2 Numbers in digital systems

2.1 Digits, numerals and numbers

- Assume that an integer number r is the base or radix of a number representation (or system), then
- integer numbers $a_{i} \in\{0, \ldots r-1\}$ are called digits . Each digit has its own symbol.
- We will be typically using bases $r=2,8,10,16$ and equivalent number systems are called: binary, octal, decimal and hexadecimal.
- Symbols for digits in the hexadecimal system are: $0, \ldots 9, A, B, C, D, E, F$.
- An ordered sequence, or vector of digits is called a numeral.
- Digits in a numeral are typically numbered from right to left, for example, a five-digit numeral

$$
\mathbf{a}=a_{4} a_{3} a_{2} a_{1} a_{0}=23412
$$

- In order to associate a number with a numeral we have to specify the radix r and assign a weight (a power of r), say r^{i}, to each i th digit. Then the integer number a equivalent to the n-digit numeral a can be found as:

$$
a=(\mathbf{a})_{r}=\left(a_{n-1}, \ldots, a_{1}, a_{0}\right)_{r}=\sum_{i=0}^{n-1} a_{i} \cdot r^{i}=\mathbf{a} \cdot \mathbf{r}_{n}
$$

where $\mathbf{r}_{n}=\left[r^{n-1}, \ldots r^{1}, r^{0}\right]$ is a vector of respective powers of the base (weights)

- A number is an inner (dot) product of a vector of digits (a numeral) and a vector of weights (powers of the radix).
- It is a common practice to call numerals radix- r numbers

Hence we have binary, octal, decimal and hexadecimal numbers.
Often, decimal numbers are simply called numbers

Example:

An octal numeral $(r=8)$ expressed as a decimal numeral (number):

$$
a=(3412)_{8}=3 \cdot 8^{3}+4 \cdot 8^{2}+1 \cdot 8^{1}+2 \cdot 8^{0}=3 \cdot 512+4 \cdot 64+8+2=1536+266=(1802)_{10}
$$

We can also write the following inner product expression

$$
a=\left[\begin{array}{llll}
3 & 4 & 1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
8^{3} \\
8^{2} \\
8^{1} \\
8^{0}
\end{array}\right]=1802
$$

- Fractional numbers need information about the position of the "radix point".

For example

$$
(101.011)_{2}=1 \cdot 2^{2}+0 \cdot 2^{1}+1 \cdot 2^{0}+0 \cdot 2^{-1}+1 \cdot 2^{-2}+1 \cdot 2^{-3}=5+0.25+0.125=(5.375)_{10}
$$

2.2 Multiplication and division by a power of the radix, r^{m}

- Multiplication (of integers) by the power of the radix, r^{m}, appends m zeros to the right hand side of the respective numeral.
- This is equivalent to shifting the numeral m positions to the left, or moving the "radix point" m positions to the right.

Example:

$$
(243 .)_{10} \cdot 10^{2}=(24300 .)_{10}
$$

- Division by the power of the radix, r^{m}, (multiplication by the negative power of the radix) shifts the numeral m positions to the right,
that is, moves the "radix point" m positions to the left.

Example:

$$
(243 .)_{10} \cdot 10^{-2}=(2.43)_{10}
$$

2.3 Basic arithmetic operations

2.3.1 Addition in radix r system

Given two n-digit numerals the sum is calculated digit by digit using additional carry digits:

$$
c_{0}=0 ;
$$

for $k=0$ to $n-1$
calculate c_{k+1}, s_{k} given a_{k}, b_{k}, c_{k}, so that:

$$
r \cdot c_{k+1}+s_{k}=a_{k}+b_{k}+c_{k} ;
$$

or

$$
\begin{aligned}
s_{k} & =\bmod \left(a_{k}+b_{k}+c_{k}, r\right) \\
r \cdot c_{k+1} & =a_{k}+b_{k}+c_{k}-s_{k}
\end{aligned}
$$

2.3.2 Multiplication by 10 in a binary system

Multiplication by 10 in a binary system is performed according to the formula

$$
10 \cdot a=\left(2^{2} \cdot a+a\right) \cdot 2
$$

2.4 Radix conversion

Converting from radix r (source) to radix q (target)
Given an n-digit numeral in radix r system, find an equivalent m-digit numeral in radix q system,

> given unknown

$$
a=\left(\begin{array}{ccccc}
a_{n-1} & \ldots & a_{1} & a_{0}
\end{array}\right)_{r}=\left(\begin{array}{llll}
b_{m-1} & \ldots & b_{1} & b_{0}
\end{array}\right)_{q}
$$

e.g.

$$
(253)_{10}=\left(\ldots b_{1} b_{0}\right)_{2}
$$

2.4.1 Method 1: Division by target radix in the source system

The first method is based on the multi-step division of the number a by the target radix q, performed in the source radix r system. The remainders are unknown digits b_{k}.
The algorithm

$$
\begin{aligned}
& A_{0}=a ; \\
& \text { for } k=0 \text { to } m-1
\end{aligned}
$$

$$
\frac{A_{k}}{q}=A_{k-1}+\frac{b_{k}}{q}
$$

or

$$
A_{k}=q \cdot A_{k-1}+b_{k}
$$

Example:

$$
\begin{aligned}
& A_{0}=253=2 \cdot 126+1 \rightarrow b_{0} \\
& A_{1}=126=2 \cdot 63+0 \rightarrow b_{1} \\
& A_{2}=63=2 \cdot 31+1 \rightarrow b_{2} \\
& A_{3}=31=2 \cdot 15+1 \rightarrow b_{3} \\
& A_{4}=15=2 \cdot 7+1 \rightarrow b_{4} \\
& A_{5}=7=2 \cdot 3+1 \rightarrow b_{5} \\
& A_{6}=3=2 \cdot 1+1 \rightarrow b_{6} \\
& A_{7}=1=2 \cdot 0+1 \rightarrow b_{7}
\end{aligned}
$$

		6				2	1	
	7	6	5			2	1	
	$=256-4+1=(253)_{10}$							

Exercise:

Give an example of conversion from the binary to the decimal system using method 1.

2.4.2 Method 2: Multiplication by source radix in the target system

The second method is based on the multi-step multiplication of the source digits by the source radix r, performed in the target radix q system. The final product is the unknown numeral in the target system.
given unknown

$$
a=\left(\begin{array}{ccccc}
a_{n-1} & \ldots & a_{1} & a_{0}
\end{array}\right)_{r}=\left(\begin{array}{lllll}
b_{m-1} & \ldots & b_{1} & b_{0}
\end{array}\right)_{q}
$$

e.g.

$$
(253)_{10}=\left(\ldots b_{1} b_{0}\right)_{2}
$$

The algorithm

$$
\begin{aligned}
& B_{n}=0 ; \\
& \text { for } k=n-1 \text { to } 0
\end{aligned}
$$

$$
B_{k}=r \cdot B_{k+1}+a_{k} \quad B_{k} \text { are partial products/results }
$$

$b=B_{0}$ is the result

Digits a_{k} needs to be expressed in the radix q system.

Example:

$$
\begin{aligned}
& a=(253)_{10}=\left(b_{m-1}, \ldots, b_{1} b_{0}\right)_{2} \\
& a_{2}=(10)_{2}, a_{1}=(101)_{2}, a_{0}=(11)_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\left.\begin{array}{l}
B_{3}=0 \\
B_{2}=10 \cdot B_{3}+a_{2}=10 \cdot 0+2=2 \\
B_{1}=10 \cdot B_{2}+a_{1}=10 \cdot 2+5=25 \\
B_{0}=10 \cdot B_{1}+a_{0}=10 \cdot 25+3=253
\end{array} \quad B_{0}=\frac{11001}{11001}\right\}+10 \times 25 \\
\frac{11111101}{11}+3
\end{array} \\
& a=(11111101)_{2}=2^{8}-2^{2}+1=(253)_{10}
\end{aligned}
$$

