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6 Combinational circuits
6.1 Introductory concepts
• A combinational circuit (block, component) consists of logic gates and processes n input signals

x(n − 1), . . . , x(0) into m output signals y(m − 1), . . . , y(0) using a function y = f (x), in such a
way that output signals depend only on the current input signals.

yi = fi(xn−1, . . . , x0) for i = 0, . . . n − 1 or y = f(x)

where each fi is a logic function.

• Past values of the input signals do not have any influence on the current values of the output signals.

• Description of any combinational circuit with n inputs and m outputs can be ultimately reduced to a
truth table with 2n rows and m column.

• From the point of view of their internal structures combinational blocks can be classified into two
groups:

– un-structured circuits, that is a “random” collection of gates,
– structured circuits forming 1-D and 2-D arrays of components.
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• The simplest combinational blocks are collections of gates.
For example, an n-bit NAND gate:

• A slightly more complicated example includes the
collection of gates driven by a common control
signal, say s , to perform two operations:

Function/operation Table:
s function
0 y(1 : n) = a(1 : n)

1 y(1 : n) = a(1 : n)

• We are already familiar with a n-to-2n decoder as a
minterm/maxterm generator.
Typically the decoder has an additional enable signal s
such that the minterms are generated only for s=1,
whereas for s=0 outputs are in an inactive state,
typically 0.

• The decoder can be also used as a Demultiplexer.
The 1-bit demultiplexer receives 1-bit data on a
single input and re-directs it into one-out-of
m = 2n − 1 outputs selected by an n-bit number x

Function/operation
Table:

x y0 y1 y2 y3

0 s 0 0 0

1 0 s 0 0

2 0 0 s 0

3 0 0 0 s
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6.2 Example of a VHDL code for a 2-to-4 decoder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY dec2to4 IS
PORT(

x : IN std_logic_vector (1 DOWNTO 0);
y : OUT std_logic_vector (3 DOWNTO 0)

);
END dec2to4 ;

ARCHITECTURE struct OF dec2to4 IS
SIGNAL xb : std_logic_vector(1 DOWNTO 0);

BEGIN
y(0) <= xb(1) AND xb(0);
y(1) <= xb(1) AND x(0);
y(2) <= xb(0) AND x(1);
y(3) <= x(1) AND x(0);
xb <= NOT(x);

END struct;

• A VHDL program represents a digital circuit.

• It can represent: signal flow, behaviour or structure of the circuit

• The program can be used to simulation/test, or to synthesize the digital circuit

• The above program describes signal flow

• All assignment statements are interpreted/executed concurrently,
therefore can be written in any order.

A.P. Papliński 6–3
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6.3 Multiplexers

• A n-to-1 multiplexer connects its output y to one of
n = 2m inputs a0, a1, . . . an selected by an m-bit
control/select signal s.

• In other words the multiplexer output is a sum of
products of input signals with respective minterms:

y = a0 ·m0 + a1 ·m1 + . . .+ an−1 ·mn−1 =

n−1∑
i=0

ai ·mi

• A 4-to-1 multiplexer can be implemented in the following way:

Function Table:
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6.4 Describing a multiplexer in VHDL

There are a number of ways to describe a multiplexer in
VHDL. The following two methods use various concurrent
assignment statements. We use a 4-to-1 multiplexer as an
example.

a(0)
0

2

3

1

1 0

1 0

y

4to1
MUX

s(1:0)

a(3)

a(1)

a(2)

a(0:3) s y <=

0 a(0)

1 a(1)

2 a(2)

3 a(3)

ENTITY mux4to1A IS
PORT (a : IN std_logic_vector (0 to 3) ;

s : IN std_logic_vector (1 downto 0) ;
y : OUT std_logic ) ;

END mux4to1A ;

6.4.1 Conditional Signal Assignment Statement

<= . . . when . . . else
ARCHITECTURE condSA OF mux4to1A IS
BEGIN

y <= a(0) WHEN s = "00" ELSE
a(1) WHEN s = "01" ELSE
a(2) WHEN s = "10" ELSE
a(3) ;

END condSA ;

6.4.2 Selected Signal Assignment Statement

<= with . . . select . . . when . . . , . . . ;
ARCHITECTURE selSA OF mux4to1A IS
BEGIN

WITH s SELECT
y <= a(0) WHEN "00" , -- comma

a(1) WHEN "01" ,
a(2) WHEN "10" ,
a(3) WHEN OTHERS ; -- semicolon

END selSA ;
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Multiplexer as a universal logic element

• Typically multiplexers are used to re-direct signals from different sources onto a common output.

• However, when we compare expression for canonical implementation of a logic function with
expression for a multiplexer we note that they are structurally identical.

• It means that a multiplexer with m select signals can be used as a
universal logic block implementing any logic function of m variables
specified by constants (from a truth table) at the multiplexer inputs.

• As an example consider implementation of a 3-variable function
using an 8-to-1 multiplexer:

y = f (x2, x1, x0) =
∑

(1, 3, 5, 6)

• If we allow inputs to the multiplexer to be not only constants (0, 1), but also variable(s) (or their
complements), then, in particular, using a 2m-to-1 multiplexer, we can implement any logic function of
m + 1 variables.

• In such a case m variables are applied to the select inputs of the multiplexer, whereas the remaining
variable, its complement and constants (0, 1) are applied to the multiplexed inputs.
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Example

Implement a 3-variable function

y = f (x2, x1, x0) =
∑

(1, 3, 4, 5)

using a 22-to-1 multiplexer

• Variables (x1, x0) are used as the select variables in a 4-to-1 multiplexer

• The remaining variable x2 will be used at the multiplexer inputs.

• To do this we modify the truth table comparing
values of the output signal y for two values of
the variable x2
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6.5 Unstructured combinational circuits

• The name “unstructured” refers to implementations of a n-input m-output combinational circuit build
from simple gates which are not grouped into any sub-blocks.

• To illustrate the concept let us consider the following implementation of a 2-bit multiplier.

• It is a 2-bit by 2-bit multiplication circuit that forms a 4-bit product:

A.P. Papliński 6–8
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The next step is to convert the truth table into the Karnaugh maps:

Multiplication table:

Individual K-maps:

From the Karnaugh maps we can obtain the following SoP expressions:
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A possible implementation with “mixed” gates: AND, OR NAND

Note that equation for c1 has been simplified so that it is no longer a standard form but a 3-level
implementation:

The above implementation is an example of an unstructured combinational circuit.
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