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Abstract 
An inverse model for a sheet meta l forming process aims to determine the initial parameter levels 
required to form the final formed shape. This is a difficult problem that is usually  approached by 
traditional methods such as finite element analysis. Formulating the problem as a classification 
problem makes it possible to use well established classification algorithms, such as decision trees. 
Classification is, however, generally based on a winner-takes-all approach when associating the 
output value with the  corresponding class. On the other hand, when formulating the problem as a 
regression task, all the output values are combined to produce the corresponding class value. For 
a multi-class problem, this may result in very different associations compared with classification 
between the output of the model and the corresponding class. Such formulation makes it possible 
to use well known regression algorithms, such as neural networks. In this paper, we develop a 
neural network based inverse model of a sheet forming process, and compare its performance 
with that of a linear model. Both models are used in two modes, classification mode and a 
function estimation mode, to investigate the advantage of re-formulating the problem as a 
function estimation. This results in large improvements in the recognition rate of set-up 
parameters of a sheet metal forming process for both models, with a neural network model 
achieving much more accurate parameter recognition than a linear model. 
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1 INTRODUCTION 
The tuning of a process is a difficult problem. Nevertheless, tuning of a process is important to 
the manufacturing industry in at least two ways. First, the tuning of a die’s profile to produce a 
correct part has been large ly a trial and error procedure, which is both expensive in time and cost 
[1]. Second, tuning is necessary to control the output of the process and this is often performed 
manually by experienced operators. 

Often an inverse model can assist tuning problems by providing a relationship between the output 
results and the input process parameters. Developing an inverse model is, however, a challenging 
proposition if the process is non-linear nature. In the case of sheet metal forming, one must model 
a large deformation process with non-linear material properties and many process parameters 
(blank holder force, lubrication, geometric parameters of the die). 

Pre-publication draft of a paper which appeared in the Proceedings of DETC2002, The 2002 ASME 
Co mputers and Information in Engineering Conference, pp 1-8, ASME Press. 
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A majority of inverse models in sheet metal forming have concentrated on obtaining a desired 
final part geometry [2,3,4]. The inverse model approach has been used to improve die design by 
using an iterative approach of optimising the shape of a finite element model [2,3]. Inverse 
modelling is also used to tune the process parameter levels in sheet metal forming to give a 
desired output. Gelin and Ghouati [4] optimise the geometry of a finite element model to 
determine the appropriate initial material properties. 

This paper is also concerned with determining the initial parameter levels of a process, but instead 
of using iterative approach to optimize the finite element model we are using advanced artificial 
intelligence techniques to gain a greater accuracy of the inverse model. The eventual aim of this 
research is to develop an automatic process tuning algorithm. This work has improved upon the 
initial inverse model results obtained by Rolfe et al. [5] with regard to channel forming. 

There are several possible ways to approach inverse modeling using artificial intelligence 
techniques. One possible way is to formulate the problem as a classification task and use some 
well established classification algorithms, such as decision trees. In this formulation a winner-
takes-all approach is generally used to associate the output value with the corresponding class. 
That is, only the largest likelihood value of the outputs is taken into account and the other values 
are ignored. 

On the other hand, when formulating the problem as a regression task, all the estimated output 
values are combined to produce the corresponding class value. In case of a multi-class problem, 
this may result in very different associations between the output of the model and the 
corresponding class. Such formulation makes it possible to use some well known regression 
algorithms such as neural networks. 

The main contribution of this paper is, therefore, to investigate the advantage of re-formulating 
the problem as a function estimation with a neural network based inverse model. This identifies 
process set-up parameter levels by analyzing the variations in geometric shape of a part from a 
sheet metal forming process. A comparison with a standard linear regression model is also made. 
The shape variation of a stamped component is described by a shape variation that elicits the 
mayor modes of shape variation from the sheet metal components based on the Point Distribution 
Model (PDM) [6]. 

2 POINT DISTRIBUTION MODEL (PDM) 
The Point Distribution Model (PDM) [6] is a statistical deformable model which underpins the 
feature analysis of this paper. The PDM compares the variation of points on the boundary of 
shapes within a set of training shapes. This is performed by comparing each coordinate of each 
point versus the coordinates of every other point on each shape and across the training set in the 
form of a co-variance matrix. The training set should include all of the variations that need to be 
recognised. The shapes in the training set are aligned to remove any registration errors, and each 
shape in the set is labelled with a series of points that are recognisable and consistent. A shape 
can then be represented by a vector of the coordinates of the labelled points, for example, 
X= T

kkklll zyxzyx ],,,...,,,[ .The PDM then uses principal component analysis to reduce the 
dimensionality of the co-variance matrix. The resulting vectors are the major modes of variation 
of the coordinates of the shapes in the training set. Therefore, any shape in the training set can be 
represented by, 
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where b is the weighting vector that shows how much of each mode is needed to vary the mean 

shape 
_

X  to the shape X i , P is the matrix which contains the principal or major modes of 
variation.  

 
Figure 1. The “U” channel forming test. 

 

2.1 EXPERIMENTAL SHEET METAL FORMING SET-UP 

The shape variation/process parameter model is developed via a set of standard 2D drawn “U” 
bend channels. A three factor (blank holder force, die radius and tool gap) three level factorial 
experiment with four repetitions was performed to create this set of channels. The set of channels 
was then used as a training set for the PDM method to determine the shape variation modes of the 
process. 

The “U” channel forming consisted of forming a blank into a “U” shape while the edges of the 
blank (flanges) were held down by a blank holder. All forming was conducted on a 30 ton Heine 
& Sons press. The experimental setup used two load cells to measure the blank holder forces and 
a linear potentiometer to measure the travel of the punch as can be seen in Figure 1. The sample 
blanks were made out of Zinc anneal G3N hot-dipped zinc/iron alloy coated drawing steel with a 
sheet thickness of 0.76 mm (Yield strength = 130 - 1 70MPa, Tensile = 280 - 320MPa, r 45  = 1.2 - 
1.6). The G3N material is used for several different car panels within a large saloon vehicle 
stamping plant. Each blank was cut into (150mm x 20mm) strips with a guillotine and then the 
edges were de-burred. The blanks were formed to a depth of approximately 32mm. 

This paper investigates varying three parameters, Blank Holder Force (B), Die Radii (D) and Tool 
Gap (T), to obtain geometric variations in the deformed channel. These parameters were varied 
according to a three level three factor factorial experiment. The ranges of the parameters are 
given in Table 1. After forming, each sample was scanned to obtain its 2D cross section. The 
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scanned cross section was then imported into an analysis program where a chain coding (edge 
detection) algorithm was used to segment out the lower boundary of the scanned channel. 

 

Set-up Parameter Levels  

Blank holder force B1 = 3KN B2 = 7.5KN B3 = 12KN 

Die radii Dl = 3.175mm D2 = 4.7625mm D3 = 6.35mm 

Tool gap TI = 1.05mm  T2 = 1.30mm  T3 = 1.62mm 

 

Table 1. Set-Up Process Parameters Levels . 

 

2.2 SHAPE ALIGNMENT AND POINT PLACEMENT 
All the channels were aligned to remove registration errors. Initially the mid-point of the floor of 
each channel was found and this was used as the first alignment point (see Figure 2(a)). The 
channel floor’s mid-point was found by bisecting the imaginary line between the two corners of 
the channel (see Figure 2(b)). The corners of the channel were determined by using orthogonal 
regression to fit five lines to the two flanges, two side walls and the floor of the channel where the 
corners are defined as the intersection between the side walls and the floor. The registration error 
was gradually removed by an iterative process that rotated and translated the channels to 
minimise the error between the average shape of the channels and each particular channel. 

The points were then evenly distributed around the shape from a consistent datum point. The 
datum point selected was the lower floor mid-point of the channel which was fixed due to the 
width of the punch being the same for all the samples. The points were distributed equally (with 
an equal distance between each point) on each half (left and right) of the channel. 

2.3 SHEET METAL PDM  
After the set of channels is created and aligned, the PDM is applied to the set. The PDM equation 
(1) for the sheet metal process is updated as follows: 

(2) channelmeanchannel XX _=  +Pb, 

where channelX  is the list of boundary point coordinates for any channel that can be described by a 

combination of the major shape variation modes and channelmeanX _ is the list of boundary point 
coordinates for the mean channel of the data set. Thus, an independently formed channel not of 
the set of original channels can be described by a b vector as seen by rearranging equa tion (2): 

(3) b = P )( __ channelmeanchannelmeasured XX −+  

where channelmeanX _  is the mean channel defined above and the variable channelmeasuredX _ shape 
contains the points on the surface of the  newly produced channel. The P matrix holds the 
eigenvectors of shape variation and P+ is the pseudo inverse of P, that is, P + =(P T P) 1− P T . 
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3 RESULTS 
Inverse model set-up 
As stated previously, the major aim of this paper is to develop an inverse model to identify 
process set-up parameter levels by analyzing the variations in geometric shape of a part from a 
sheet metal forming process. That is, shape variations from the nominal sheet metal part are to be 
linked to various levels of the process set-up parameters. 

There are several possible approaches to the development of such an inverse model. The most 
common approach is to formulate the problem as a classification (pattern recognition) problem 
[7]. Traditionally, classification methods were used in cases where both the inputs (attributes) and 
the outputs (classes) are binary or discrete levels. Although it is possible to use traditional 
classification methods, such as decision trees, with the continuous data, this generally requires 
discretization of continuous variables in order to make the learning possible [7]. This may, 
however, result in some loss of the information.  

At the same time, little attention is paid to the possibility of re-formulating the classification 
problem as a function estimation (regression) problem. This is in contrast with attempts to re-
formulate a regression problem as a classification one, which are quite popular [8,9]. There is 
essentially only one difference between the classification and regression: in case of a 
classification, the outputs (classes) have discrete values, while in case of a function estimation 
(regression) the output is a continuous variable which is converted into discrete values afterwards. 
As the inputs to the inverse model (shape variations from the nominal sheet metal part) in our 
case are continuous variables, our hypothesis is that a function estimation (regression) will give a 
lower misclassification error than a pure classification. Our reasoning is based on the fact that in a 
classification approach, when associating the output value with the corresponding class, only the 
largest value of the outputs is taken into account (winner-takes-all approach) [10] and the other 
values are ignored. Whereas, in a function estimation approach, all the output values are 
combined (using for example a weighted sum) to produce the corresponding class value. In a 
multi-class problem, this may result in very different associations between the output of the 
model and the corresponding class. 

 

 
Figure 2. (a) Diagram Showing the Initial Alignment of Boundary Nodes. 

  (b) Diagram Showing the Determination of The Mid-Point of the Channel. 
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Function estimation formulation makes it possible to use a well known regression algorithm such 
as neural networks [11].We have selected two possible approaches to our inverse modeling: 1) a 
traditional linear regression; and 2) a feed-forward multilayer perceptron (MLP)(neural network). 

The reasons for such a selection are to test both the linear (linear regression) and nonlinear (MLP) 
methods [11]. Both methods were used in two modes: 

1. a classification mode; and  

2. a function estimation (regression mode). 

In a function estimation mode the final output (class values) of the predictor is in a continuous 
form, which is then converted to an integer (class value) by rounding up the continuous number. 
For example, the output value of 1.49 will be converted to 1, and the value of 1.51 will be 
converted to 2.  

In a classification mode three output nodes are required for the MLP to account for all of the 
output classes, and in a function estimation mode one output node is sufficient. 

The linear regression used is a standard multivariate linear regression algorithm that generates a 
linear weighted sum of the inputs plus a constant bias for each output. The coefficients (weights) 
of a linear regression minimize the least-mean-square error between the desired outputs and a 
linear regression outputs. 

The feed-forward multilayer perceptron (MLP) used is a neural network algorithm which 
generates input-output mappings based on computations of interconnected nodes [11]. Nodes are 
arranged in layers. Each node’s output is a nonlinear function of the weighted sum of inputs from 
the nodes in the preceding layer. The learning algorithm used was back-propagation. The 
activation function was a hyperbolic tangent. 

The optimal parameters of the MLP were selected based on a combination of a genetic algorithm 
search [12] through different sets of network structures and parameters to limit the search space; 
and then an exhaustive search to fine tune the network structure and the parameters found by the 
genetic search. The parameters of the genetic algorithm are: 

number of generations —8; 

number of samples of each generation— 25; and 

mutation rate 10. 

The parameters which resulted in smallest root mean squared error (RMSE) between the 
predicted output values and the actual output values (classes) were used. 

The following parameters were tested: 

the number of hidden layers being either 1 or 2; 

the number of nodes in the hidden layer 1 ranging from 0 to 40; 

the number of nodes in the hidden layer 2 ranging from 0 to 10; 

the gradient descent step size (learning rate) ranging from 0.005 to 1.0; 

the gradient descent momentum ranging from 0.0 to 1.0; 

the method of weights update being either per epoch (batch) or pattern; 

the output node using either a linear function or a sigmoid function; 

the output normalization using either a z score or none; 
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the normalization of inputs being either none, or a z score, or a min-max cutoff, or a 
sigmoidal. 

As a stopping condition a minimal RMSE between the predicted output values from the model 
and the actual output values were tested ranging from 0.01 to 0.2. 

The optimal models were selected using ten-fold cross- validation [7] where the sets of channels 
were randomized and split into ten equal parts. One part was held out in turn while the model was 
trained on the remaining nine parts. The held out part was then used as a test set to measure the 
model’s accuracy. The process was then repeated ten times. 

The optimal structure and parameters of the MLP’s models found are shown in Table 2. 

Inverse models created by both the linear regression and the MLP’s methods were then used to 
predict the original levels of the process set-up parameters from the shape metric data. 

 

Description Blank holder force Die radii Tool gap 

 Classification Regression Classification Regression Classification Regression 

Number of 
inputs 20 20 20 20 20 20 

Hidden layers 1 1 1 1 1 1 

Neurons in 
hidden layer 2 1 2 2 3 2 

Neurons in 
output layer 3 1 3 1 3 1 

Activation 
function tanh tanh tanh tanh tanh tanh 

Learning Rate 0.2 0.05 0.1 0.2 0.1 0.15 

Momentum 0.6 0.5 0.6 0.8 0.7 0.7 

Weight 
Update pattern pattern pattern pattern pattern pattern  

Output 
Function  linear linear linear linear linear linear 

Input 
Normalization zscore zscore zscore zscore zscore zscore  

Output 
Normalization  zscore zscore zscore zscore zscore zscore  

Minimum 
RMSE 0.1 0.1 0.1 0.1 0.1 0.1 

 

Table 2. The Optimal Structure and Parameters of the MLP’s Models. 
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Modeling Results  
The data was initially analyzed using a linear cluster separation measure to indicate the general 
success of a linear recognition. This simple measure was calculated by taking the trace of the 
between class variance matrix multiplied by the inverted within class variance matrix [13]. A 
higher value of the linear measure implies that the set of data is more separable. The data is split 
into the three levels for each parameter and the linear measure estimates the potential that each 
parameter can be recognized correctly for the appropriate parameter level. 

The resulting values from the measure are: 

Blank holder force 22.0238 

Die radii  20.0000 

Tool gap  6.2938 

The tool gap parameter is therefore the most difficult to recognize correctly. 

The linear and the MLP inverse models were then used to determine the original levels of the 
process set-up parameters from the shape metric data. The results from the models for each 
parameter can be seen in Table 3. 

The recognition rate of the models for each parameter’s levels boundaries can be seen in Table 4.  

 

Linear regression model MLP model  

Classifier Function estimator Classifier Function 
estimator 

Recognition 
rate 

86.7% 98.5% 96.3% 100.0% 

Blank holder force 
Confusion 
matrices 

42 

3 

0 

10 

35 

0 

0 

5 

40 

45 

0 

0 

1 

44 

0 

0 

1 

44 

56 

0 

0 

2 

41 

2 

0 

1 

44 

45 

0 

0 

0 

45 

0 

0 

0 

45 

Recognition 
rate 

88.2% 95.6% 93.3% 98.5% 

Die radii 
Confusion 
matrices 

44 

1 

0 

5 

31 

9 

0 

1 

44 

42 

3 

0 

0 

42 

3 

0 

0 

45 

43 

2 

0 

1 

40 

4 

1 

1 

43 

44 

1 

0 

1 

44 

0 

0 

0 

45 

Recognition 
rate 69.6% 83.0% 76.7% 92.6% 

Tool gap 
Confusion 
matrices 

42 

2 

1 

7 

15 

23 

1 

7 

37 

37 

8 

0 

0 

39 

6 

0 

9 

36 

43 

0 

2 

3 

29 

13 

0 

14 

31 

44 

1 

0 

0 

40 

5 

0 

4 

41 

 

Table 3. Average Model Prediction Results for Each of the Process Parameters 
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Linear regression model MLP model 
 

Classifier Function 
Estimator Classifier Function 

Estimator 

low-high 100.0% 100.0% 100.0% 100.0% 

low-med 85.6% 98.9% 97.8% 100.0% Blank holder 
force 

med-high 94.4% 98.9% 96.7% 100.0% 

low-high 100.0% 100.0% 98.9% 100.0% 

low-med 93.3% 96.7% 96.7% 97.8% Die radii 

med-high 88.9% 96.7% 94.4% 100.0% 

low-high 97.8% 100.0% 97.8% 100.0% 

low-med 90.0% 91.1% 96.7% 98.9% Tool gap 

med-high 66.7% 83.3% 70.0% 90.0% 

 

Table 4. Average Model Recognition Rate for Each of the  Process Parameters’ Levels 
Boundaries 

 

4 DISCUSSION 
Linear classifier model 
The linear regression model used in a classifier mode appears to be able to identify the channels 
into the high and low parameter levels for all parameters with almost 100% accuracy, see Table 4. 
The medium level, however, is obviously too close to either the low or high parameter levels. The 
blank holder force parameter appears to have more data clusters that are close together for low 
and medium levels than for medium and high levels. This is due to the fact that for blank holder 
force the higher forces have much greater impact on the end shape particularly as the blank is 
very near to necking and tearing. 

The difficulty with the tool gap data for the linear regression model used in a classifier mode is 
mostly between the medium and high levels. This is primarily due to the errors in the tool gap set-
up. The medium tool gap uses three shims to create the gap whereas high tool gap uses only two 
shims. There is a greater possibility for errors when aligning the three shims, moreover, this error 
will always cause an increase of the actual tool gap. This resulted in a consistent problem when 
discriminating between high and medium levels for the linear regression inverse model used in a 
classifier mode. 

MLP classifier model 
The MLP model in a classifier mode is able to distinguish between the medium and high 
parameter levels much better than the linear regression model for all parameters, see Table 4. 

Once again, the tool gap parameter is the hardest to recognise correctly (the recognition rate is 
76.7%). Note that the MLP model in a classifier mode does identify the tool gap parameter with 
greater accuracy than the linear model. Similarly to the linear model, it is still difficult to 
discriminate accurately between the medium and the high tool gap channels. 
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Linear and MLP predictor models  
It can be seen from the results in Table 3 that there is  benefit to re-formulating the problem as a 
function estimation task. The misclassification error, in case of the linear regression model, has 
been reduced from: 

13.3% to 1.5% for the blank holder force; 

11.8% to 4.4% for the die radii; and 

30.4% to 17.0% for the tool gap. 

There is a clear distinction between the low and high parameters levels for all parameters. There 
is, however, still some difficulty in distinguishin g accurately between the medium and high tool 
gap parameter levels. 

The corresponding results for the MLP model, when used as a function estimator, are even better: 

perfect recognition for the blank holder force; 

1.5% error for the die radii; and 

7.4% error for the tool gap. 

There is practically no difficulty in distinguishing between the low and medium parameters levels 
for all parameters. The only difficulty remains in distinguishing between the medium and high 
levels for the tool gap parameters, however there is much improvement when compared to the 
MLP model in a classifier mode. 

To compare the recognition rates of the two modes, twotailed sign test [14] was performed. The 
difference was considered significant if the significance level of the sign test was smaller than 
0.05. Table 5, shows the numbers of wins, ties, and losses between the recognition rates of the 
corresponding two algorithms for all levels, and the significance level of twotailed sign test [14] 
on these win/tie/loss records. From Table 5 it can be seen that, for both the MLP and the linear 
regression, there were statistically significant improvements in the function estimation mode 
results over that of the classifier mode. 
Improvements in results for the MLP method over that of the linear regression method in a 
function estimation mode are also statistically significant. The improvements in the MLP results 
over that of the linear regression in a classifier mode are not statistically significant to the level of 
5%. The MLP results, however, are still much better than the corresponding linear regression 
results. 

But more importantly, both models used in a function estimation mode consistently improved the 
recognition rate by 10 - 20% compared to the corresponding classification mode. This 
demonstrates the advantage of formulating the problem as a function estimator over a classifier 
formulation. The function estimation mode suits the continuous data better than the classification 
mode, especially for the case of a multi-class problem. As indicated above, in the classification 
mode, when associating the output value with the corresponding class, only the most likely of the 
outputs is taken into account (winner takes all approach) and the other probability values are 
ignored. Whereas, in the case of function estimation, all the output values are combined to pro 
duce the corresponding class value. In a multi-class problem this results in very different 
associations between the output of the model and the corresponding class. 
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Method Comparisons win-tie-losses p of win-tie-losses 

MLP  regression vs. classifier 8-1-0 p = 0.0078 

Linear regression vs. classifier 7-2-0 p  = 0.0156 

Regression MLP vs. Linear 6-3-0 P = 0.03l2 

Classifier MLP vs. Linear 6-2-1 P = 0.2187 

 

Table 5. Statistical Significance Test of the  Results  

 

5 CONCLUSION 
In summary, the inverse models were created using linear regression and MLP methods that 
related the b vectors to the process parameter levels. The MLP model in a function estimator 
mode created the most accurate predictor for all the parameters with the average recognition rates 
for: 

Blank holder force 100.0%; 

Die radii  98.5%; 

Tool gap  92.6% 

The linear regression model in a function estimator mode still consistently confused the medium 
level parameter with the high level parameter for all parameters. In addition, the linear model was 
much less accurate than the corresponding MLP model with the aver age recognition rates for: 

Blank holder force  98.5%; 

Die radii   95.6%; 

Tool gap  83.0%. 

The nonlinear nature of the data suited the MLP model better than the corresponding linear 
model. 

Given the similar prediction accuracies from analyzing forging data [15] it may be generalised 
that the PDM shape error metric will provide reasonable classification data in most cases for 
other shape manufacturing processes. Moreover, this shape -process parameter model allows the 
further development of auto mated intelligent process control within sheet metal forming by 
providing a mechanism that can recognize how distant the cur rent set-up parameters are from the 
optimal parameter set-up in order to produce the desired geometric shape. 
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