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7 Arithmetic combinational circuits

7.1 Introductory concepts

• Arithmetic combinational circuits are the most typical example of structured or array combinational
circuits

• Typically an n-bit arithmetic circuit can be decomposed into n 1-bit circuits connected in an
appropriate way.

• Most typical example is an n-bit adder that can be thought of as a 1-dimensional array of 1-bit adders.

• Examples of arithmetic circuits that form 2-dimensional arrays of 1-bit cells include fast multiplication
circuits and vector rotators.

• Even simple arithmetic circuits cannot be implemented in an unstructured way:

Consider a 16-bit adder adding two 16-bit numbers.

It is equivalent to a combinational circuit with 32 inputs and 16 outputs.

The truth table of such a circuit has 232 = 4, 294, 967, 296 rows and 16 columns.

• Unstructured implementation of such a big circuit is rather impossible.
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7.2 An Incrementer

• An incrementer performs operation y <= a + 1 which can be implemented as a
1-dimensional array of 1-bit incrementers

• A 1-bit incrementer has a 1-bit input a and an input carry c, and generate 1-bit
output y and an output carry d.

• The signals are related by the following arithmetic equation

2 · d + y = a + c or
a + c

2
= d +

y

2

• It says that the result of 1-bit incrementation, y, and an output carry d are remainder
and the quotient, respectively, from division of a + c by 2.

• The truth table can now be easily created.

Truth table:
1 1 2 1
c a d y
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

• From the truth table it is easy to write equations for
the output signal y and the output carry d:

y = a⊕ c, d = a · c

The equations can be implemented as follows:

y

i+1
ic

a i

y i

c i+1 ic

y i

a i
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y

c
d

inc1bd c

ac

• The presence of the XOR gate is characteristic to all arithmetic circuits.
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An n-bit Incrementer

• In order to obtain an n-bit incrementer, we arrange n

1-bit incrementers in a 1-D array, connecting their output
carry ports to respective input carry ports.

• If A and Y are numbers represented by the n-bit binary
words, a(n− 1 : 0) and y(n− 1 : 0), respectively,
then the n-bit incrementer performs the operation

2nd + Y = A + c0

where
d = cn is the 1-bit output carry, and
c0 is the 1-bit input carry.

• Note that when c0 = 0 then Y = A, that is, no increment
is performed.

• Note also that the output carry cn = 1 if and only if all
ai and c0 are 1.

A 4-bit incrementer

0

inc1b

y 3

inc1b inc1binc1b

y 2 y 1 y 0

aa 1a 2a 3

c 4 c 3 c 2 c 1

a(3:0)

y(3:0)

4−bit incrementer

c 0

0

d = c 4 c
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7.3 Adders
7.3.1 1-bit adder

• Adders are fundamental building blocks of all arithmetic circuits.
• Following considerations of the previous section we conclude than an

n-bit adder can be built using an array of 1-bit adders.

• A 1-bit adder has three inputs, a, b, c, and two outputs, d, s, known
as the output carry and the sum, respectively.

• The 1-bit adder counts the number of ones at its three inputs and
represents the result as a two-bit binary number.

A 1-bit adder:

Σ

?

a

?

b

?s

� c�d

• Hence, the defining arithmetic relationship between inputs and
outputs can be written as:

a + b + c = (d, s)2 = 2 · d + s or
a + b + c

2
= d +

s

2
• All three inputs are equivalent, but normally c is called the input

carry.

• The arithmetic equation can be converted into a truth table which
describes the relationship between three adder inputs c, b, a and two
adder outputs, d, s, and then into the logic equations:

Truth table:

c b a 1’s d s
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 1 0 1
0 1 1 2 1 0
1 0 0 1 0 1
1 0 1 2 1 0
1 1 0 2 1 0
1 1 1 3 1 1

s = a⊕ b⊕ c

d = a · b + b · c + c · a
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1-bit adder

Karnaugh Maps: Logic equations: Generic implementation:

d =
∑

(3, 5, 6, 7)

a

0 0 1 0

c 0 1 1 1

b

d = a · b + b · c + a · c
= a · b + c · (a + b)

s =
∑

(1, 2, 4, 7)

a

0 1 0 1

c 1 0 1 0

b

s = c̄ · a · b̄ + c̄ · ā · b + c · ā · b̄ + c · a · b
= c̄ · (a · b̄ + ā · b) + c · (ā · b̄ + a · b)
= c̄ · (a⊕ b) + c · (a⊕ b)

= a⊕ b⊕ c
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7.3.2 An n-bit adder

• An n-bit adder adds two n-bit binary numbers a = (an−1 . . . a0)

and b = (bn−1 . . . b0) and a 1-bit input carry c0 and produces
an n-bit sum b = (sn−1 . . . s0) and a 1-bit output carry d.

• This can be formally described in the following way:

s = a + b + c0 =

n−1∑
i=0

ai2
i +

n−1∑
i=0

bi2
i + c0 =

n−1∑
i=0

(ai + bi)2
i + c0

Starting from the least significant position (i = 0) we can convert

a0 + b0 + c0 = 2c1 + s0 or in general for i = 0, . . . , n− 1 : ai + bi + ci = 2ci+1 + si

Substituting we have s =

n−1∑
i=0

(ai + bi)2
i + c0 = cn2n +

n−1∑
i=0

si2
i

• Ripple-carry implementation of an n-bit adder
built from 1-bit adders:

• Time taken for the carry to propagate from
c0 to cn is proportional to n: tn = n · t1
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7.4 2’s complement representation of numbers

• The 2’s complement number system is an extension of a binary system to representation of also the
negative numbers

• In the 2’s complement system the most significant weight is negative, or alternatively the most
significant digit (the sign digit) takes values an−1 ∈ (−1, 0)

• Hence, an n-bit numeral a = (an−1, an−2 . . . a0)

represents the number:
a = −an−12

n−1 +

n−2∑
i=0

ai2
i

• Example:

a = [ 1 0 1 1 0︸ ︷︷ ︸
A4:0

]


24

23

22

21

20

 = −24 + 22 + 21 = −(10)10

All 3-bit 2’s complement numbers:

• The range of numbers represented is from (10 . . . 0)2̄ = −2n−1 to (01 . . . 1)2̄ = 2n−1 − 1
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7.5 Changing sign of a 2’s complement number

• Complementing every digit of a 2’complement number: (Note that āi = 1− ai)

ā = −(1− an−1)2
n−1 +

n−2∑
i=0

(1− ai)2
i = −2n−1 +

n−2∑
i=0

2i + an−12
n−1 −

n−2∑
i=0

ai2
i

Re-grouping the terms and noting that
n−2∑
i=0

2i = 2n−1 − 1 , we have

ā = −1− (−an−12
n−1 +

n−2∑
i=0

ai2
i) = −a− 1

or
−a = ā + 1

• Hence, to change the sign of a 2’s complement number we
complement each digit and add 1:

• Sign extension:
Note that increasing the number of bits we have extend to the left the bit sign.
For example: (10011)2̄ = (1111110011)2̄ and (010011)2̄ = (0000010011)2̄
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7.6 Adding 2’s complement numbers

• 2’s complement n-bit numbers can be added using a standard binary adder. The n-bit result will be
correct provided that the overflow does nor occur.

• Formal proof:

s = a+b+c0 = −an−12
n−1+

n−2∑
i=0

ai2
i−bn−12

n−1+

n−2∑
i=0

bi2
i+c0 = −(an−1+bn−1)2

n−1+

n−2∑
i=0

(ai+bi)2
i+c0

Substituting the 1-bit addition law

ai + bi + ci = 2ci+1 + si, we have

s = −(an−1 + bn−1)2
n−1 + 2cn−12

n−2 +

n−2∑
i=0

si2
i = cn−12

n − (an−1 + bn−1 + cn−1)2
n−1 +

n−2∑
i=0

si2
i

Finally, we have

s = a + b + c0 = (cn−1 − cn)2n − sn−12
n−1 +

n−2∑
i=0

si2
i

• When cn−1 = cn the above expression gives the proper 2’s complement sum of a and b (and c0)

• When cn−1 ⊕ cn = 1 overflow occurs and the result is “incorrect”, that is, ±2n must be added for
proper the interpretation of the result
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Ripple-carry implementation of an n-bit 2’c complement adder:

Examples:

Note that:

• An overflow can only occur when we are adding numbers of the same sign.

• In this case the cn carry is equal to the sign bit but the cn−1 carry can be both 0 or 1.

• Adding numbers of opposite sign the cn−1 carry propagates through the sign position and cn = cn−1
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7.7 Carry propagation and generation

• Designing adders it is useful to formulate the following carry propagation/generation conditions.

• Consider again a 1-bit adder in which input and output variables are related by the following equation:

2d + s = a + b + c

• Carry propagation: when a⊕ b = 1 (a and b are different)
d = c output carry is equal to the input carry.

• We say that the carry c = d is propagated through this
position of the adder.

• Carry generation: when a⊕ b = 0 (a and b are identical)
d = a, s = c output carry is equal to the addend bit a = b

and is independent of the input carry c.

• We say that the carry d = a is generated at this position of
the adder.

• Using two intermediate signals:
g = a · b — carry “1” generate
p = a⊕ b — carry propagate

• the logic equations for the 1-bit adder
can be written as:

s = p⊕ c — the sum
d = g + p · c — the output carry

A.P. Papliński 7–11
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7.8 Carry Lookahead adder

• The ripple-carry n-bit adder is relatively slow, because the initial carry c0 must travel through all n

1-bit adders.

• The can be avoided if we unfold the recursive way of calculating carry.

• This can be conveniently done using carry
generate/propagete signals:

c1 = g0 + p0 · c0

c2 = g1 + p1 · c1 = g1 + p1 · g0 + p1 · p0 · c0

c3 = g2 + p2 · c2 = g2 + p2 · g1 + p2 · p1 · g0 + p2 · p1 · p0 · c0

. . .

• Note from the logic diagram that the number of gates to
produce the carry signal for the given position and their
number of inputs grows with the adder position number

• Such an adder implementation is called a carry look-ahead
adder an is the typical way of speeding up the adder
operations.
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7.9 Subtractors

• Subtractors are typically used in the 2’s complement system.

• Implementations of a subtractor involves the change of sign of the subtrahend through the
complementation of its bits and an increment, according to the formula:

s = a− b = a + b̄ + 1

• the resulting block/logic diagrams:
B3
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Fig. 4-13  4-Bit Adder Subtractor

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

• It is also possible to build a (i-bit) subtractor according to the formula: −2d + s = a− b− c

• Note that the weight associated with carry is negative.
Give the truth table and logic equation for such a subtractor. Compare it with a 1-bit adder.
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7.10 VHDL specification of a 1-bit adder

The 1-bit adder entity specifies input output ports:
LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY add_1b IS

PORT (a, b, c : IN bit ;
s, d : OUT bit ) ;

END add_1b ;

Σ

?

a

?

b

?s

� c�d

Many architectures are possible. Consider the following two:

-- dataflow architecture for add_1b
ARCHITECTURE d_flow_a OF add_1b IS
BEGIN
s <= a XOR b XOR c ; -- a SIGNAL assignment
d <= (a AND b) OR ((a OR b) AND c) ;

END d_flow_a ;

-- another dataflow architecture for add_1b
ARCHITECTURE d_flow_b OF add_1b IS
SIGNAL e : std_logic ; -- internal signal declaration

BEGIN
e <= a XOR b ;
s <= e XOR c ;
d <= (a AND b) OR (e AND c) ;

END d_flow_b ;
d_flow_b
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• In the d flow b architecture we use an internal signal e
which is specified as being of the type std logic.

• The internal signals are always bi-directional and are used to simplify the description of the circuit.
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Two more architectures:
In this architecture we specify the 1-bit adder in the
form of its truth table. The truth table can be
specified as a constant array of binary words:

ARCHITECTURE ttbl OF add1_b IS
TYPE arr_vec IS ARRAY (natural range <>)

OF std_logic_vector(1 downto 0);
CONSTANT add1bit : arr_vec(0 to 7) := (
-- d s cba
---------------- the truth table of a 1-bit adder

"00", -- 0 0
"01", -- 1 1
"01", -- 2 1
"10", -- 3 2
"01", -- 4 1
"10", -- 5 2
"10", -- 6 2
"11"); -- 7 3

SIGNAL cba : std_logic_vector (2 downto 0) ;
SIGNAL ds : std_logic_vector (1 downto 0) ;

BEGIN
-- concatenation of three signals into one 3-bit word

cba <= c & b & a ;
-- reading from the truth table
ds <= add1bit(conv_integer(unsigned(cba)));
d <= ds(1) ;
s <= ds(0) ;

END ttbl ;

The 1-bit adder can be also specified
arithmetically, leaving all the design/synthesis
problems to the CAD tools:

ARCHITECTURE cnt1 OF add_1b IS
SIGNAL ds : std_logic_vector (1 downto 0) ;

BEGIN
ds <= unsigned(’0’ & a)

+ unsigned(’0’ & b)
+ unsigned(’0’ & c) ;

d <= ds(1) ;
s <= ds(0) ;

END cnt1 ;

• Note the various type conversion functions: unsigned and conv_integer .

• Type conversion informs the tools about desired method of conversion of binary vectors into numbers.
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7.11 Arithmetic-Logic Units

• In practical applications adders and subtractors are group together with logic functions performed on
n-bit binary words.

• As an example we consider an ALU performing eight
different arithmetic and logic operations selected by
a 3-bit operation code, opc(2:0)

• The i-th bit of the ALU can have the following logic
structure:

• The operations performed
are described by the
following table:

opc function
0 0 0 a + b + c0

0 0 1 a⊕ b

0 1 0 a OR b

0 1 1 a · b
1 0 0 a− b− c0

1 0 1 a⊕ b

1 1 0 a · b
1 1 1 a OR b

3

iai

bbi

aai

piqici+1 ci

fi
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7.12 VHDL implementation of n-bit arithmetic circuits. The “generate” statement.

• In VHDL 1-bit arithmetic circuits are replicated to form a n-bit
circuit using the generate statement of the form:

for . . . generate

• The generate statement is a loop which replicates the circuitry specified by its body.

• Consider again a 4-bit incrementer as an illustrative example

• The generate loop will be repeated 4 times, and its body will describe the 1-bit incrementer in the
following way:

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
ENTITY incr4b IS

GENERIC (N : natural := 3) ;
PORT (

a : IN std_logic_vector (N downto 0) ;
c0 : IN std_logic ;
y : OUT std_logic_vector (N downto 0) ;
d : OUT std_logic ) ;

END incr4b ;

ARCHITECTURE GnrtStt OF incr4b IS
SIGNAL c : std_logic_vector (N+1 DOWNTO 0) ;

BEGIN
c(0) <= c0 ;
gnrt: FOR i IN 0 TO N GENERATE

y(i) <= a(i) XOR c(i) ;
c(i+1) <= a(i) AND c(i) ;

END GENERATE gnrt ;
d <= c(N+1) ;

END GnrtStt ;

0

inc1b

y 3

inc1b inc1binc1b

y 2 y 1 y 0

aa 1a 2a 3

c 4 c 3 c 2 c 1

a(3:0)

y(3:0)

4−bit incrementer

c 0

0

d = c 4 c

1-bit incrementer:

yi = ai ⊕ ci , ci+1 = ai · ci
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• Note that the architecture consists of three concurrent statements (two assignment statements and
one generate statements) that can be written in any order.

• Similarly, two assignment statements inside the generate statement can be also written in any order.

7.13 Structural specification of digital circuits

• In the previous examples VHDL statements described signal flow inside a component (logic circuit).

• It is possible to describe a digital circuit as interconnection of other components.

• Each constituent component is a black box with an unspecified, at this stage, function or behaviour, but
with precisely defined ports.

• In the declarative part of the architecture we specify input-output ports of all components used in the
architecture body in a way identical to the respective entity declarations for these components.

• The components may already exist in libraries, or can be specified later.

• Such structural specification of digital circuits is made in VHDL with the Component Instantiation
Statement of the general form:

port map ( . . . )

We use the n-bit incrementer to clarify the concept of structural specification.
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We start with specification of a 1-bit
incrementer as a separate component:

ENTITY inc1b IS
PORT ( a, c : IN std_logic ;

d, y : OUT std_logic ) ;
END inc1b ;

ARCHITECTURE arch1 OF inc1b IS
BEGIN

y <= a XOR c ;
co <= a AND c ;

END arch1 ;

The 4-bit incrementer instantiate the 1-bit component in
the following way:

ARCHITECTURE strctrl OF incr4b IS

COMPONENT inc1b
PORT ( a, c : IN std_logic ;

d, y : OUT std_logic ) ;
END COMPONENT inc1b ;

SIGNAL c : std_logic_vector (N+1 downto 0) ;
BEGIN

c(0) <= c0 ;
gnrt : FOR i IN a’RANGE GENERATE
u1 : inc1b PORT MAP ( a(i), c(i), c(i+1), y(i) );

END GENERATE strctrl ;
d <= c(4) ;

END strcrl ;
Note that

• In the architecture body the library components are instantiated as many times as specified by the
schematic describing the architecture using a port map component instantiation statement.

• Each component instantiation statement is labeled as its schematic equivalent. In the example, the
1-bit component is labeled u1

• Interconnections between components are specified by the port map statement. For it to work, every
net in the schematic, that is, all external and internal signals, must be assigned a name.

• Every port map statement is associated by positions with the respective component declaration.
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Note also

• In the generate statement we used expression “ a’range” to describe the scope of the generate loop.
Ut is an example of an attribute that we will study in some depth latter. Here we simply have:

a’range ≡ 3 downto 0

• In the port map statement every signal is associated with the respective formal component port by
position, in this case according to the following table

component: a c d y
port map: a(i) c(i) c(i+1) y(i)

• There is another, more explicit form of the port map statement where association of the formal
component ports and the instantiated component signals is by names, not by position.

We can write

PORT MAP (a => a(i), c => c(i), d => c(i+1), y => y(i));
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