterns. In this analysis, an EdgeHGN implementation for one-dimensional binary

patterns has been considered, wherein a two-dimensional pattern is represented as a

string of bits.

Base layer: For each non-edge GN node, the maximum size of the bias array is:

 = ()

2
 (3.30)

For each GN node at the edge of the layer:

 =

 (3.31)

102

 The maximum size of the bias array is mostly determined by the number of

possible combinations of values within a pattern. The cumulative maximum size of

bias arrays at the base layer in each EdgeHGN subnet could be derived as shown in

Equation (3.32):

 = (

 + ()2 (Sub – 2) + 2
) (3.32)

Middle layers: The maximum size of the bias array at a middle layer depends on the

maximum size of the bias array at the layer below it. For a non-edge GN node in a

middle layer, the maximum size of its bias array may be derived as follows:

 =

 ()2
 (3.33)

 For each GN node at the edge, the maximum size of the bias array can be given

by:

 =
 (3.34)

 Therefore, the cumulative maximum size of the bias arrays in a middle layer (of a

subnet) can be estimated using the following equation:

 for 1 i top-1 (3.35)

 =

 (
 Sub – (2i + 2)) + 2

Top layer: At the top layer, the maximum size of the bias array can be derived from

the preceding level non-edge GN node’s maximum bias array size. Hence, the

maximum size of the bias array of a GN node at the top level is:

 =
 (3.36)

 From these equations, the total maximum size of all bias arrays within a single

EdgeHGN subnet can be deduced as shown in Equation (3.37):

 =

 +

 +

 (3.37)

103

3.6.2.2 Communication Complexity Analysis

The EdgeHGN is a distributed pattern recognition algorithm. In any distributed

algorithm, communication plays an important role in ensuring the efficiency of the

algorithm. High communication costs will incur an additional overhead for the

network to support the core functions of the algorithm. Hence, the intention is to

minimise the communication costs within the EdgeHGN. In conducting an analysis of

the communication costs, all four steps in the distributed pattern recognition scheme

have been considered. This subsection estimates the communication costs for the

implementation.

Network generation step: Network generation in the EdgeHGN implementation

involves the initialisation of EdgeHGN subnets for recognition processes. Within this

step, the SI module is responsible for communicating the possible input values of the

patterns, which will be used in the recognition process, to all of the base-layer GN

nodes within EdgeHGN subnets. Equation (3.38) shows the number of messages that

need to be communicated by the SI module to these GN nodes:

 SI


 Sub Sub (3.38)

 This equation is based on the assumption that all EdgeHGN subnets are the same

size. In addition, the cumulative size of all messages that will be transmitted is shown

in Equation (3.39):

 =

 (Sub) (3.39)

Pattern input step: As part of this step, the SI module is required to decompose the

pattern into sub-patterns and distribute these sub-patterns to all available EdgeHGN

subnets. The distribution of sub-patterns to all EdgeHGN subnets requires

communication between the SI module and all base-layer GN nodes within the

subnets. The communication costs incurred during this step are similar to those in the

previous step.

104

Recognition at the sub-pattern level: The following relations show the

communication complexity of EdgeHGN scheme at the sub-pattern recognition level.

 Base layer: For each GN node in the base layer, the communication costs can be

derived from the number of messages communicated between adjacent nodes for

each input sub-pattern. For GN nodes at the edge of the base layer:

 = (3.40)

For non-edge GN nodes:

 = ()2 + 1 (3.41)

 Note that for non-edge GN nodes, communication is required between adjacent

nodes in both the preceding and succeeding columns, as well as the communication

of bias indices to the GN nodes at the next higher layer. The cumulative

communication costs for all GN nodes in the base layer can be derived as:

 = (

 Sub –2) + 2
 (3.42)

 Middle layer: The communication costs for the GN nodes in the middle layers are

similar to those for the GN nodes at the base layer. However, the difference is in the

number of nodes available within each layer. The cumulative communication costs

for all GN nodes in each middle layer can be derived as:

 for 1 i top-1 (3.43)

 = (

 Sub – (2i + 2)) + 2

 Top layer: These GN nodes are only responsible for communicating the final

index for each sub-pattern stored/recalled to the SI module. Therefore, there is only

one message that needs to be passed to the SI module for each input sub-pattern. The

total cumulative number of communications required for each sub-pattern

stored/recalled in an EdgeHGN subnet can be derived from Equation (3.44) as:

 =

 +

 + 1 (3.44)

105

Recognition at pattern level: The recognition at the pattern level does not require any

communication because recognition takes place within the SI module.

 The EdgeHGN requires fewer hierarchical layers in comparison with the HGN

and DHGN due to fewer processing neurons. This in turn minimises the overall

communication cost, as shown in Figure 3.9.

Figure 3.9: Comparison of communication costs between

the HGN, DHGN and EdgeHGN (Khan & Muhamad Amin, 2007)

 The figure compares the communication costs between the EdgeHGN, HGN and

DHGN. The formation of the EdgeHGN subnets helps to improve the efficiency of

the GN-based approach for pattern recognition. Further, the EdgeHGN provides high

scalability towards increasing size and dimension of patterns through the use of the

divide-and-distribute approach within single-cycle learning. The following section

will describe these in more detail.

106

3.7 Pattern Recognition Simulation and Results

A series of recognition tests using the EdgeHGN’s distributed pattern recognition

approach have been conducted. In this chapter, two different sets of patterns have

been tested and discussed. The first set of patterns is binary character patterns, while

the second set is 16KB binary images. These sets were used as the base for generating

noisy patterns in their respective categories. For this purpose, the EdgeHGN subnets,

capable of storing either 5-bit or 9-bit binary patterns, were adopted for these tests.

The subnet size may be calculated by dividing the largest input pattern size with the

number of available nodes within the computer cloud. Inter-node communications

and SI-to-subnet communications were implemented using the MPICH-2 library for

the message-passing interface (MPI) (Gropp, Thakur & Lusk, 1999).

3.7.1 Binary Character Pattern Recognition

The character patterns used in this recognition test have been grouped into three

different representations: 5-by-7 bit, 8-by-8 and 16-by-16. For this test, each

EdgeHGN subnet is used to store/recall 5-bit binary sub-patterns. Each character

image used has been decomposed by the SI module into 5-bit sub-patterns of various

sizes. The recall rate using the precision and recall technique with a voting

mechanism has been used as a classification parameter in these tests. Recall rates ,

for the tests were obtained using the following equation, where both
 and

 represent the number of EdgeHGN subnets with correct and incorrect

recalls respectively.

 =

 (3.45)

 Figure 3.10 shows the comparison of the recall rates among the three character

patterns of different sizes, which have been used in this test. The recall rates are

similar for all different representations and indicates that EdgeHGN can recognise

distorted character patterns with up to 20% distortion,

107

Figure 3.10: EdgeHGN recall percentage for the three

Character patterns of different sizes

 The recognition test has also been conducted on a set of binary character patterns

with random distortion. The random distortion applied to the character patterns varies

according to the level of distortion. For this test, each EdgeHGN subnet can

store/recall 9-bit binary sub-patterns. Therefore, the SI module is responsible for

decomposing each character pattern into 9-bit sub-patterns. As shown in Figure 3.11,

the EdgeHGN can recognise distorted character patterns with up to 20% distortion.

This shows that EdgeHGN offers a reasonably high level of recall accuracy as a

single-cycle learning algorithm.

108

Figure 3.11: Seven different levels of random distortion applied

to binary character patterns

109

 Figure 3.12 depicts the recall accuracy of the EdgeHGN for various distortion

rates in the input pattern. The figure shows that the EdgeHGN offers a reasonably

high level of recall accuracy as a single-cycle learning scheme. In fact, for binary

character patterns with a distortion rate of up to 20%, an exact recall is achieved.

Moreover, the scheme results in close recalls for distortion rates of 20% – 25%. It

should be noted that patterns with a random distortion of higher than 20% are

difficult to identify, even with the human eye.

Figure 3.12: EdgeHGN recall accuracy for various distortion rates

 Figure 3.13 shows the percentage of recalled nodes for the EdgeHGN scheme

operating on patterns with low (<10%), medium (10% - 20%) and high (20% - 30%)

levels of distortion. As shown in the figure, more than 80% of EdgeHGN nodes are

recalled when dealing with low-level distorted patterns, and almost 70% of nodes are

recalled when the distortion rate is between 20% and 30%. Even with the presence of

highly distorted input patterns, the EdgeHGN can recall almost 50% of nodes, which

is a significant performance.

110

Figure 3.13: EdgeHGN node recall percentage for various distortion rates

 As part of this testing setup, we have also compared the performance of the

EdgeHGN with its predecessor scheme, the DHGN. The test patterns used in this

recognition experiment are represented as 7-by-7 bit binary patterns. A large number

of randomly generated binary patterns have been used as the test data. The only

condition for these binary patterns is that each pattern should have at least one bit in

each row to form the DHGN and EdgeHGN subnets. Each input pattern will be pre-

processed by going through a hybrid drop-fall scheme for the EdgeHGN approach.

The output with the lowest number of processing neurons will be used as an input to

the EdgeHGN pattern matching algorithm. As a result, each character image used has

been decomposed into a maximum of 7-bit sub-patterns (EdgeHGN subnets). The

recall rate and response time have been used as a classification parameter in these test

111

sets. The recognition test has also been conducted on a set of binary character

patterns with random distortion. The random distortion applied to the character

patterns varies according to the level of distortion. As shown in Figure 3.14, the

EdgeHGN recognition scheme provides a higher recall percentage compared to the

previous implementation of the DHGN. This higher recall percentage is due to the

lower number of processing neurons used in the scheme, along with the drop-fall

module, which enables the results of the recognition process at the sub-pattern level

to be produced with higher recall accuracy through forming smaller-sized subnets

along with exploiting edge detection capability.

Figure 3.14: Recall percentage rate for EdgeHGN v. DHGN

 In addition, a lower number of GNs within each EdgeHGN subnet results in a

lower response time. In Figure 3.15, the lower response time is clearly depicted for

EdgeHGN subnets in comparison with DHGN ones. A lower number of neurons due

to the drop-falling pre-processing stage in the base layer of each EdgeHGN subnet

forms a smaller hierarchy with fewer rows in the subnet. This lower number of

processing neurons will result in less communication overhead and can significantly

minimise the response time for the overall recognition process while maintaining

high recall accuracy.

112

Figure 3.15: Response time for EdgeHGN v. DHGN

 In Figure 3.16, the results of the response time per sub-pattern size are given using

three different-sized datasets. The figure shows that the recognition process for each

sub-pattern only requires a maximum of less than 100 milliseconds for 10,000 or

more random patterns. Thus, the EdgeHGN can perform fast recognition, while its

response time is not significantly affected by an increase in the number of sub-

patterns used.

Figure 3.16: Recognition time for different sub-pattern sizes

and different number of random sub-patterns

113

3.7.2 Recognition Test on Binary Images

This section plans to evaluate performance of applying EdgeHGN to binary image

recognition case studies. It should be strongly emphasized that we are not intending

to do image processing, rather we aim to look at images as multi-dimensional objects

which can be represented as discrete binary values for the purpose of pattern

matching for classification. The existing EdgeHGN implementation has been

focusing on the recognition of the spatio-structural representation of an image via

pixel-by-pixel analysis. This approach recognises the integrity of the contents of an

image against any occurrence of random-bit distortion. However, it is insufficient for

the recognition of images with multidimensional colour representation, including

grayscale images. The changes in the colour of an image may influence the accuracy

of the recognition system. Our proposed image recognition approach adopts the

binary signature scheme for content-based image retrieval (CBIR) in the colour

recognition process, while maintaining the binary analysis of the image for its spatio-

structural recognition. For this purpose, each sub-signature (i.e., each signature that

represents each colour) can be fed into a single EdgeHGN subnet. Cumulatively, this

approach will lead to colour recognition within an image. In our image recognition

exercise, we will implement a local binary signature approach where each image will

be divided into grids (see Figure 3.17).

Figure 3.17: Block image with four different colours

is divided into equally sized grids

114

 Each grid will have its own signature representing each quadrant of the image, in

which each bit value will correspond to the normalised percentage values of the

colour within that image (see Table 3.5).

Table 3.5: Binary signatures for the image in Figure 3.17

 With localised signatures, the colour distribution representation of an image will

be further optimised to provide higher possible recall precision for a given set of

images. It is worth noting that the quantisation level can have a significant effect on

the recognition accuracy. Figure 3.18 shows the transformation of the global colour

histogram for the image ‘Lena’ from an original image to various quantisation levels.

Low quantisation levels produce similar sets of binary signatures for different

images. Conversely, high quantisation levels can also have an adverse effect on

recognition accuracy, as it tends to distribute colour frequency to a higher number of

colour classes, thus reducing the possibilities of colours being grouped into similar

classes. By analysing recall rates and error value rates, we can pinpoint an optimal

value for the quantisation level for our recognition purposes.

115

Figure 3.18: Transformation of global colour histogram of image Lena

from original image to various quantisation levels

116

 As shown in Figure 3.19, for the existing dataset, the EdgeHGN recognition

scheme performs best with the quantisation level 6. The recognition test conducted

also demonstrates that the EdgeHGN produces notably high recall rates as a result of

its simple deterministic approach, while achieving this significant performance using

single-cycle learning and through a one-shot recognition process.

Figure 3.19: Average recall and error rates for EdgeHGN greyscale image

recognition on 40 16KB binary images using various quantisation levels

 A study has also been conducted into the EdgeHGN’s performance with respect to

its recognition time taken for each subnet, with different numbers of sub-patterns

stored/recalled. These sub-patterns are derived from a similar set of 40 binary images

used earlier for analysing optimal quantisation value. As shown in Figure 3.20, an

increase in the number of sub-patterns stored within the network does not have any

adverse effect on the recall/store time of the EdgeHGN approach. In fact, the

scalability of the EdgeHGN scheme will not be affected by the number of stored

patterns within the EdgeHGN network.

117

Figure 3.20: Total recognition time for each EdgeHGN subnet in binary pattern

recognition with different number of sub-patterns derived from 16KB binary images

118

 To further demonstrate the effectiveness of the EdgeHGN, we conducted a

comparative study of its performance against Support Vector Machine (SVM) and an

iterative Hebbian-based learning back propagation neural network (BPNN). For the

purpose of this experiment, we classified 1000 grayscale facial binary images into

100 distinct classes corresponding to 100 individuals. Each class contains 10

grayscale binary images of the same person with 10 different facial expressions. To

test various schemes, 100 randomly selected individual images were selected as the

training set to test the remaining images against them for possible recall. Error rate

was selected as the measurement metric to evaluate the performance of the related

schemes. In this regard, recall error is defined as the number of wrongly classified

images from the overall 950 test images when tested against the training dataset.

Figure 3.21: Recall error rates for binary image recognition of 100 facial image

classes when tested against 1000 stored images using

EdgeHGN, DHGN, SVM & BPNN schemes.

 As depicted in Figure 3.21, the EdgeHGN generally offers the lowest error rate

compared with the DHGN, SVM and BPNN. The experimental results show that the

119

SVM and BPNN perform relatively similar, and the SVM performs better for some

image classes but worse for others. Nevertheless, they both fall behind the EdgeHGN

in terms of higher recall accuracy and lower error rate. Higher error values for the

BPNN may be due to the low number of training images fed into the network,

resulting in fewer chances of achieving optimum outputs, which mostly reflect the

original trained images. In the same context, the SVM performance deteriorates

significantly when the size of the training set is much smaller than the number of the

desired support vectors. While the EdgeHGN and DHGN both perform relatively

well, EdgeHGN offers better recall accuracy due to its smaller-sized subnet networks,

as well as the inclusion of edge information within the grayscale image analysis.

3.7.3 Recognition Test on Noisy Binary Images

In this section, we intend to demonstrate the capabilities of our proposed scheme to

achieve multi-feature pattern recognition using collaborative-comparison single-cycle

learning in EdgeHGN within a computational network. This part will demonstrate

that our distributed pattern recognition scheme is able to include multiple image

features as inputs within the recognition process. It is also capable of providing

accurate classification within the bounds of single-cycle learning. The proposed

multi-feature EdgeHGN is readily deployable within various network environments,

ranging from coarse-grained computational networks such as computational cloud

network to fine-grained networks such as the WSN. Our study here involves the

recognition of noisy 128-by-128 bit binary images. Accuracy in image recognition is

generally the benchmark that most contemporary schemes are measured against. The

proposed scheme in this section takes a holistic approach towards incorporating both

the colour and spatio-structural features into the image recognition process

simultaneously. A binary signature scheme has been adopted for content-based image

retrieval (CBIR) proposed by Nascimento and Chitkara (2002) within a pattern

recognition procedure. The approach here integrates this global binary signature with

Sobel’s edge detection (Kimmel et al., 2005) for implementing EdgeHGN single-

cycle image recognition.

120

3.7.3.1 Global Binary Signature Scheme for Colour Recognition

A common approach in representing colour distribution within an image is to use a

global colour histogram (GCH). Given an n-colour model, a GCH is developed with

an -dimensional feature vector {ρ1, ρ2, ..., ρ }, where ρ represents the normalised

percentage of colour pixels that corresponds to each colour element within an image.

Nascimento and Chitkara (2002) proposed an alternative approach for colour

distribution representation by using a global binary signature scheme, which is a

compact form of the existing GCH that uses binary bit-strings as a signature. This

signature is an abstract representation of the image’s colour distribution. The bit-

strings have a pre-determined size, which makes it ideal for use within EdgeHGN

binary pattern representations.

3.7.3.2 Sobel’s Edge Recognition for Structural Information

Edges provide important spatio-structural information for image recognition. The

proposed approach towards image recognition here includes edge detection in the

colour-based recognition process. Sobel’s edge detection mechanism has been

adopted, such that outputs from the edge detection process are represented as an edge

map. Figure 3.22 shows the transformation of a colourful image into the

corresponding edge map after applying the global binary signature to normalise the

colour distribution. In our scheme implementation, we have used a common detection

threshold value of 70 to generate the edge maps.

Figure 3.22. Edge map after applying Global Binary Signature

and Sobel’s edge detection

121

 With the ability to capture and convert the two main features of an image –

namely colours and edges – into binary patterns, the EdgeHGN approach could be

applied to perform single-cycle binary pattern recognition.

3.7.3.3 Recognition Accuracy Analysis

There are two important factors that need to be investigated, namely recognition

accuracy and recognition speed. For recognition accuracy, facial images were chosen

that include similar background conditions and different structural representations as

the test dataset. A set of 1000 facial images of 50 different individuals were used in

this study. They were retrieved from Face Recognition Data, University of Essex,

U.K. These images were of the size 180 x 200 pixels, as shown in Figure 3.23.

Figure 3.23. Fifty different individuals in the face image dataset

obtained from the Face Recognition Data.

For colour recognition, all greyscale images were quantised into four grey levels.

Ten different ranges of values were used for signature representation. It was

determined that these values were able to represent distinctive colour features for all

test images. Forty-bit signatures were created from this process, and each signature

was decomposed into sub-signatures of 5-bits for building the EdgeHGN network.

For edge detection, small-scale edge maps were developed for all facial images. Each

edge map was a binary representation of the image with the size of 18 x 20 pixels,

and it was developed using 3 x 3 Sobel’s matrix kernel with both horizontal and

122

vertical scanning procedures. All edge maps were then input to a drop-fall algorithm

to form 5-bit sub-patterns for the EdgeHGN recognition process. The recognition test

involved classifying 1000 facial images corresponding to 50 distinct individuals into

their respective classes. Each class consists of 20 images of the same individual with

different facial expressions. To perform pattern matching, both base and test images

were initially fed into the Sobel operator. In simple terms, the operator calculates the

gradient of the image intensity at each point, giving the direction of the largest

possible increase from light to dark and the rate of change in that direction. The result

therefore shows how abruptly or smoothly the image changes at that point, and

therefore how likely it is that that part of the image represents an edge, as well as how

that edge is likely to be oriented (see Figure 3.24).

Figure 3.24. Applying the Sobel operator on both the base image

and the test image before pattern matching

 As discussed previously, there are four possible directions to apply the drop-fall

scheme on the input pattern, and they generally produce four different paths to divide

touching digits. They can start on the left or right side and can evolve downwards or

upwards. One of the four is likely to produce the best result. Therefore, in our

approach, a drop-fall scheme is chosen in a way that it ensures producing the least

number of neurons, resulting in the least computational overhead (see Figure 3.25).

123

Figure 3.25. Applying four possible drop-fall directions to the input pattern

Each one of these drop-fall schemes will produce a different output, and the

number of processing neurons will be different. As a result, EdgeHGN subnets will

differ in size, which in turn results in varying response times for image processing

and pattern matching. As shown in Figure 3.26, for 15 test images, the drop-fall

scheme that is applied from the top direction will produce the lowest number of

processing neurons, and in turn the lowest response times. Conversely, a drop-fall

scheme that is applied from the bottom will generate a larger number of neurons in

the network, resulting in the largest average processing time for pattern matching.

Figure 3.26. EdgeHGN recognition times after applying

four drop-fall schemes on a test image

124

 The results shown in Figure 3.27 demonstrate the error values for the EdgeHGN

scheme processing 50 facial image classes of 1000 test images. The EdgeHGN can

achieve a very low average error rate of 0.02696% (~2.7%) in classifying 50 facial

image classes. To improve this error rate value, one option is to use larger

quantisation values to more accurately represent greyscale values for test images.

Figure 3.27. Error values for EdgeHGN processing

50 facial image classes of 1000 test images.

Figure 3.28. Error values for EdgeHGN and BPNN processing

50 facial image classes of 1000 test images.

125

 In Figure 3.28, a comparative study on the error rate value of the EdgeHGN and

iterative Hebbian-based learning back propagation neural network (BPNN) is given

for processing 50 facial image classes of 1000 test images. The EdgeHGN offers a

better classification and accuracy rate when compared with the BPNN for all 50

image classes (error rate of 2.7% for the EdgeHGN compared with an error rate of

4.4% for the BPNN). The BPNN higher error rate might be due to the fact that the

BPNN network was training with a low number of training instances, resulting in

lower optimal classification accuracy for the scheme.

 The next category of testing in our study is performed for the recognition of noisy

128-by-128 bit binary images. In this experiment, both Gaussian noise and impulse

noise are added to the ‘Lena, House, Cameraman and Boat’ images, and the recall

accuracy of the EdgeHGN scheme is tested against recognising noisy images among

a dataset of different heterogeneous images. By applying different levels of Gaussian

distributed noise to the images, the original image pixel value distribution is changed.

As a result, the pixel value distributions for noisy images are quite different compared

with the original image. Moreover, adding Gaussian noise to the image will result in

deterioration in the number of pixels corresponding to pure black and pure white

values (0 and 255), making them significantly difficult to recognise as the original

image. By further applying an impulse noise, the recognition task is made even more

complicated, as the values of damaged pixels contain no information, while the

positions of damaged pixels are also unknown. There are two important types of

impulse noise: salt-and-pepper noise and random-valued noise. In general, the pixels

damaged by salt-and-pepper noise are much easier to find, as the values are either

 min or max. The detection of pixels corrupted by random-valued impulse noise is

more difficult than salt-and-pepper impulse noise because the value of the damaged

pixels can be any number between min and max.

 This recognition test is divided into two parts. The first part involves the

recognition of noisy images contaminated by both Gaussian noise and salt-and-

pepper noise (with = 10 and = 30%) among 20 heterogeneous binary images

previously stored within the EdgeHGN network. The second part implies a similar

126

configuration, but with the test images contaminated by both Gaussian noise and

random-valued noise (with = 10 and = 25%). Figure 3.29 and Figure 3.30 show

the results of the recognition tests. The EdgeHGN pattern recogniser is capable of

providing high recall accuracy for distorted heterogeneous binary image recognition.

In addition, the EdgeHGN can store the data of all 20 heterogeneous images within a

single-cycle learning process without any reductions in its recall accuracy.

Figure 3.29: (Top) images contaminated by both Gaussian and salt-and-pepper noise

with = 10 and = 30% (bottom) recognition tests using the EdgeHGN scheme

Figure 3.30: (Top) images contaminated by both Gaussian and random-valued noise

with = 10 and = 25% (bottom) recognition tests using the EdgeHGN scheme

127

3.7.4 Handwritten Object Recognition Test with Multiple Features

A series of classification tests are performed using the EdgeHGN to evaluate the

performance of the scheme on handwritten character recognition. These experiments

will demonstrate the strength of the EdgeHGN as a distributed classifier for complex

pattern recognition tasks. The experimental results are compared with other methods

discussed in the literature as part of the research work conducted by Duin and Tax

(2000). The experimental dataset is taken from Frank and Asuncion (2010) and is

publicly accessible from the ML repository. The dataset contains 10 classes of

numerical characters ranging from ‘0’ to ‘9’, where each class holds 200 objects and

each object is converted to a 30 x 48 binary image. Classification tests are designed

so they work on the following four feature sets obtained from a similar set of objects

(Frank & Asuncion, 2010):

1. Fourier: 76 Fourier coefficients of the character shapes

2. Pixel: 240 pixel averages in 2 x 3 windows

3. Zernike: 47 Zernike moments

4. Morph: 6 morphological features.

3.7.4.1 Classification Procedures

To perform recognition, the EdgeHGN implements a three-stage process of pre-

processing, classification and result calculation.

Feature Pre-Processing

As part of the pre-processing phase, a discretisation process using a binning approach

is applied to all selected data features to ensure that continuous feature values are

converted into discrete format representations so they can be used and processed by

the EdgeHGN algorithm. With the exception of the pixel average feature set, where

all provided data are of a discrete nature, for all other feature sets, the process of

discretisation is implemented by defining five bins (thresholds) with a different range

of values. These values are determined based on the maximum, minimum and mean

values calculated from the overall feature set. Table 3.6 illustrates how these bins are

defined and formed.

128

Table 3.6: Discretisation of feature data values using variable-binning methods

Feature

min

max

μ

Bins

1 2 3 4 5

Zernike 0.0011 777.86 88.64 ≤ 25 26-50 51-90 91-400 401-800

Fourier 0.0002 0.7965 0.1320 ≤ 0.001 0.002-0.05 0.06-0.14 0.15-0.50 0.51-0.80

Morph 1.1431 17572.2 2104.4 ≤ 50 51-500 501-2500 2501-10000 10001-18000

 The process of converting the feature dataset from continuous data space to a

discrete representation will reduce the inherent complexity of the dataset for

classification at the cost of producing less accurate results because some data values

are lost in the conversion phase. Nevertheless, the discretisation process yields a set

of patterns corresponding to each feature, where the size of the patterns denotes the

number of values for each feature, while the dimension of the patterns represents the

number of bins (thresholds) used (i.e., five).

Feature Recognition

To perform classification tasks on the four feature datasets, four separate EdgeHGN

networks with different sizes are constructed to implement recognition on a specific

feature set resulting from the pre-processing phase. Table 3.7 illustrates the

EdgeHGN topology structure used for processing these four feature sets.

Table 3.7: EdgeHGN networks setup details for processing four feature sets

Parameters Values

Number of EdgeHGN networks 4

Sub-pattern size 9

Number of GNs per subnet 25

Number of subnets

Zernike 5

Fourier 9

Morph 1

Pixel

Avg.

27

129

 To perform recognition, the entire feature set is first presented to the SI module

node on each EdgeHGN network. The SI module node then divides and distributes

the input data to all available subnets for the recognition process to be conducted at

the sub-pattern level. The results from all subnets are then relayed back to the SI

module before they are input to a maximum voting phase where the best fit/match for

the respective pattern class is determined.

Result Calculation

The result calculation stage involves identifying the optimal feature as the best

representative for each pattern class. It should be noted that this last phase of

processing can be conducted within a coordinator node. For the purpose of this

exercise, we have calculated error value, precision, recall and accuracy parameters as

a comparative basis for the classification process. Table 3.8 shows how each of these

parameters are defined and represented.

Table 3.8: Recognition parameters with their respective definitions

 Recognition Parameters Definitions

Precision

 Recall

 Accuracy

 Error Value

3.7.4.2 Recognition Analysis

Figure 3.31 illustrates the EdgeHGN outputs for multi-feature classification

decisions, and Figure 3.32 shows average feature values and the best results achieved

for each object class. The classification results show that for the majority of object

classes in the test, the morphological and pixel average feature values generate the

best classification output.

130

Figure 3.31: EdgeHGN classification results on four different

features of numeral character objects.

Figure 3.32: EdgeHGN classification best average results

on four different features of numeral character objects

131

 Figure 3.32 shows that morphological features generally exhibit low error values

while producing reasonably high recall and accuracy rates. By performing a

comparative study between the EdgeHGN and other classifiers discussed by Duin and

Tax (2000), we can conclude that the EdgeHGN is capable of producing comparable

accuracy rates for the same feature sets. Figure 3.33 conducts comparative analysis

to determine error value rates for different classifiers.

Figure 3.33: Comparative study on error rates between EdgeHGN and other

classifiers for similar dataset with respective features.

 It can be concluded from the results that the EdgeHGN performs remarkably well,

with the lowest number of error rates for all tested features, with the exception of

pixel average. However, even for pixel average, the EdgeHGN offers promising

results when compared with other classifiers. Moreover, the results from the figure

3.33 indicate that artificial neural network (ANN) produce the least accurate results.

While other statistical schemes seem to generate acceptable error rates, their

cumbersome parameter estimation processes make them less favourable for feature

classification tasks when compared with the EdgeHGN.

132

3.8 Conclusion

An important aspect in pattern recognition schemes is in their algorithmic design. A

proper design will lead to higher efficiency and will be able to provide better

classification accuracies. Our GN based algorithms have been developed with the

scalability consideration being paramount. GN has the ability to perform pattern

recognition processes on distributed systems due to its simple recognition procedure

and lightweight algorithm. Furthermore, GN incurs low computational and

communication costs when deployed in a distributed environment. In this regard, this

chapter made an attempt to introduce and discuss a newly proposed approach for

cloud distributed pattern recognition, known as Edge Detecting Hierarchical Graph

Neuron (EdgeHGN). EdgeHGN reduces redundant data content for recognition

through segmentation, by applying a hybrid drop-fall algorithm on the input pattern.

EdgeHGN allows the recognition process to be conducted in a smaller sub-pattern

domain, hence minimizing the number of processing nodes, which in turn reduces the

complexity of pattern analysis. In addition, the recognition process performed using

the EdgeHGN algorithm is unique in a way that each subnet is only responsible for

memorising a portion of the pattern (rather than the entire pattern). A collection of

these subnets is able to form a distributed memory structure for the entire pattern.

This feature enables recognition to be performed in parallel and independently. The

decoupled nature of the sub-domains is the key feature that brings dynamic scalability

to our data processing approach for the cloud. Moreover, EdgeHGN provides a

capability for a recognition process to be deployed as a composition of sub-processes

executed in parallel across a distributed network. Sub-processes execute mutually

independently. This approach is less cohesive compared to any other pattern

recognition scheme.

 Our experimental results demonstrate the fact that EdgeHGN is able to achieve

very low error rate of (~2.7%) in classifying 50 facial image classes. This high

accuracy rate is accompanied by remarkable scalability features. Our tests show that

an increase in the number of sub-patterns stored within the network does not have any

adverse effect on the recall/store time of EdgeHGN approach. In fact, the scalability

133

of EdgeHGN scheme will not affected by the number of stored patterns within the

EdgeHGN network.

 In contrast to the rest of hierarchical models already proposed in the literature,

EdgeHGN’s pattern matching capability and the small response time, that remains

insensitive to the increases in the number of stored patterns, can make this approach

remarkably suitable for clouds. Moreover, the EdgeHGN does not require definition

of rules or manual interventions by the operator for setting of thresholds to achieve

the desired results, nor does it require heuristics entailing iterative operations for

memorization and recall of patterns. In addition, our approach allows induction of

new patterns in a fixed number of steps. Whilst doing so it exhibits a high level of

scalability i.e. the performance and accuracy do not degrade as the number of stored

pattern increases over time. Its pattern recognition capability remains comparable

with contemporary approaches. Furthermore, all computations are completed within

the pre-defined number of steps and as such the approach implements one-shot, i.e.

single-cycle or single-pass, learning.

134

This Page Intentionally Left Blank

135

Chapter 4

EdgeHGN_MR: Edge Detecting

Hierarchical Graph Neuron based

MapReduce

One of the main challenges for large-scale computer clouds dealing with massive

real-time data is in coping with the rate at which unprocessed data are being

accumulated. There are many big data demands in scientific and engineering

applications – including biotechnology (e.g., characterisation using synchrotrons) and

the global monitoring of fixed and mobile assets in industry, transport and defence –

that entail massive real-time streams from and to stationary or mobile sensors and

actuators. As a result of their dynamic and distributed nature, as well as their

exponential growth, real-time data management is complicated, and storage, updates

and analytics are costly (Szalay, et. al., 2006). This thesis hypothesises that

fundamental changes and improvements in data access and movements are possible

and beneficial for cloud-based processing. To provide improvements particularly

regarding computational complexity and scalability, this chapter proposes a novel

136

associative-memory-based scheme for big data processing that is scalable,

distributable and lightweight, and that overcomes some of the issues encountered in

traditional data access mechanisms for data storage and retrieval. Thus, the primary

aim of this chapter is to apply an access scheme that will enable fast data retrieval

across multiple records and data segments associatively. In this regard, associative

memory concepts open a new pathway for accessing data in a highly distributed

environment that will facilitate a parallel-distributed computational model to

automatically adapt to the dynamic data environment for optimised performance.

4.1 Neural Network based Classification Techniques

As discussed in detail in Chapter 2, high computational complexity and large memory

requirements are common drawbacks in neural-network-based classification

techniques such as the back propagation network and the self-organising maps. The

computational complexity and memory requirements increase substantially with the

increase in problem size. These algorithms often fail to scale up when presented with

large and complex datasets, such as the datasets encountered in big data analysis. In

fact, many of the ML schemes discussed in the literature do not offer acceptable

levels of scalability and adaptability, making them infeasible for solving large-scale

pattern recognition problems.

 Hence, what is really required for any cloud system is a complete data access

scheme that enables data partitioning on-the-fly and that has the ability to disseminate

processing nodes for specific data retrieval/storage tasks and consolidate the data

access scheme using an efficient partitioning approach. This integration within a

complete end-to-end scheme will enable data storage and retrieval processes to be

performed effectively, regardless of the distribution of data within the cloud system.

In this regard, associative memory concepts open a new pathway for accessing data in

a highly distributed environment that will facilitate a parallel-distributed

computational model to automatically adapt to the dynamic data environment for

optimised performance. The problem is to marry such concepts with relevant

advanced parallel processing patterns. With this in mind, the proposed scheme in

137

this chapter targets a new type of data-processing approach that will efficiently

partition and distribute data for clouds and facilitate content-based access for a wide

range of applications. This chapter introduces an associative memory based

MapReduce, referring to as EdgeHGN-based MapReduce or EdgeHGN_MR. In this

chapter, three extensions of EdgeHGN_MR are presented, dealing with different

data-intensive scenarios (EdgeHGN_MRv1, EdgeHGN_MRv2 and

EdgeHGN_MRv3). EgdeHGN_MRv1 is designed to handle classification tasks

efficiently when dealing with large datasets. In such cases, the input data are split

among data chunks so they can be later processed by Mapper functions in parallel

where each Mapper constructs the same EdgeHGN_MR classifier using a similar set

of training data. EdgeHGN_MRv2 deals with scenarios where the training data are

voluminous. To perform effective classification tasks, the training data are split into

data chunks so they can be processed by Mapper functions in parallel. In such cases,

each Mapper still creates the same EdgeHGN_MR classifier, but this time using only

a subset of the training dataset to train the EdgeHGN network. To ensure we can still

achieve acceptable levels of classification accuracy, EdgeHGN_MRv2 utilises a

balanced bootstrapping approach (Alham, et. al., 2013) along with a majority voting

scheme, as part of its processing framework. Lastly, EdgeHGN_MRv3 is designed to

work with cases with an excessive number of processing neurons in the EdgeHGN

network. To achieve high classification accuracy, EdgeHGN_MRv3 parallelises and

distributes EdgeHGN processes across Mapper functions so each Mapper only

utilises a subset of the processing neurons for training.

4.2 Associative Memory Concept for Implementing Large

Scale Classification Operations

Unlike the existing relational, hierarchical and object-oriented schemes, associative

models can analyse data in similar ways to which our brain links information. When

implemented in voluminous data clouds, such interactions can assist in searching for

overarching relations in complex and highly distributed datasets with speed and

138

accuracy. The proposal in this chapter improves MapReduce-based cloud applications

in a number of different ways by replacing referential data access mechanisms with

more versatile and distributable associative functions, which allow complex data

relations to be encoded into the keys as patterns. These patterns can be applied in a

variety of applications requiring content recognition (e.g., image databases, searches

within large multimedia files and data mining). The algorithmic strengths of the

MapReduce approach are investigated in relation to the effectiveness of one-shot

learning-based parallelism provisioned via our distributed pattern recognition

approach, EdgeHGN. The principle of AM-based learning will be implemented

through the use of hierarchically connected layers, with local feature learning at the

lowest layer and upper layers combining features into higher representations.

 As we know, existing data access mechanisms for cloud computing such as

MapReduce have proven the viability of parallel access approaches in cloud

infrastructure. However, the MapReduce model does not explicitly provide support

for processing multiple related heterogeneous datasets. While processing data in

relational models is a common requirement, this restriction limits its functionality

when dealing with complex and unstructured data such as images. Relational

databases use a separate, uniquely structured table for each different type of data for

specific applications, and programmers must know the precise structure of every table

and the meaning of every column a priori. To overcome this, our proposed scheme

preserves the strength of the MapReduce model and eliminates/alleviates most of

these constraints in a well-integrated manner where there is no outward change to

the way in which MapReduce models are deployed and used. In this context, our

research will investigate the inclusion of an associative approach in the MapReduce

model to support application-specific pattern recognition and data-mining operation.

Hierarchical structures in AM models are of interest because they have been shown to

improve scalability while preserving accuracy in pattern recognition applications

(Ohkuma, 1993). Our proposal is based on an EdgeHGN associative memory model

that has been specially designed for distributed processing and readily implemented

within distributed architectures.

139

4.2.1 EdgeHGN Approach for Cloud Data Access

Through the redesign of the data management architecture, data records are treated as

patterns. For this purpose, a data access scheme that enables retrieval to be conducted

across multiple records and data segments in a single-cycle and parallel approach is

considered. The access mechanism is implemented according to the nature of the

database. The retrieval process will be conducted on a set of records that reside in a

particular node. No alterations will be made to the condition of the record itself. A

parallel retrieval approach is used, in which records in each storage node are analysed

locally without incurring any communication costs. A distributed pattern

matching/recognition approach, such as the EdgeHGN, can be used to retrieve data

from the cloud. The EdgeHGN cloud access scheme relies on communications

between adjacent nodes. The decentralised content location schemes are implemented

to discover the adjacent nodes in a minimal number of hops. A GN-based algorithm

for optimally distributing the EdgeHGN subnets (clusters or sub-domains) across the

cloud nodes is provided to automate the bootstrapping of the distributed application

and to investigate dynamic load balancing over the network. Note that the EdgeHGN

subnets perform data mapping on each of the data nodes within the HDFS

infrastructure. Within each EdgeHGN subnet, the records are stored in an associative

pattern; each EdgeHGN neuron corresponds to a single data field. The mapping

process occurs within the body of the EdgeHGN subnet.

4.3 EdgeHGN based MapReduce

MapReduce has issues and limitations. One might think that the absence of a rigid

schema makes MapReduce the preferable option over DBMSs. However,

 Existing MapReduce implementations provide built-in functionality to handle

simple key-value pair formats, but the programmer must explicitly write support

for more complex data structures.

 In most MapReduce implementations, the map function conducts its operation

assuming that all related data are distributed vertically (i.e., records are being

140

uniformly distributed across the network). However, it is possible that some parts

of the related records are being stored at different physical locations – for

instance, a large database table being split into multiple sub-tables and stored

among the cloud nodes.

 In addition to the vertical distribution issue, another issue related to the

MapReduce function is that the operations produce numerous intermediary

entities between the map and reduce functions. These entities could be in the form

of intermediate files. The contents of these files would need to be sorted before

they are input into the reduce function. This system-wide sort and redistribution

incurs additional processing and communication costs. Thus, data fragmentation

can affect MapReduce schemes focused on vertical splitting where data are

partitioned based on the file structure. In addition, in MapReduce, the underlying

assumption is that the solution can be expressed in terms of the map and reduce

functions working on key-value pairs, while in some cases this may not be

natural, such as multi-stage processes, and this can lead to inefficiencies.

 As a result, and to address the aforementioned concerns with regards to the

MapReduce functionality, this section attempts to take the MapReduce key-value

scheme into a higher level of functionality by simply replacing the scalar key-value

pair functionally with our AM-based scheme, EdgeHGN. By having an associative

key-value model, we can deal with data simply by using a pattern matching model

that treats data records as patterns and provides a distributed data access scheme

that enables data storage and retrieval by association. Our GN-based algorithms

have been developed with the scalability consideration being paramount. The GN has

the ability to perform pattern recognition processes on distributed systems due to its

simple recognition procedure and lightweight algorithm. Further, it incurs low

computational and communication costs when deployed in a distributed environment.

In this regard, the EdgeHGN has been developed for the cloud environment, which

allows the recognition process to be conducted in a smaller sub-pattern domain,

hence minimising the number of processing nodes, which in turn reduces the

complexity of pattern analysis. In addition, the recognition process performed using

141

the EdgeHGN algorithms are unique in that each subnet is only responsible for

memorising a portion of the pattern (rather than the entire pattern).

 A collection of these subnets can form a distributed memory structure for the

entire pattern. This feature enables recognition to be performed in parallel and

independently. The decoupled nature of the sub-domains is the key feature that brings

scalability to our data management approach for the cloud. Moreover, the EdgeHGN

provides capability for a recognition process to be deployed as a composition of sub-

processes executed in parallel across a distributed network. Sub-processes execute

mutually independently. This approach is less cohesive compared to any other pattern

recognition scheme.

 To achieve the aforementioned objectives, an initial step would be to develop a

distributed data access scheme that enables record storage and retrieval by association

where data records are treated as patterns. As a result, data storage and retrieval can

be performed using a distributed pattern recognition approach implemented through

the integration of loosely coupled computational networks, followed by a divide-and-

distribute approach that facilitates the distribution of these networks within the cloud

dynamically. Thus, reconciling MapReduce with associated memory concepts,

particularly for adaptive and fast data access, aggregation and movement is a key

contribution of this chapter.

 In the following sections, three EdgeHGN based MapReduce approaches are

presented to deal with different real-world data intensive scenarios. In particular, we

have considered scenarios where we are dealing with large datasets, scenarios where

the training data are voluminous and cases where we deal with an excessive number

of processing neurons in the EdgeHGN network.

4.3.1 EdgeHGN_MRv1

EgdeHGN_MRv1 is designed to handle classification tasks efficiently when dealing

with large datasets. In such cases, the input data are split among data chunks so they

can later be processed by Mapper functions in parallel, where each Mapper constructs

the same EdgeHGN_MR classifier using a similar set of training data.

142

Figure 4.1: EdgeHGN_MRv1 architecture

 Figure 4.1 shows the architecture of EdgeHGN_MRv1. Consider testing a

scenario with a large set of testing data to be processed Ʈ = {𝓽𝟭, 𝓽𝟮, 𝓽𝟯 . . . 𝓽𝑖𝑛}, 𝓽𝓲 ∈ Ʈ,

where 1 ≤ 𝓲 ≤ 𝑖𝑛

i. 𝓽𝓲 denotes a testing instance,

ii. Ʈ represents a testing dataset,

143

iii. 𝑖𝑛 shows the number of inputs of an EdgeHGN network, it also represents the

length of Ʈ

iv. inputs are represented by a format of (instance𝓲, target𝓲, type),

v. instance𝓲 denotes 𝓽𝓲 that is the input of an EdgeHGN network,

vi. target𝓲 shows the desirable output in the case of instance𝓲 being a training

instance,

vii. type field consists of two values, train and test – which show the type of

instance𝓲 (if the test value is used, the target𝓲 field value is set to null).

 Testing data files are stored in the HDFS. Each data file contains a subset of

testing instances along with all of the training data. As a result, the number of files n

determines the number of Mapper functions used. File data contents are then fed into

EdgeHGN_MRv1 for classification. When the scheme starts processing, each Mapper

initialises an EdgeHGN network, which results in the creation of n EdgeHGN

networks in the cluster. It should be noted that all EdgeHGN networks perform an

execution on the same set of parameters, and each Mapper function reads the data

from an input file in the form of (instanceK, targetK, type). Algorithm 4.1 depicts the

pseudo-code for EdgeHGN_MRv1. When the value of type field is set to train then

the instance𝓲 is input into the input layer of the EdgeHGN network. The network

starts processing the input and calculating the result of each EdgeHGN subnet until

the completion of the EdgeHGN process. Upon completion of the execution phase,

the result will be recorded in the HDFS. The network then starts processing the next

instance. This process is continued until all input data with train type values are

processed by the EdgeHGN network. If the value of the type field is set to test, the

network starts performing a recognition test, where each Mapper only classifies a

subset of the entire testing dataset. The algorithm improves efficiency through

parallelism. Each Mapper produces intermediary results in the form of (instance ,

outputm𝓲), where instance𝓲 is the key and outputm𝓲 denotes the output of the mth

Mapper. Upon completion of all Mappers, a Reducer starts processing and merging

all outputs of Mappers with the same key and writing the result baxk in HDFS.

144

Algorithm 4.1: EdgeHGN_MRv1 (Classification Algorithm for Large Datasets)

Input: Ʈ Output: AA

(1) n Mappers and one Reducer, each Mapper constructs an EdgeHGN subnet

(2) Divide Ʈ into {𝓽𝟭, 𝓽𝟮, 𝓽𝟯 . . . 𝓽n } , ⋃ 𝓲=𝟏
𝐧 𝓽𝓲 = Ʈ

(3) Each Mapper builds an EdgeHGN subnet and inputs 𝓽𝓲 where 𝓽𝓲 ∈ Ʈ

 BAA  new GN Bias Associative Array

 For all term 𝓽𝓲 ∈ Ʈ do

 Calculate Adjacency Comparison Function (algorithm 3.3)

 Calculate Bias Index (algorithm 3.4) & Update BAA𝓲

(4) Mapper outputs (, BAA𝓲)

(5) Reducer collects and merges all (, BAA𝓲)

 For all term BAA (𝓲 = 1, 2, …n) do

 Calculate SI Module function (algorithm 3.1)

 Calculate Voting function (algorithm 3.2)

 Calculate AA  Store/Recall

(6) Repeat (3), (4) and (5) until Ʈ is traversed and all testing data are processed

(7) Reducer outputs (AA) and writes it back into HDFS

4.3.2 EdgeHGN_MRv2

EdgeHGN_MRv2 deals with scenarios where the training data are voluminous. To

perform an effective classification task, the training data are split into data chunks so

they can be processed by Mapper functions in parallel. In such cases, each Mapper

still creates the same EdgeHGN_MR classifier but this time using only a subset of the

training dataset to train the EdgeHGN network. Assuming Ʈ represents a training

dataset, as illustrated in Figure 4.2, EdgeHGN_MRv2 splits Ʈ into n data chunks,

where each data chunk 𝓽𝓲 is proceeded by a Mapper function as part of the training

phase:

145

 Ʈ = ⋃ 𝓽𝒊 ,

𝐧

𝟏

{∀𝓽 ∈ 𝓽𝓲 | 𝓽 ∉ 𝓽𝐧 , 𝓲 ≠ 𝐧} (4.1)

 It is worth noting that each of the Mapper functions in the Hadoop clusters form

an EdgeHGN subnet where 𝓽𝓲 denotes the training input data to be consumed by the

Mapper 𝓲. Hence, each EdgeHGN function within a Mapper results in a classifier

output based on the training data fed into the network:

 (𝑴𝒂𝒑𝒑𝒆𝒓𝓲 , 𝑬𝒅𝒈𝒆𝑯𝑮𝑵𝓲 , 𝓽𝓲) 𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒓𝓲 (4.2)

Figure 4.2: EdgeHGN_MRv2 architecture

146

 To minimise the computational costs, each of the classifiers is only trained with a

subset of the original training data. However, this can result in degradation of

accuracy because each Mapper is trained using only a subset of the training data and

the complete training dataset. To ensure we can still achieve acceptable levels of

classification accuracy, EdgeHGN_MRv2 utilises a balanced bootstrapping approach

by combining a number of weak learners to produce a much stronger learner.

4.3.2.1 Bootstrapping

Researchers have already shown that finding a strong learner is more complex than

training different classifiers using a single training dataset. To overcome this

complexity, one well-known approach suggested is to conduct re-sampling of the

training dataset, which can be implemented using bootstrap aggregating techniques

such as bootstrapping and majority voting. Alham (2011) suggested balanced

bootstrapping as a promising technique when looking for strong learners. In the

balanced bootstrapping approach, an effort is made to ensure that bootstrap samples

contain each training instance equally, but this is not guaranteed, and there might be

some cases where bootstrap samples do not include all training instances. One

possible approach for constructing balanced bootstrap samples is to form a sequence

of instances Α𝟭, Α𝟮, . . ., Α𝚗 that can be repeated К times to yield a sequence of 𝓑𝟭, 𝓑𝟮,

. . ., 𝓑К𝚗. Then a random permutation integer value ρ is chosen from the range of

integer values between 1 and К𝚗. As a result, the initial bootstrap sample can be

constructed from 𝓑ρ(1), 𝓑ρ(2), … 𝓑ρ(𝚗), while the second sample is formed from

𝓑ρ(n+1), 𝓑ρ(n+2), … 𝓑ρ(2n), and this process goes on until the Кth bootstrap

sample is achieved from 𝓑ρ((К -1)n+1), 𝓑ρ((К -1)n+2), … 𝓑ρ(Кn).

4.3.2.2 Algorithm Design

EdgeHGN_MRv2 starts functioning by first splitting the training data into a number

of datasets using the balanced bootstrapping mechanism:

 Balanced Bootstrappin of Ʈ ∶ {Ʈ𝟏, Ʈ𝟐, Ʈ𝟑, … , Ʈ𝒏} , Ʈ = ⋃ Ʈ𝓲 (4.3)

𝒏

𝟏

147

 where Ʈ𝓲 stands for the 𝓲th training subset and 𝑛 denotes the total number of

training data chunks. It should be noted that each training subset Ʈ𝓲 is stored in one

file in the HDFS. Each training instance 𝓽k, 𝓽k ∈ Ʈ , where 1 ≤ k ≤ length (Ʈ𝓲) is

defined in the format of (instancek , targetk , type), where:

i. instancek denotes a bootstrapped training instance 𝓽k that is the input of an

EdgeHGN subnet

ii. length (Ʈ𝓲) represents the length of Ʈ𝓲 and it shows the number of inputs of an

EdgeHGN subnet

iii. targetk shows the desirable output in the case of instancek being a training

instance

iv. type field consists of two values – train and test which illustrates the type of

instancek; if the test value is used, the targetk field value should be set to null.

 When EdgeHGN_MRv2 starts processing the input, each Mapper function builds

one EdgeHGN subnet and starts feeding the subnet one record from the HDFS input

file in the form of (instancek , targetk , type). By parsing the input, the Mapper

function can determine if the type field is set to train or test. If the type indicates the

value of train, then the input is fed into the base layer of the EdgeHGN subnet for

processing. The training phase continues working on the input until all instances with

the type value set to train are processed. Now it is time for the network to start

processing and classifying all of the testing instances. Upon processing the testing

instances, each Mapper produces intermediary results showing classification outputs

in the form of (instancek , outputnk), where instance𝑘 is the key and outputnk denotes

the output of the nth Mapper. Upon completion of all Mapper tasks, a Reducer starts

processing and merging all of the outputs of Mapper functions with the same key.

Before calculating the store/recall result, the Reducer function performs majority

voting and produces the output in the form of (instancek , outputvk) where outputvk

stands for the voted classification decision for instancek. Algorithm 4.2 depicts the

pseudo-code for EdgeHGN_MRv2.

148

Algorithm 4.2: EdgeHGN_MRv2 (Classification Algorithm for Large Training

Datasets)

Input: Ʈ Output: AA

(1) n Mappers and one Reducer, each Mapper constructs an EdgeHGN subnet

(2) Bootstrap {Ʈ𝟏, Ʈ𝟐, Ʈ𝟑, … , Ʈ𝐧} , Ʈ = ⋃ Ʈ𝓲
𝐧
𝟏

(3) Each Mapper builds an EdgeHGN subnet and inputs 𝓽k where 𝓽k ∈ Ʈ𝓲 ,

 1 ≤ k ≤ length (Ʈ𝓲)

 BAA  new GN Bias Associative Array

 For all term 𝓽k ∈ Ʈ do

 Calculate Adjacency Comparison Function (algorithm 3.3)

 Calculate Bias Index (algorithm 3.4) & Update BAAk

(4) Mapper outputs (𝓽k , BAAk)

(5) Reducer collects and merges all (𝓽k , BAAkj) , j = (1, 2,…, n) and computes

BAA

 using Majority Voting function

 𝐂𝐨𝐦𝐩𝐮𝐭𝐞 𝐁𝐀𝐀 = 𝐦𝐚𝐱𝐤=𝟏
𝒍𝒆𝒏𝒈𝒕𝒉 (Ʈ𝓲)

 ∑ 𝐁𝐀𝐀𝐤𝐣

𝐧

𝐣=1

 Calculate SI Module function (algorithm 3.1)

 Calculate AA  Store/Recall

 (6) Repeat (3), (4) and (5) until Ʈ is traversed

(7) Reducer outputs (AA) and writes it back into HDFS

4.3.3 EdgeHGN_MRv3

EdgeHGN_MRv3 is designed to work with cases where there is a large number of

processing neurons in the EdgeHGN network. To achieve high classification

accuracy, EdgeHGN_MRv3 parallelises and distributes EdgeHGN processes across

Mapper functions so each Mapper only utilises a subset of the processing neurons for

training. Hence, each Mapper function may contain one or more processing neurons.

It should be noted that there will be a number of iterations as part of this MapReduce

149

cluster setup to execute the algorithm with L layers. To implement those iterations,

EdgeHGN_MRv3 utilises L-1 MapReduce jobs as shown in Figure 4.3.

Figure 4.3: EdgeHGN_MRv3 Architecture

 To guarantee the data flow between the map and reduce operations within each

iteration layer, data instances will be presented to the network in the form of (indexκ,

instance𝓲, target𝓲), where:

i. indexκ denotes the κth Reducer

ii. instance𝓲 denotes the 𝓲th data instance, which can be either a training or a

testing instance.

iii. target𝓲 stands for the expected output if the training instance instance𝓲 is

fed into the network.

150

 All data instances and data format entry information are stored in a file in the

HDFS so that they can be processed when the EdgeHGN_MRv3 starts functioning.

The number of MapReduce operation layers, L, is determined by the size of the

EdgeHGN bias array. One major difference between EdgeHGN_MRv3 and its

predecessor versions, EdgeHGN_MRv1 and EdgeHGN_MRv2, is that

EdgeHGN_MRv3 aims to maintain the neural network parameters based on the input

data format entries rather than initialising an explicit EdgeHGN network. When

EdgeHGN_MRv3 starts its execution cycle, each Mapper function initially reads a

data record from the HDFS, performs some computations and then generates the <key

, value> pair output where indexκ will form the MapReduce key, while the

MapReduce value will be represented in the form of (indexκ , instance𝓲 , outputj ,

target𝓲), where outputj denotes the computational result for neuron j. The indexκ

parameter assures that the output of the Mapper functions is collected and processed

by the κth reducer, maintaining the EdgeHGN network state in a consistent fashion

during the execution phase of the algorithm. The output from the Mappers will be

presented to the κth reducer in the form of (indexκˊ , outputj , target𝓲). It is obvious

that these κ Reducer functions can produce κ number of outputs. The indexκˊ in the

Reducer output format explicitly instructs the κˊ Mapper function to start processing

the relevant output data file. As a result, the number of Mappers for the next layer of

processing can be calculated based on the number of Reducer output files that will

represent the number of input files for the succeeding layer. Upon receiving the input

from the previous layer, Mappers start their processing and generate outputs for

Reducers, and this process continues until the execution phase reaches the last round

of processing. In this last round of execution, Mapper functions first process (indexκ ,

outputj , target𝓲) and generate output in the form of (outputj , target𝓲). Then one

single Reducer function gathers the output results from all Mappers in the form of

(outputj1 , outputj2 . . . outputjκ , target𝓲) and writes the result (output𝓲 , target𝓲)

back into the HDFS. This process continues by reading the next instance from the

input data file until all instances are processed. Algorithm 4.3 depicts the pseudo-

code for EdgeHGN_MRv3.

151

Algorithm 4.3: EdgeHGN_MR_3 (Classification Algorithm for Networks with

Large Processing Neurons)

Input: Ʈ Output: AA

(1) n Mappers and n Reducers

(2) Initially each Mapper inputs (indexκ , instance𝓲 , target𝓲) where instance𝓲

denotes the 𝓲th data instance, target𝓲 stands for the expected output if the training

instance instance𝓲 is fed into the network and indexκ denotes the κth Reducer

(3) Mapper outputs (indexκ , instance𝓲 , outputj , target𝓲) k = (1, 2 … n) where

outputj denotes the computational result for neuron j

(4) The κth Reducer gathers output (indexκˊ , outputj , target𝓲), κˊ = (1, 2… n) where

the indexκˊ in the Reducer output format explicitly instructs the κˊ Mapper function to

start processing the relevant output data file

(5) Each Mapper builds an EdgeHGN subnet and inputs 𝓽m where 𝓽m ∈ Ʈ ,

 1 ≤ m ≤ length (Ʈ)

 BAA  new Boolean Associative Array

 For all term 𝓽m ∈ Ʈ do

 Calculate Adjacency Comparison Function (algorithm 3.3)

 Calculate Bias Index (algorithm 3.4) & Update BAAm

(6) Mapper outputs (BAAm , target𝓲)

(7) nth reducer collects and merges all (BAAm , target𝓲) from n Mappers

 For all term BAAm (1 ≤ m ≤ length (Ʈ)) do

 Calculate SI Module function (algorithm 3.1)

 Calculate AA  Store/Recall

 Writing the result (output , target𝓲) back into HDFS

(8) Retrieve instance𝓲+1 and target𝓲+1

 Update input to (indexκ , instance𝓲+1 , target𝓲+1)

(9) Repeat (2), (3), (4), (5), (6), (7), (8) until all input dataset instances are processed

152

4.4 Performance Evaluation

All three EdgeHGN_MR implementations are set up in a Hadoop-based framework

to evaluate their respective performance when dealing with real-world big dataset

examples. The experimental Hadoop cluster was configured with eight DataNodes

and one NameNode. The NameNode machine acts as both JobTracker and

NameNode, while each of the eight DataNodes act as both TaskTracker and

DataNode. The Hadoop cluster configuration details are listed in Table 4.1.

Table 4.1: Hadoop Cluster Details

NameNode

CPU: Core i7 @ 3.2 GHz

Memory: 16 GB , SSD: 1 TB

OS: Redhat Linux

DataNode

CPU: Core i7 @ 3.8 GHz

Memory: 32 GB , SSD: 500 GB

OS: Redhat Linux

Network bandwidth 1 Gbps

Hadoop version 2.5.2, 64 bits

Java version OpenJDK 1.6

JVM heap size 16 GB

 For the training and testing dataset, the MNIST (Mixed National Institute of

Standards and Technology) dataset is chosen (MNIST Database, 2012). The MNIST

is an enormous set of handwritten digits that is commonly used for testing large-scale

classification systems (see Figure 4.4). The database includes 60,000 training images

and 10,000 testing images. Each image sample has 784 dimensions. That is, each

MNIST data sample is a 28 x 28 array of integers in the range of 0 – 255, depicting

the intensity of the blackness of the image at that location. The number of instances

varies from 100 to 10,000 to calculate the accuracy rate of the scheme, and the size of

the dataset varies between 1MB and 1GB to test the computational efficiency of the

approaches. To ensure we can achieve a fair experimental result, all tests were

repeated five times, and the average calculated value of all five attempts was used.

153

Figure 4.4: Handwritten digits (MNIST Database)

4.4.1 Classification Accuracy

To evaluate the accuracy rate of EdgeHGN_MRv1, a different number of training

instances was used. However, the maximum number of training and testing data

instances was capped at 10,000. Accuracy rate is calculated as per equation (4.4):

 Accuracy rate =
𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞

𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞+𝐅𝐚𝐥𝐬𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞
 (4.4)

 Figure 4.5 illustrates the accuracy rate result of the EdgeHGN_MRv1 classification

approach when using sixteen Mappers. The results show that increasing the number

of training instances can result in an improved classification precision rate. To

evaluate the performance of EdgeHGN_MRv2, the maximum number of training and

testing data instances was capped at 10,000. Subsets of the training dataset were used

by 16 Mappers in the scheme to generate classification results of 10,000 testing

instances, utilising both bootstrapping and majority voting techniques. Each of the

Mappers in the network inputs various numbers of training instances ranging from

100 to 1000.

154

Figure 4.5: Accuracy rate of EdgeHGN_MRv1

 Figure 4.6 illustrates the accuracy rate result for EdgeHGN_MRv2. As shown, the

precision rate of the scheme keeps improving by the increase in the size of the

training instances in each EdgeHGN network. Considering the same size training

datasets, EdgeHGN_MRv2 achieves higher accuracy rates compared with

EdgeHGN_MRv1 for all cases of the training dataset.

Figure 4.6: Accuracy rate of EdgeHGN_MRv2

155

 EdgeHGN_MRv3 utilises a fully distributed Hadoop-based EdgeHGN setup to

perform a classification task using a large number of processing neurons. Figure 4.7

illustrates the accuracy rate for an EdgeHGN_MRv3 scheme with 16 Mappers. Again,

the precision rate improves along with the increase in the size of the training dataset.

Figure 4.7: Accuracy rate of EdgeHGN_MRv3

 Figure 4.8 shows the accuracy rate comparison between all three schemes. While

EdgeHGN_MRv1 and EdgeHGN_MRv3 perform similarly, EdgeHGN_MRv2

outperforms the other two because the scheme makes use of strong learners by

utilising bootstrapping and majority voting techniques.

Figure 4.8: Accuracy rate comparison between

EdgeHGN_MRv1, EdgeHGN_MRv2 and EdgeHGN_MRv3

156

 Figure 4.9 illustrates the consistency and stability of all three algorithms for their

five individual runs. As shown, EdgeHGN_MRv2 exhibits high stability compared

with the other two approaches, again due to the use of bootstrapping and majority

voting techniques to achieve strong learners.

Figure 4.9: Consistency and stability rate comparison between

EdgeHGN_MRv1, EdgeHGN_MRv2 and EdgeHGN_MRv3

157

4.4.2 Computational Efficiency

To evaluate the computational efficiency of the EdgeHGN-based MapReduce scheme

when dealing with large datasets, a number of experiments have been carried out to

examine the effect of an increase in the size of the dataset on the execution time of

the algorithm. Figure 4.10 illustrates the execution time of all three schemes with 16

Mappers for processing datasets of various sizes, ranging from 1MB to 1GB.

Figure 4.10: Computational efficiency comparison between

EdgeHGN_MRv1, EdgeHGN_MRv2 and EdgeHGN_MRv3

 As shown above, the computational cost of EdgeHGN_MRv1 and

EdgeHGN_MRv2 are reasonably low when dealing with large data sizes because

both schemes distribute the testing data and computational load among all eight

DataNodes in the Hadoop cluster and utilise parallel processing to scale with the

increase in the size of input dataset. However, EdgeHGN_MRv3 incurs an additional

computational overhead when compared with the other two approaches because both

EdgeHGN_MRv1 and EdgeHGN_MRv2 implement training and classifications tasks

within one MapReduce job and, as a result, Mappers and Reducers are required to be

initialised and started once. Conversely, EdgeHGN_MRv3 includes multi-stage

Hadoop processes of stopping and starting Mappers and Reducers, resulting in

extended execution times. This is an area that can be improved in future work by

158

looking into enhancing methods of in-memory processing to better empower

MapReduce operations working on data-intensive scenarios with many iterations.

4.5 Comparative Performance Results

Our proposed EdgeHGN-based MapReduce scheme (EdgeHGN_MR) is primarily

focused for use within the clouds and it is fundamentally different from all published

approaches in data management. The large heterogeneous datasets created for the case

studies will provide an excellent resource to compare and contrast the one-shot

learning, scalability and accuracy of our approach with a number of well-established

data management techniques, which in turn will generate detailed information on

trade-offs and benefits. In this regard, performance results already derived from

various experiments are promising. While EdgeHGN outperforms its former GN

extensions – HGN and DHGN – in terms of accuracy and processing time, as

discussed in Chapter 3, it also provides comparable performance benchmarks when

tested against well-known large-scale data management schemes such as Distributed

MapReduce (Dean & Ghemawat, 2004), Google Pregel (Percolator, Dremel & Pregel,

2012), Microsoft Dryad (Isard. et. al., 2007) and GraphLab (GraphLab Open Source,

2009). To prove this, a series of experiments have been conducted, and the results are

presented in the following sub-sections.

4.5.1 EdgeHGN-based MapReduce versus Hadoop MapReduce

In one of the conducted experiments, the aim was to process webserver logs to

examine the HTTP sessions accessed by users of particular webpages. One important

factor in this test was to evaluate the overall time spent by the end-user for each

requested page. This time metric can be utilised later to gain more information about

visitors and to better design a website structure. For the purpose of this test, the

extracted log files were from NASA Kennedy Space Center (2014), which stores two

months’ worth of entire HTTP requests to the NASA Kennedy Space Center WWW

server in Florida. The file format is in ASCII, with one line per request. In each line,

159

various data fields are captured, representing host, timestamp, request, HTTP reply

code and bytes in the reply. Traditional data-processing approaches working on

relational data will not fit the purpose for the processing of this huge log file size of

more than 50,000,000 request lines due to the semi-structured nature of log data,

along with its excessive volume. To evaluate the HTTP session information, Internet

protocol (IP) address, timestamp and URL data are extracted from log files and stored

in the HDFS. The session affinity data provide all web pages visited by a particular IP

address with a unique page identity and timeout value. In most cases, this timeout

value should not exceed 30 minutes; otherwise, a new session with a new identity

will be generated for that IP address. The session time-span can be determined by

calculating timestamp differences for the same IP from the time of logging in to the

point of logging out. All log data fields can be input into map tasks, where the output

of map tasks includes the session affinity number as the key and all other fields in the

data log files as values. Then the Reducer function calculates the overall time-span

for each session ID (key) and generates the final output in the form of (IP, Session

ID, Time). Table 4.2 illustrates the results of processing the log files using

EdgeHGN_MR and Hadoop MapReduce run in fully distributed mode. The version

of Hadoop implementation was 2.2.0 at the time of conducting this test.

Table 4.2: Processing time comparison between EdgeHGN_MR and MapReduce

Data Count (rows) File Size (MB) MapReduce EdgeHGN-based MR

10,000 2MB 14 Seconds 5 Seconds

100,000 25MB 68 Seconds 26 Seconds

1,000,000 246MB 92 Seconds 72 Seconds

10,000,000 2412MB 173 Seconds 119 Seconds

 As shown in table 4.2, the distributed operation suits better for processing large

data volumes. In fact, processing small data with the distributed operation is not

160

desirable because the time it takes to collect the distributed data during a reduce

operation within the same processing node outweighs the advantages of distributing

data chunks between map functions. Conversely, EdgeHGN-based MapReduce works

well in dealing with both small and large size data counts due to its parallel one-shot

learning mechanism, where the size of the input data has a minimal effect on the time

of its single-cycle in-network processing.

4.5.2 EdgeHGN-based MapReduce versus Pregel-like Graph

Processing Systems (Giraph, GPS, Mizan and GraphLab)

Pregel is an efficient, scalable and fault-tolerant framework that enables large-scale

graph processing using simple code, and it is capable of performing computations

over large graphs in a very fast fashion while hiding relevant distribution details

behind an abstract API (Malewicz, et. al., 2010). Its architecture is inspired and

developed by the Bulk Synchronous Parallel (BSP) model (Valiant, 1990), which

empowers the programmer to come up with parallel-computing solutions for a

specific problem without the hassle of knowing how communication and memory

allocations are performed in a distributed setup. To minimise the communication

overhead, Pregel tries to preserve the data locality by moving the computations to

where the data reside. Pregel is considered a simple parallel processing framework

with many opportunities for improvement, and it has led to the invention of several

other graph processing approaches, including Apache Giraph (Apache Giraph, 2013),

GPS (Salihoglu & Widom, 2013), Mizan (Khayyat, et. al., 2013) and GraphLab

(Low, et. al. 2010) which is now referred to as PowerGraph (Gonzalez, et. al. 2012).

 Apache Giraph is one of the schemes selected for the purpose of performance

evaluations. The reason Apache Giraph was selected as one of the processing

frameworks to compare EdgeHGN_MR against is that it offers an open-source

alternative for Pregel where worker processes are run as map-only tasks on top of the

HDFS data structure (Apache Giraph, 2013). Apache Giraph v1.0.0 is chosen due to

its voluminous developer and user base, which includes Facebook. GPS is another

161

open-source implementation of the Pregel scheme taken for our experiments. The

reason for this selection is that GPS has been implemented in many graph processing

experimental systems, thereby providing confidence in the approach. It also performs

comparatively with Giraph v1.0.0, and it previously outperformed Giraph 0.1 (12 x

faster) (Salihoglu & Widom, 2013). Mizan is another open-source implementation of

Pregel selected for our performance benchmarking. As it provides similar graph data-

processing approach as Giraph and GPS, it is a good candidate for our performance

evaluation (Khayyat, et. al., 2013). Finally, GraphLab is chosen as another open-

source implementation for large-scale graph processing, mainly due to its popularity

and maturity for handling graph processing tasks (Low, et. al. 2010).

4.5.2.1 System Setup and Datasets

All Experiments are designed to run on setups of two, four and eight Amazon EC2

spot instances. Table 4.3 lists the setup details for our experiment.

Table 4.3: Experiments Setup Details

Amazon EC2 Instances

(2 , 4 , 8)

4 Virtual CPUs: 8 Xeon 1.7GHz

Memory: 16GB

OS: Ubuntu 12.04.1

Tested Frameworks

Giraph v1.0.0

GPS rev 110

Mizan 0.1bu1

GraphLab 2.2

Network bandwidth 1Gbps

Hadoop version 1.0.4

Java Version jdk1.6.0 30

JVM Heap Size 16GB

 Table 4.4 illustrates the datasets eT and eF used for evaluating the performance of

each scheme. These datasets are taken from Stanford Network Analysis Project

(2015). All datasets are recorded in the HDFS as uncompressed ASCII formatted text

files.

162

Table 4.4: Dataset Details

ego-Facebook (eF)
(Social circles from Facebook)

4K vertices

88K edges

ego-Twitter (eT)
(Social circles from Twitter)

81K vertices

 1.77M edges

4.5.2.2 PageRank Algorithm

PageRank is one of the first selected algorithms to evaluate the performance of

schemes in-scope due to its popularity and simplicity. It could also represent the

memory, computation and communication challenges when processing large scale

data. The PageRank algorithm is a well-known scheme used to express the relative

importance of webpages computed based on the hyperlink structure and by weighting

each incoming link to a page (Brin & Page, 1998). The PageRank of the webpage 𝔁 is

calculated by the recurrence equation as:

 𝐏𝐑[𝔁] =
𝟏− 𝛌

𝐧
+ 𝛌 ∑

𝐏𝐑[𝔁]

𝐎𝐮𝐭𝐋𝐢𝐧𝐤𝐬[𝐲]𝐲 𝐥𝐢𝐧𝐤𝐬 𝐭𝐨 𝔁
 (4.5)

 Where 𝛌 is the random reset probability and 𝒏 is the number of WebPages. Since

the PageRank value for page 𝓲 is dependent on the PageRank of those pages which

are linked to page 𝓲, the recurrence formula is applied in an iterative fashion until the

PageRank of each page converges. For this performance testing, a PageRank scheme

with damping factor (λ) of 0.85 is selected, the same value as it is taken in (Malewicz,

et. al., 2010). This damping factor value means that, assuming a user is browsing a

webpage, there is an 85% chance of switching to a random webpage link from the

outgoing links of the current visited page, and a 15% chance of switching to a random

webpage taken from the entire web (the input graph). The PageRank algorithm has an

elegant MapReduce implementation. The mapper emits initial PageRank values for

every node. The reducer receives all PageRank contributions for a given node, adds

them up, and emits its contribution to its own outgoing links (See Figure 4.11).

163

Figure 4.11: MapReduce implementation of PageRank algorithm where the mapper

emits initial PageRank values for every node. The reducer receives all PageRank

contributions for a given node, adds them up, and emits its contribution to its own

outgoing links.

 As shown in Figures 4.12 and 4.13, for processing ego-Facebook and ego-Twitter

datasets using the PageRank algorithm, GraphLab outperforms all other schemes due

to being capable of performing adaptive computations. Conversely, Mizan performs

poorly for all conducted experiments. The reason for this slow computational time is

that Mizan implements a slow graph partitioning process separately from

computation, in which it tries to process the graph by conducting multiple large reads

and writes to the HDFS. Giraph and GPS also perform very closely, while Giraph

takes slightly longer than GPS to conduct computations. EdgeHGN_MR outperforms

Giraph and Mizan for both datasets in most setups, but it consumes more time

conducting computations compared with GPS and GraphLab. The reason for this

slower computational time is mainly because of longer initialisation and start-up

times. In fact, while EdgeHGN is capable of producing parallel single-cycle

computations, due to the utilisation of the number of Mappers and Reducers,

initialisation and start-up times contribute to longer computation times. Nevertheless,

EdgeHGN’s execution time is comparable with other state-of-the-art techniques in

the literature.

164

Figure 4.12: Computing time comparison between Giraph, GPS, Mizan, GraphLab

and EdgeHGN_MR using PageRank algorithm for ego-Facebook Dataset

Figure 4.13: Computing time comparison between Giraph, GPS, Mizan, GraphLab

and EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset

165

 Figures 4.14 and 4.15 show the maximum memory usage for the Giraph, GPS,

Mizan, GraphLab and EdgeHGN_MR schemes processing ego-Facebook (eF) and

ego-Twitter (eT) datasets using PageRank algorithm with Amazon EC2 cluster setups

of two, four and eight machine instances. As shown, GPS demonstrates remarkable

memory efficiency across all experiments due to its built-in scheme optimisations

such as canonical objects, reducing the cost of allocating multiple java objects

(Salihoglu & Widom, 2013). Mizan’s memory usage efficiency is improved by

adding more resources, but it downgrades when larger graphs are being processed.

This is again due to its lack of built-in system optimisations. In terms of memory

requirements, Giraph performs poorly when compared with most schemes, with the

exception of Mizan. The reason for this poor memory usage efficiency is that it

utilises memory-inefficient adjacency list data structures to implement graph

mutations. GraphLab generally performs reasonably well across all experiments in

terms of memory usage due to its wide built-in system optimisations. Similar to

GraphLab, EdgeHGN_MR demonstrates efficient memory usage across all

experiments. This is because in EdgeHGN_MR, memory requirements per GN node

to maintain the bias array do not increase disproportionately with the increase in the

number of stored graphs.

Figure 4.14: Maximum memory usage comparison between Giraph, GPS, Mizan,

GraphLab and EdgeHGN_MR using PageRank algorithm for ego-Facebook Dataset

166

Figure 4.15: Maximum memory usage comparison between Giraph, GPS, Mizan,

GraphLab and EdgeHGN_MR using PageRank algorithm for ego-Twitter Dataset

 4.6 Conclusion

Existing large-scale data-processing schemes such as MapReduce involve isolating

basic operations within an application for data distribution and partitioning. This

excludes their applicability to many applications with complex data dependency

considerations. MapReduce models when used with complex data requirements

generally entail additional difficult and error-prone application-level customisations.

Adding higher and complex data representations within the model will vastly

improve its usability and provide an important – pattern recognition based – data

analysis option. Also our loosely coupled associative computing (GN-based) method,

EdgeHGN, as discussed in Chapter 3, provides means to deliver dynamic data

management. Hence, the goal of this chapter was to create a formal model, methods

and prototypical realisations of a combination of MapReduce – as architectural

patterns for parallel processing structures for widely distributed computing – with

AM concepts, represented in EdgeHGN scheme. The aim was to achieve algorithms

that provide demonstrably more efficient, robust and scalable end-to-end data access

to distributed real-time information for clouds through applying an access scheme

167

that can enable fast data retrieval across multiple records and data segments

associatively, utilising a parallel approach.

 To address these, in this chapter, three parallel EdgeHGN based MapReduce

schemes were introduced and discussed in detail. EdgeHGN_MRv1,

EdgeHGN_MRv2 and EdgeHGN_MRv3 each utilise EdgeHGN network processing

model in conjunction with MapReduce computational framework to effectively deal

with data-intensive scenarios in the face of excessive amount of classification data to

process, voluminous training datasets or massive number of processing neurons in the

network, respectively. Proposed schemes in this chapter preserve the strengths of the

MapReduce model and eliminate/alleviate most of its constraints in a well-integrated

manner by replacing referential data access mechanisms with more versatile and

distributable associative functions, which allow complex data relations to be easily

encoded into the keys as patterns. These patterns can be applied in a variety of

applications requiring content recognition e.g., image databases, search within large

machine log files and data mining. Algorithmic strengths of the MapReduce approach

was investigated for the first time in context with the effectiveness of one-shot

learning-based parallelism provisioned via our distributed pattern recognition

approach, EdgeHGN. The principle of associative-memory-based learning was

implemented through the use of hierarchically connected layers, with local feature

learning at the lowest layer and upper layers combining features into higher

representations. The EdgeHGN-based MapReduce approach to cloud-based data

processing is unique. It elevates the MapReduce key-value scheme to a higher level

of functionality by replacing the purely quantitative key-value pairs with higher-order

data structures that will improve the parallel processing of data with complex

associations (or dependencies). By using an associative key-value framework, we can

deal with data in any form and in any representation simply by using a pattern

matching model (including fuzziness) that treats data records as patterns and provides

a distributed data access scheme that enables balanced data storage and retrieval by

association.

168

 Our experimental results show that EdgeHGN based MapReduce works

exceptionally well in dealing with both small to large size data counts due to its

parallel one-shot learning mechanism where the size of input data has minimal effect

on the time of its single-cycle in-network processing. Performance evaluation results

against state-of-the-art parallel processing techniques in the literature (Distributed

MapReduce, Giraph, GPS, Mizan and GraphLab) demonstrate that the performance

of MapReduce parallelism as a scalable scheme for data processing in clouds can be

significantly improved by transforming the data processing operations into one-shot

distributed pattern matching sub-tasks, in which distributed computations are

performed in-network, enabling data storage and retrieval by association (instead of

pre-set referential data access mechanisms). In the next chapter we will further

demonstrate applicability of EdgeHGN_MR approach to distributed data processing

within fine-grained wireless sensor networks with limited resource considerations.

169

Chapter 5

EdgeHGN Application in Fine-

grained Wireless Sensor Networks

(WSNs)

This chapter investigates the capabilities of the proposed EdgeHGN scheme in the

context of distributed data processing in large-scale cloud of wireless sensor networks

(WSNs). The chapter will examine WSNs as a platform of operation for EdgeHGN

distributed pattern matching to demonstrate the ability of the proposed recognition

technique to learn and recognise complex patterns using minimal information and

resources to effectively perform classification tasks. The rapid technological

advancement of wireless technologies and the increasing miniaturization of RF micro

electro-mechanical systems have resulted in the advancement of small and tiny

computational systems, such as WSN technology. These inter-connected computing

devices create a computational network that is capable of offering a frontline

processing platform for various purposes, such as event detection and remote

monitoring. Such networks are mainly referred to as fine-grained networks since they

normally consist of a large group of connected tiny computing nodes with limited on-

board resources for power, storage, and processing. In their widely acclaimed article,

170

Wireless sensor networks 2010 – 2020, Peter Harrop and Raghu Das write about

billions of sensors guarding us against events such as avalanches, hurricanes, forest

fires, failures of critical services and assisting in hospitals and with traffic through the

use of the wireless sensor network (WSN) (Harrop & Das, 2010). In spite of the

enormous potential existing for WSN use, the fact is that so far WSN technology has

been mostly implemented for humble applications such as meter reading in buildings

and simple forms of ecological monitoring. Current approaches mainly address the

issue of conveying retrieved sensory data to a central entity referred to as base station

for most of the processing which can create bottlenecks in the system, resulting in

less scalable networks. As a result, and to address scalability concerns, WSN

networks require new generation of processing schemes which are capable of

processing their sensory findings internally to produce highly condensed and

sophisticated outputs within the network. This approach can eliminate the bottleneck

problem by offering on-site computations through adoption of a completely

distributed and decentralised technique.

 In order to build such a framework as stated above, the first step will be to

establish a level of computability within the WSN in a way that sensory readings can

be immediately translated into and represented as event patterns, so that they can later

be locally processed and analysed by the network in a purely distributed fashion. This

approach will entail two-fold benefit. On one hand, translation of sensory data into

patterns can improve event detection (e.g. surveillance) and on the other hand due to

the distributed nature of pattern matching techniques deployed with the WSN

network, this approach can yield scalable processing schemes for future large-scale

networks. The main challenge here is to evolve a real-time approach, which is

capable of processing complex real-life patterns generated from various types of

sensors, and to create an efficient computational model for processing WSN

heterogeneous datasets. For this purpose, events of interest initially need to be

correlated to particular pattern classes of our definition. Upon completion of this

translation phase, implementing a distributed pattern matching approach, such as

EdgeHGN, would assist us with integrating large volume of sensor nodes into a smart

171

monitoring platform for observing phenomenon of interest which in turn can bring

unprecedented functionalities within our reach for performing large-scale distributed

data processing within resource-constrained WSNs.

 Application of parallel pattern matching approach within fine-grained WSN

networks has been previously discussed by Khan and Mihailescu (2004). As part of

their research findings, they presented a distributed recognition technique for locating

stress patterns from a basic finite element model stored within WSN network. In the

research work conducted by Baqer, et. al. (2005) and Baig, et. al. (2006), pattern

recognition schemes in WSN are further investigated with a major focus on GN-

based pattern matching/event detection approach. Later, Nasution and Khan (2008)

proposed a more advanced distributed pattern recognition technique for event

detection based on their Hierarchical Graph Neuron (HGN) associative memory

model offering.

 The motivation for this chapter lies in the aforementioned applications using GN-

based algorithms. In this regard, EdgeHGN, with its light-weight distributable

computational model along with its high scalability features can be a suitable

candidate for performing distributed on-site computations within WSNs. With the

ability of parallelising the computational process within the body of the network,

EdgeHGN enables recognition scheme to be implemented on tiny resource-

constrained computing devices such as sensor nodes in WSN network. In a complete

distributed setup, each GN is assigned to a single compute node, and the

collaborations of such inter-connected compute nodes form an EdgeHGN subnet. The

simple EdgeHGN light-weight bias array search mechanism makes this configuration

well-suited for fine-grained WSN networks that suffer from limited processing and

storage capabilities. In this chapter we will demonstrate EdgeHGN as a lightweight

and distributed event detection scheme that simplifies the existing WSN

infrastructure and develops a single-cycle learning pattern recognition capability

within the WSN for event detection. In this chapter, we will also demonstrate the

robustness and scalability of the EdgeHGN for performing distributed recognition

tasks over a fine-grained network.

172

5.1 Distributed Data Processing Scheme for WSNs

Many of existing data processing approaches deployed in WSNs suffer from highly

complex computations, iterative learning procedures and large training set

requirements which restrict their use as a suitable method that can easily scale up to

meet large-scale WSN resource-constrained operational requirements. In fact,

majority of such schemes often apply conventional neural network techniques or

machine learning methods that need extensive amount of retraining as well as large

number of training datasets for their effective generalisation. Furthermore, the

centralised processing or single-processing approach used in existing methods puts a

practical burden on developing scalable schemes for WSNs. As an example, the

constant flow of retrieved sensory data will produce extensive communication

overheads. In addition, re-routing procedures and relocation activities of sensor nodes

that regularly happen in real-time applications will result in significantly long delays

in detecting critical events and these even get worse when computational bottlenecks

are present in the network. These limitations make WSN even a less suitable

candidate for applications with large-scale data processing requirements. Therefore,

we are in need of a new approach for data processing within WSN that enables

processing to be conducted within the body of the network in situ and with

decentralised manner and generates highly condensed data outputs internally within

WSN. Having such an internal processing setup will alleviate the bottleneck issue

within WSN through on-site computations, and improves performance by minimising

the processing delay experienced using the existing methods. Artificial neural

networks (ANNs) and other machine learning schemes are the most commonly

deployed classification methods for performing event detection in WSNs. Some of

these approaches implement the Kohonen Self-Organizing Map (SOM) (Kohonen,

2000) or other activation-based neural networks, such as the Radial Basis Function

(RBF) neural network (Yang & Paindavoine 2003). However, due to their extensive

learning complexity as well as their highly cohesive training-validation approach,

these methods cannot scale up effectively to the dynamics of the WSN.

173

5.1.1 WSN Event Detection

On a macro scale, a WSN comprises a network of wireless sensor nodes that are

linked and connected together through a common entity, referred to as the base

station or sink. Because of restricted on-board resources available in terms of limited

power and processing capabilities, communications between sensor nodes and the

base station usually involve a series of data aggregation techniques to reduce data

exchange and minimise the volume of traffic routed to the base station. In fact, issues

with WSN deployment are mainly due to their resource-constrained characteristics,

which include restricted communication bandwidth, limited power and processing

capability and limited memory capacity (Culler, Estrin and Srivastava, 2004).

Research in the area of event detection in WSN is commonly classified into

performance-specific research and application-specific research. The performance-

specific research is more concerned with the efficiency of the event detection method.

The main research goal in this area is to develop event classification techniques with

minimum energy consumption and extended lifetime of the WSN network. On the

other hand, application specific research focuses on the development of event

detection methods that provide accurate and reliable detection strategy for predefined

applications such as intrusion detection or phenomenon detection. The following

section will further describe these two common research areas.

5.1.1.1 Performance-specific Event Detection Schemes

Most of the recent research works on performance-specific event detection schemes

are focused on developing efficient localisation and routing mechanisms for WSN.

Localisation and routing are the two important factors in determining the optimum

coverage and performance of a WSN network. A collaborative event detection and

tracking in wireless heterogeneous sensor networks has been proposed by Shih,

Wang, Chen and Yang (2008). In this research, emphasis has been put into tracking

procedure and localization of sensors attribute region for event detection. Banerjee,

Xie and Agrawal (2008) introduces multiple-event detection scheme with fault

tolerant within WSN. They propose the use of polynomial-based scheme that

174

addresses the problems of Event Region Detection (PERD). There are two-

components involved, including event recognition and event report with boundary

detection. For event recognition, they adopt min-max classification scheme which

classifies event according to the sensor reading values. These values would then be

transformed into polynomial coefficients and passed through a data aggregation

scheme. The proposed event detection scheme has enabled a 33% savings in the

communication overhead experienced by the network. The development of energy-

efficient scheme for event detection within WSN has also been carried out by Baqer

(2008) using GN pattern recognition scheme with voting capabilities. This work

provides a foundation for energy-efficient pattern recognition scheme to be deployed

within WSN infrastructure for real-time applications such as structural health

monitoring (SHM). Cellular Weighted Graph Neuron (CwGN) was later proposed by

Alfehaid (2013), as a distributed in-network processing paradigm that depends on local

computations and adopts weighting technique that searches for pattern edges and

boundaries. The model addresses the constraints of timing requirements by allowing a

number of CwGN networks to perform recognition operations in a parallel paradigm.

The research in this chapter intends to extend the capabilities of parallel pattern

recognition scheme using a more scalable EdgeHGN distributed approach.

5.1.1.2 Application-specific Event Detection Schemes

Application-specific schemes for event detection refer to the area of research

involving development of application middleware for WSN. This middleware

provides enhanced capability and accuracy for event detection using sensor networks.

Several machine learning algorithms have been applied by a number of research

studies, including Fuzzy-ART neural network, multi-layer perceptrons (MLPs), and

Self-Organizing Maps (SOMs). The use of Adaptive Resonance Theory (ART) neural

network for event tracking was introduced by Kulakov and Davcev (2005). In these

research, the use of artificial neural networks (ANNs) in the form of an ART network

has been used as pattern classifier for event detection and classification. The scheme

offers reduction in communication overhead with only cluster labels being sent to the

175

sink, instead of the overall sensory data. However, the implementation of ART neural

network incurs excessive iterative cycle to achieve optimum cluster matches. The

research by Kulakov and Davcev (2005) on ART neural network for event tracking

has also been further researched by Li and Parker (2008) in their study on intruder

detection using a WSN with fuzzy-ART neural networks. Self-organisation for event

detection has also been a major focus in application specific research within WSN

networks. Catterall et. al., (2003) propose a concept of distributed event classification

through the use of Kohonen self-organising map (SOM) approach (Kohonen, 2000).

The occurrence of events, which are signified by changes in sensor parameter values,

could be mapped into clusters representation. The proposed scheme however,

imposes significant iterative learning procedure and the classification process is

carried out on each input unit, rather than collective input units.

5.1.1.3 Distributed Pattern Recognition Scheme within WSN

It should be noted that, any algorithm that may entail computations, communications,

and storage resources within a sensor node would lead to a rapid exhaustion of the

limited battery power available per node. This implies the simple fact that the data

processing and communication must be minimal in order to conserve limited energy

and computational resources of sensors (Khan & Muhamad Amin, 2009). To address

this concern, system designers must be able to come up with a well-managed setup

for WSN deployment that includes principles such as data-centric processing

approach, localised algorithms and lightweight middleware. Current schemes

deployed for event detection in WSN commonly involves a centralised processing

phase at the sink or base station. Efforts to reduce the tendency for this singular

processing stage base have been shown in both performance and application-specific

research works. However, a complete decentralisation strategy has yet to be realised.

This new scheme should solve the existing issues of complex learning algorithms and

tightly-coupled techniques that are currently being deployed for event detection.

 In the following sections, a new design for event detection in WSN is introduced

and discussed that incorporates the above discussed principles for highly-scalable

176

sensor networks. This chapter proposes a holistic solution for event detection in

WSN. The proposed scheme incorporates a distributed pattern recognition approach

within WSN network and provides on-site and localised computation. The remaining

of this chapter details the implementation of EdgeHGN single-cycle learning

distributed pattern recognition algorithm. Within this scheme, a dimensionality

reduction approach has been employed for minimising the need for complex

computations. The proposed scheme is also capable of providing scalable detection,

enabling allowance for the outgrowth of event classes. Details of the EdgeHGN

distributed pattern recognition scheme can be further referred to as in Chapter 3.

5.2 Integrated EdgeHGN-WSN Processing Scheme

Using distributed nature and lightweight features of EdgeHGN, an event detection

scheme for WSN network is able to be carried out at the sensor node level. In fact, it

acts as a front-end middleware that could be deployed within each sensor nodes in the

network, building a network of event detectors. As a result, our proposed scheme

minimises the processing load at the base station and provides near real-time

detection capability. Preliminary work on EdgeHGN integration for WSN has been

conducted in (Basirat & Khan, 2013). In a fully distributed EdgeHGN configuration,

a collection of sensor nodes collaborate and form an EdgeHGN subnet to perform

event detection based on the sensory readings obtained from the environment (See

Figure 5.1). Note that the SI module will be implemented in a controlling node, such

as the base station, or a super-node. The EdgeHGN subnet module is located within

each WSN subnet that is located in a specific sensory region. The event classification

process (evaluation of event/non-event signals) in the EdgeHGN event detection

scheme is a dual-layer process. The first layer focuses on the sub-pattern recognition

in the EdgeHGN subnet, whereas the second layer involves pattern classification

using a voting scheme that is conducted by the SI module. Sub-pattern recognition is

the process of determining the recall/store status of an input sub-pattern that is

conducted in EdgeHGN subnets.

177

Figure 5.1: EdgeHGN distributed event detection framework

 The output of this process is either a recalled index of the stored sub-pattern or a

new index for the input sub-pattern. This index is sent to the SI module for pattern

classification. Note that the EdgeHGN considers an event as a pattern that represents

a state of normality or abnormality for the entire sensory network. For complex event

detection (multiple sensory schemes), each EdgeHGN subnet is mapped to a sensor

node using a clustered configuration. We examine the deployment of the WSN in a

two-dimensional plane with 𝒏 sensors, represented by a set 𝓢 = (𝓢1, 𝓢2, ... 𝓢𝑛), where

𝓢𝓲 denotes the 𝓲th sensor. The sensors are uniformly placed in a grid-like area, Α =

(𝔁 ∗ 𝒚), where 𝔁 represents the x-axis coordinate of the grid area, and 𝒚 represents

the y-axis. Each sensor node is assigned to a specific grid area (See Figure 5.2). The

location of each sensor node is represented by the coordinates of its grid area (𝔁𝓲 ,

𝒚𝓲). For the communication model, a single-hop mechanism for data transmission

from the sensor node to the sink is proposed. The “auto-send” approach is also used

to minimise errors associated with the loss of packets during data transmission (Saha

& Bajcsy, 2003). Communication between the sink and the sensor nodes is performed

using a broadcast method. It should be noted that due to the front-end processing

approach, the proposed scheme does not involve massive transmissions of sensory

readings to the sink.

178

Figure 5.2: Sensor node placement in a Cartesian grid where

each node is allocated to a specific grid area

5.2.1 Dimensionality Reduction in Sensory Data

Event detection usually involves the process of recognising significant changes or

abnormalities in sensory readings. In heterogeneous sensor networks, sensory

readings are of different types and values, e.g., temperature, light intensity and

pressure. For the EdgeHGN implementation, the input sensory data must be first pre-

processed and translated into a proper format while maintaining the integrity and

accuracy of the readings. For this purpose, in our EdgeHGN implementation and to

perform dimensionality reduction, adaptive threshold binary signature scheme is used

to produce standardised format for the input pattern from various sensory readings.

The binary signature is a condensed representation of various types of data with

different values in a binary format (Nascimento & Chitkara, 2002). Given a set of 𝒏

sensory readings 𝓢 = (𝓢1, 𝓢2, ... 𝓢𝑛), each reading 𝓢𝓲 would have its own set of К

threshold values Т(𝓢𝓲) = (Т1, Т2, ..., ТК), showing different levels of acceptance.

These values could also represent acceptable value range for the input. The following

steps show how the adaptive threshold binary signature method is being

implemented:

179

i. Each sensor reading 𝓢𝓲 is first discretised into ϳ binary bins (𝓑𝓲 = 𝒃𝟏
𝓲 𝒃𝟐

𝓲 … 𝒃𝒋
𝒊)

of equal or varying capacities. The number of bins used for each data is

determined by the number of threshold values Т(𝓢𝓲). In fact, 𝓑𝓲 is used to

signify the presence of data that is either equivalent to the threshold value or

within a range of the specified Т𝓲 values using a binary representation.

ii. Each bin would correspond to each of the threshold values. Consider a simple

data as shown in Table 5.1. If the temperature reading is between the range

40-45 degrees Celsius, the third bin would be activated. Thus, a signature for

this reading would be 00100.

iii. The final format of the binary signature for all sensory readings could be

represented as a list of binary values that correspond to a specific data value,

in the form of 𝓢 = 𝒃𝟏
𝟏 𝒃𝟐

𝟏 𝒃𝟏
𝟐 𝒃𝟐

𝟐 … 𝒃 𝐣
𝐧, where 𝒃 𝐣

𝐤 represents the binary bin for

Κth sensory reading and ϳth threshold value.

Table 5.1: Temperature readings example with their respective binary signature

Temperature Threshold Range (◦C) Binary Signature

0 – 20 10000

21 – 40 01000

41 – 60 00100

61 – 80 00010

81 – 100 00001

5.2.2 EdgeHGN Event Classification

The EdgeHGN distributed event detection method conducts a bottom-up

classification approach, in which the classification of events is determined from the

sensory readings obtained through the WSN. The approach first pre-processes the

input patterns and implements dimensionality reduction technique using the adaptive

threshold binary signature method. These input patterns are propagated to all

available EdgeHGN subnets for performing recognition and classification tasks. The

recognition process involves determining differences between the input patterns and

180

the previously stored ones. While similar patterns will be recalled by the EdgeHGN

network, any dissimilar pattern will trigger a response for further analysis. This

scheme uses the supervised single-cycle learning approach in EdgeHGN processing

algorithm to perform event classification based on the previously stored patterns. It

should be noted that the stored patterns in our proposed model include a set of

ordinary events that are transformed into regular surrounding/environmental

conditions. These patterns are determined from the analysis conducted at the base

station and is based on the continuous feedback from the sensor nodes. The event

classification approach using the EdgeHGN incorporates twos levels of recognition:

the front-end recognition and the back-end recognition. EdgeHGN Front-end

recognition is the process of pattern matching that determines if the sensory readings

retrieved from the sensor network indicate an abnormal reading or a normal

surrounding condition. On the other hand, the spatial occurrence detection is

performed as part of the back-end recognition phase where signals (patterns) sent by

sensor nodes are processed for classifying event occurrences in a particular area or

location.

5.2.2.1 Pattern Matching at Sensor Level

The determination of abnormal events is conducted by deploying a pattern matching

approach. Sensory readings are represented as patterns and any significant changes in

the structure of normal patterns are of interest and should be classified as events or

critical events that must be reported back to the sink (or other master node). By

having a clustered EdgeHGN network configuration, each sensor node in the network

can be mapped with a particular EdgeHGN subnet. In this network setup, Each

EdgeHGN subnet is capable of accepting a number of different sensory readings as a

single input sub-pattern. The following algorithm (algorithm 5.1) shows our proposed

pattern matching method for event classification at the sensor level. In this scheme,

the output of the pattern matching process is a signal that alerts the SI module of the

detection/occurrence of a new event. The base station will respond by conducting a

spatio-temporal analysis on the readings obtained.

181

Algorithm 5.1: Pattern Matching Algorithm at the Sensor Level

(1) given 𝒏 sensory readings for time 𝒕: 𝓢𝓽 = (𝓢1, 𝓢2, ... 𝓢𝑛)

 convert 𝓢𝓽 to a binary signature 𝓑𝓽. Therefore, ⨍(𝒃𝒊𝒏𝒔𝒊𝒈): 𝓢𝓽 ↦ 𝓑𝓽

(3) 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 𝐹𝐴𝐿𝑆𝐸

(4) 𝑒𝑣𝑒𝑛𝑡𝐴𝑙𝑒𝑟𝑡. 𝑆𝑒𝑛𝑠𝑜𝑟 = 𝐹𝐴𝐿𝑆𝐸

(5) 𝑟𝑒𝑝𝑒𝑎𝑡

 𝑓𝑜𝑟 𝑖 = 0 to 𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 do

 {check for matched sensory reading sub-patterns in sensor data}

 𝑖𝑓 𝑛𝑒𝑤.𝓑𝓽 = 𝓢[𝑖]. 𝑆𝑒𝑛𝑠𝑜𝑟 then

 {𝑛𝑒𝑤.𝓑𝓽 : new readings, matching process conducted using

EdgeHGN}

 𝑒𝑥𝑖𝑡 𝑓𝑜𝑟

 𝑒𝑙𝑠𝑒

 𝓢[𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 + 1]. 𝑒𝑣𝑒𝑛𝑡𝐴𝑙𝑒𝑟𝑡. 𝑆𝑒𝑛𝑠𝑜𝑟 = 𝑛𝑒𝑤.𝓑𝓽

 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 𝑇𝑅𝑈𝐸

 𝑒𝑣𝑒𝑛𝑡𝐴𝑙𝑒𝑟𝑡. 𝑆𝑒𝑛𝑠𝑜𝑟 = 𝑇𝑅𝑈𝐸

 𝑒𝑛𝑑 𝑖𝑓

 𝑒𝑛𝑑 𝑓𝑜𝑟

 𝑢𝑛𝑡𝑖𝑙 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 𝑇𝑅𝑈𝐸

(6) send 𝑒𝑣𝑒𝑛𝑡𝐴𝑙𝑒𝑟𝑡. 𝑆𝑒𝑛𝑠𝑜𝑟 and 𝓢[𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 + 1]. 𝑆𝑒𝑛𝑠𝑜𝑟 to SI module

 function at base station

(7) 𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 = 𝑀𝐴𝑋𝑅𝐸𝐴𝐷𝐼𝑁𝐺𝑆 + 1

5.2.2.2 EdgeHGN Classification Approach

The pattern matching process within EdgeHGN approach is a dual-layer process. The

first layer focuses on the sub-pattern recognition at EdgeHGN subnets, while the

second layer involves pattern matching using a voting scheme that is performed by

the SI Module. Sub-pattern recognition at EdgeHGN subnets is the process of

determining the recall/store status of an input sub-pattern. The result of this process is

either a recalled index of the previously stored sub-pattern or a new index generated

for the respective input sub-pattern. The results of sub-pattern recognition phase are

then sent out to the SI module for implementing pattern classification. Each of the

sub-pattern indexes received from EdgeHGN subnets is proceeded and the result of

this analysis process are recorded in the form of class labels. It is worth noting that

182

for supervised classification, the number of class label is fixed, while in unsupervised

classification, this number can be incremented. The proposed approach only needs

binary input patterns and accepts multiple sensory readings that are used to detect the

occurrence of critical events. Given a set of 𝒏 sensory readings 𝓢 = (𝓢1, 𝓢2, ... 𝓢𝑛), a

dimensionality-reduction technique such as binary threshold-signature is used to

convert each reading value to its respective binary signature. The threshold binary

signature method utilises threshold classes to translate a single data range into a

binary format. Given a sensory reading 𝓢𝓲 where 𝓲 = 1, 2, ... 𝒏 and with К -threshold

class, the equivalent binary signature that implies 𝓑𝓲 → 𝓢𝓲 is in the form of 𝓑𝓲 ∈ {0,

1}К. Hence, 𝒏-set sensory readings 𝓢 = (𝓢1, 𝓢2, ... 𝓢𝑛) will be converted into a set of

binary signatures (𝓑1, 𝓑2, ..., 𝓑𝑛). If the output index from EdgeHGN subnet matches

the previously stored pattern for the critical event, then a signal is sent to the base

station in the form of a data packet represented by (node_id, timestamp, class_id).

The class_id parameter stands for the class identification of the event that has been

detected by the scheme.

5.3 EdgeHGN-WSN Performance Evaluation

The analysis of EdgeHGN distributed event classification scheme is performed by

using a simulation approach. The sensory data taken from the research by Catterall et.

al., (2003) have been used to evaluate the performance of our proposed classifier. The

test data includes three Smart-It wireless sensor node readings that for various

environmental conditions such as light (Smart-It 1), temperature (Smart-It 2) and

pressure (Smart-It 3). The first recognition test is performed over Smart-It 1 sensory

reading that represented light. The test involves assigning an EdgeHGN subnet to

each Smart-It sensor dataset. EdgeHGN retrieves sensory readings in the form of

binary representation using the discussed threshold-signature technique. Figure (5.3)

shows the results of the recognition test conducted on light sensor dataset Smart-It 1

for 1800 sensory datasets. As it is clearly shown, EdgeHGN is capable of detecting

light event occurrences with remarkable accuracy.

183

Figure 5.3: EdgeHGN event detection result for a test using 1800 light sensor

datasets (Smart-It 1) (x-axis) with a threshold of 100 (Basirat & Khan, 2013)

 For performance benchmarking, similar experiments are conducted using support

vector machine (SVM) and self-organizing map (SOM). For this comparison test,

SVMLight implementation (Joachims, 2008) with both linear-type and 2-degree

polynomial kernel and SOM Toolbox with default configuration (Vesanto, et. al.,

2010) are used. For the purpose of this exercise, we have calculated precision, recall,

accuracy and error value parameters as a comparative basis for the classification

process. Table 5.2 shows how each of these parameters are defined and represented.

Table 5.2: Recognition parameters with their respective definitions

 Recognition Parameters Definitions

Precision
True Positive

True Positive+False Positive

 Recall
True Positive

True Positive+False Negative

 Accuracy
True Positive+True Negative

True Positive+True Negative+False Positive+False Negative

 Error Value
False Positive+False Negative

Total Number of Test Objects

184

 In this experiment, SVM and SOM classifiers use a set of six readings in their

training set, while EdgeHGN only uses datasets with two entries. For both SVM

classifiers (linear SVM and poly-2 SVM), six support vectors have been initialized

and implemented for classification purposes. Table 5.3 shows the results of the

recognition test performed on Smart-It 1, 2, 3 datasets using different performance

parameters for sensory data. The value of the best result (selected feature) for each

parameter is underlined. From the results obtained, EdgeHGN shows high recognition

accuracy with very low error value and very high recall rate. Both SVM and SOM

classifiers have also demonstrated reasonably high precision and accuracy. However,

their recall value is comparatively low when compared against EdgeHGN. This low

recall value is mainly due to the low true positive values obtained during the

classification process. In addition, both schemes produce higher error values.

Table 5.3: Comparative analysis on recognition accuracy parameters between

EdgeHGN and other classifiers for event recognition using three sensory data

obtained from Catterall et al. (2003) (Smart-It 1, Smart-It 2, and Smart-It 3).

Smart-It Classifier Precision Recall Accuracy Error

1

EdgeHGN 1.0000 0.8851 0.9973 0.0023

Linear SVM 0.9375 0.7419 0.9888 0.0112

Poly-2 SVM 1.0000 0.7538 0.9905 0.0095

SOM 1.0000 0.8367 0.9953 0.0047

2

EdgeHGN 0.9486 0.7825 0.9652 0.0011

Linear SVM 0.9268 0.7218 0.9475 0.0198

Poly-2 SVM 0.9430 0.7082 0.9528 0.0189

SOM 0.9392 0.6852 0.9564 0.0148

3

EdgeHGN 0.9388 0.8692 0.9750 0.0038

Linear SVM 0.8932 0.8485 0.9442 0.0116

Poly-2 SVM 0.9072 0.7836 0.9644 0.0072

SOM 0.9218 0.8206 0.9672 0.0064

185

Figure 5.4: Comparative analysis on recognition parameters rates between
EdgeHGN and other classifiers for event recognition using three sensory data obtained

from Catterall et. al. (2003) (Smart-It 1, Smart-It 2, and Smart-It 3).

186

 Overall, as shown in Figure 5.4, EdgeHGN scheme offers better recognition

accuracy than the other two algorithms. In regards to the precision value, SOM and

polynomial SVM also exhibit rather similar performances for Smart-It 1 and Smart-It

2. However, for Smart-It 3 SOM precision rate outperforms polynomial SVM. The

polynomial SVM however produces slightly better results than the linear approach

(for Smart-It 1, Smart-It 2 and Smart-It 3). This shows that SVM scheme

performance is heavily reliant on the type of kernel that is being implemented (either

linear or polynomial) as well as the nature of data being used. This data dependency

problem restricts the flexibility of SVM approach for event classification in WSN.

Although SOM shows better overall performance when compared with SVM, but its

iterative algorithm is resource intensive and hence not practically feasible to be

deployed in the resource-constrained wireless sensor networks. EdgeHGN on the

other hand, is a lightweight, single-cycle learning algorithm that is shown to offer

high detection accuracy when used in conjunction with a simple threshold binary

signature technique. As part of this experiment, a performance analysis to measure

the recognition time incurred for each sensor dataset is also conducted. The

simulation was implemented using a fully-distributed MPI configuration using

MPICH-2 package under GNU C program. Figure 5.5 shows the recall/store time for

EdgeHGN recognition scheme dealing with three wireless sensor datasets (Smart-It 1,

Smart It 2 & Smart-It 3).

Figure 5.5: EdgeHGN Recognition time for 1800 sensor data (x-axis)

taken from Smart-It 1, Smart It 2 and Smart It 3 datasets.

187

 The recognition scheme only takes up to 6msec (average result of less than 3msec)

for a sensor data to be recalled or memorised. As it is shown in the figure, the

average recall time for each sensor data remains highly consistent for the entire

sensor data collection that makes this approach a suitable candidate for applications

involving large amount of data. The performance results also indicate a potential for

real-time pattern recognition schemes within resource-constrained WSNs.

5.3.1 EdgeHGN-WSN Memory Utilization

Memory utilisation estimation for the EdgeHGN algorithm is calculated by

performing an analysis of the bias array capacity for all of the GNs in the distributed

architecture setup as well as the storage capacity of the SI module node. A detailed

analysis of the bias array capacity for EdgeHGN algorithm was previously discussed

in Chapter 3 (section 3.6.2.1). As concluded from that analysis and considering that

EdgeHGN only uses memory to store newly discovered patterns rather than storing

all input patterns, the storage/recall mechanism of EdgeHGN offers efficient memory

utilisation. Figure 5.6 shows the estimated maximum memory usage for EdgeHGN

when processing different pattern sizes and it compares that estimated value with the

maximum memory size of a typical Berkeley Mica Mote senor node (128KB Flash

and 4KB RAM).

Figure 5.6: Maximum memory consumption for each EdgeHGN subnet for different

pattern sizes. EdgeHGN uses minimum memory space with small pattern size

188

 The EdgeHGN memory capacity estimation shown in Figure 5.6 is derived from

equations (3.30) to (3.37) in Chapter 3. As the size of input sub-pattern increases for

more than 13 bits, the requirement for memory space increases significantly. It is

worth noting that small sub-pattern sizes (sub-pattern sizes of 9 bits or smaller) only

consume less than 10% of the total memory space available. Hence, EdgeHGN

scheme for WSN is best suited for processing inputs with small sub-pattern sizes.

5.4 Conclusions

The proposed use of EdgeHGN for event detection in WSN, outlines a new type of

the WSN that detects macroscopic events by collating diverse sensor data, locally and

in real-time, into meaningful patterns. As such, the research in this chapter performed

a detailed study on EdgeHGN pattern recognition for event detection within WSN.

The performance of EdgeHGN recognition approach in WSN was evaluated and

benchmarked against SVM (linear and poly-2) and SOM in relation to its precision,

recall, accuracy and error rates. From performance results, EdgeHGN shows high

recognition accuracy with very low error value and very high recall rate which

demonstrates the capabilities of EdgeHGN to implement a light-weight distributed

event detection scheme within a resource-constrained network such as WSN.

Furthermore, EdgeHGN approach offers very low memory consumption for event

data storage mainly due to its simple bias array representation. This memory

efficiency is best achieved when dealing with small input sub-pattern sizes, as

EdgeHGN utilises only a small portion of the memory space in a typical physical

sensor node in WSN network. The distributed nature of the scheme also lowers

storage capacity requirements per node. In addition to this efficient memory usage,

EdgeHGN reduces complexity of the WSN by eliminating the need for complex

computations for event classification which increases its potential for wide-spread

use. By adopting single-cycle learning and using adjacency comparison method,

EdgeHGN offers a non-iterative and light-weight computational framework for event

recognition and classification. EdgeHGN is a distributed computational model in

nature and hence it can be readily deployed over a distributed network setup such as

189

WSN to provide an effective front-end recognition scheme for event detection within

a WSN network.

 Despite all the benefits that EdgeHGN offers, the scheme also suffers from certain

limitations. EdgeHGN in its current form uses a simple data representation and for

this matter the approach requires significant pre-processing to be conducted at the

front-end system. This may not practically feasible for strictly resource-constrained

sensor networks, where computing resources are very limited. Furthermore,

EdgeHGN single-hop communication model may not suit WSN networks which

cover a large geographical area or areas which are error prone due to potentially high

packet loss rate during transmission phase. The current EdgeHGN implementation is

also more focused on supervised classification while there is certainly a need for

unsupervised classification for addressing requirements of rapid event detection.

Addressing these limitations can all be the path for future research (i.e. providing

unsupervised classification or utilising a multi-hop communication strategy).

190

This Page Intentionally Left Blank

191

Chapter 6

Case Study: Applying EdgeHGN based

MapReduce Approach to Real World

Big Data Processing Scenarios

Transforming big data into valuable information requires a fundamental rethink of

how future data management models will need to be developed on the Internet. The

efficiency of the cloud system in dealing with data-intensive applications through

parallel processing essentially lies in how data are partitioned and processing is

divided among nodes. As a result, data access schemes must be able to efficiently

handle this partitioning automatically and support the collaboration of nodes in a

reliable manner. This automatic data partitioning is what was previously known as

domain decomposition problem, where data was divided on the basis of either

geometrical or algorithmic considerations (Toselli & Widlund, 2005). Geometric

considerations were efficient for spatial datasets e.g. finite element meshes (image-

like) and algorithmic considerations were for data being partitioned in such a way that

the computational load was equally divided in terms of equations to be solved (i.e.

complexity). In cloud the consideration is data access rather than CPU parallelism.

However, the fundamental data partitioning considerations remain the same.

192

 In this regard, Google’s MapReduce, was designed for large-scale data processing

in a massively parallel manner that could solve issues involving the parallelisation of

computational processes and data distribution across heterogeneous networks (Dean

& Ghemawat, 2004). The MapReduce implementation also addresses load balancing,

network performance and fault tolerance issues, and it has achieved greater scalability

than parallel databases. However, this comes at a cost; time-consuming analysis and

code customisations are required when dealing with complex data inter-dependencies.

Moreover, existing large-scale data processing schemes such as MapReduce involve

isolating basic operations within an application for data distribution and partitioning.

This excludes their applicability to many applications with complex data dependency

considerations. MapReduce models when used with complex data requirements

generally entail additional difficult and error-prone application-level customisations.

Adding higher and complex data representations within the model will vastly improve

its usability and provide an important – pattern recognition based – data analysis

option. To date, all implementations of MapReduce, including the Hadoop version,

have interpreted data in a relational model. Utilising a single-cycle associative

memory based method, which have so far not been investigated for MapReduce, will

provide means to deliver efficient data processing. In light of the above issues, in

chapter 4 we explored possibilities to evolve a novel processing scheme that could

efficiently partition and distribute data for clouds. In this regards, loosely coupled

associative techniques could be pivotal in effectively partitioning and distributing

data in the clouds. Thus, the aim in this research was to develop a distributed data

access scheme that could enable data access to be conducted effectively by means of

the distributed pattern recognition (DPR) approach.

 To achieve this, a distributed data access scheme referred to as EdgeHGN, is first

developed to circumvent the partitioning issue experienced within referential data

access mechanisms. In this model, data records are treated as patterns and as a result,

data storage and retrieval are performed using a distributed pattern recognition

approach. Furthermore, to reconcile MapReduce with associated memory concepts, in

particular for adaptive and fast data access, an associative-memory-based MapReduce

193

is introduced to elevate the MapReduce key-value scheme to a higher level of

functionality by replacing the purely quantitative key-value pairs with scalable

associative-memory-based data structures that will improve parallel processing of

data with complex relations. By having an associative key-value model, we can deal

with data in any form and in any representation simply by using a pattern-matching

model that treats data records as patterns and provides a distributed data access

scheme that enables data storage and retrieval by association, thereby circumventing

the scaling issue experienced within referential data access mechanisms.

6.1 EdgeHGN based MapReduce – High Level Framework

As discussed in detail in chapter 3, EdgeHGN allows the recognition process to be

conducted in a smaller sub-pattern domain, hence minimising the number of

processing nodes, which in turn reduces the complexity of pattern analysis. In

addition, the recognition process performed using the EdgeHGN algorithms is unique

in a way that each subnet is only responsible for memorising a portion of the pattern

(rather than the entire pattern). A collection of these subnets is able to form a

distributed memory structure for the entire pattern. This feature enables recognition to

be performed in parallel and independently. The decoupled nature of the sub-domains

is the key feature that brings scalability to our data management approach for the

cloud. Moreover, EdgeHGN provides a capability for a recognition process to be

deployed as a composition of sub-processes executed in parallel across a distributed

network. Sub-processes execute mutually independently which makes this approach

less cohesive compared to other pattern recognition schemes.

 In chapter 4, we demonstrated that the effectiveness of MapReduce parallelism as

a scalable scheme for data processing in the cloud can be improved by transforming

the data-processing operation into a single-cycle distributed pattern matching

approach in which distributed computations are performed in-network, thereby

enabling data storage and retrieval by association rather than deploying a referential

data access mechanism. In this context, processing the database and handling the

dynamic load could be performed using a distributed pattern recognition approach. In

194

EdgeHGN_MR approach, the principle of associative-memory-based learning is

implemented through the use of connected layers in a hierarchical fashion; with local

feature learning happening at the lowest layer while features are combined to form

higher representations at upper layers. This approach envisages data retrieval being

implemented as a distributed pattern recognition process that is implemented through

the integration of associative memory based computational networks. In a high-level

EdgeHGN_MR design framework, the map function takes EdgeHGN subnets as the

key and the object itself as the value, performs sub-pattern matching, calculates the

bias index and emits a set of intermediate key-value pairs as output. Intermediate

keys are EdgeHGN subnets and intermediate values are GN bias arrays, holding store

or recall decisions for each subnet. It is worth noting that all map functions can be run

and implemented in parallel. The class reducer then works on EdgeHGN subnets as

keys and intermediate GN bias associative arrays as values, calculates the final

decision and then emits the final store or recall decision. Algorithm 6.1 shows a high-

level framework for our proposed EdgeHGN_MR scheme. A practical way to test the

usefulness of our approach is to apply the EdgeHGN_MR processing scheme to real-

world big data processing problems. For this reason, in the remaining sections of this

chapter, we present the results of a 6-month AMSI internship project conducted at a

major pharmaceutical company to showcase a study on the adoption of

EdgeHGN_MR distributed data processing scheme for analysing large-scale

environmental monitoring data and IT service management data.

 The remaining part of this chapter has been structured as follows. Section 6.2

discusses the overall setup and design model for our case study. Section 6.3 presents

the results of processing merged Solarwinds datasets using MapReduce scheme.

Section 6.4 discusses the results of analysing ITSM data using MapReduce approach.

Section 6.5 shows the results of pattern matching between ITSM and Solarwinds

datasets utilising EdgeHGN_MR algorithm and finally section 6.6 concludes this

chapter by offering some comparative performance benchmarking results between

MR and EdgeHGN_MR implementations.

195

Algorithm 6.1: EdgeHGN based MapReduce – High level framework

Class Mapper

 method Map(EdgeHGNSubnet 𝓢 , Obj 𝓞)

 BAA  new GN Bias Associative Array

 for all term Ʈ ∈ EdgeHGNSubnet 𝓢 do

 Calculate Adjacency Comparison Function (algorithm 3.3)

 Calculate Bias Index (algorithm 3.4)

 Update BAA

 Emit(EdgeHGNSubnet 𝓢 , BiasAssociativeArray BAA)

Class Reducer

 method Reduce(EdgeHGNSubnet 𝓢 , BiasAssociativeArray BAA)

 for all 𝑏 ∈ BiasAssociativeArray [𝑏𝟣, 𝑏𝟤, . . .] do

 Calculate SI Module function (algorithm 3.1)

 Calculate Voting function (algorithm 3.2)

 Calculate result  Store/Recall

 Emit (Obj 𝓞, Boolean result)

6.2 Case Study: Solarwinds and ITSM Big Data Processing

using MapReduce and EdgeHGN based MapReduce

Data alignment in a high-tech complex environment is critical for the productivity

and profitability. The case study project work was conducted at a high-tech

pharmaceutical company in Melbourne with data being produced at each step of the

process, but in disparate systems where data in scope is of excessive size and joining

the dots across all the data sources is critical for success. The company senior

leadership was striving to improve productivity by readily converting the data into

information. The success of the project had to be measured on the actionable insights.

Participating in this real world large data analysis could also help management team

196

to learn from their data and make informed decisions to deliver tangible results. In

summary, the purpose of the research project was to develop proof points allowing to:

 Perform some sort of data processing and data alignment to uncover hidden

patterns, unknown correlations and other usefull information that could be used to

make better decisions, improve monitoring and increase efficiency.

 Trend environmental monitoring data (Solarwinds) against IT service

management data (ITSM) to find correlations between the two to aid engineering

team take a pro-active approach and minimise production failures.

 Solarwinds offers infrastructure management software to monitor various

components like network performance, application performance and database

performance, storage and disk performance. IT service management data or ITSM

data on the other hand mostly captures requests, problems and incidents reported

mainly by end users or clients. It is mainly a manual data capture process but in some

cases automated tickets can be raised as the result of Solarwinds alerts. To perform

data analysis, both MapReduce and EdgeHGN based MapReduce implementations

are setup within a Hadoop based framework to evaluate their respective performance

when dealing with ITSM and Solarwinds dataset examples. Table 6.1 lists

characteristics of the given database snapshots for ITSM and Solarwinds for this data

processing exercise.

 Table 6.1: ITSM and Solarwinds data snapshots for data processing exercise

Data Sources

Solarwinds: Production environment monitoring data

ITSM: Production incident/request data

Data Volume

ITSM: 116 MB

Solarwinds: 382 MB

History

35 days (08/02/2015 to 11/03/2015)

197

 The experimental Hadoop cluster was configured with four DataNodes and one

NameNode. The NameNode machine acts as both JobTracker and NameNode while

each of the four DataNodes act as both TaskTracker and DataNode. The Hadoop

cluster configuration details are listed in Table 6.2.

Table 6.2: Hadoop 4-node cluster details for implementing MR and EdgeHGN_MR

NameNode

apaubmwapp12

172.21.92.38

4 Virtual CPU (VP)

Memory: 8GB, SSD: 1.5TB

OS: SUSE Linux 11

4 DataNodes

apaubmwapp13/14/15/16

172.21.92.39/172.21.92.40/172.21.92.41/172.21.92.42

4 Virtual CPU (VP)

Memory: 8GB, SSD: 1.5TB

OS: SUSE Linux 11

Network bandwidth 1Gbps

Hadoop version 2.5.2, 64 bits

Java Version OpenJDK 1.6

JVM Heap Size 16GB

6.2.1 Solarwinds and ITSM Data Correlation Design Model

The end goal of this project was to perform data analysis on ITSM and Solarwinds

datasets in isolation and in conjunction to find correlations and common patterns. As

Solarwinds monitoring data was captured and stored across a few separate database

tables, merging and linking relevant data from different sources could provide us with

meaningful insights. Moreover, searching for common patterns and finding

correlations between ITSM and Solarwinds data could provide monitoring team with

meaningful insights that were not achievable before due to their lack of proper big

data processing tools in place. To perform this data correlation exercise between

ITSM and Solarwinds data we could search for some shared keys or similar patterns.

To perform this task, one of the possibilities was to do some sort of text analysis on

free-text entry fields in ITSM data logs. In fact, for ITSM data we had a few free-text

entry fields like subject and incident summary that users could use to put their

198

comments in. By writing some simple text-mining scripts we could extract some

unique identifiers like object names to correlate ITSM and Solarwinds data using

them utilizing MapReduce (MR) and EdgeHGN based MapReduce (EdgeHGN_MR)

schemes. Figure 6.1 illustrates the SPSS modelling process of extracting such unique

identifiers (patterns) from ITSM data and searching for those patterns within

Solarwinds data using MR and EdgeHGN_MR approaches. It should be noted that

Solarwinds alert log database identifies each alert with an AlertDefID tag, but does

not explicitly identify the Object Type/Object Name that each alert belongs to. To

solve this issue as shown in Figure 6.1, a reference table was created by extracting the

AlertDefID from the AlertLog, AlertStatus and AlertDefinition tables to have a

complete view of all Solarwinds alert data entries.

Figure 6.1: SPSS modelling process of linking ITSM and Solarwinds

using EdgeHGN_MR scheme

 In the next step, distinct identifiers are extracted for the Solarwinds object name

data fields and EdgeHGN network is trained using those identifiers. Unique

identifiers are also extracted from ITSM free-text entry fields (subject and incident

summary) where these identifiers are used by EdgeHGN_MR approach to search

through Solarwinds datasets to find possible correlations between ITSM and

Solarwinds data. Figure 6.2 illustrates an architectural overview of the project setup.

ITSM and Solarwinds data are extracted from relevant databases and fed into Hadoop

distributed file system (HDFS) using scoop database connectivity technology. Scoop

is simply a tool designed for efficiently transferring bulk data between Apache

199

Hadoop and structured data stores such as relational databases to enable MapReduce

functions. To build and develop MapReduce functions we also use Apache Hive

which gives us required tools for doing query and analysis on top of HDFS. Apache

Hive is the preferred choice here because it provides HiveQL, a SQL-like query

language that we can utilise to convert queries to Map and Reduce.

Figure 6.2: Architectural overview of ITSM

and Solarwinds data correlation project

6.3 ITSM & Solarwinds Data Correlation Using

EdgeHGN_MR

In this section, the data analysis results of pattern matching between Solarwinds and

ITSM datasets using both MR and EdgeHGN_MR schemes are presented. For this

particular exercise, we look at Solarwinds alerts from 8th of February to 11th of March

2015 which are just a snapshot of Solarwinds data stored in the database. We have

about 20 thousand alerts generated for that 35-day period. We also look at ITSM

requests/incidents for the same period of time to perform data correlation task

200

between the two. We have about 5110 incident/request tickets raised for that 35-day

period. It should be noted that each ITSM ticket has 19 entry fields (IncidentNumber,

CreatedDateTime, CreatedBy, Department, IsVIP, LastModBy, LastModDateTime,

OwnerDisplay, OwnerTeam, Priority, Category, Service, ProfileFullName, Source,

Status, Subject, IncidentSite, ResolvedBy, and resolution) from which “subject” and

“resolution” fields are free-text entry forms that users of the system can utilise to put

their comments in. In summary, the following steps are followed to perform ITSM

and Solarwinds data correlation:

i. Cleansing and pre-processing ITSM and Solarwinds data to remove outliers

(observation points that are distant from other observations).

ii. ITSM and Solarwinds data ingestion and integration into Hadoop platform

(HDFS) using scoop database connectivity technology.

iii. Creating a merged dataset of Solarwinds alerts from AlertLog, AlertStatus and

AlertDefinition datasets using AlertDefID tag value.

iv. Developing simple text mining extractor scripts to find unique identifiers in the

free-text entry fields of ITSM data (subject and incident summary).

v. Initializing eight Mapper functions where each Mapper constructs an EdgeHGN

subnet.

vi. Training EdgeHGN network with those unique identifiers extracted from ITSM

datasets.

vii. Input data (merged Solarwinds dataset) is split among eight data chunks so that

later they can be processed by Mapper functions in parallel where each Mapper

constructs the same EdgeHGN classifier using similar set of training data.

viii. Each Mapper inputs a subset of Solarwinds testing instances. When the network

starts performing recognition test, each Mapper starts classifying only a subset of

the entire testing dataset. This approach improves efficiency through parallelism.

ix. Upon completion of all Mapper tasks, the Reducer starts processing and merging

all the outputs of Mappers using the same key (calculating the output for each

unique identifier) and writing the result back into HDFS.

201

 Algorithm (6.2) depicts the pseudo-code for EdgeHGN_MR scheme and Figure

(6.3) shows the architecture of EdgeHGN_MR approach used in this experiment.

Algorithm 6.2: EdgeHGN_MR scheme for implementing pattern matching between

ITSM & Solarwinds

Input: Solarwinds Dataset (Ʈ) Output: Pattern matching result (AA)

(1) eight Mappers and one Reducer, each Mapper constructs an EdgeHGN subnet

(2) Train EdgeHGN network with unique identifiers from ITSM data

(3) Divide Ʈ into {𝓽𝟭, 𝓽𝟮, 𝓽𝟯 . . . 𝓽8 } , ⋃ 𝓲=𝟏
𝟖 𝓽𝓲 = Ʈ

(4) Each Mapper builds an EdgeHGN subnet and inputs 𝓽𝓲 where 𝓽𝓲 ∈ Ʈ

 BAA  new Boolean Associative Array

 For all term 𝓽𝓲 ∈ Ʈ do

 Calculate Adjacency Comparison Function (algorithm 3.3)

 Calculate Bias Index (algorithm 3.4) & Update BAA𝓲

(5) Mapper outputs (, BAA𝓲)

(6) Reducer collects and merges all (, BAA𝓲)

 For all term BAA (𝓲 = 1, …8) do

 Calculate SI Module function (algorithm 3.1)

 Calculate Voting function (algorithm 3.2)

 Calculate AA  Store/Recall

(7) Repeat (3), (4) and (5) until Ʈ is traversed and all testing data are processed

(8) Reducer outputs (AA) and writes it back into HDFS

 By implementing this approach, we could identify 206 tickets in ITSM as the

result of Solarwinds alerts (See Figure 6.4). However, due to the poor data quality for

ITSM, there is a good chance that we have more tickets in ITSM system due to

Solarwinds alerts.

202

Figure 6.3: EdgeHGN_MR architecture for pattern matching

between ITSM and Solarwinds datasets

Figure 6.4: ITSM tickets raised due to Solarwinds alerts

203

 Figure 6.5 shows that out of 206 ITSM tickets raised due to Solarwinds alerts,

53% have their service listed as data management.

Figure 6.5: Service field for ITSM tickets raised due to Solarwinds alerts

 Figure 6.6 illustrates the main causes of alert. As shown in this figure, almost 43%

of alerts are due to high disk I/O latency. The second most common cause of alerts is

Node down alert. It can be safely assumed that some of these node down alerts are

happening during a maintenance window where for instance a server goes down due

to a scheduled change but for some reason Solarwinds alerts are not properly blacked

out, hence there is some opportunity to reduce noise for improvement here.

Figure 6.6: Main causes of Solarwinds alerts

204

 Figure 6.7 shows average distribution of Solarwinds alerts during day. This graph

is interesting as it shows most number of alerts are generated around 1pm (2057 alerts

over that 35-day period) and almost 10% around mid-day. The other interesting

observation here is that 7% of alerts are generated around 11pm which is normally

due to weekly bounces or scheduled changes.

Figure 6.7: Average distribution of Solarwinds alerts during day

6.4 Data Correlation Results

Table 6.3 illustrates the processing time of performing data correlation between

ITSM and Solarwinds datasets using both MR and EdgeHGN_MR schemes. The

version of 4-node Hadoop cluster implementation was 2.5.2 at the time of conducting

this test (see Table 6.2).

Table 6.3. ITSM & Solarwinds data processing time using MR & EdgeHGN_MR

Solarwinds (MB) MR

EdgeHGN_MR

50MB 18 secs 16 secs

100MB 31 secs 26 secs

200MB 55 secs 48 secs

300MB 81 sec 72 secs

382MB 103 secs 92 secs

205

 As shown in Figure 6.8, EdgeHGN_MR outperforms MR for both small and large

data volumes. In fact, processing small data with MR operation is undesirable

because the time it takes to collect distributed data during a Reduce operation within

the same processing node outweighs the advantages of distributing data between Map

functions. On the other hand, EdgeHGN_MR works well in dealing with both small to

large size data counts due to its parallel single-cycle learning mechanism where the

size of input data has minimal effect on the time of its single-cycle in-network

processing.

Figure 6.8: Processing time of performing data correlation between ITSM and

Solarwinds datasets using both MR and EdgeHGN_MR schemes

6.5 Conclusion

In this chapter, the results of a 6-month big data AMSI internship project at a major

pharmaceutical company was presented as a case study to evaluate performance of

EdgeHGN_MR when applied to real-world big data processing scenarios. Both MR

and EdgeHGN_MR schemes were utilised to perform data correlation between two

sets of environmental monitoring data and IT service management data. Comparative

results demonstrate the improved response time when using EdgeHGN_MR

approach. Nevertheless, this comparison was not intended for a replacement of

MapReduce with EdgeHGN_MR, but more of comparative indication of

206

EdgeHGN_MR ability for large-scale data processing. EdeHGN_MR online-learning

AM scheme is conceived on the principle that ‘moving computation is much cheaper

than moving data’. Hence, it will provide methods for automatic aggregation and

partitioning of associated data and redefines the reduction phase by forming a

hierarchical adjacency based computing model to produce the final result.

Furthermore, when using EdgeHGN_MR programmers can work at a higher level of

abstraction without having to know the structural details of every data item. This is

due to the fact that EdgeHGN model uses a universal structure for all data types. In

fact, information about the logical structure of the data – metadata – and the rules that

govern it can be stored alongside the data. The approach is not only scalable and

supports single-cycle learning, but it is also generic where large and complex data

sets from a variety of sources and representing diverse pattern recognition

requirements can be analysed in real-time. The scheme thus demonstrates that large-

scale pattern recognition is possible through the distributed processing.

207

Chapter 7

Conclusion

Supporting data intensive applications is an essential requirement for the clouds.

However, dynamic and distributed nature of cloud computing environments makes

data management processes very complicated, especially in the case of real-time data

processing/database updating. With emerging interest to leverage massive amounts of

data available in open sources such as the Web for solving long standing information

retrieval problems, the question as how to effectively incorporate and efficiently

exploit immense data sets is an open one. To cope with today’s intensive data

workloads, initial proposed schemes include distributed databases for update

intensive application workloads and parallel database systems for descriptive and

deep analytics. Although distributed data management has been the vision of the

database research community for a long period of time, but much of this research has

been focussed on designing scalable schemes for intensive workloads in traditional

large-scale data processing settings, and lesser impetus on re-designing the processing

architecture to keep up with big data. While the opportunities for parallelisation and

distribution of data in clouds make storage and retrieval processes very complex,

especially in facing with real-time data processing, the challenge of processing

voluminous data sets in a scalable and cost-efficient manner has rendered traditional

208

database solutions prohibitively expensive. Due to changes in the data access patterns

of applications and necessity to use thousands of compute nodes, major cloud

computing companies have started to integrate frameworks for parallel data

processing in their product portfolio; making it easier for customers to access these

services and to deploy their applications. Thus efficiencies through widespread use of

multi-core CPUs, cost reduction for commodity hardware, enhanced performance,

and higher reliability in use are derived from an architectural paradigm which favours

a massively distributed data processing framework running on a large number of

inexpensive compute nodes. Large data operations such as processing crawled

documents or regenerating a web index are split into several independent subtasks,

distributed among the available nodes, and computed in parallel within the network.

 To simplify the development of distributed applications on top of such highly

distributed architectures, customised data processing frameworks such as MapReduce

are developed and deployed on large clusters of shared-nothing compute nodes rather

than relying on traditional database management systems (DBMSs). Although these

schemes differ in structure, their design concepts share similar objectives, namely

hiding complexity of parallel programming, fault tolerance, and execution

optimisation issues from the developer. In fact, developers can typically proceed with

writing sequential programs and it is the processing framework which takes care of

distributing the program among the available compute nodes and executing each

instance of the program on the appropriate fragment of data set. Nevertheless,

MapReduce have achieved greater scalability than parallel databases at the cost of

avoiding complex transaction support but these still require customisation of the

analysis code. It is also worth noting that in MapReduce computational model, not

only the maximum parallelism of the parallel map phase is limited by the number of

input pairs, but also the parallelism in the reduction phase is also limited by the

number of different output keys of the map phase, which in turn highly depends on

the implemented algorithm and the input data. These limitations require that

MapReduce model is significantly enhanced in a way that preserves the strength of

the model and eliminates these constraints.

209

7.1 Research Summary

Our proposed scheme in this research does so in a well-integrated manner where there

is no outward change in way of its deployment and use. The research conducted in

this thesis has focused on evolving a new type of data processing approach that will

efficiently partition and distribute data for clouds. For this matter, loosely-coupled

associative techniques, not considered so far, can be the key to effectively

partitioning and distributing data in the clouds. Unlike the existing relational

schemes, associative models of data can analyse data in similar ways to which our

brain links information. Such interactions when implemented in voluminous data

clouds can assist in finding overarching relations in large and complex data sets. In

this context our proposal in this research investigated an associative memory model

for use with the MapReduce based search schemes for uncovering new patterns. In

order to achieve this, an initial step taken was to develop a distributed data access

scheme that enables data storage and retrieval by association, and thereby

circumvents the partitioning issue experienced within referential data access

mechanisms. In our proposed scheme, data records are treated as patterns. As a result,

data storage and retrieval can be performed using a distributed pattern recognition

approach that is implemented through the integration of loosely-coupled

computational networks, followed by a divide-and-distribute approach that allows

distribution of these networks within the cloud dynamically. Our proposed approach

is based on a special type of Associative Memory (AM) model, which is readily

implemented within distributed architectures. Hierarchical structures in associative

memory models are of interest as these have been shown to improve the rate of recall

in pattern recognition applications. As we know, existing data access mechanisms for

cloud computing such as MapReduce has proven the viability of parallel access

approach in cloud infrastructure. Thus, our aim in this thesis was to apply an access

scheme that enables data retrieval across multiple records and data segments within a

single-cycle, utilising a parallel approach. It should be noted that a framework that

meets this goal will provide vast improvements to MR model, further reduced costs,

improved functionality, and will extend the application space.

210

To achieve our research objectives in this thesis, the below steps are followed:

 Redesigning data management architecture to treat data records as patterns, and

thus, enabling data storage and retrieval by association over and above the

existing simple data referential mechanisms.

 Processing the database and handling the dynamic load using a distributed pattern

recognition approach that is implemented through the integration of loosely-

coupled computational networks, followed by a divide-and-distribute approach

that allows distribution of these networks within the cloud dynamically.

 Developing a scalable MapReduce framework that allows complex data

representations to be used as keys for Map and Reduce operations; allowing

content-association based data retrieval and storage within cloud.

 Validation of results and finding asymptotical limits of the technique through

rigorous testing.

A summary of the contents of this thesis is as follows:

i. In chapters 1 and 2, a comprehensive review has been conducted on current

implementations of scalable pattern recognition. The study determined three

fundamental approaches towards addressing the scalability concerns within PR

schemes, namely data, learning, and distributed approaches. As described in

section 1.4, the data approach performs reduction or modification of data, while

the learning approach aims to reduce the complexity of memorisation and

recognition phases. Nevertheless, both the data and learning approaches do not

fully meet the scalability requirements, mainly due to loss of data integrity, low

recognition accuracy and high computational costs. On the other hand, the

distributed approach, due to its ability to distribute data and processes within

computational networks, has been shown to exhibit high scalability to scale up

with today’s outgrowth of data, that involves large and complex datasets.

Nevertheless, some of the existing models are extremely complex and highly

cumbersome to parallelise.

211

ii. Furthermore, in chapter 2, a comprehensive study on the current data-parallel

frameworks for cloud data processing has been presented and different kinds of

approaches to large-scale data processing have been explored. The pros and cons

of each approach are also examined in relation to scalability and adaptability

requirements of big data processing. This chapter has also presented a detailed

analysis on how neural network approaches can open a new pathway for

accessing data in highly distributed environments by discussing some major

schemes presented in the literature. The investigation carried in chapter 2 revealed

the fact that existing neural network techniques in their current forms are far from

providing a suitable scalable framework for large scale recognition purposes.

iii. In chapter 3, we established the thesis position by proposing an associative

memory based scheme, referred to as edge detecting hierarchical graph neuron

(EdgeHGN) that utilises single-cycle learning and implements a bottom-up

approach. Our proposed distributed pattern recognition approach remains scalable

for any given size or dimensions of data, if sufficient computational resources are

available. It is not only applicable to numerical and textual data processing

problems but also it is effectively capable of processing complex patterns, such as

high-dimensional images. EdgeHGN allows the recognition process to be

conducted in a smaller sub-pattern domain, hence minimising the number of

processing nodes, which in turn reduces the complexity of pattern analysis. In

addition, the recognition process performed using the EdgeHGN algorithm is

unique in a way that each subnet is only responsible for memorising a portion of

the pattern (rather than the entire pattern). A collection of these subnets is able to

form a distributed memory structure for the entire pattern. This feature enables

recognition to be performed in parallel and independently. The decoupled nature

of the sub-domains is the key feature that brings dynamic scalability to our data

processing approach for the cloud. Moreover, EdgeHGN provides a capability for

a recognition process to be deployed as a composition of sub-processes executed

in parallel across a distributed network. Sub-processes execute mutually

212

independently. This approach is less cohesive compared to any other pattern

recognition scheme. Furthermore, the conducted complexity analysis of the

proposed scheme indicates that the approach is highly scalable and incurs low

computational costs as part of its recognition procedure.

iv. In chapter 4, we formulated a distributed data management approach, referred to

as EdgeHGN based MapReduce, that enables seamless data access and

distribution using single-cycle learning associative memory-based algorithms.

This is achieved by designing a scalable MapReduce framework that allows

complex data representations to be used as keys for Map and Reduce operations;

allowing content-association based data retrieval and storage within cloud.

EdgeHGN_MR elevates the MapReduce key-value scheme to a higher level of

functionality by replacing the purely quantitative key-value pairs with more

complex data structures that empowers the parallel processing of data with

complex associations (or dependencies). By having an associative key-value

framework, we can deal with data in any form and in any representation simply

by using a pattern matching model (including fuzziness) that treats data records as

patterns and provides a distributed data access scheme that enables balanced data

storage and retrieval by association. Our proposed scheme preserves the strength

of the MapReduce model and eliminates/alleviates most of its constraints in a

well-integrated manner where there is no outward change to the way in which

MapReduce models are deployed and used. The experimental results conducted in

chapter 4 demonstrate that EdgeHGN_MR provides comparable performance

benchmarks (high accuracy rate with low response time) when tested against

well-known Pregel-like graph processing systems such as Giraph, GPS, Mizan

and GraphLab.

v. In chapter 5, a study on capability of the proposed EdgeHGN scheme to perform

pattern recognition in fine-grained wireless sensor networks (WSNs) was

established through the use of simple recognition procedure with low processing

and memory requirements. From performance results, EdgeHGN shows high

213

recognition accuracy with very low error value and very high recall rate which

demonstrates the capabilities of EdgeHGN to implement a lightweight distributed

event detection scheme within a resource-constrained network such as WSN. By

adopting single-cycle learning and using adjacency comparison method,

EdgeHGN offers a non-iterative and scalable computational framework to provide

an effective front-end recognition scheme for event detection within a WSN

network.

vi. In chapters 6, the results of a 6-month big data processing AMSI internship

project at a major pharmaceutical company are provided as a proof of concept that

our approach will indeed work when applied to real-world large scale data

processing problems. For this exercise, EdgeHGN_MR scheme was implemented

to perform data correlation between IT service management data and

environmental monitoring data. The conducted experimental results show that

EdgeHGN_MR approach incurs lower processing time when compared with

standard MapReduce implementation. This can firmly establish the credentials of

our technique as an innovative and viable approach for addressing real-world big

data processing problems.

 Our proposed data processing scheme in this thesis is primarily focused for use

within the MapReduce framework and is fundamentally different from all published

approaches in data management. It has the potential of wider applicability, provided

we can benchmark its characteristics against some of the discipline specific

techniques, e.g. parallel finite elements and more broadly, the Parallel Dwarfs

Project. The large heterogeneous data sets already gathered from various experiments

and case studies provide an excellent resource to compare and contrast the one-shot

learning, scalability, and accuracy of our approach with a number of well-established

data management techniques. In this regard, performance results already derived from

various experiments are very promising.

214

7.2 Research Contributions

In this thesis, four key contributions have been made that are recapitulated below, in

the sequence that they appear in the thesis.

i. A distributed data access scheme, referred to as EdgeHGN, is proposed that

enables data storage and retrieval by association where data records are treated as

patterns; hence, finding overarching relationships among distributed datasets

becomes easier for a variety of pattern recognition and data-mining applications.

EdgeHGN does not require definition of rules or manual interventions by the

operator for setting of thresholds to achieve the desired results, nor does it require

heuristics entailing iterative operations for memorisation and recall of patterns. In

addition, our approach allows induction of new patterns in a fixed number of

steps. Whilst doing so it exhibits a high level of scalability i.e. the performance

and accuracy do not degrade as the number of stored pattern increases over time.

Its pattern recognition capability remains comparable with contemporary

approaches. Furthermore, all computations are completed within the pre-defined

number of steps and as such the approach implements one shot, i.e. single-cycle

or single-pass, learning. The proposed scheme will be suitable for the operational

requirements of clouds and will enable relevant data to be readily available for

large-scale computations.

 EdgeHGN imposes low computational complexity. Comparative analysis of

recognition accuracy and complexity between EdgeHGN and other

recognisers/classifiers such as Hopfield Network and Kohonen SOM (Section

3.6) demonstrate EdgeHGN’s low complexity in performing recognition

processes. In terms of Big-O complexity estimation, EdgeHGN only imposes

linear complexity as low as Ο(𝑛) in its recognition process, where 𝑛 represents a

single executable instruction within the procedure (section 3.6). The results

obtained from a number of experiments have demonstrated that EdgeHGN recall

accuracy is considerably high for distorted pattern recognition. In evaluating the

accuracy of EdgeHGN recogniser, it was determined that the proposed approach

is capable of producing perfect recall for up to 20% distortion on binary character

215

images (Section 3.7.1). At this scale of distortion, even human eye can barely

associate the original pattern with distorted ones. Our tests show that an increase

in the number of sub-patterns stored within the network does not have any

adverse effect on the recall/store time of EdgeHGN approach (section 3.7.2). In

fact, the scalability of EdgeHGN scheme will not affected by the number of

stored patterns within the EdgeHGN network. Our experimental results

demonstrate the fact that EdgeHGN is able to achieve very low error rate of

(∿2.7%) in classifying 50 facial image classes of 1000 test images (section 3.7.3).

This high accuracy rate is accompanied by remarkable scalability features. In

contrast to the rest of hierarchical models already proposed in the literature,

EdgeHGN’s pattern matching capability and the small response time, that remains

insensitive to the increases in the number of stored patterns, can make this

approach remarkably suitable for clouds.

ii. A distributed scalable cloud data management, referred to as EdgeHGN_MR, is

formulated that enables seamless data access and distribution using single-cycle

learning associative memory-based algorithms. EdgeHGN_MR scheme allows

complex data representations to be used as keys for Map and Reduce operations;

allowing content-association based data retrieval and storage within cloud. This

will improve MapReduce-based parallel processing by replacing referential data

access mechanisms with more versatile and distributable associative functions

that allow complex data relations such as images to be easily encoded into the

keys as patterns. These patterns can be applied in a variety of applications that

require content recognition, such as image databases, searches within large

multimedia files and data mining. In this regards, three extensions of EdgeHGN

based MapReduce, referred to as EddgeHGN_MRv1, EdgeHGN_MRv2 and

EdgeHGN_MRv3, are introduced that each utilise EdgeHGN network processing

model in conjunction with MapReduce computational framework to effectively

deal with data-intensive scenarios in the face of excessive amount of classification

data to process, voluminous training datasets or massive number of processing

216

neurons in the network, respectively (section 4.3). The algorithmic strengths of

the MapReduce approach are investigated for the first time in regards to the

effectiveness of one-shot learning-based parallelism provisioned via our

distributed pattern recognition approach, EdgeHGN. The principle of associative-

memory-based learning was implemented through the use of hierarchically

connected layers, with local feature learning at the lowest layer and upper layers

combining features into higher representations. The EdgeHGN-based MapReduce

approach to cloud-based data processing is unique.

 Our experimental results show that EdgeHGN based MapReduce works

exceptionally well in dealing with both small to large size data counts due to its

parallel one-shot learning mechanism where the size of input data has minimal

effect on the time of its single-cycle in-network processing (section 4.4.1).

Performance evaluation results against state-of-the-art parallel processing

techniques such as Giraph, GPS, Mizan and GraphLab demonstrate that the

performance of MapReduce parallelism as a scalable scheme for data processing

in clouds can be significantly improved by transforming the data processing

operations into one-shot distributed pattern matching sub-tasks, in which

distributed computations are performed in-network, enabling data storage and

retrieval by association (instead of pre-set referential data access mechanisms)

(section 4.5.2). Moreover, EdgeHGN_MR demonstrates efficient memory usage

across all experiments as memory requirements per GN node to maintain the bias

array do not increase disproportionately with the increase in the number of stored

patterns (section 4.5.2).

iii. The capabilities of the proposed EdgeHGN scheme is investigated in the context

of distributed data processing in wireless sensor networks (WSNs). We

demonstrated the ability of the proposed recognition technique to learn and

recognise complex patterns using minimal information and resources to

effectively perform classification tasks. This distributed pattern matching

approach outlines a new type of the WSN that detects macroscopic events by

217

collating diverse sensor data, locally and in real-time, into meaningful patterns.

EdgeHGN reduces complexity of the WSN by eliminating the need for complex

computations for event classification which increases its potential for wide-spread

use. EdgeHGN is a distributed computational model in nature and hence it can be

readily deployed over a distributed network setup such as WSN to provide an

effective front-end recognition scheme for event detection.

 The performance of EdgeHGN recognition approach in WSN was evaluated

and benchmarked against SVM (linear and poly-2) and SOM in relation to its

precision, recall, accuracy and error rates. Experimental results show that

EdgeHGN scheme offers better recognition accuracy and higher recall value with

very low error rate (section 5.3). Moreover, EdgeHGN demonstrates fast

recognition performance, where it takes only up to 6msec (average result of less

than 3msec) for a sensor data to be recalled or memorised. This in turn makes this

approach a feasible strategy for implementing real-time even detection within

WSNs (section 5.3). Furthermore, EdgeHGN approach offers very low memory

consumption for event data storage mainly due to its simple bias array

representation (section 5.3.1). This memory efficiency is best achieved when

dealing with small input sub-pattern sizes, as EdgeHGN utilises only a small

portion of the memory space in a typical physical sensor node in WSN network.

The distributed nature of the scheme also lowers storage capacity requirements

per node and incurs lesser communication cost, thus improving the response-time

characteristic.

7.3 Future Research

With the current technological advancements under the label of Internet-of-Things

(IoT) and System-of-Systems (SoS), fully integrated large-scale systems are possible.

However, the question of discovering the knowledge potentials of such systems must

be addressed effectively. One solution can be achieved using distributed pattern

recognition schemes when dealing with such Internet-scale environments. In this

218

regard, the research conducted in this PhD thesis has mainly aimed at developing a

capability for large-scale pattern recognition involving complex and large-scale data.

As a result, EdgeHGN_MR approach has been proposed as a scalable scheme for

distributed pattern recognition, that incorporates in-network processing mechanism

along with single-cycle learning capability. EdgeHGN demonstrated high recall

accuracy with low computational complexity for distributed pattern recognition. To

further improve upon EdgeHGN_MR approach, we can propose the following future

research directions with main focus on algorithm and application improvements:

7.3.1 Algorithm-Specific Research

The following two potential future improvements on EdgeHGN algorithmic design

have been identified:

i. Bias array design: The current bias array architecture is heavily reliant upon

storing unique entries within the bias array to address memory efficiency

requirements. Further research on bias array design can lead to better memory

management as the size of bias array will grow in size as more and more unique

patterned are being stored.

ii. Structural representation: EdgeHGN reduces the required number of processing

GN nodes significantly by utilising Dropfall scheme within a hierarchical

structure. However, the number of GN nodes can still increase dealing with large

pattern sizes and dimensions. As a result, further study can be carried out on

finding potential structural representations, other than the existing hierarchical

form.

7.3.2 Application-Specific Research

The following four potential future improvements on EdgeHGN application related

design have been identified:

i. Movement and tracking: In the evaluation of the EdgeHGN distributed pattern

recognition, this research did not look at object movement and tracking. Potential

219

future works can be carried out on the recognition of patterns that may involve

some structural changes, such as rotation, transformation or relocation.

ii. Heterogeneous clouds: Extension of the proposed EdgeHGN_MR distributed data

management scheme to heterogeneous clouds (with different processing capacity

nodes). This work will investigate the proposed distributed data management

scheme at different levels of granularity. Improving upon the existing cloud data

management models for fault-tolerance and scalability and reducing MapReduce

communication overheads by introducing data locality. Moreover, investigating

innovative cloud applications that benefit from such schemes, benchmarking and

validating the results to find asymptotical limits of the technique through rigorous

testing and simulation.

iii. Combinational logic: MapReduce is only one of a dozen or so patterns of parallel

processing, massive communication and data distribution. Asanovic (2006)

classifies 13 such patterns or dwarfs. Another important pattern of these thirteen

is Combinational Logic, so named after networks of logical functions

implemented in electronic designs, however generalised to networks of stream

processing functions for software architectures dealing with massive amounts of

data and large processing tasks of varying duration. Reconciling combinational

logic with associated memory concepts, such as EdgeHGN, in particular for

adaptive and fast data access, aggregation and movement can be another potential

field of future research.

iv. Spatio-temporal event detection: Distributed event classification within resource-

constrained WSNs has been proposed in chapter 5 by offering a front-end

recognition mechanism at the sensory level. To further extend this for WSNs,

potential future research can be carried out to include spatio-temporal analysis of

events by observing the frequency and distribution of events within the network.

220

This Page Intentionally Left Blank

221

Vita

This thesis was proofread by a professionally qualified editor from Elite Editing on the

22nd of August 2016.

Academic Editing Services provided by Elite Editing comply with the National

Standards for Editing. Services are also conducted within the guidelines of the policy

developed collaboratively by the Deans and Directors of Graduate Studies with the

Council of Australian Societies of Editors entitled ‘The editing of research theses by

professional editors (2008)’. Compliance with this policy ensures that the student’s

thesis retains its integrity as entirely the work of the student.

Further information about editing services provided by Elite Editing are available at

http://www.eliteediting.com.au.

222

This Page Intentionally Left Blank

223

References

Abdi. H. and Williams, L.J. (2010). Principal component analysis, Wiley

Interdisciplinary Reviews, Computational Statistics, pp. 433 – 459.

Agrawal, D., Bernstein, P., Bertino, E., Davidson, S. (2012). Challenges and

Opportunities with Big Data: A community white paper developed by leading

researchers across the United States. Whitepaper, Computing Community

Consortium, [Online Document].

 http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf

Alfehaid, W.M. (2013). Distributed Pattern Recognition Schemes for Wireless Sensor

Networks, PhD thesis, Faculty of Information Technology, Monash University.

Alham, N.K. (2011). Parallelizing support vector machines for scalable image

annotation [Ph.D. thesis], Brunel University, Uxbridge, UK.

Alham, N. K., Li, M., Liu, Y., and Qi, M. (2013). A MapReduce-based distributed

SVM ensemble for scalable image classification and annotation, Computers and

Mathematics with Applications, volume 66, no. 10, pp. 1920 – 1934.

Alpaydin, E, (2004). Introduction to Machine Learning, Second Edition, MIT Press,

584 pp.

Amazon Elastic Cloud Computing (2011), [Online Document].

http://aws.amazon.com/ec2/

http://cra.org/ccc/docs/init/bigdatawhitepaper.pdf
http://aws.amazon.com/ec2/

224

Anderson, C. (2008). The end of theory: The data deluge makes the scientific method

 obsolete. [Online Document].

 http://www.wired.com/science/discoveries/magazine/16-07/pb_theory

Apache Giraph (2013). [Online Document].

 http://giraph.apache.org/

Apache Hadoop (2010). [Online Document].

 http://hadoop.apache.org/

Apache Hadoop MapReduce (2011). [Online Document].

 http://hadoop.apache.org/docs/r1.2.1/index.html

Apache Hadoop YARN (2013). [Online Document].

 http://hadoop.apache.org

Apache Lucene Core (2008). [Online Document].

 http://lucene.apache.org/core/

Apache Mahout Canopy Clustering (2012). [Online Document].

https://mahout.apache.org/users/clustering/canopy-clustering.html

Apache Mahout Software Foundation (2012). [Online Document].

https://mahout.apache.org/

Apache Spark (2013). [Online Document].

 https://spark.apache.org/

Asanovik, K. (2006). The Landscape of Parallel Computing Research: a view from

Berkeley, EECS Department, University of California, Berkeley.

http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
http://giraph.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/docs/r1.2.1/index.html
http://hadoop.apache.org/
http://lucene.apache.org/core/
https://mahout.apache.org/users/clustering/canopy-clustering.html
https://mahout.apache.org/
https://spark.apache.org/

225

Assuncao, L., Goncalves, C. and Cunha, J.C. (2012). Data analytics in the cloud with

flexible MapReduce workflows, In Proceedings of the 2012 IEEE 4th International

Conference on Cloud Computing Technology and Science (CloudCom),

Washington, DC, USA.

Baig Z.A., Baqer M., Khan A.I., (2006). A Pattern Recognition Scheme for Distributed

Denial of Service (DDOS) Attacks in Wireless Sensor Networks, In Proceedings

of the 18th International Conference on Pattern Recognition.

Baqer, M. (2008). Energy Ecient Event Recognition for Wireless Sensor Networks,

PhD thesis, Faculty of Information Technology, Monash University.

Baqer, M., Khan A.I. (2007), Energy-efficient pattern recognition approach for

wireless sensor network, In M. Palaniswami, S. Marusic & Y.W. Law (Eds.),

Proceedings of the 2007 International Conference on Intelligent Sensors, Sensor

Networks and Information Processing, Melbourne, Australia, pp. 509-514.

Baqer M., Khan A.I, and Baig Z.A., (2005). Implementing a graph neuron array for

pattern recognition within unstructured wireless sensor networks, in Proceedings

of EUC Workshops, pp. 208 – 217.

Banerjee, T., Xie, B. and Agrawal, D. P. (2008). Fault tolerant multiple event detection

in a wireless sensor network, J. Parallel and Distributed Computing, 68(9): 1222–

1234.

Basirat, A. H., & Khan, A. I. (2013). Scalable event detection in wireless sensor

networks using a novel content-based pattern recognition scheme. Proceedings of

the 3rd International Conference on Parallel, Distributed, Grid and Cloud

Computing for Engineering (PARENG 2013), Civil-Comp Press, Stirlingshire,

UK, pp. 53–59.

226

Battiti, R. and Colla, A. M. (1994). Democracy in neural nets: voting schemes for

classification, Neural Networks. 7(4): pp. 691–707.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE Transactions on Neural Networks 5(2), pp. 157

- 166.

Bishop, C.M. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag.

Blazejewski, A. and Coggins, R. (2004). Application of self-organizing maps to

clustering of high-frequency financial data, ACSW Frontiers ’04: Proceedings of

the second workshop on Australasian information security, Data Mining and Web

Intelligence, and Software Internationalization, Australian Computer Society, Inc.,

Darlinghurst, Australia, Australia, pp. 85–90.

Brewer, E.A. (2005). Combining Systems and Databases: A Search Engine

Retrospective, Database Systems, 4th Edition, Cambridge, MA.

Bondi, A. B. (2000). Characteristics of scalability and their impact on performance,

Proceedings of the 2nd international workshop on Software and performance,

ACM, New York, NY, USA, pp. 195–203.

Breiman, L. (2001). Random forests, Technical report, Department of Statistics,

University of California, Machine Learning 45(1), pp. 5 – 32.

Brin, S., and Page. L., (1998). The anatomy of a large-scale hyper-textual Web search

engine, Computer Networks, pp. 107 – 117.

227

Casali, D., Costantini, G., Perfetti, R. and Ricci, E. (2006). Associative memory design

using support vector machines, Neural Networks, IEEE Transactions on 17(5): pp.

1165 – 1174.

Catterall, E., Van Laerhoven, K. and Strohbach, M. (2003). Self-organization in adhoc

sensor networks: an empirical study, ICAL 2003: Proceedings of the eighth

international conference on Artificial life, MIT Press, Cambridge, MA, USA, pp.

260–263.

Chaiken, R., Jenkins, B., Larson, P.A., Ramsey, B., Shakib, D., Weaver, S., and Zhou,

J. (2008). “SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets”,

In Proceedings of Very Large Database Systems (VLDB), 1(2):1265 - 1276.

Chen, S., Schlosser, S.W., (2008). Map-Reduce Meets Wider Varieties of Applications,

Technical Report, Intel.

Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., and Zhou, X. (2013). Big data

challenge: a data management perspective. Frontiers of Computer Science,

7(2):157–164, doi: 10.1007/s11704-013-3903-7.

Cheng, J. and Wang, K. (2007). Active learning for image retrieval with co-svm,

Pattern Recognition 40(1): 330 – 334.

Cheung, Y.-M. and Law, L. (2007). Rival-model penalized self-organizing map, IEEE

Transactions on Neural Networks, 18(1), pp. 289 – 295.

Chih Yang, H., Dasdan, A., Hsiao, R.L., and Parker, D. S. (2007). “Map-Reduce-

Merge: Simplified Relational Data Processing on Large Clusters”, In Proceedings

of the 2007 ACM SIGMOD international conference on Management of data, pp.

1029 – 1040, New York, NY, USA.

228

Chisvin L. and Duckworth J.R., (1989). Content-addressable and associative memory:

alternatives to the ubiquitous RAM, IEEE Computation., 22, pp. 51– 64.

Chow, T. W. S. and Huang, D. (2008). Data Reduction for Pattern Recognition and

Data Analysis, Springer, Berlin / Heidelberg, pp. 81–109.

Congedo, G., Dimauro, G., Impedovo, S. and Pirlo, G. (1995). Segmentation of

Numeric Strings, pp. 1038 – 1041.

Connor, J.T., Martin R.D., and Atlas, L.E. (1994). Recurrent neural networks and

robust time series prediction, IEEE Neural Networks, volume 5, pp. 240 – 254.

Cortes, C. and Vapnik, V. (1995). Support-vector networks, Mach. Learn. 20(3): 273–

297.

Cruz, B., Sossa, H. and Barr´on, R. (2007). A new two-level associative memory for

efficient pattern restoration, Neural Process. Lett. 25(1): pp. 1–16.

Culler, D. E., Estrin, D. and Srivastava, M. B. (2004). Guest editor’s introduction:

Overview of sensor networks, IEEE Computer 37(8): 41–49.

Daintith, J., and Wright. E., (2008). A Dictionary of Computing, 6th edition, Oxford,

UK, Oxford University Press, pp. 14 – 15.

Dasarathy, B.V. (2002). Data mining tasks and methods, classification: Nearest-

neighbor approaches, in handbook of data mining and knowledge discovery, pp.

288 – 298.

Dean, J., and Ghemawat, S. (2004). “MapReduce: Simplified Data Processing on Large

Clusters”, In OSDI’04: Proceedings of the 6th conference on Symposium on

Operating Systems Design & Implementation, Berkeley, CA, USA.

229

DeWitt. D., and Gray. J., (1992). Parallel Database Systems: The Future of High

Performance Database Systems. Communications of the ACM, 35(6): 85–98, ISSN

0001-0782. doi:10.1145/129888.129894.

Dimauro, G., Impedovo, S., Pirlo, G., and Salzo, A, (2009). Automatic Bank check

processing: A New Engineered System, International Journal of Pattern

Recognition and Artificial Intelligence, pp. 467 – 504.

Donoho, D.L. (2000). High-dimensional data analysis: The courses and blessings of

dimensionality, Lecture delivered at the mathematical Challenges of the 21st

Century conference of The American Math Society.

Dong, J.-X., Krzyzak, A. and Suen, C. (2005). Fast svm training algorithm with

decomposition on very large data sets, Pattern Analysis and Machine Intelligence,

IEEE Transactions on 27(4): pp. 603 – 618.

Duda, R.O., Stork, D. G., and Hart, P.E. (2001). Pattern Classification, 2nd edition, New

York, Wiley.

Duin, R. P. W. and Tax, D. M. J. (2000). Experiments with classifier combining rules,

MCS ’00: Proceedings of the 1st International Workshop on Multiple Classifier

Systems, Springer-Verlag, London, UK, pp. 16–29.

Elaine R. M. (2008). The impact of next-generation sequencing technology on genetics.

Trends in Genetics, 24(3):133–141.

EBI (2013). The European Bioinformatics Institute bank, [Online Document]

 http://www.ebi.ac.uk/about/background

http://www.ebi.ac.uk/about/background

230

Faloutsos, M., Faloutsos, P., and Faloutsos. C. (1999). On power-law relationships of

the Internet topology. In SIGCOMM, pages 251–262.

Feed-forward neural network, (2011). [Online Document].

http://en.wikipedia.org/wiki/Feedforward_neural_network

Fei-Fei, L., Fergus, R. and Perona, P. (2006). One-shot learning of object categories,

IEEE Transactions on Pattern Analysis and Machine Intelligence 28(4): 594–611.

Figueiredo, R., Dinda, P., Fortes, J., (2003). A Case for Grid Computing on Virtual

Machines, In Proceedings of 23rd International Conference on Distributed

Computing Systems, pp. 550–559.

Fox, G. C., Aktas, M. S., Aydin, G., Donnellan, A., Gadgil, H., Granat, R., Pallickara,

S., Parker, J., Pierce, M. E., Oh, S., Rundle, J., Sayar, A. and Scharber, M. (2005).

Building sensor filter grids: Information architecture for the data deluge,

Proceedings of the First International Conference on Semantics, Knowledge and

Grid, IEEE Computer Society, Washington, DC, USA, p. 2.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository. [Online

Document] http://archive.ics.uci.edu/ml\

Freund, Y., Iyer, R., and Schapire, R.E. (1998). An efficient boosting algorithm for

combining preferences, in Proceedings of the 15th International Conference on

Machine Learning.

Freund, Y., and Schapire, R. E. (1999). Large Margin Classification Using the

Perceptron Algorithm. Machine Learning, 37 (3): 277.

http://en.wikipedia.org/wiki/Feedforward_neural_network
http://archive.ics.uci.edu/ml/

231

Friedman, N., Geiger, D., and Goldszmit, M. (1997). Bayesian network classifiers,

Machine Laming, volume 29, pp. 131- 163.

Gamma, E., Helm, E., Johnson R. (1995). Design Patterns: Elements of Reusable

Object-oriented Software, Addison Wesley, Reading, MA, USA.

Gantz, J., and Reinsel, D., (2012). The Digital Universe in 2020: Big Data, Bigger

Digital Shadows, and Biggest Growth in the Far East. Study report, IDC, [Online

Document] www.emc.com/leadership/digital-universe/index.htm

Gashler, M. and Martinez, T. (2011). Temporal Nonlinear Dimensionality Reduction,

In Proceedings of the International Joint Conference on Neural Networks, pp. 1959

– 1966.

Gelernter D., and Carriero, N., (1985). Generative Communication in Linda, ACM

Transactions on Programming Languages and Systems, 7(1):80–112.

Giorgetti, G., Gupta, S. K. S. and Manes, G. (2007). Wireless localization using self-

organizing maps, IPSN ’07: Proceedings of the 6th international conference on

Information processing in sensor networks, ACM, New York, NY, USA, pp. 293 –

302.

GoGrid Cloud Hosting, (2011). [Online Document]. (Accessed on 22/05/2011)

http://www.gogrid.com

Gonzalez, J., Low, Y., Gu, H., Bickson, D. and Guestrin C. (2012). PowerGraph:

Distributed Graph-Parallel Computation on Natural Graphs, Proceedings of the 10th

USENIX Symposium on Operating Systems Design and Implementation.

http://www.emc.com/leadership/digital-universe/index.htm
http://www.gogrid.com/

232

GraphLab Open Source, (2009). [Online Document].

 http://graphlab.org/projects/index.html

Gray, J., Bell, G., and Szalay, A. (2006). Petascale computational systems. IEEE

Computer, 39(1):110–112.

Gropp, W., Thakur, R. and Lusk, E. (1999). Using MPI-2: Advanced Features of the

Message Passing Interface, MIT Press, Cambridge, MA, USA.

Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James Dehnert, Ilan Horn,

Naty Leiser, and Grzegorz Czajkowski. (2010). Pregel: A System for Large-Scale

Graph Processing. In Proceedings of ACM SIGMOD International Conference on

Data Management, 135-146.

Gu, R., Shen, F., and Huang, Y. (2013). A parallel computing platform for training

large scale neural networks. in Proceedings of the IEEE International Conference

on Big Data, pp. 376 – 384.

Hagan, M.H, Demuth, H.B., and Beale, M.H. (1996). Neural Network Design, PWS

Publishing.

Halevy, A., Norvig, P., and Pereira. F. (2009). The Unreasonable Effectiveness of

Data. IEEE Intelligent Systems, 24(2):8–12, ISSN 1541-1672. doi:

10.1109/MIS.2009.36.

Harrop, P. & Das, R. (2010). Wireless Sensor Networks 2010-2020 [Online Document]

http://www.sbdi.co.kr/cart/data/info/2049291810_54e75de0_IDTechEx_Wireless

_Sensor_Networks_2010-2020_Pamphlet.pdf?ckattempt=1

http://graphlab.org/projects/index.html
http://www.sbdi.co.kr/cart/data/info/2049291810_54e75de0_IDTechEx_Wireless_Sensor_Networks_2010-2020_Pamphlet.pdf?ckattempt=1
http://www.sbdi.co.kr/cart/data/info/2049291810_54e75de0_IDTechEx_Wireless_Sensor_Networks_2010-2020_Pamphlet.pdf?ckattempt=1

233

Hebb, D. O. (1988). The organization of behavior, pp. 43–54.

Helland, P. (2011). If You Have Too Much Data, then Good Enough Is Good Enough.

Communications of the ACM, 54(6):40–47, doi: 10.1145/1953122.1953140.

Hey, A. J. G. and Trefethen, A. E. (2003). The data deluge: An e-science perspective.

[Online Document]

 http://eprints.ecs.soton.ac.uk/7648/

Hey, T., Tansly, S., and Tolle, K. (2009). The Fourth Paradigm: Data-Intensive

Scientific Discovery. Microsoft Research.

Hopfield network, (2012). [Online Document].

 http://en.wikipedia.org/wiki/Hopfield_network

Hopfield, J. and Tank, D. (1985). Neural computation of decisions in optimization

problems, Biological Cybernetics 52: 141–152.

Huang, G.-B., Mao, K., Siew, C.-K. and Huang, D.-S. (2005). Fast modular network

implementation for support vector machines, Neural Networks, IEEE Transactions

on 16(6): 1651–1663.

Huqqani, A. A., Schikuta, E., and Mann, E., (2014). Parallelized neural networks as a

service, in Proceedings of the International Joint Conference on Neural Networks

(IJCNN ’14), pp. 2282 – 2289.

Ikram, A.A., Ibrahim, S., Sardaraz, M., Tahir, M., Bajwa, H., and Bach, C. (2013).

Neural network based cloud computing platform for bioinformatics, in Proceedings

of the 9th Annual Conference on Long Island Systems, Applications and

Technology (LISAT ’13), pp. 1 – 6, Farmingdale, NY, USA.

http://eprints.ecs.soton.ac.uk/7648/
http://en.wikipedia.org/wiki/Hopfield_network

234

Introduction to Support Vector Machines, (2012). [Online Document].

http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm

.html

Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. (2007). “Dryad: Distributed

Data-Parallel Programs from Sequential Building Blocks”. In Proceedings of the

2nd ACM SIGOPS/EuroSys European Conference on Computer Systems, pp. 59 –

72, New York, NY, USA.

Jiang, J., Zhang, J., Yang, G., Zhang, D., and Zhang, L. (2010). Application of back

propagation neural network in the classification of high resolution remote sensing

image: take remote sensing image of Beijing for instance. in Proceedings of the 18th

International Conference on Geo-informatics, pp. 1 – 6.

Jain, A.K., Duin, R.P., and Mao, J. (2000). Statistical pattern recognition: A review,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 1,

pp. 4–37, 2000.

Joachims, T. (2008). Making Large-scale Support Vector Machine Learning Practical,

pp. 169 – 184.

Kaisler, S., Armour, F., Espinosa, J.A., Money. W. (2013). Big Data: Issues and

Challenges Moving Forward. In Proceedings of the 46th Hawaii International

Conference on System Sciences, pp. 995–1004.

Kalos, A. (2005). Automated heuristic growing of neural networks for nonlinear time

series models, in proceedings of 2005 IEEE International Joint Conference on

Neural Networks, Vol. 1, pp. 320–325.

http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

235

Kamath, C. and Musick, R. (1998). Scalable pattern recognition for large-scale

scientific data mining.

Kanan, H., and Khanian, M. (2012). Reduction of neural network training time using

an adaptive fuzzy approach in real time applications, International Journal of

Information and Electronics Engineering, volume 2, no. 3, pp. 470 – 474.

Kasabov, N. K. (1996). Foundations of Neural Networks, Fuzzy Systems, and

Knowledge Engineering, MIT Press, Cambridge, MA, USA.

Kbir, M. A., Maalmi, K., Benslimane, R. and Benkirane, H. (2000). Hierarchical fuzzy

partition for pattern classification with fuzzy if-then rules, Pattern Recognition

Letter 21(6-7): 503–509.

Khan, A.I. (2002). A Peer-to-Peer Associative Memory Network for Intelligent

Information Systems, In Proceedings of the 13th Australasian Conference on

Information Systems, Vol. 1.

Khan A.I. (2007), System infrastructure design for an end-to-end E-application for lab

data acquisition to repository deposition, In Proceedings of the 9th International

Conference on Information Integration and Web-Based Applications and Services,

Jakarta, Indonesia, pp. 287-296.

Khan, A. I. and Mihailescu, P. (2004). Parallel pattern recognition computations within

a wireless sensor network, ICPR (1), pp. 777–780.

Khan, A.I. and Muhamad Amin, A.H. (2007). One-shot Associative Memory Method

for Distorted Pattern Recognition Advances in Artificial Intelligence, 20th

Australian Joint Conference on Artificial Intelligence, Gold Coast, Australia, pp.

705 - 709.

236

Khan, A. I. and Muhamad Amin, A. H. (2009). Integrating Sensory Data within a

Structural Analysis Grid, Saxe-Coburg Publications, Stirlingshire, UK.

Khan A.I., Isreb M., Spindler R.S., (2004). A parallel distributed application of the

wireless sensor network, In Proceedings of the 7th International Conference on High

Performance Computing and Grid in Asia Pacific Region.

Khayyat, Z., Awara, K., Alonazi, A., Jamjoom, H., Williams, D., and Kalnis. P. (2013).

Mizan: A system for dynamic load balancing in large-scale graph processing, In

EuroSys '13, pages 169 - 182.

Khoa, N. L. D., Sakakibara, K., and Nishikawa, I. (2006). Stock price forecasting using

back propagation neural networks with time and profit based adjusted weight

factors. in Proceedings of the SICE-ICASE International Joint Conference, pp.

5484 – 5488, IEEE, Busan, Republic of korea.

Kim, J. H., Yoon, S. H., Kim, Y. H., Park, E. H., Ntuen, C. A. and Sohn, K. (1992).

Efficient matching algorithm by a hybrid Hopfield network for object recognition,

in S. K. Rogers (ed.), Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, Vol. 1709 of Presented at the Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference, pp. 908–916.

Kimmel, R., Shaked, D., Elad, M. and Sobel, I. (2005). Space-dependent color gamut

mapping: a variational approach, IEEE Transactions on Image Processing, 14(6):

796–803.

Kohonen, T. (2000). Self-Organizing Maps, 3rd edition, Springer.

Kopetz, H. (2011). Internet of things,in Real-Time Systems, Real-Time Systems

Series, pp. 307–323, Springer US.

237

Kosko, B., (1992). Neural Networks and Fuzzy Systems: A Dynamical Systems

Approach to Machine Intelligence. Upper Saddle River, NJ, USA: Prentice-Hall,

Inc.

Kosko, B. (1988). Bidirectional associative memories, IEEE Transaction on Systems

and Cyber Networks. 18(1): 49–60.

Kraska, T. (2013). Finding the Needle in the Big Data Systems Haystack, IEEE Internet

Computing, 17(1):84–86, ISSN 1089-7801. doi: 10.1109/MIC.2013.10.

Kulakov, A. and Davcev, D. (2005). Tracking of unusual events in wireless sensor

networks based on artificial neural-networks algorithms, ITCC ’05: Proceedings of

the International Conference on Information Technology: Coding and Computing

(ITCC’05) - Volume II, IEEE Computer Society, Washington, DC, USA, pp. 534

– 539.

Kumar, V., Grama, A., Gupta, A., and Karypis, G. (2002). Introduction to Parallel

Computing, Benjamin Cummings / Addison Wesley, San Francisco, California,

USA.

Kuncheva, L. I. (2004). Combining Pattern Classifiers: Methods and Algorithms,

Wiley-Interscience.

Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity and

Variety. Technical report, META Group, Inc (now Gartner, Inc.).

LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech, and

timeseries, in M. A. Arbib (ed.), The Handbook of Brain Theory and Neural

Networks, MIT Press.

238

Li, Y. and Parker, L. E. (2008). Detecting and monitoring time-related abnormal events

using a wireless sensor network and mobile robot, IROS, pp. 3292–3298.

Li, Y., Tang, Z., Xia, G. and Wang, R. (2005). A positively self-feedbacked Hopfield

neural network architecture for crossbar switching, IEEE Transactions on Circuits

and Systems, Regular Papers, 52(1): 200–206.

Lin, X., Soergel, D. and Marchionini, G. (1991). A self-organizing semantic map for

information retrieval, SIGIR ’91: Proceedings of the 14th annual international ACM

SIGIR conference on Research and development in information retrieval, ACM,

New York, NY, USA, pp. 262–269.

Liu, Z., Li, H., and Miao, G. (2010). MapReduce-based back propagation neural

network over large scalemobile data, in Proceedings of the 6th International

Conference on Natural Computation (ICNC ’10), pp. 1726 – 1730.

Long. L.N. and Gupta, A. (2008). Scalable massively parallel artificial neural

networks. Journal of Aerospace Computing, Information and Communication,

volume 5, no. 1, pp. 3 – 15.

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J.M.

(2010). GraphLab: a new framework for parallel machine learning, in proceedings

of the Conference on Uncertainty in Artificial Intelligence (UAI).

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin C., and Hellerstein J.M.

(2012). Distributed GraphLab: A Framework for Machine Learning and Data

Mining in the Cloud. PVLDB.

Lowe, M. (1999). On the storage capacity of the Hopfield model with biased patterns,

IEEE Transactions on Information Theory 45(1): 314–318.

239

Malewicz, G., Austern, M.H., Bik, A.J.C, Dehnert, J., Horn, I., Leiser, N., and

Czajkowski, G., (2010). Pregel: A System for Large-Scale Graph Processing. In

Proceedings of ACM SIGMOD international Conference on Management of Data,

Indianapolis, IN, USA, pp. 135-146

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., and Hung

Byers, A., (2011). Big data: The next frontier for innovation, competition, and

productivity. Analyst report, McKinsey Global Institute, [Online Document].

http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_

data_the_next_frontier_for_innovation

Martinez, A. M. and Kak, A. C. (2001). PCA versus LDA, IEEE Transactions on

Pattern Analysis and Machine Intelligence, pp. 228 –233. doi:10.1109/34.908974.

Mavroforakis, M., and Theodoridis, S. (2006). A geometric approach to support vector

machine (svm) classification, IEEE Transactions on Neural Networks, volume 17,

pp. 671–682.

Miller, E., Matsakis, N. and Viola, P. (2000). Learning from one example through

shared densities on transforms, In proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, Vol. 1, pp. 464 – 471.

MNIST Dataset (2012). [Online Document] http://yann.lecun.com/exdb/mnist/

Muhamad Amin A.H., and Khan A.I. (2008). Commodity-Grid Based Distributed

Pattern Recognition Framework, 6th Australasian Symposium on Grid Computing

and e-Research, Wollongong, NSW, Australia.

Muhamad Amin, A.H., Khan A. I., and Mahmood R. A., (2009), A distributed event

detection scheme for wireless sensor networks, In Proceedings of the 7th

http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_data_the_next_frontier_for_innovation
http://yann.lecun.com/exdb/mnist/

240

International Conference on Advances in Mobile Computing and Multimedia,

ACM Press, New York NY USA, pp. 295-299.

NameNode Performance. (2008). Compare Name-Node Performance When Journaling

Is Performed into Local Hard-Drives or NFS, [Online Document].

 http://issues.apache.org/jira/browse/HADOOP-3860

Nadal, J.-P. (1989). Study of a growth algorithm for a feed forward network, Int. J.

Neural Syst. 1(1): 55–59.

NASA Kennedy Space Center, (2014). WWW Server logs. [Online Document].

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

Nascimento, M. A. and Chitkara, V. (2002). Color-based image retrieval using binary

signatures, in proceedings of the 2002 ACM symposium on Applied computing,

ACM, New York, NY, USA, pp. 687–692.

Nasution, B.B. and Khan A.I., (2008). A Hierarchical Graph Neuron Scheme for Real-

Time Pattern Recognition, IEEE Transactions on Neural Networks, pp. 212-229.

Nguyen, D. and Ho, T. (2006). A bottom-up method for simplifying support vector

solutions, Neural Networks, IEEE Transactions on 17(3): 792–796.

Nguyen, D., and Widrow, B. (2010). Improving the learning speed of 2-layer neural

networks by choosing initial values of the adaptive weights, in Proceedings of the

International Joint Conference on Neural Networks, volume 3, pp. 21 – –26.

Ohkuma K., (1993). A Hierarchical Associative Memory Consisting of Multi-Layer

Associative Modules, In Proceedings of 1993 International Joint Conference on

Neural Networks (IJCNN'93), Nagoya, Japan.

http://issues.apache.org/jira/browse/HADOOP-3860
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

241

OpenSource Forum. (2011), MapReduce: More Power, Less Code. [Online

Document].

 http://www.opensourceforu.com/2011/03/mapreduce-more-power-less-code-

hadoop/

Pal, S. K. and Mitra, P. (2004). Pattern Recognition Algorithms for Data Mining: Scala-

bility, Knowledge Discovery, and Soft Granular Computing, Chapman & Hall,

Ltd., London, UK, UK.

Percolator, Dremel and Pregel: Alternatives to Hadoop. (2012). [Online Document].

 http://www.rosebt.com/blog/percolator-dremel-and-pregel-alternatives-to-hadoop

Ratnaparkhi A. (1997). A simple introduction to maximum entropy models for natural

language processing, Technical Report, Institute for Research in Cognitive Science,

University of Pennsylvania.

Recurrent Neural Networks in Ruby (2012). [Online Document].

 http://blog.josephwilk.net/ruby/recurrent-neural-networks-in-ruby.html

Resnick, P. and Varian, H. (1997). Recommender systems, Communications of the

ACM, 40(3):56-58.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to Recommender Systems

Handbook, Recommender Systems Handbook, Springer, pp. 1-35.

Ritter, G., Sussner, P., and Diaz-de Leon, J. (1998). Morphological associative

memories, IEEE Transactions on Neural Networks, volume 9, pp. 281– 293.

http://www.opensourceforu.com/2011/03/mapreduce-more-power-less-code-hadoop/
http://www.opensourceforu.com/2011/03/mapreduce-more-power-less-code-hadoop/
http://www.rosebt.com/blog/percolator-dremel-and-pregel-alternatives-to-hadoop
http://blog.josephwilk.net/ruby/recurrent-neural-networks-in-ruby.html

242

Roman-Godinez, I., Lopez-Yanez, I. and Yanez-Marquez, C. (2009). Classifying

patterns in bioinformatics databases by using alpha-beta associative memories, pp.

187–210.

Rueda, L. and Herrera, M. (2008). Linear dimensionality reduction by maximizing the

chernoff distance in the transformed space, Pattern Recognition 41(10): 3138–

3152.

Rumelhart, D. E. and Zipser, D. (1988). Feature discovery by competitive learning,

Connectionist models and their implications: readings from cognitive science,

Ablex Publishing Corp., Norwood, NJ, USA, pp. 205 – 242.

Russom, P., (2011). Big Data Analytics, Best practices report, The Data Warehousing

Institute.

Saha, S. and Bajcsy, P. (2003). System design issues in single-hop wireless sensor

networks, The IASTED International Conference on Communications, Internet and

Information Technology 2003 (CIIT 2003), Scottsdale, AZ, USA, 17-19 November

2003.

Salihoglu, S., and Widom. J. (2013). GPS: A Graph Processing System. In SSDBM

'13, pages 22:1 - 22:12.

Schlegel, D. (2011). Categorization of High-Dimensional Knowledge-Based

Representations of File Data Using Abstract Self-Organizing Maps. [Online

Document].

http://cs.oswego.edu/~dschlege/sitev2/courses/468/Cog468%20ASOM%20Presen

tation.htm

http://cs.oswego.edu/~dschlege/sitev2/courses/468/Cog468%20ASOM%20Presentation.htm
http://cs.oswego.edu/~dschlege/sitev2/courses/468/Cog468%20ASOM%20Presentation.htm

243

Schlimmer, J. C. and Granger, Jr., R. H. (1986). Incremental learning from noisy data,

Machine Learning 1(3): 317–354.

Shiers, J. (2009). “Grid today, clouds on the horizon”, Computer Physics

Communications, pp. 559-563.

Shih, K.P., Wang, S.S., Chen, H.C. and Yang, P.H. (2008). Collect: Collaborative event

detection and tracking in wireless heterogeneous sensor networks, Computer

Communications 31(14): 3124 – 3136.

Stanford Network Analysis Project, (2015). [Online Document].

http://snap.stanford.edu/data/

Stonebraker, M., Madden, S., and Dubey. P. (2013). Intel Big Data Science and

Technology Center Vision and Execution Plan. SIGMOD Record, 42(1):44–49.

Sussner P. and Valle M.E., (2006). Gray-Scale Morphological Associative Memories,

IEEE Transactions on Neural Networks, vol. 17, pp. 559-570.

Szalay, A., Bunn, A., Gray, J., Foster, I., Raicu, I. (2006). “The Importance of Data

Locality in Distributed Computing Applications”, In Proceedings of the NSF

Workflow Workshop.

Tao, Y., Papadias, D., and Sun, J. (2003). TPR-Tree: An Optimized Spatio-Temporal

Access Method for Predictive Queries, VLDB, pp. 790 – 801.

Theodoridis, Y., Vazirgiannis, M., and Sellis, T.K. (1996). Spatio-Temporal Indexing

for Large Multimedia Applications. pp. 441 – 448.

http://snap.stanford.edu/data/

244

Toselli A., and Widlund, O.B. (2005): Domain Decomposition Methods – Algorithms

and Theory. Springer-Verlag, Berlin and Heidelberg.

Trajan R.E. and Trojanowski A.E., (1984). Finding a maximum independent set. SIAM

journal of Computing, 25(3): 537 – 546.

Valiant. L.G., (1990). A bridging model for parallel computation, CACM, 33(8), pp.

103-111.

Vesanto, J., Himberg, J., Alhoniemi E, and Parhankangas, E. (2010). Self-organizing

Map in Matlab: the SOM Toolbox, In Proceedings of the Matlab DSP Conference,

Espoo, Finland, pp. 35 – 40.

Vivanco, R. A., Demko, A. and Pizzi, N. J. (2005). Scopira: A pattern recognition

application framework for biomedical datasets, Proceedings of the Fourth

International Conference on Machine Learning and Applications, IEEE Computer

Society, Washington, DC, USA, pp. 165–170.

Wang, H., Zheng, H. and Azuaje, F. (2007). Poisson-based self-organizing feature

maps and hierarchical clustering for serial analysis of gene expression data,

IEEE/ACM Transactions on Computational Biology, 4(2): 163 – 175.

Wang, Y., Li, B., Luo, R., Chen, Y., Xu, N., and Yang, H. (2014). Energy efficient

neural networks for big data analytics, in Proceedings of the 17th International

Conference on Design, Automation and Test in Europe (DATE 2014).

Wilson, R. C. (2009). Parallel Hopfield networks, Neural Computations. 21(3): 831–

850.

245

Wythoff, B. J. (1993). Backpropagation neural networks: A tutorial, Chemometrics and

Intelligent Laboratory Systems 18: 115–155.

Yahoo Developer Network (2008). [Online Document].

 https://developer.yahoo.com/blogs/hadoop/scaling-hadoop-4000-nodes-yahoo-

410.html

Yang, F. and Paindavoine, M. (2003). Implementation of an RBF neural network on

embedded systems: real-time face tracking and identity verification, Neural

Networks, IEEE Transactions on 14(5): 1162–1175.

Zaremba, M., St-Laurent, L., Niemann, O. and Richardson, D. (2000). Integration of

self organizing maps with spatial indexing for efficient processing of multi-

dimensional data, GIS ’00: Proceedings of the 8th ACM international symposium

on Advances in geographic information systems, ACM, New York, NY, USA, pp.

77 – 82.

https://developer.yahoo.com/blogs/hadoop/scaling-hadoop-4000-nodes-yahoo-410.html
https://developer.yahoo.com/blogs/hadoop/scaling-hadoop-4000-nodes-yahoo-410.html

	Title, Preface, Abstract (Final)
	Chapter 1 (Final)
	Chapter 2 (Final)
	Chapter 3 (Final)
	Chapter 4 (Final)
	Chapter 5 (Final)
	Chapter 6 (Final)
	Chapter 7 (Final)
	References (Final)

