6 Combinational circuits

6.1 Introductory concepts

- A combinational circuit (block, component) consists of logic gates and processes n input signals $x(n-1), \ldots, x(0)$ into m output signals $y(m-1), \ldots, y(0)$ using a function $y=f(x)$, in such a way that output signals depend only on the current input signals.

where each f_{i} is a logic function.
- Past values of the input signals do not have any influence on the current values of the output signals.
- Description of any combinational circuit with n inputs and m outputs can be ultimately reduced to a truth table with 2^{n} rows and m column.
- From the point of view of their internal structures combinational blocks can be classified into two groups:
- un-structured circuits, that is a "random" collection of gates,
- structured circuits forming 1-D and 2-D arrays of components.
- The simplest combinational blocks are collections of gates. For example, an n-bit NAND gate:

$$
\left.\frac{a(1: n)}{\frac{b(1: n)^{n}}{n}}\right)^{\frac{1}{n}} y=\overline{a \cdot b}
$$

- A slightly more complicated example includes the collection of gates driven by a common control signal, say s, to perform two operations:

Function/operation Table:

s	function
0	$y(1: n)=a(1: n)$
1	$y(1: n)=\bar{a}(1: n)$

- We are already familiar with a n-to- 2^{n} decoder as a minterm/maxterm generator.
Typically the decoder has an additional enable signal s such that the minterms are generated only for $s=1$, whereas for $s=0$ outputs are in an inactive state, typically 0 .

Function/operation Table:

\mathbf{x}	y_{0}	y_{1}	y_{2}	y_{3}
0	s	0	0	0
1	0	s	0	0
2	0	0	s	0
3	0	0	0	s

6.2 Example of a VHDL code for a 2-to-4 decoder

```
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY dec2to4 IS
    PORT (
        x : IN std_logic_vector (1 DOWNTO 0);
        y : OUT std_logic_vector (3 DOWNTO 0)
    );
END dec2to4 ;
ARCHITECTURE struct OF dec2to4 IS
    SIGNAL xb : std_logic_vector(1 DOWNTO 0);
BEGIN
    y(0) <= xb(1) AND xb (0);
    y(1) <= xb(1) AND x(0);
    y(2) <= xb(0) AND x(1);
    y(3) <= x(1) AND x(0);
    xb <= NOT(x);
END struct;
```

- A VHDL program represents a digital circuit.
- It can represent: signal flow, behaviour or structure of the circuit
- The program can be used to simulation/test, or to synthesize the digital circuit
- The above program describes signal flow
- All assignment statements are interpreted/executed concurrently, therefore can be written in any order.

6.3 Multiplexers

- A n-to-1 multiplexer connects its output y to one of $n=2^{m}$ inputs $a_{0}, a_{1}, \ldots a_{n}$ selected by an m-bit control/select signal s.
- In other words the multiplexer output is a sum of products of input signals with respective minterms:
$y=a_{0} \cdot m_{0}+a_{1} \cdot m_{1}+\ldots+a_{n-1} \cdot m_{n-1}=\sum_{i=0}^{n-1} a_{i} \cdot m_{i}$

- A 4-to-1 multiplexer can be implemented in the following way:

6.4 Describing a multiplexer in VHDL

There are a number of ways to describe a multiplexer in VHDL. The following two methods use various concurrent assignment statements. We use a 4 -to- 1 multiplexer as an example.


```
ENTITY mux4to1A IS
    PORT (a : IN std_logic_vector (0 to 3) ;
        s : IN std_logic_vector (1 downto 0) ;
        y : OUT std_logic ) ;
END mux4to1A ;
```

6.4.1 Conditional Signal Assignment Statement

```
    <= ... when ... else
ARCHITECTURE condSA OF mux4to1A IS
BEGIN
    y <= a(0) WHEN s = "O0" ELSE
        a(2) WHEN s = "10" ELSE
            a(3) ;
END condSA ;
```

 a(1) WHEN \(s=" 01 "\) ELSE \(\quad y<=a(0)\) WHEN "00", , -- comma
 6.4.2 Selected Signal Assignment Statement $<=$ with ... select ... when ... , ... ;
ARCHITECTURE SelSA OF mux4to1A IS
BEGIN
WITH s SELECT
a(1) WHEN "01",
a (2) WHEN "10",
a(3) WHEN OTHERS ; -- semicolon
END selSA ;

Multiplexer as a universal logic element

- Typically multiplexers are used to re-direct signals from different sources onto a common output.
- However, when we compare expression for canonical implementation of a logic function with expression for a multiplexer we note that they are structurally identical.
- It means that a multiplexer with m select signals can be used as a universal logic block implementing any logic function of m variables specified by constants (from a truth table) at the multiplexer inputs.
- As an example consider implementation of a 3-variable function using an 8-to-1 multiplexer:

$$
y=f\left(x_{2}, x_{1}, x_{0}\right)=\sum(1,3,5,6)
$$

- If we allow inputs to the multiplexer to be not only constants $(0,1)$, but also variable(s) (or their complements), then, in particular, using a 2^{m}-to- 1 multiplexer, we can implement any logic function of $m+1$ variables.
- In such a case m variables are applied to the select inputs of the multiplexer, whereas the remaining variable, its complement and constants $(0,1)$ are applied to the multiplexed inputs.

Example

Implement a 3-variable function

$$
y=f\left(x_{2}, x_{1}, x_{0}\right)=\sum(1,3,4,5)
$$

using a 2^{2}-to- 1 multiplexer

- TRUTH TABLE

- Variables $\left(x_{1}, x_{0}\right)$ are used as the select variables in a 4-to-1 multiplexer
- The remaining variable x_{2} will be used at the multiplexer inputs.
- MODIFIEd TRuTH TABLE
- To do this we modify the truth table comparing values of the output signal y for two values of the variable x_{2}

6.5 Unstructured combinational circuits
- The name "unstructured" refers to implementations of a n-input m-output combinational circuit build from simple gates which are not grouped into any sub-blocks.
- To illustrate the concept let us consider the following implementation of a 2 -bit multiplier.
- It is a 2-bit by 2-bit multiplication circuit that forms a 4 -bit product:

$a=\left(a_{1} a_{0}\right)_{2}$ is a 2-bit mucitpucuans
$b=\left(b, b_{0}\right)_{2}$ is a 2-bit mulipuer
$c=\left(c_{3} c_{2} c_{1} c_{0}\right)_{2}$ is a 4-bit moduct
such that $L c=a \times b]=f(a, b)$

4 Bodean functions of 4 variables must be derived

$$
\begin{aligned}
& c_{3}=f_{3}\left(a_{1}, a_{0}, b_{1}, b_{0}\right) \\
& c_{2}=f_{2}\left(a_{1}, a_{0}, b_{1}, b_{0}\right) \\
& c_{5}=f_{1}\left(a_{1}, a_{0}, b_{1}, b_{0}\right)
\end{aligned}
$$

The next step is to convert the truth table into the Karnaugh maps:
Individual K-maps:

Multiplication table:

From the Karnaugh maps we can obtain the following SoP expressions:

$$
\begin{aligned}
c_{3}=a_{1} a_{0} b_{1} b_{0} & c_{1} & =a_{1} \bar{b}_{1} b_{0}+a_{1} \bar{a}_{0} b_{0}+b_{1} \bar{a}_{1} a_{0}+b_{1} \bar{b}_{0} a_{0} \\
c_{2}=a_{1} b_{1} \bar{b}_{0}+b_{1} a_{1} \bar{a}_{0}=a_{1} \cdot b_{1}\left(\bar{a}_{0}+\bar{b}_{0}\right) & & =a_{1} b_{0}\left(\bar{b}_{1}+\bar{a}_{0}\right)+b_{1} a_{0}\left(\bar{a}_{1}+\bar{b}_{0}\right)
\end{aligned}
$$

A possible implementation with "mixed" gates: AND, OR NAND
Note that equation for c_{1} has been simplified so that it is no longer a standard form but a 3-level implementation:

$$
\begin{aligned}
c_{3} & =a_{1} a_{0} b_{1} b_{0} \\
c_{2} & =a_{1} b_{1} \bar{b}_{0}+b_{1} a_{1} \bar{a}_{0}=a_{1} \cdot b_{1}\left(\bar{a}_{0}+\bar{b}_{0}\right) \\
c_{1} & =a_{1} \bar{b}_{1} b_{0}+a_{1} \bar{a}_{0} b_{0}+b_{1} \bar{a}_{1} a_{0}+b_{1} \bar{b}_{0} a_{0} \\
& =a_{1} b_{0}\left(\bar{b}_{1}+\bar{a}_{0}\right)+b_{1} a_{0}\left(\bar{a}_{1}+\bar{b}_{0}\right) \\
c_{0} & =b_{0} a_{0}
\end{aligned}
$$

The above implementation is an example of an unstructured combinational circuit.

