5 Gate-level minimization

5.1 Principle of logic function minimization

Minimization of logic functions is based on the following two dual simplification rules:

- If in a SoP expression two products differ only by a variable being in direct and complemented form then this variable can be deleted:

$$
y=\bar{a} \cdot f(\mathbf{x})+a \cdot f(\mathbf{x})=f(\mathbf{x})
$$

- If in a PoS expression two sums differ only by a variable being in direct and complemented form then this variable can be deleted:

$$
y=(\bar{a}+f(\mathbf{x}))(a+f(\mathbf{x}))=f(\mathbf{x})
$$

- Minterms (maxterms) can be visualised as 2^{n} vertices of an n-dimensional hyper-cube.

For example consider a 3-D cube:

- Note that two connected vertices differ by a single variable being in a direct or complemented form
- For example consider the sum of two neighbouring
 minterms:

$$
m_{5}+m_{1}=x_{2} \cdot \bar{x}_{1} \cdot x_{0}+\bar{x}_{2} \cdot \bar{x}_{1} \cdot x_{0}=\bar{x}_{1} \cdot x_{0}
$$

- Similarly $M_{5} \cdot M_{1}=\left(\bar{x}_{2}+x_{1}+\bar{x}_{0}\right)\left(x_{2}+x_{1}+\bar{x}_{0}\right)=x_{1}+\bar{x}_{0}$

5.2 Karnaugh Maps

- Karnaugh maps aka K-maps can be thought of as a representation of sides of a n-dimensional hypercube representing logic functions.
- A K-map is a convenient tool of mimimizing logic functions up to 6 variables (practically 4)
- A K-map is a re-arrangement of a truth table such that the adjacent minterms/maxterms differ in one position only.

5.3 A 2-variable Karnaugh map

A 2-variable K-map template:
Minterms, m_{i}, can be replaced by respective maxterms, $M_{i}=\bar{m}_{i}$

Example 1

No simplification possible:

x_{1}	x_{0}	y	
0	0	0	m_{0}
0	1	1	m_{1}
1	0	1	m_{2}
1	1	0	m_{3}

Example 2

Loop around a pair of adjacent minterms:
For Maxterms loop around zeros.

Example 3

Minterms can be "looped around" any number of times:

5.4 A 3-variable Karnaugh map

Cut a 3-D cube along one side and unfold it. Two templates are used:

| $x_{2} x_{1}$ 0 1
 0 0 0
 m_{0} m_{1}
 1 0 1
 m_{2} m_{3}
 1 1 | | |
| :--- | :--- | :--- | :--- |
| | m_{6} | m_{7} |

The 8 minterms (or maxterms) of a 3-variable function are arranged in the K-map so that to preserve the property of adjacent squares being different in only a complement of single variable

EXAMPLE

Consider $y=f\left(x_{2} x_{1}, x_{0}\right)=\sum(2,4,5,6)$

$$
y=\sum(2,4,5,6)=m_{2}+m_{4}+m_{5}+m_{6}=x_{1} \bar{x}_{0}+x_{2} \overline{x_{1}}
$$

- "Adjacent" squares do not always touch each other:

- Four adjacent squares
form a (n-2)-variable product

\bar{x}_{1}, because x_{2} and x_{0} vary
- Simplify $y=f\left(x_{2}, x_{1} x_{0}\right)=\sum(0,2,4,5,6)$

$$
y=\bar{x}_{0}+x_{2} \bar{x}
$$

- Simplify $y=f\left(x_{2} x, x_{0}\right)=\sum(2,3,4,6,7)$

$$
y=x_{1}+x_{2} \bar{x}_{0}
$$

- Simplify $y=f\left(x_{2} x_{1} x_{0}\right)=\sum(0,1,3,5)$

$$
y=\bar{x}_{2} \bar{x}_{1}+\bar{x}_{2} x_{0}+\bar{x}_{1} x_{0}
$$

5.5 A 4-variable Karnaugh map

Consider that top and bottom, or left and right edges link adjacent vertices of a 4-dimensional cube representing a logic function of four variables.

Examples

Simplify the logic function

$$
\begin{aligned}
& y=f\left(x_{3} x_{2} x_{1} x_{0}\right)=\sum(0,2,8,10,11,13,14,15) \\
& \\
& y \\
& y
\end{aligned}
$$

In order to obtain a simplified Product-of-Sums form we loop around zeros and complement variables:

