CSE2306/1308 Digital Logic

Assignment 1

Due date: Monday, 27th March

A/Prof. Andrew P. Paplinski (Clayton 75-190) Robert Prain (Clayton 75-188)

Write your answers in the space provided in the assignment sheets. Attach additional page if there is not enough space. **Plagiarised assignments will be given a zero mark.**

Question 1: Add

 $(21201)_3 + (1221)_3 =$

Show your working here:

[4 marks]

Question 2: Convert using the **division by the target radix** method:

- 1. $(347)_{10}$ to radix 3
- 2. $(753)_{10}$ to radix 4
- $3. \ and \ radix \ 2$

Show your working here:

[2+2+2 marks]

Question 3: Convert using the **multiplication by the source radix** method:

- 1. $(221121)_3$ to radix 10
- 2. $(1753)_{10}$ to radix 2
- 3. and radix 4

Show your working here:

[2+2+2 marks]

Question 4: Consider the following CMOS implementation of a logic gate:

1. Create the truth table y(a, b) for the gate

[2+1 marks]

Question 5: Complete the following time waveforms:

What is the frequency of signals **a** and **b**?

[2+2+1 marks]

Variables	ariables Various basic logic functions							
AB	f1	f2	f3	f4	f5	f6	f7	f8
0 0			0			1		1
0 1			1			0		1
1 0			1			1		1
1 1			0			0		0
Gate name		NAND					XNOR	
Gate Symbol	\Box			1D-				
Expression	=	=	=	=	= A+B		=	=

Question 6: Complete the following table in the format indicated

[8 marks]

Question 7: Complete the body or heading of each truth table column.

Inputs A B C	ĒĈ	Ā+C	A(B+Ē)		ĀC+BĒ	
000	······································			0		0
001				1		1
010	•			0		0
011				0		1
1.00		•		0		1
101				1		1
1 1 0				0		1
1 1 1				0		1

[6 marks]

Question 8: Give the formula for the maximum number of different logic functions (truth tables) that can be constructed using **exactly** *n* binary variables

[2 marks]

Question 9: The partly completed equations below refer to either a minterm or a Maxterm. Complete each equation to show the equivalence between the longhand and the shorthand forms.

A•B•Ē =	Ā+B+C =	= M ₃	= m ₅
• • = 2	= M ₆	Ā•B•C =	+ + = 7

[8 marks]

Question 10: Logic functions P, Q, R, S, T and U have these truth tables:

Inputs A B C	Р	Q	R	S	Т	U
0 0 0	1	0	0	1	1	1
001	0	1	0	1	0	1
010	1	1	1	0	1	0
0 1 1	1	0	0	0	0	0
100	1	0	0	1	1	0
101	0	1	1	0	1	1
1 1 0	1	0	0	1	0	0
1 1 1	0	1	1	0	0	1

Complete each expression below to become a standard canonical form of the logic function. Use either the index list, or the shorthand format, as indicated by the partly complete answer:

[6 marks]

Question 11:

1. Give a Boolean expression that corresponds to this logic circuit:

2. Develop a truth table for the circuit, showing columns for at least the output of each 2-input gate. You should invent new variable names for these intermediate outputs.

A	В	С	
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

[2+8 marks]

A.P. Papliński

a) Distributive

#2 laws: #1 b) De Morgan's #2 laws: #1 c) Four useful laws whose result is a logic constant. . Use suitable Boolean algebra law to: **d)** $\mathbf{F} = \mathbf{A}(\mathbf{B}+\mathbf{\overline{C}}) + (\mathbf{\overline{\overline{B}}+C})$ Expand "F" into a sum of minterms. e) $\mathbf{G} = \overline{A}\overline{B}\overline{C} + C(\overline{A}\overline{\overline{B}}) + \overline{A}(C+AB)$ Simplify "G" as far as possible. [2+2+2+3+3 marks]

Question 12: Using logic variables A, B, C give these Boolean algebra laws:

A.P. Papliński

7

Question 13: Consider the following four-variable function

$$y(x_3, x_2, x_1, x_0) = \sum (0, 2, 3, 6, 7, 9, 11, 15)$$

Use the Karnaugh map to derive the following minimal forms of the function y:

- 1. SoP
- 2. PoS
- 3. Inverted SoP
- 4. Inverted PoS
- 5. NAND form
- 6. NOR form

[12 marks]

Question 14: Consider the following four-variable function

$$y(x_3, x_2, x_1, x_0) = \sum (0, 1, 4, 5, 6, 8, 9, 11, 15)$$

1. Implement the above function using a decoder generating Maxterms. Draw a suitable diagram

2. Implement the above function using the 8-to-1 multiplexer. Give the modified truth table and the relevant diagram.

[Total marks: 100]