3 Logic Gates and Boolean Algebra

3.1 CMOS Technology

- Digital devises are predominantly manufactured in the Complementary-Metal-Oxide-Semiconductor (CMOS) technology.
- Two types of switches, as discussed in sec. 1.1, are implemented as a pair of complementary MOS Fields-Effect-Transitors FETs:
- nMOS transistor - "normally open" switch,
$a+\xi^{2} \equiv a_{9}^{b}$
- pMOS transistor - "normally closed" switch,

$$
a_{d} d p \equiv \frac{a d}{q}
$$

- Such pair of transistors is used to build an inverter and consequently all digital devices
- When the input voltage V_{x} is low, that is, the logic signal $x=0$, the aMOS transistor is closed and aMOS transistor is open.
 Consequently the output voltage V_{y} is high, that is, the logic signal $y=1$.
- The inverse situation occurs when the input voltage is high.

3.2 Boolean Algebra and Logic Gates

Operations performed by logic gates can be conveniently described in Boolean algebra. The (two-valued) Boolean algebra is defined on

- a set of two elements, $\mathcal{B}=\{0,1\}$,
- two binary operators, OR (+) and AND (•),
- one unary operator, NOT ('), (${ }^{-}$)

Two Boolean values 0 and 1 correspond to

- two values, "false" and "true" used in mathematical logic, and to
- two voltage levels, "LOW" and "HIGH" used in switching circuits.

Three basic Boolean (logic) operations

name:
AND
OR
NOT
symbol:

operation:

$$
y=x_{1} \cdot x_{0}
$$

$$
y=x_{1}+x_{0}
$$

$$
y=x_{1}^{\prime}
$$

x_{1}	x_{0}
0	0
0	1
1	0
1	1

| y |
| :--- | :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 1 |

| y |
| :--- | :--- |
| 0 |
| 1 |
| 1 |
| 1 |
| 1 |

| y |
| :--- | :--- |
| 1 |
| 0 |
| 0 |

A 2-variable truth table lists values of the output signal $y \in\{0,1\}$ (results of logic operations) for all possible combinations of input signals, $x_{1}, x_{0} \in\{0,1\}$ (operands).

- The result of the AND operation is 1 if and only if both operands are 1 .

We also say that the output of the AND gate is HIGH (asserted) if both input signals are HIGH (asserted).

- The AND operation or logic multiplication is identical with arithmetic multiplication.
- The result of the OR operation is 1 if at least one operand is 1 .

We also say that the output of the OR gate is HIGH (asserted) if at least one input signal is HIGH (asserted).

- The OR operation or logic addition differs from arithmetic addition, because

$$
1+1=1 \text { not } 2!
$$

- The NOT operator or logic complement can be arithmetically interpreted by the following expression: $\quad x^{\prime}=1-x$
- The NOT gate or INVERTER complements input signals: $0^{\prime}=1,1^{\prime}=0$.

3.3 Timing diagrams

Operations performed by logic gates can also be described by means of timing diagrams.

In the example the pair of input signals x_{1}, x_{0} goes through all possible combinations in the following way:

$$
x=\left(x_{1} x_{0}\right)_{2} \in\{0,1,3,2\}
$$

Such a code is known as the Gray code

3.4 Boolean Expressions and Logic Diagrams

Boolean expressions are formed from:

- two Boolean constants, (0, 1),
- three basic logic operations, $(\cdot,+, /)$, and
- parentheses ().

The order of evaluation is:

- expressions inside parentheses,
- complement (NOT),
- logic multiplication (AND),
- Logic addition (OR).

Consider a Boolean (logic) expression

$$
f=a+b^{\prime} \cdot c=a+\bar{b} \cdot c
$$

where a, b, c, f and Boolean variables.
The equivalent logic diagram:

In order for the logic addition to be performed before multiplication we have to add parentheses:

$$
f=\left(a+b^{\prime}\right) \cdot c=(a+\bar{b}) \cdot c
$$

The equivalent logic diagram:

The AND operator (the multiplication sign) may be omitted and we can write

$$
f=a+b^{\prime} c \text { or } f=\left(a+b^{\prime}\right) c
$$

Identify:

- input-output ports, or signals (wires) connected to the outside world
- gates and
- signal or nets (wires), that is. signals interconnecting gates inputs and outputs.

3.5 VHDL Hardware Description Language - example 1

- Digital devices/circuits can be described/modelled using a hrdware description language, VHDL.
- The description consiste of two main parts:
- Input-output ports are specified by the ENTITY
- The circuit structure or function is specified by an ARCHITECTURE

Example:

- The contents of the log_circ_1.vhd file:

```
-- this is a comment
-- VHDL is NOT case sensitive
-- To emphasize, the key words are capitalized
-- this is a black-box a logic circuit
ENTITY log_circ_1 IS
    PORT (a, b, c : IN BIT ;
        f : out BIT ) ;
END [ENTITY] log_circ_1 ;
-- an architecture for log_circ_1
ARCHITECTURE arch_1 OF log_circ_1 IS
BEGIN
    f <= ( a OR NOT b) AND c ; -- a SIGNAL assignment
END [ARCHITECTURE] arch_1 ;
```


3.6 Truth tables and Karnaugh Maps

The behaviour of a logic circuit, that is, the values of the output signals for all combinations of input signals can be equivalently described by:

- a Boolean expression,
- the truth table,
- the Karnaugh map,

$(c b a)_{2}$	c	b	a	a^{\prime}	$a^{\prime}+b$	f
0	0	0	0	1	1	0
1	0	0	1	0	0	0
2	0	1	0	1	1	0
3	0	1	1	0	1	0
4	1	0	0	1	1	1
5	1	0	1	0	0	0
6	1	1	0	1	1	1
7	1	1	1	0	1	1

3.7 A 3-variable Karnaugh map

- Karnaugh maps are representations of Boolean hyper-cubes.

A concept of adjacent vertices
A Karnaugh map for

$$
f=\left(a^{\prime}+b\right) c
$$

c a	00	01	11	10
0	0	0	0	0
1	1	0	1	1

3.8 Theorems of Boolean Algebra and their circuit interpretation

Transformations and simplification of logic circuits are based on a variety of Boolean algebra theorems which can easily be verified by

- Double Complement - Involution property

$$
x^{\prime \prime}=x \quad \begin{aligned}
& x \\
& x^{\prime}
\end{aligned}
$$

Double NOT operation can be removed.

- Operations with constants
$x+0=x$
$x+1=1$

\qquad
$x \cdot 0=0$
$x \cdot 1=1$

x

\qquad
- Operations with repeated arguments
$x+x=x$
$x+x^{\prime}=1$
$x \cdot x=x$
$x \cdot x^{\prime}=0$

- OR and AND are commutative operations - all gate inputs are identical:

$$
\text { OR: } a+b=b+a \quad \text { AND: } a \cdot b=b \cdot a
$$

- OR and AND are associative operations - n-input gates exist:

$$
\text { OR: } a+(b+c)=(a+b)+c=a+b+c
$$

- OR operation (logic addition) is distributive

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

- AND operation (logic multiplication) is also distributive!

$$
a+b \cdot c=(a+b) \cdot(a+c)
$$

Verification of the distributive law for the AND operation using the truth table method:

\[

\]

For all combinations of variables $\mathrm{LHS}=\mathrm{RHS}$, therefore, the distributive law for the logic multiplication is valid.

Duality Principle

Every theorem of the Boolean algebra remains valid if the operators and constants are interchanged, that is:

$$
\begin{aligned}
\text { AND } & \Longleftrightarrow \text { OR } \\
1 & \Longleftrightarrow 0
\end{aligned}
$$

Example:

If the following equality

$$
a \cdot(b+c)=(a \cdot b)+(a \cdot c)
$$

is valid, then interchanging ' + ' with ' \cdot ' we obtain the dual equality:

$$
a+(b \cdot c)=(a+b) \cdot(a+c)
$$

which is also valid.

Absorption Rules

1. $a+a \cdot b=a$

Verification by algebraic manipulation:

$$
a+a \cdot b=a \cdot(1+b)=a, \text { because } 1+b=1
$$

2. $a \cdot(a+b)=a$ - the dual equality
3. $a+a^{\prime} \cdot b=a+b$ - Important!
4. $a \cdot\left(a^{\prime}+b\right)=a \cdot b$

Absorption rules are important in circuit simplification.

De Morgan's Theorems

1. The complement of a product (AND) is equal to the sum (OR) of the complements:

$$
(a \cdot b)^{\prime}=a^{\prime}+b^{\prime}
$$

equivalently

This is the NAND gate (NOT AND)
2. The complement of a sum (OR) is equal to the product (AND) of the complements (the dual theorem):

$$
(a+b)^{\prime}=a^{\prime} \cdot b^{\prime}
$$

equivalently

This is the NOR gate (NOT OR)
3.9 All two-variable functions $y=F(b, a)$

$\begin{array}{lllll} b & 0 & 0 & 1 & 1 \\ a & 0 & 1 & 0 & 1 \\ \hline \end{array}$
Fo 000000
$F_{1} 00001 \quad b \cdot a$
$F_{2} 00 \perp 0 \quad b \cdot \bar{a}$
$F_{3} 000110 b$
$F_{4} 0100$
$F_{5} 011010$
$F_{6} 0 \mid 10 \quad \bar{b} \cdot a+b \cdot \bar{a}=b \oplus a \times O R \Rightarrow D$
$F_{7} D \perp 11 \quad b+a \quad O R \Rightarrow$ -
$F_{8} 1000 \quad(\overline{b+a})=\bar{b} \cdot \bar{a} \quad$ NOR $\Rightarrow \infty$
$F_{9} 1001 \bar{b} \cdot \bar{a}+b \cdot a=(\overline{b \oplus a}) E Q \Rightarrow D 0$
$F_{10} 1010 \quad \bar{a}$
$F_{1}\|0\| 1 \mid c+\bar{a}$
$F_{12} 1100 \quad \bar{b}$
$F_{13} \mid 101 \bar{b}+a$
$F_{14} 11+0 \quad \overline{b \cdot a}=\bar{b}+\bar{a}$ NAND $\Rightarrow \infty$

3.10 NAND and NOR gates

the truth tables for the NAND and NOR gates

	$\overline{x_{1} x_{2}}$	$\overline{x_{1}+x_{2}}$
$x_{1} x_{0}$	$=\overline{x_{1}+\overline{x_{2}}}$	$2 \overline{x_{1}}+\overline{x_{2}}$
00	1	1
01	1	0
10	1	0
11	0	0

$A l t e r n a t i v e, ~ f u n c t i o n a l ~ d e s c r i p t i o n ~ o f ~$ NAND and NOR gates

