
Digital Logic/Design. — L. 6 March 22, 2006

6 Combinational circuits
6.1 Introductory concepts
• A combinational circuit (block, component) consists of logic gates and processes n input signals

x(n − 1), . . . , x(0) into m output signals y(m − 1), . . . , y(0) using a function y = f (x), in such a
way that output signals depend only on the current input signals.

yi = fi(xn−1, . . . , x0) for i = 0, . . . n − 1 or y = f(x)

where each fi is a logic function.

• Past values of the input signals do not have any influence on the current values of the output signals.

• Description of any combinational circuit with n inputs and m outputs can be ultimately reduced to a
truth table with 2n rows and m column.

• From the point of view of their internal structures combinational blocks can be classified into two
groups:

– un-structured circuits, that is a “random” collection of gates,
– structured circuits forming 1-D and 2-D arrays of components.

A.P. Papliński 6–1

Digital Logic/Design. — L. 6 March 22, 2006

• The simplest combinational blocks are collections of gates.
For example, an n-bit NAND gate:

• A slightly more complicated example includes the
collection of gates driven by a common control
signal, say s , to perform two operations:

Function/operation Table:
s function
0 y(1 : n) = a(1 : n)

1 y(1 : n) = a(1 : n)

• We are already familiar with a n-to-2n decoder as a
minterm/maxterm generator.
Typically the decoder has an additional enable signal s
such that the minterms are generated only for s=1,
whereas for s=0 outputs are in an inactive state,
typically 0.

• The decoder can be also used as a Demultiplexer.
The 1-bit demultiplexer receives 1-bit data on a
single input and re-directs it into one-out-of
m = 2n − 1 outputs selected by an n-bit number x

Function/operation
Table:

x y0 y1 y2 y3

0 s 0 0 0

1 0 s 0 0

2 0 0 s 0

3 0 0 0 s

A.P. Papliński 6–2



Digital Logic/Design. — L. 6 March 22, 2006

6.2 Example of a VHDL code for a 2-to-4 decoder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY dec2to4 IS
PORT(

x : IN std_logic_vector (1 DOWNTO 0);
y : OUT std_logic_vector (3 DOWNTO 0)

);
END dec2to4 ;

ARCHITECTURE struct OF dec2to4 IS
SIGNAL xb : std_logic_vector(1 DOWNTO 0);

BEGIN
y(0) <= xb(1) AND xb(0);
y(1) <= xb(1) AND x(0);
y(2) <= xb(0) AND x(1);
y(3) <= x(1) AND x(0);
xb <= NOT(x);

END struct;

• A VHDL program represents a digital circuit.

• It can represent: signal flow, behaviour or structure of the circuit

• The program can be used to simulation/test, or to synthesize the digital circuit

• The above program describes signal flow

• All assignment statements are interpreted/executed concurrently,
therefore can be written in any order.

A.P. Papliński 6–3

Digital Logic/Design. — L. 6 March 22, 2006

6.3 Multiplexers

• A n-to-1 multiplexer connects its output y to one of
n = 2m inputs a0, a1, . . . an selected by an m-bit
control/select signal s.

• In other words the multiplexer output is a sum of
products of input signals with respective minterms:

y = a0 ·m0 + a1 ·m1 + . . .+ an−1 ·mn−1 =

n−1∑
i=0

ai ·mi

• A 4-to-1 multiplexer can be implemented in the following way:

Function Table:

A.P. Papliński 6–4



Digital Logic/Design. — L. 6 March 22, 2006

6.4 Describing a multiplexer in VHDL

There are a number of ways to describe a multiplexer in
VHDL. The following two methods use various concurrent
assignment statements. We use a 4-to-1 multiplexer as an
example.

a(0)
0

2

3

1

1 0

1 0

y

4to1
MUX

s(1:0)

a(3)

a(1)

a(2)

a(0:3) s y <=

0 a(0)

1 a(1)

2 a(2)

3 a(3)

ENTITY mux4to1A IS
PORT (a : IN std_logic_vector (0 to 3) ;

s : IN std_logic_vector (1 downto 0) ;
y : OUT std_logic ) ;

END mux4to1A ;

6.4.1 Conditional Signal Assignment Statement

<= . . . when . . . else
ARCHITECTURE condSA OF mux4to1A IS
BEGIN

y <= a(0) WHEN s = "00" ELSE
a(1) WHEN s = "01" ELSE
a(2) WHEN s = "10" ELSE
a(3) ;

END condSA ;

6.4.2 Selected Signal Assignment Statement

<= with . . . select . . . when . . . , . . . ;
ARCHITECTURE selSA OF mux4to1A IS
BEGIN

WITH s SELECT
y <= a(0) WHEN "00" , -- comma

a(1) WHEN "01" ,
a(2) WHEN "10" ,
a(3) WHEN OTHERS ; -- semicolon

END selSA ;

A.P. Papliński 6–5

Digital Logic/Design. — L. 6 March 22, 2006

Multiplexer as a universal logic element

• Typically multiplexers are used to re-direct signals from different sources onto a common output.

• However, when we compare expression for canonical implementation of a logic function with
expression for a multiplexer we note that they are structurally identical.

• It means that a multiplexer with m select signals can be used as a
universal logic block implementing any logic function of m variables
specified by constants (from a truth table) at the multiplexer inputs.

• As an example consider implementation of a 3-variable function
using an 8-to-1 multiplexer:

y = f (x2, x1, x0) =
∑

(1, 3, 5, 6)

• If we allow inputs to the multiplexer to be not only constants (0, 1), but also variable(s) (or their
complements), then, in particular, using a 2m-to-1 multiplexer, we can implement any logic function of
m + 1 variables.

• In such a case m variables are applied to the select inputs of the multiplexer, whereas the remaining
variable, its complement and constants (0, 1) are applied to the multiplexed inputs.

A.P. Papliński 6–6



Digital Logic/Design. — L. 6 March 22, 2006

Example

Implement a 3-variable function

y = f (x2, x1, x0) =
∑

(1, 3, 4, 5)

using a 22-to-1 multiplexer

• Variables (x1, x0) are used as the select variables in a 4-to-1 multiplexer

• The remaining variable x2 will be used at the multiplexer inputs.

• To do this we modify the truth table comparing
values of the output signal y for two values of
the variable x2

A.P. Papliński 6–7

Digital Logic/Design. — L. 6 March 22, 2006

6.5 Unstructured combinational circuits

• The name “unstructured” refers to implementations of a n-input m-output combinational circuit build
from simple gates which are not grouped into any sub-blocks.

• To illustrate the concept let us consider the following implementation of a 2-bit multiplier.

• It is a 2-bit by 2-bit multiplication circuit that forms a 4-bit product:

A.P. Papliński 6–8



Digital Logic/Design. — L. 6 March 22, 2006

The next step is to convert the truth table into the Karnaugh maps:

Multiplication table:

Individual K-maps:

From the Karnaugh maps we can obtain the following SoP expressions:

A.P. Papliński 6–9

Digital Logic/Design. — L. 6 March 22, 2006

A possible implementation with “mixed” gates: AND, OR NAND

Note that equation for c1 has been simplified so that it is no longer a standard form but a 3-level
implementation:

The above implementation is an example of an unstructured combinational circuit.

A.P. Papliński 6–10


