2 Numbers in digital systems

2.1 Digits, numerals and numbers

- Assume that an integer number r is the **base** or **radix** of a number representation (or system), then
- integer numbers $a_i \in \{0, \dots, r-1\}$ are called **digits**. Each digit has its own symbol.
- We will be typically using bases r = 2, 8, 10, 16 and equivalent number systems are called: binary, octal, decimal and hexadecimal.
- Symbols for digits in the hexadecimal system are: $0, \ldots, 9, A, B, C, D, E, F$.
- An ordered sequence, or vector of digits is called a numeral.
- Digits in a numeral are typically numbered from right to left, for example, a five-digit numeral

$$\mathbf{a} = a_4 a_3 a_2 a_1 a_0 = 23412$$

• In order to associate a number with a numeral we have to specify the radix r and assign a weight (a power of r), say r^i , to each *i*th digit. Then the integer number a equivalent to the *n*-digit numeral a can be found as:

$$a = (\mathbf{a})_r = (a_{n-1}, \dots, a_1, a_0)_r = \sum_{i=0}^{n-1} a_i \cdot r^i = \mathbf{a} \cdot \mathbf{r}_n$$

where $\mathbf{r}_n = [r^{n-1}, \dots, r^1, r^0]$ is a vector of respective powers of the base (weights)

A.P. Papliński

Digital Logic/Design. - L. 2

• A number is an **inner (dot) product** of a vector of digits (a numeral) and a vector of weights (powers of the radix).

• It is a common practice to call **numerals radix**-*r* **numbers** Hence we have binary, octal, decimal and hexadecimal numbers. Often, decimal numbers are simply called numbers

Example:

An octal numeral (r = 8) expressed as a decimal numeral (number):

$$a = (3412)_8 = 3 \cdot 8^3 + 4 \cdot 8^2 + 1 \cdot 8^1 + 2 \cdot 8^0 = 3 \cdot 512 + 4 \cdot 64 + 8 + 2 = 1536 + 266 = (1802)_{10}$$

We can also write the following inner product expression

$$a = \begin{bmatrix} 3 & 4 & 1 & 2 \end{bmatrix} \cdot \begin{vmatrix} 8^3 \\ 8^2 \\ 8^1 \\ 8^0 \end{vmatrix} = 1802$$

• Fractional numbers need information about the position of the "radix point".

For example

$$(101.011)_2 = 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3} = 5 + 0.25 + 0.125 = (5.375)_{10}$$

2 - 1

March 4, 2006

2.2 Multiplication and division by a power of the radix, r^m

- Multiplication (of integers) by the power of the radix, r^m , appends m zeros to the right hand side of the respective numeral.
- This is equivalent to shifting the numeral *m* positions to the left, or moving the "**radix point**" *m* positions to the right.

Example:

$$(243.)_{10} \cdot 10^2 = (24300.)_{10}$$

• **Division** by the power of the radix, r^m , (multiplication by the negative power of the radix) shifts the numeral *m* positions to the right,

that is, moves the "**radix point**" m positions to the left.

Example:

$$(243.)_{10} \cdot 10^{-2} = (2.43)_{10}$$

A.P. Papliński

Digital Logic/Design. — L. 2

2.3 Basic arithmetic operations

2.3.1 Addition in radix r system

Given two n-digit numerals the sum is calculated digit by digit using additional carry digits:

$c_0 = 0;$		
for $k = 0$ to $n - 1$		
calculate c_{k+1} , s_k given a_k , b_k , c_k , so that:	a =	a_{n-1} a_1 a_0
$r \cdot c \cdot + c = a + b + c \cdot$	b =	b_{n-1} b_1 b_0
$T \cdot c_{k+1} + S_k = a_k + o_k + c_k,$	c_n	c_{n-1} c_1 c_0
or	$s = s_n$	s_{n-1} s_1 s_0
$s_k = \operatorname{mod}(a_k + b_k + c_k, r);$	s = a + b;	$(s_n=c_n\in\{0,1\})$
$r \cdot c_{k+1} = a_k + b_k + c_k - s_k$		

2.3.2 Multiplication by 10 in a binary system

Multiplication by 10 in a binary system is performed according to the formula

 $10 \cdot a = (2^2 \cdot a + a) \cdot 2$

2–4

March 4, 2006

2 - 3

2.4 Radix conversion

e.g.

Converting from radix r (source) to radix q (target)

Given an n-digit numeral in radix r system, find an equivalent m-digit numeral in radix q system,

given unknown

$$a = (a_{n-1} \dots a_1 a_0)_r = (b_{m-1} \dots b_1 b_0)_q$$

 $(253)_{10} = (\dots b_1 b_0)_2$

2.4.1 Method 1: Division by target radix in the source system

The first method is based on the multi-step division of the number a by the target radix q, performed in the source radix r system. The remainders are unknown digits b_k . The algorithm

A_0	=a;		
foi	: $k = 0$ to $m - 1$		1A ;
or	$\frac{A_k}{q} = A_{k-1} + \frac{b_k}{q}$	A_k is a quotient b_k is a reminder $b_k \in \{0, \dots, q-1\}$	19 by
	$A_k = q \cdot A_{k-1} + b_k$		

A.P. Papliński

Digital Logic/Design. — L. 2

Example:

A_0	=	253	=	$2 \cdot 126$	+	1	\rightarrow	b_0
A_1	=	126	=	$2 \cdot 63$	$^+$	0	\rightarrow	b_1
A_2	=	63	=	$2 \cdot 31$	+	1	\rightarrow	b_2
A_3	=	31	=	$2 \cdot 15$	+	1	\rightarrow	b_3
A_4	=	15	=	$2 \cdot 7$	+	1	\rightarrow	b_4
A_5	=	7	=	$2 \cdot 3$	+	1	\rightarrow	b_5
A_6	=	3	=	$2 \cdot 1$	+	1	\rightarrow	b_6
A_7	=	1	=	$2 \cdot 0$	+	1	\rightarrow	b_7

 $7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1 \ 0$ $(1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1)_2$ $8 \ 7 \ 6 \ 5 \ 4 \ 3 \ \ 2 \ \ 1 \ 0$ $(1 \ 0 \ 0 \ 0 \ 0 \ 0 \ -1 \ 0 \ 1)_2$ $= 256 - 4 + 1 = (253)_{10}$

Exercise:

Give an example of conversion from the binary to the decimal system using method 1.

2 - 5

March 4, 2006

e.g.

2.4.2 Method 2: Multiplication by source radix in the target system

The second method is based on the multi-step multiplication of the source digits by the source radix r, performed in the target radix q system. The final product is the unknown numeral in the target system.

given unknown

$$a = (a_{n-1} \dots a_1 a_0)_r = (b_{m-1} \dots b_1 b_0)_q$$

e.g.
 $(253)_{10} = (\dots b_1 b_0)_2$
The algorithm
 $B_n = 0;$
for $k = n - 1$ to 0

 $B_n =$

 $b = B_0$ is the result

Digits a_k needs to be expressed in the radix q system.

A.P. Papliński

Digital Logic/Design. — L. 2

Example:

$$a = (253)_{10} = (b_{m-1}, \dots, b_1 b_0)_2$$

$$a_2 = (10)_2, a_1 = (101)_2, a_0 = (11)_2$$

$$B_1 = 10 \cdot B_3 + a_2 = 10 \cdot 0 + 2 = 2$$

$$B_1 = 10 \cdot B_2 + a_1 = 10 \cdot 2 + 5 = 25$$

$$B_0 = 10 \cdot B_1 + a_0 = 10 \cdot 25 + 3 = 253$$

$$a = (1111101)_2 = 2^8 - 2^2 + 1 = (253)_{10}$$

$$B_1 = (253)_{10} = (253)_{10}$$

$$B_1 = (253)_{10} = (253)_{10}$$

_

 $B_k = r \cdot B_{k+1} + a_k$ B_k are partial products/results

2 - 7