Digital Logic/Design. — L. 6 March 22, 2006

6 Combinational circuits

6.1 Introductory concepts
e A combinational circuit (block, component) consists of logic gates and processes n input signals

x(n—1),...,2(0) into m output signals y(m — 1),...,y(0) using a function y = f(z), in such a
way that output signals depend only on the current input signals.

rARB S X (tpyens ko) Nebit data

]

1

Jm" J= Qm-' . ..(70) m-bt;édafﬁ
yi = filzp_1,...,z0) for i=0,...n—1 or y=f(x)
where each f; is a logic function.

e Past values of the input signals do not have any influence on the current values of the output signals.

e Description of any combinational circuit with n inputs and m outputs can be ultimately reduced to a
truth table with 2" rows and m column.

e From the point of view of their internal structures combinational blocks can be classified into two
groups:
— un-structured circuits, that is a “random” collection of gates,

— structured circuits forming 1-D and 2-D arrays of components.

A.P. Paplifiski 61
Digital Logic/Design. — L. 6 March 22, 2006
. o . a(t:n) - a-
e The simplest combinational blocks are collections of gates. m}) y=a-b
. th
For example, an n-bit NAND gate: — "

) i . Function/operation Table:
o A slightly more complicated example includes the adi:n) function

s

- - 4 (1:n) |

;:ic)lllle;tlon of gatets dm;;nrtgta commro?i cI(l)Iftrol s~)D;[_ 0| y(l:n)=a(l:n)
gnal, say s , to perform two operations: 1| y(l:n)=a(l:n)

e We are already familiar with a n-to-2" decoder as a
minterm/maxterm generator.
Typically the decoder has an additional enable signal s
such that the minterms are generated only for s=1,
whereas for s=0 outputs are in an inactive state,
typically O.

Function/operation
. Table:

e The decoder can be also used as a Demultiplexer. < .) yf ‘ x H Yo Y1 Yo U3
The 1-bit demultiplexer receives 1-bit data on a —1 S I ols 0 0 0o
single input and re-directs it into one-out-of s) 110 s 0 0
m = 2" — 1 outputs selected by an n-bit number x . (n-l::; " —gn 2lo 0 s 0

310 0 0 s

A.P. Paplifiski 6-2

March 22, 2006

Digital Logic/Design. — L. 6

6.2 Example of a VHDL code for a 2-to-4 decoder

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY dec2tod4 IS

PORT (
x : IN std_logic_vector (1 DOWNTO O0);

y : OUT std_logic_vector (3 DOWNTO O0)

)i
END dec2tod ;

ARCHITECTURE struct OF dec2tod4 IS
SIGNAL xb : std_logic_vector (1 DOWNTO O0);

BEGIN
y(0) <= xb(l) AND xb(0);
y (1) <= xb(l) AND x(0);
y(2) <= xb(0) AND x(1);
v(3) <= x(1) AND x(0);
xb <= NOT (x) ;

END struct;

e A VHDL program represents a digital circuit.

o It can represent: signal flow, behaviour or structure of the circuit

e The program can be used to simulation/test, or to synthesize the digital circuit

e The above program describes signal flow

o All assignment statements are interpreted/executed concurrently,

therefore can be written in any order.

A.P. Papliniski

Digital Logic/Design. — L. 6

March 22, 2006

6.3 Multiplexers

e A n-to-1 multiplexer connects its output y to one of
n = 2" inputs ag, ai, . . . a, selected by an m-bit
control/select signal s.

e In other words the multiplexer output is a sum of
products of input signals with respective minterms:

n—1

1=0

e A 4-to-1 multiplexer can be implemented in the following way:

Function Table:

Qo—10
Cl, —1 lf"l ‘ £1
Ay —2 Hux
A, —|>

| O

A.P. Paplinski

Qo

i

Mo {M)e.a nin
e
5 m
Sy §1 SO éo

64

Digital Logic/Design. — L. 6 March 22, 2006

6.4 Describing a multiplexer in VHDL

a(0:3)

sly <=
There are a number of ways to describe a multiplexer in 0] a(0)
VHDL. The following two methods use various concurrent Y 1] a(1)
assignment statements. We use a 4-to-1 multiplexer as an 2| a(2)
example. 31 a(3)
ENTITY mux4tolA IS
PORT (a : IN std_logic_vector (0 to 3) ;
s : IN std_logic_vector (1 downto 0) ;
y : OUT std_logic) ;
END mux4tolA ;
641 Conditional Signal Assignment Statement 64.2 Selected Signal Assignment Statement
<= ... when ... else <= with ... select ... when ..., ... ;
ARCHITECTURE condSA OF mux4tolA IS ARCHITECTURE selSA OF mux4tolA IS
BEGIN BEGIN
y <= a(0) WHEN s = "00" ELSE WITH s SELECT

a(l) WHEN s = "01" ELSE y <= a(0) WHEN "OO" , —— comma

a(2) WHEN s = "10" ELSE a(l) WHEN "O01"

a(3) ; a(2) WHEN "10"
END condSA ; a(3) WHEN OTHERS ; —-- semicolon

END selSA ;

A.P. Paplifiski 6-5
Digital Logic/Design. — L. 6 March 22, 2006

Multiplexer as a universal logic element

e Typically multiplexers are used to re-direct signals from different sources onto a common output.

e However, when we compare expression for canonical implementation of a logic function with
expression for a multiplexer we note that they are structurally identical.

o It means that a multiplexer with m select signals can be used as a
universal logic block implementing any logic function of m variables
specified by constants (from a truth table) at the multiplexer inputs.

¥=2(1,25,6)
e As an example consider implementation of a 3-variable function
using an 8-to-1 multiplexer:

Yy = f($27x17$0) = 2(1737576) x(2

e If we allow inputs to the multiplexer to be not only constants (0, 1), but also variable(s) (or their
complements), then, in particular, using a 2"-to-1 multiplexer, we can implement any logic function of
m + 1 variables.

e In such a case m variables are applied to the select inputs of the multiplexer, whereas the remaining
variable, its complement and constants (0, 1) are applied to the multiplexed inputs.

A.P. Paplifiski 6-6

Digital Logic/Design. — L. 6 March 22, 2006

Example e TRUTH TABLE
Xeo |2 21 X0 | Y Conneckt k) x, to
Implement a 3-variable function 0[0 00| ! | .
P {001]| 0]m e selct Lnes
y:fIQ,xl,x() = 1737475 210 10 [™M
(@2,1,20) = 3(13,4,5) 210 104 lm —+7
using a 2°-to-1 multiplexer Ul h 00} 1 M 2] Hux
el 1 Lo}l O|mMms ’_—j"’
1 0t m, Xy
7200 11 p—
e Variables (1, x() are used as the select variables in a 4-to-1 multiplexer
e The remaining variable x5 will be used at the multiplexer inputs.
+ MoDIFIED TR TABLE
{\’m X, Xo ,
e To do this we modify the truth table comparing o[0 oI M I - :’ y
values of the output signal y for two values of 2' 0 é ’}%1 ":; ? > hux| 9
. 1 2 2 2]
the variable 5 3l | olm, o % 1o
x
4= Mot Myt My + M - x:'—"
= mo'.l.,. m:.xzf- m,'.x,+m?,~o
A.P. Paplifiski 6-7
Digital Logic/Design. — L. 6 March 22, 2006

6.5 Unstructured combinational circuits

e The name “unstructured” refers to implementations of a n-input m-output combinational circuit build
from simple gates which are not grouped into any sub-blocks.

e To illustrate the concept let us consider the following implementation of a 2-bit multiplier.

e It is a 2-bit by 2-bit multiplication circuit that forms a 4-bit product:

a b .)
2 2 a=(a a,), is a2-bit husrbucaw
X b‘-‘#-(b: bo)y (s a 2-bet _nirm.\lep FUNCTION TABLE TRuTH TASLE
= : ; albffc| |aiach bfM |CxCaCiCo
) Tlahaq), o B BB RS
= = {(a,b
= R I HH i
Yo b be 1HE HE R
IIBOo(sztcnd‘nbns] 65332%
X 4 varabls mest be derived 2|12 il a1 g 940
2| 2|y [o1 4 100
it as sk
_ - 13 k) ot
C3C16 Co 23“)05(4"4"16"5’) ,z 2]¢ |$ & % tio
22 f,(2,0,b,b.) 249 ilFl 1 oo

Cr= ¢ (a,a.,b, b)
Co= fo(a,,00,b, bs)

A.P. Paplifiski 6-8

Digital Logic/Design. — L. 6 March 22, 2006

The next step is to convert the truth table into the Karnaugh maps:
Individual K-maps:

© | @

Multiplication table:
C’(C;CQC,CL) »
b I 2 0 0e ‘
aaNb% 0, 'y lo
,_ WL g, 1Al e
ol O/ﬂ\ l/g 5/; 2 ©° - b @ ° bl
tilod3d9 16 1] — b b
Ll > 7 A
o ————», % l % | 2,
AN | |
bp bo
From the Karnaugh maps we can obtain the following SoP expressions:
C3= a/ao b‘ be C, = a,z, bo_"‘ a,& bp"‘ b,aqao'Pblaao
. L 2 a,bo(B*R) * B (575;)
Co= G/ b, bor b3 = &b (%bs) Co= bsao
A.P. Paplifiski 6-9

Digital Logic/Design. — L. 6 March 22, 2006

A possible implementation with “mixed” gates: AND, OR NAND

Note that equation for c; has been simplified so that it is no longer a standard form but a 3-level

implementation:
a' ao b' b.
G
C3= a/ ap b‘ bﬂ] " -
- - o] D -
Cz: a,b, b+ ba,a, = ﬂ,-b,(c.db,) ‘)
€,= a5, b* Q& bot b,'a'.,a,-rb,&a, —]J_}_L_
= lec(sl’a)*b:“v(z*sﬂ)
Com ot =

The above implementation is an example of an unstructured combinational circuit.

A.P. Paplinski

