CSE2306/1308 Digital Logic
 Assignment 1

Due date: Monday, 27th March
A/Prof. Andrew P. Paplinski (Clayton 75-190)
Robert Prain (Clayton 75-188)

Write your answers in the space provided in the assignment sheets.
Attach additional page if there is not enough space.
Plagiarised assignments will be given a zero mark.
Question 1: Add

$$
(21201)_{3}+(1221)_{3}=\square
$$

Show your working here:
\square

Question 2: Convert using the division by the target radix method:

1. $(347)_{10}$ to radix 3
2. $(753)_{10}$ to radix 4
3. and radix 2

Show your working here:
\square

Question 3: Convert using the multiplication by the source radix method:

1. $(221121)_{3}$ to radix 10
2. $(1753)_{10}$ to radix 2
3. and radix 4

Show your working here:

Question 4: Consider the following CMOS implementation of a logic gate:

1. Create the truth table $y(a, b)$ for the gate

2. What is the name of the gate?

\square

Question 5: Complete the following time waveforms:

What is the frequency of signals \mathbf{a} and \mathbf{b} ?

Question 6: Complete the following table in the format indicated

Variables	Various basic logic functions							
A B	f1	£2	f3	f4	f5	f6	f7	f8
00			0			1		1
01			1			0		1
10			1			1		1
11			0			0		0
Gate name		NAND					XNOR	
Gate Symbol	I			$-$				
Expression	$=$	$=$	$=$	$=$	$=A+B$	$=$	$=$	=

[8 marks]
Question 7: Complete the body or heading of each truth table column.

Inputs A B C	$\overline{\mathrm{B}} \overline{\mathrm{C}}$	$\overline{\mathrm{A}}+\mathrm{C}$	$\mathrm{A}(\mathrm{B}+\overline{\mathrm{C}})$		$\bar{A} C+B \bar{C}$	
000				0		0
001				1		1
010				0		0
011				0		1
1.00				0		1
101				1		1
110				0		1
111				0		1

Question 8: Give the formula for the maximum number of different logic functions (truth tables) that can be constructed using exactly n binary variables
\square
[2 marks]
Question 9: The partly completed equations below refer to either a minterm or a Maxterm. Complete each equation to show the equivalence between the longhand and the shorthand forms.

[8 marks]
Question 10: Logic functions $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{T}$ and U have these truth tables:

Inputs A B C	P	Q	R	S	T	U
000	1	0	0	1	1	1
001	0	1	0	1	0	1
010	1	1	1	0	1	0
011	1	0	0	0	0	0
100	1	0	0	1	1	0
101	0	1	1	0	1	1
110	1	0	0	1	0	0
111	0	1	1	0	0	1

Complete each expression below to become a standard canonical form of the logic function. Use either the index list, or the shorthand format, as indicated by the partly complete answer:
$\mathrm{P}=\prod \mathrm{M}($
$Q=\overline{\sum m(}$
$\mathbf{R}=\sum \mathrm{m}($
$\mathbf{S}=\mathrm{m}$
$T=M$
$\mathbf{U}=\mathrm{M}$

Question 11:

1. Give a Boolean expression that corresponds to this logic circuit:

2. Develop a truth table for the circuit, showing columns for at least the output of each 2input gate. You should invent new variable names for these intermediate outputs.

Question 12: Using logic variables A, B, C give these Boolean algebra laws:
a) Distributive
laws: \#1
\#2
b) De Morgan's
laws: \#1
\#2
c) Four useful laws whose result is a logic constant.

Use suitable Boolean algebra law to:
d) $\mathbf{F}=\mathrm{A}(\mathrm{B}+\overline{\mathrm{C}})+(\overline{\bar{B}+C})$
Expand "F" into a sum of minterms.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
e) $\mathbf{G}=\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{C}(\overline{\mathrm{A} \bar{B}})+\overline{\mathrm{A}}(\mathrm{C}+\mathrm{AB}) \quad$ Simplify "G" as far as possible.
\qquad
\qquad
\qquad
\qquad
\qquad

Question 13: Consider the following four-variable function

$$
y\left(x_{3}, x_{2}, x_{1}, x_{0}\right)=\sum(0,2,3,6,7,9,11,15)
$$

Use the Karnaugh map to derive the following minimal forms of the function y :

1. SoP
2. PoS
3. Inverted SoP
4. Inverted PoS
5. NAND form
6. NOR form

Question 14: Consider the following four-variable function

$$
y\left(x_{3}, x_{2}, x_{1}, x_{0}\right)=\sum(0,1,4,5,6,8,9,11,15)
$$

1. Implement the above function using a decoder generating Maxterms. Draw a suitable diagram
2. Implement the above function using the 8 -to- 1 multiplexer. Give the modified truth table and the relevant diagram.
[Total marks: 100]
