1 Introductory concepts

1.1 Switches. NOT operation

At the beginning there was THE SWITCH

- Switches come in two versions: "normally open" (1) (open when in-active) and "normally closed" (2) (closed when in-active)
- When a switch, say a, is in its neutral position, we say that $a=0$. When a switch is activated, we say that $a=1$,
- \mathbf{V} indicates a supply voltage (one end of battery). GND indicates the ground terminal (the other end of a battery). The crossed circle symbolizes a bulb.
- The symbols $\{0,1\}$ will be synonymously used with words like \{ off, on \}, \{ false, true \}, \{ low, high \}, etc.
- If we consider a as an input variable (argument),

Truth tables:
 and y as an output variable (function value) then

$$
y=\bar{a}
$$

$$
=\text { NOT a }
$$

the first circuit (1) performs the identity operation (function) $y=a$
and the second circuit (2) performs the NOT operation (function) $y=\bar{a}=$ NOT $a=a^{\prime}$
also known as the complement or the inversion operation

1.2 Parallel connection of switches

- Two switches can be connected in parallel:
- The operation performed by the circuit can be described by the following logical expression

$$
\text { if } a=1 \text { or } b=1 \text { then } y=1 \text { else } y=0
$$

- Alternatively, the operation can be described by the following truth table:
- Formally we can say that if we have two binary variables $a, b \in\{0,1\}$ and the operation performed can be symbolically described as

$$
y=f(a, b)=a \text { or } b=a+b
$$

- Hence we say that the circuit performs the or operation, also known as a logic sum operation

1.3 Serial connection of switches

- Two switches can be connected serially:
- The operation performed by the circuit can be described by the following logical expression

$$
\text { if } a=1 \text { and } b=1 \text { then } y=1 \text { else } y=0
$$

- Alternatively, the operation can be described by the following truth table:
- Formally we can say that if we have two binary variables $a, b \in\{0,1\}$ and the operation performed can be symbolically described as

$$
y=f(a, b)=a \text { and } b=a \cdot b
$$

- Hence we say that the circuit performs the and operation, also known as a logic multiplication operation

1.4 Exercise

- Consider serial-parallel connections of three switches, a, b, c
- Draw related circuit diagrams and truth tables.
- Describe circuits by relevant logic expressions if ...

