7 Arithmetic combinational circuits

7.1 Introductory concepts

- Arithmetic combinational circuits are the most typical example of structured or array combinational circuits
- Typically an n-bit arithmetic circuit can be decomposed into n 1-bit circuits connected in an appropriate way.
- Most typical example is an n-bit adder that can be thought of as a 1 -dimensional array of 1 -bit adders.
- Examples of arithmetic circuits that form 2-dimensional arrays of 1-bit cells include fast multiplication circuits and vector rotators.
- Even simple arithmetic circuits cannot be implemented in an unstructured way:

Consider a 16 -bit adder adding two 16 -bit numbers.
It is equivalent to a combinational circuit with 32 inputs and 16 outputs.
The truth table of such a circuit has $2^{32}=4,294,967,296$ rows and 16 columns.

- Unstructured implementation of such a big circuit is rather impossible.

7.2 An Incrementer

- An incrementer performs operation $y<=a+1$ which can be implemented as a 1-dimensional array of 1-bit incrementers
- A 1-bit incrementer has a 1-bit input a and an input carry c, and generate 1-bit output y and an output carry d.
- The signals are related by the following arithmetic equation

$$
2 \cdot d+y=a+c \quad \text { or } \quad \frac{a+c}{2}=d+\frac{y}{2}
$$

- It says that the result of 1-bit incrementation, y, and an output carry d are remainder

Truth table:

1	1	2	1
c	a	d	y
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

- The truth table can now be easily created.
- From the truth table it is easy to write equations for the output signal y and the output carry d :

$$
y=a \oplus c, \quad d=a \cdot c
$$

The equations can be implemented as follows:

- The presence of the XOR gate is characteristic to all arithmetic circuits.

An n-bit Incrementer

- In order to obtain an n-bit incrementer, we arrange n 1 -bit incrementers in a 1-D array, connecting their output carry ports to respective input carry ports.
- If A and Y are numbers represented by the n -bit binary words, $a(n-1: 0)$ and $y(n-1: 0)$, respectively, then the n-bit incrementer performs the operation

A 4-bit incrementer

$$
2^{n} d+Y=A+c_{0}
$$

where

$$
d=c_{n} \text { is the } 1 \text {-bit output carry, and }
$$ c_{0} is the 1 -bit input carry.

- Note that when $c_{0}=0$ then $Y=A$, that is, no increment is performed.
- Note also that the output carry $c_{n}=1$ if and only if all a_{i} and c_{0} are 1.

7.3 Adders

7.3.1 1-bit adder

- Adders are fundamental building blocks of all arithmetic circuits.
- Following considerations of the previous section we conclude than an n-bit adder can be built using an array of 1 -bit adders.
- A 1-bit adder has three inputs, a, b, c, and two outputs, d, s, known as the output carry and the sum, respectively.
- The 1-bit adder counts the number of ones at its three inputs and represents the result as a two-bit binary number.
- Hence, the defining arithmetic relationship between inputs and outputs can be written as:

$$
a+b+c=(d, s)_{2}=2 \cdot d+s \quad \text { or } \quad \frac{a+b+c}{2}=d+\frac{s}{2}
$$

- All three inputs are equivalent, but normally c is called the input carry.
- The arithmetic equation can be converted into a truth table which describes the relationship between three adder inputs c, b, a and two adder outputs, d, s, and then into the logic equations:

A 1-bit adder:

Truth table:

c	b	a	1's	d
0	\mathbf{s}	0	0	0
0	0	1	1	0
0	1			
0	1	0	1	0
0	1			
0	1	1	2	1

$$
\begin{gathered}
s=a \oplus b \oplus c \\
d=a \cdot b+b \cdot c+c \cdot a
\end{gathered}
$$

1-bit adder

Karnaugh Maps:

Logic equations:

Generic implementation:

$$
\begin{aligned}
& d=\sum(3,5,6,7)
\end{aligned}
$$

$$
\begin{aligned}
& d=a \cdot b+b \cdot c+a \cdot c \\
& =a \cdot b+c \cdot(a+b) \\
& s=\sum(1,2,4,7) \\
& s=\bar{c} \cdot a \cdot \bar{b}+\bar{c} \cdot \bar{a} \cdot b+c \cdot \bar{a} \cdot \bar{b}+c \cdot a \cdot b
\end{aligned}
$$

$$
\begin{aligned}
& =\bar{c} \cdot(a \cdot \bar{b}+\bar{a} \cdot b)+c \cdot(\bar{a} \cdot \bar{b}+a \cdot b) \\
& =\bar{c} \cdot(a \oplus b)+c \cdot(\overline{a \oplus b}) \\
& =a \oplus b \oplus c
\end{aligned}
$$

7.3.2 An n-bit adder

- An n-bit adder adds two n-bit binary numbers $a=\left(a_{n-1} \ldots a_{0}\right)$ and $b=\left(b_{n-1} \ldots b_{0}\right)$ and a 1-bit input carry c_{0} and produces an n-bit sum $b=\left(s_{n-1} \ldots s_{0}\right)$ and a 1-bit output carry d.
- This can be formally described in the following way:

$$
s=a+b+c_{0}=\sum_{i=0}^{n-1} a_{i} 2^{i}+\sum_{i=0}^{n-1} b_{i} 2^{i}+c_{0}=\sum_{i=0}^{n-1}\left(a_{i}+b_{i}\right) 2^{i}+c_{0}
$$

Starting from the least significant position $(i=0)$ we can convert

$$
a_{0}+b_{0}+c_{0}=2 c_{1}+s_{0} \quad \text { or in general for } i=0, \ldots, n-1: \quad a_{i}+b_{i}+c_{i}=2 c_{i+1}+s_{i}
$$

Substituting we have $\quad s=\sum_{i=0}^{n-1}\left(a_{i}+b_{i}\right) 2^{i}+c_{0}=c_{n} 2^{n}+\sum_{i=0}^{n-1} s_{i} 2^{i}$

- Ripple-carry implementation of an n-bit adder built from 1-bit adders:
- Time taken for the carry to propagate from c_{0} to c_{n} is proportional to n : $\quad t_{n}=n \cdot t_{1}$

7.4 2's complement representation of numbers

- The 2 's complement number system is an extension of a binary system to representation of also the negative numbers
- In the 2 's complement system the most significant weight is negative, or alternatively the most significant digit (the sign digit) takes values $a_{n-1} \in(-1,0)$
- Hence, an n-bit numeral $\mathbf{a}=\left(a_{n-1}, a_{n-2} \ldots a_{0}\right)$ represents the number:

$$
a=-a_{n-1} 2^{n-1}+\sum_{i=0}^{n-2} a_{i} 2^{i}
$$

All 3-bit 2's complement numbers:

- Example:

$$
a=[\underbrace{\left[\begin{array}{l}
10110
\end{array}\right]}_{A_{4: 0}}\left[\begin{array}{l}
2^{4} \\
2^{3} \\
2^{2} \\
2^{1} \\
2^{0}
\end{array}\right]=-2^{4}+2^{2}+2^{1}=-(10)_{10}
$$

-4	2	1	a
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	-4
1	0	1	-3
1	1	0	-2
1	1	1	-1

- The range of numbers represented is from $(10 \ldots 0)_{\overline{2}}=-2^{n-1}$ to $(01 \ldots 1)_{\overline{2}}=2^{n-1}-1$

7.5 Changing sign of a 2's complement number

- Complementing every digit of a 2 'complement number: (Note that $\bar{a}_{i}=1-a_{i}$)

$$
\bar{a}=-\left(1-a_{n-1}\right) 2^{n-1}+\sum_{i=0}^{n-2}\left(1-a_{i}\right) 2^{i}=-2^{n-1}+\sum_{i=0}^{n-2} 2^{i}+a_{n-1} 2^{n-1}-\sum_{i=0}^{n-2} a_{i} 2^{i}
$$

Re-grouping the terms and noting that $\sum_{i=0}^{n-2} 2^{i}=2^{n-1}-1$, we have

$$
\bar{a}=-1-\left(-a_{n-1} 2^{n-1}+\sum_{i=0}^{n-2} a_{i} 2^{i}\right)=-a-1
$$

or

$$
-a=\bar{a}+1
$$

- Hence, to change the sign of a 2's complement number we complement each digit and add 1 :

$$
\begin{aligned}
& a=101100=-32+12=-20 \\
& \bar{a}=010011 \\
& +1 \\
& \frac{1}{a}=010100=+20
\end{aligned}
$$

- Sign extension:

Note that increasing the number of bits we have extend to the left the bit sign.
For example: $\quad(10011)_{\overline{2}}=(1111110011)_{\overline{2}}$ and $(010011)_{\overline{2}}=(0000010011)_{\overline{2}}$

7.6 Adding 2's complement numbers

- 2's complement n-bit numbers can be added using a standard binary adder. The n-bit result will be correct provided that the overflow does nor occur.
- Formal proof:

$$
s=a+b+c_{0}=-a_{n-1} 2^{n-1}+\sum_{i=0}^{n-2} a_{i} 2^{i}-b_{n-1} 2^{n-1}+\sum_{i=0}^{n-2} b_{i} 2^{i}+c_{0}=-\left(a_{n-1}+b_{n-1}\right) 2^{n-1}+\sum_{i=0}^{n-2}\left(a_{i}+b_{i}\right) 2^{i}+c_{0}
$$

Substituting the 1-bit addition law

$$
\begin{gathered}
a_{i}+b_{i}+c_{i}=2 c_{i+1}+s_{i}, \quad \text { we have } \\
s=-\left(a_{n-1}+b_{n-1}\right) 2^{n-1}+2 c_{n-1} 2^{n-2}+\sum_{i=0}^{n-2} s_{i} 2^{i}=c_{n-1} 2^{n}-\left(a_{n-1}+b_{n-1}+c_{n-1}\right) 2^{n-1}+\sum_{i=0}^{n-2} s_{i} 2^{i}
\end{gathered}
$$

Finally, we have

$$
s=a+b+c_{0}=\left(c_{n-1}-c_{n}\right) 2^{n}-s_{n-1} 2^{n-1}+\sum_{i=0}^{n-2} s_{i} 2^{i}
$$

- When $c_{n-1}=c_{n}$ the above expression gives the proper 2's complement sum of a and b (and c_{0})
- When $c_{n-1} \oplus c_{n}=1$ overflow occurs and the result is "incorrect", that is, $\pm 2^{n}$ must be added for proper the interpretation of the result

Ripple-carry implementation of an n-bit 2'c complement adder:

Examples:

$\begin{aligned} & -168421 \\ & 1011=-5 \end{aligned}$	$\frac{-168421}{0-101}$	-168421
$01011=11$	$01101=+13$	3
(1)(1)0110 carsx	(0) (1) 1010 CARR	(1) (6) 1100 CARRY
$00110=+6$	$10010=-14$	$01001=+9$
no overflow	overflow	OVERELON

Note that:

- An overflow can only occur when we are adding numbers of the same sign.
- In this case the c_{n} carry is equal to the sign bit but the c_{n-1} carry can be both 0 or 1 .
- Adding numbers of opposite sign the c_{n-1} carry propagates through the sign position and $c_{n}=c_{n-1}$

7.7 Carry propagation and generation

- Designing adders it is useful to formulate the following carry propagation/generation conditions.
- Consider again a 1 -bit adder in which input and output variables are related by the following equation:

$$
2 d+s=a+b+c
$$

- Carry propagation: when $a \oplus b=1$ (a and b are different) $d=c$ output carry is equal to the input carry.
- We say that the carry $c=d$ is propagated through this position of the adder.
- Carry generation: when $a \oplus b=0$ (a and b are identical) $d=a, s=c$ output carry is equal to the addend bit $a=b$ and is independent of the input carry c.
- We say that the carry $d=a$ is generated at this position of the adder.

- Using two intermediate signals:

$$
\begin{array}{ll}
g=a \cdot b & \text { - carry " } 1 \text { " generate } \\
p=a \oplus b & \text { - carry propagate } \\
s=p \oplus c \quad \text { - the sum } \\
d=g+p \cdot c \quad \text { - the output carry }
\end{array}
$$

7.8 Carry Lookahead adder

- The ripple-carry n-bit adder is relatively slow, because the initial carry c_{0} must travel through all n 1-bit adders.
- The can be avoided if we unfold the recursive way of calculating carry.
- This can be conveniently done using carry generate/propagete signals:

$$
\begin{aligned}
& c_{1}=g_{0}+p_{0} \cdot c_{0} \\
& c_{2}=g_{1}+p_{1} \cdot c_{1}=g_{1}+p_{1} \cdot g_{0}+p_{1} \cdot p_{0} \cdot c_{0} \\
& c_{3}=g_{2}+p_{2} \cdot c_{2}=g_{2}+p_{2} \cdot g_{1}+p_{2} \cdot p_{1} \cdot g_{0}+p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}
\end{aligned}
$$

- Note from the logic diagram that the number of gates to produce the carry signal for the given position and their number of inputs grows with the adder position number
- Such an adder implementation is called a carry look-ahead adder an is the typical way of speeding up the adder operations.

7.9 Subtractors

- Subtractors are typically used in the 2 's complement system.
- Implementations of a subtractor involves the change of sign of the subtrahend through the complementation of its bits and an increment, according to the formula:

$$
s=a-b=a+\bar{b}+1
$$

- the resulting block/logic diagrams:

- It is also possible to build a (i-bit) subtractor according to the formula:

$$
-2 d+s=a-b-c
$$

- Note that the weight associated with carry is negative.

Give the truth table and logic equation for such a subtractor. Compare it with a 1-bit adder.

7.10 VHDL specification of a 1 -bit adder

The 1-bit adder entity specifies input output ports:

```
LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY add_1b IS
    PORT (a, b, c : IN bit ;
        s, d : OUT bit ) ;
```


Many architectures are possible. Consider the following two:

```
-- dataflow architecture for add_1b
ARCHITECTURE d_flow_a OF add_1b IS
BEGIN
    s <= a XOR b XOR c ; -- a SIGNAL assignment
    d <= (a AND b) OR ((a OR b) AND c) ;
END d_flow_a ;
```



```
-- another dataflow architecture for add_1b
ARCHITECTURE d_flow_b OF add_1b IS
    SIGNAL e : std_logic ; -- internal signal declaration
BEGIN
    e <= a XOR b ;
    s <= e XOR c ;
    d <= (a AND b) OR (e AND c) ;
END d_flow_b ;
```


- In the d_flow_b architecture we use an internal signal e which is specified as being of the type std_logic.
- The internal signals are always bi-directional and are used to simplify the description of the circuit.

Two more architectures:
In this architecture we specify the 1 -bit adder in the form of its truth table. The truth table can be specified as a constant array of binary words:

```
ARCHITECTURE ttbl OF add1_b IS
    TYPE arr_vec IS ARRAY (natural range <>)
                            OF std_logic_vector(1 downto 0);
    CONSTANT addlbit : arr_vec(0 to 7) := (
    -- d s cba
        _--------_---- the truth table of a 1-bit adder
            "00", -- 0 0
        "01", -- 1 1
            "01", -- 2 1
            "10", -- 3 2
            "01", -- 4 1
            "10", -- 5 2
            "10", -- 6 2
        "11"); -- 7 3
    SIGNAL cba : std_logic_vector (2 downto 0) ;
    SIGNAL ds : std_logic_vector (1 downto 0) ;
BEGIN
-- concatenation of three signals into one 3-bit word
    cba <= c & b & a ;
            reading from the truth table
    ds <= add1bit(conv_integer(unsigned(cba)));
    d <= ds(1) ;
    s <= ds(0) ;
END ttbl ;
```

- Note the various type conversion functions: unsigned and conv_integer .
- Type conversion informs the tools about desired method of conversion of binary vectors into numbers.

7.11 Arithmetic-Logic Units

- In practical applications adders and subtractors are group together with logic functions performed on n-bit binary words.
- As an example we consider an ALU performing eight different arithmetic and logic operations selected by a 3-bit operation code, opc(2:0)

- The i-th bit of the ALU can have the following logic structure:
- The operations performed are described by the following table:

ope	function
000	$a+b+c_{0}$
001	$a \oplus b$
010	$a \mathrm{OR} b$
$\begin{array}{llll}0 & 1 & 1\end{array}$	$a \cdot b$
100	$a-b-c_{0}$
101	$\overline{a \oplus b}$
110	$\overline{a \cdot b}$
111	$\overline{a \mathrm{OR} b}$

7.12 VHDL implementation of n-bit arithmetic circuits. The "generate" statement.

- In VHDL 1-bit arithmetic circuits are replicated to form a n-bit
for ... generate circuit using the generate statement of the form:
- The generate statement is a loop which replicates the circuitry specified by its body.
- Consider again a 4-bit incrementer as an illustrative example
- The generate loop will be repeated 4 times, and its body will describe the 1 -bit incrementer in the following way:

```
```

LIBRARY ieee ;

```
```

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_1164.all;
ENTITY incr4b IS
ENTITY incr4b IS
GENERIC (N : natural := 3) ;
GENERIC (N : natural := 3) ;
PORT (
PORT (
a : IN std_logic_vector (N downto 0) ;
a : IN std_logic_vector (N downto 0) ;
c0 : IN std_logic ;
c0 : IN std_logic ;
y : OUT std_logic_vector (N downto 0) ;
y : OUT std_logic_vector (N downto 0) ;
d : OUT std_logic) ;
d : OUT std_logic) ;
END incr4b ;
END incr4b ;
ARCHITECTURE GnrtStt OF incr4b IS
ARCHITECTURE GnrtStt OF incr4b IS
RCHITECTURE GnrtStt OF incr4b IS
RCHITECTURE GnrtStt OF incr4b IS
BEGIN
BEGIN
C(0) <= C0 ;
C(0) <= C0 ;
gnrt: FOR i IN O TO N GENERATE
gnrt: FOR i IN O TO N GENERATE
y(i) < = a(i) XOR c(i) ;
y(i) < = a(i) XOR c(i) ;
c(i+1) <= a(i) AND c(i) ;
c(i+1) <= a(i) AND c(i) ;
END GENERATE gnrt ;
END GENERATE gnrt ;
d<= c(N+1) ;
d<= c(N+1) ;
END GnrtStt ;

```
```

END GnrtStt ;

```
```


- Note that the architecture consists of three concurrent statements (two assignment statements and one generate statements) that can be written in any order.
- Similarly, two assignment statements inside the generate statement can be also written in any order.

7.13 Structural specification of digital circuits

- In the previous examples VHDL statements described signal flow inside a component (logic circuit).
- It is possible to describe a digital circuit as interconnection of other components.
- Each constituent component is a black box with an unspecified, at this stage, function or behaviour, but with precisely defined ports.
- In the declarative part of the architecture we specify input-output ports of all components used in the architecture body in a way identical to the respective entity declarations for these components.
- The components may already exist in libraries, or can be specified later.
- Such structural specification of digital circuits is made in VHDL with the Component Instantiation Statement of the general form:
port map (...)

We use the n -bit incrementer to clarify the concept of structural specification.

The 4-bit incrementer instantiate the 1-bit component in the following way:

We start with specification of a 1-bit incrementer as a separate component:

```
ENTITY inclb IS
    PORT ( a, c : IN std_logic ;
                d, y : OUT std_logic ) ;
END inc1b ;
ARCHITECTURE arch1 OF inclb IS
BEGIN
        y <= a XOR c ;
        co <= a AND c
END arch1 ;
```

```
ARCHITECTURE strctrl OF incr4b IS
    COMPONENT inc1b
        PORT ( a, c : IN std_logic
            d, y : OUT std_logic ) ;
        END COMPONENT inclb ;
    SIGNAL c : std_logic_vector (N+1 downto 0) ;
BEGIN
    C(0) <= C0 ;
    gnrt : FOR i IN a'RANGE GENERATE
        u1 : inclb PORT MAP ( a(i), c(i), c(i+1), y(i) );
    END GENERATE strctrl ;
    d <= c(4) ;
END strcrl ;
```

Note that

- In the architecture body the library components are instantiated as many times as specified by the schematic describing the architecture using a port map component instantiation statement.
- Each component instantiation statement is labeled as its schematic equivalent. In the example, the 1-bit component is labeled u1
- Interconnections between components are specified by the port map statement. For it to work, every net in the schematic, that is, all external and internal signals, must be assigned a name.
- Every port map statement is associated by positions with the respective component declaration.

Note also

- In the generate statement we used expression " a'range" to describe the scope of the generate loop. Ut is an example of an attribute that we will study in some depth latter. Here we simply have:

$$
\text { a'range } \equiv 3 \text { downto } 0
$$

- In the port map statement every signal is associated with the respective formal component port by position, in this case according to the following table

$$
\begin{array}{r|cccc}
\text { component: } & \text { a } & \text { c } & \text { d } & \mathrm{y} \\
\hline \text { port map: } & \mathrm{a}(\mathrm{i}) & \mathrm{c}(\mathrm{i}) & \mathrm{c}(\mathrm{i}+1) & \mathrm{y}(\mathrm{i})
\end{array}
$$

- There is another, more explicit form of the port map statement where association of the formal component ports and the instantiated component signals is by names, not by position.
We can write

```
PORT MAP (a => a(i), c => c(i), d => c(i+1), y => y(i));
```

