
Digital Logic/Design. — L. 3 March 20, 2006

3 Logic Gates and Boolean Algebra

3.1 CMOS Technology

• Digital devises are predominantly manufactured in the Complementary-Metal-Oxide-Semiconductor
(CMOS) technology.

• Two types of switches, as discussed in sec. 1.1, are implemented as a pair of complementary MOS
Fields-Effect-Transitors FETs:

– nMOS transistor — “normally open” switch,

– pMOS transistor — “normally closed” switch,

• Such pair of transistors is used to build an inverter and
consequently all digital devices

• When the input voltage Vx is low, that is, the logic signal x = 0,
the pMOS transistor is closed and nMOS transistor is open.
Consequently the output voltage Vy is high, that is, the logic
signal y = 1.

• The inverse situation occurs when the input voltage is high.

A.P. Papliński 3–1

Digital Logic/Design. — L. 3 March 20, 2006

3.2 Boolean Algebra and Logic Gates

Operations performed by logic gates can be conveniently described in Boolean algebra.
The (two-valued) Boolean algebra is defined on

• a set of two elements, B = {0, 1},

• two binary operators, OR (+) and AND (·),

• one unary operator, NOT (′), (̄)

Two Boolean values 0 and 1 correspond to

• two values, “false” and “true” used in mathematical logic, and to

• two voltage levels, “LOW” and “HIGH” used in switching circuits.

A.P. Papliński 3–2

Digital Logic/Design. — L. 3 March 20, 2006

Three basic Boolean (logic) operations

name: AND OR NOT

symbol:

operation: y = x1 · x0 y = x1 + x0 y = x′1

x1 x0

0 0
0 1
1 0
1 1

y

0
0
0
1

y

0
1
1
1

y

1
0

A 2-variable truth table lists values of the output
signal y ∈ {0, 1} (results of logic operations) for all
possible combinations of input signals,
x1, x0 ∈ {0, 1} (operands).

• The result of the AND operation is 1 if and only if both operands are 1.

We also say that the output of the AND gate is HIGH (asserted) if both input signals are HIGH (asserted).

• The AND operation or logic multiplication is identical with arithmetic multiplication.

• The result of the OR operation is 1 if at least one operand is 1.

We also say that the output of the OR gate is HIGH (asserted) if at least one input signal is HIGH (asserted).

• The OR operation or logic addition differs from arithmetic addition, because 1 + 1 = 1 not 2!
• The NOT operator or logic complement can be

arithmetically interpreted by the following
expression: x′ = 1− x

• The NOT gate or INVERTER complements
input signals: 0′ = 1, 1′ = 0.

A.P. Papliński 3–3

Digital Logic/Design. — L. 3 March 20, 2006

3.3 Timing diagrams

Operations performed by logic gates can also be described by means of timing diagrams.

t

x1

x0

1

0

t

1

0

t

1

0

t

1

0

t

1

0

x1 x0.

x1 x0+

x1’

In the example the pair of input signals
x1, x0 goes through all possible
combinations in the following way:

x = (x1x0)2 ∈ {0, 1, 3, 2}

Such a code is known as the Gray code

A.P. Papliński 3–4

Digital Logic/Design. — L. 3 March 20, 2006

3.4 Boolean Expressions and Logic Diagrams

Boolean expressions are formed from:

• two Boolean constants, (0, 1),

• three basic logic operations, (·, +, ′), and

• parentheses ().

The order of evaluation is:

• expressions inside parentheses,

• complement (NOT),

• logic multiplication (AND),

• Logic addition (OR).

Consider a Boolean (logic) expression

f = a + b′ · c = a + b̄ · c

where a, b, c, f and Boolean variables.

The equivalent logic diagram:

f
b

c

a

A.P. Papliński 3–5

Digital Logic/Design. — L. 3 March 20, 2006

In order for the logic addition to be performed before multiplication we have to add parentheses:

f = (a + b′) · c = (a + b̄) · c
The equivalent logic diagram:

c

a
f

b

The AND operator (the multiplication sign) may be omitted and we can write

f = a + b′c or f = (a + b′)c

Identify:

• input-output ports, or signals (wires) connected to the outside world

• gates and

• signal or nets (wires), that is. signals interconnecting gates inputs and outputs.

A.P. Papliński 3–6

Digital Logic/Design. — L. 3 March 20, 2006

3.5 VHDL Hardware Description Language — example 1

• Digital devices/circuits can be described/modelled using a hrdware description language, VHDL.

• The description consiste of two main parts:

• Input-output ports are specified by the ENTITY

• The circuit structure or function is specified by an ARCHITECTURE

Example:

• The contents of the log circ 1.vhd file:

-- this is a comment
-- VHDL is NOT case sensitive
-- To emphasize, the key words are capitalized
-- this is a black-box a logic circuit

ENTITY log_circ_1 IS
PORT (a, b, c : IN BIT ;

f : out BIT) ;
END [ENTITY] log_circ_1 ;

-- an architecture for log_circ_1

ARCHITECTURE arch_1 OF log_circ_1 IS

BEGIN
f <= (a OR NOT b) AND c ; -- a SIGNAL assignment

END [ARCHITECTURE] arch_1 ;

A.P. Papliński 3–7

Digital Logic/Design. — L. 3 March 20, 2006

3.6 Truth tables and Karnaugh Maps

The behaviour of a logic circuit, that is, the values of
the output signals for all combinations of input
signals can be equivalently described by:

• a Boolean expression,

• the truth table,

• the Karnaugh map,

Consider the following Boolean (logic Function

f = (a′ + b)c

The truth table lists the values of the function f for
all 23 = 8 combinations of three input variables

(cba)2 c b a a′ a′ + b f

0 0 0 0 1 1 0
1 0 0 1 0 0 0
2 0 1 0 1 1 0
3 0 1 1 0 1 0
4 1 0 0 1 1 1
5 1 0 1 0 0 0
6 1 1 0 1 1 1
7 1 1 1 0 1 1

A.P. Papliński 3–8

Digital Logic/Design. — L. 3 March 20, 2006

3.7 A 3-variable Karnaugh map

• Karnaugh maps are representations of Boolean hyper-cubes.

A concept of adjacent vertices

A Karnaugh map for

f = (a′ + b)c

c@
@b a 0 0 0 1 1 1 1 0

0 0 0 0 0
1 1 0 1 1

3.8 Theorems of Boolean Algebra and their circuit interpretation

Transformations and simplification of logic circuits are based on a variety of Boolean algebra theorems
which can easily be verified by

• Double Complement — Involution property

x′′ = x
x x′ x ≡ x

Double NOT operation can be removed.

A.P. Papliński 3–9

Digital Logic/Design. — L. 3 March 20, 2006

• Operations with constants

x + 0 = x

x + 1 = 1

x · 0 = 0

x · 1 = 1

x

0

x

1

x

0

x

1

x

1

0

x

≡

≡

≡

≡

x

1

0

x

• Operations with repeated arguments

x + x = x

x + x′ = 1

x · x = x

x · x′ = 0

x

x

x

x′

x

x

x

x′

x

1

x

0

≡

≡

≡

≡

x

1

x

0

A.P. Papliński 3–10

Digital Logic/Design. — L. 3 March 20, 2006

• OR and AND are commutative operations — all gate inputs are identical:

OR: a + b = b + a AND: a · b = b · a

• OR and AND are associative operations — n-input gates exist:

OR: a + (b + c) = (a + b) + c = a + b + c

• OR operation (logic addition) is distributive

a · (b + c) = a · b + a · c

a

c
c
b

b

a

• AND operation (logic multiplication) is also distributive!

a + b · c = (a + b) · (a + c)

a

b

c

a

c
b

A.P. Papliński 3–11

Digital Logic/Design. — L. 3 March 20, 2006

Verification of the distributive law for the AND operation using the truth table method:

a + b · c = (a + b) · (a + c)

(cba)2 c b a b · c LHS a + b a + c RHS
0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 1 1
2 0 1 0 0 0 1 0 0
3 0 1 1 0 1 1 1 1
4 1 0 0 0 0 0 1 0
5 1 0 1 0 1 1 1 1
6 1 1 0 1 1 1 1 1
7 1 1 1 1 1 1 1 1

For all combinations of variables LHS = RHS, therefore, the distributive law for the logic multiplication is
valid.

A.P. Papliński 3–12

Digital Logic/Design. — L. 3 March 20, 2006

Duality Principle

Every theorem of the Boolean algebra remains valid if the operators and constants are interchanged, that
is:

AND ⇐⇒ OR
1 ⇐⇒ 0

Example:

If the following equality

a · (b + c) = (a · b) + (a · c)
is valid, then interchanging ‘+’ with ‘·’ we obtain the dual equality:

a + (b · c) = (a + b) · (a + c)

which is also valid.

A.P. Papliński 3–13

Digital Logic/Design. — L. 3 March 20, 2006

Absorption Rules

1. a + a · b = a

Verification by algebraic manipulation:

a + a · b = a · (1 + b) = a , because 1 + b = 1

2. a · (a + b) = a — the dual equality

3. a + a′ · b = a + b — Important!

4. a · (a′ + b) = a · b

Absorption rules are important in circuit simplification.

A.P. Papliński 3–14

Digital Logic/Design. — L. 3 March 20, 2006

De Morgan’s Theorems

1. The complement of a product (AND) is equal to the sum (OR) of the complements:

(a · b)′ = a′ + b′

(a b)’

This is the NAND gate (NOT AND)

a’+ b’a
b

b

a

b
a

a
b

equivalently

a’+ b’b)’.(aba .

.

2. The complement of a sum (OR) is equal to the product (AND) of the complements (the dual theorem):

(a + b)′ = a′ · b′

a’. b’

a’. b’

equivalently

b
a

a
b

a

b

b
a

This is the NOR gate (NOT OR)

a + b (a + b)’

(a + b)’

A.P. Papliński 3–15

Digital Logic/Design. — L. 3 March 20, 2006

3.9 All two-variable functions y = F (b, a)

A.P. Papliński 3–16

Digital Logic/Design. — L. 3 March 20, 2006

3.10 NAND and NOR gates

the truth tables for the NAND and NOR gates

A.P. Papliński 3–17

