
Digital Logic/Design. — L. 8 March 28, 2006

8 Design Example: A Division-by-Constant Combinational Circuit

8.1 A general case

A combinational circuit which divides n-bit binary number by a ‘small’ constant β has a modular structure
of an iterative 1-D array circuit, similar to the structure of an incrementer or an adder. The carry propagates
from left to right, and its values are limited by the divisor, β.

-
cn ′m /β -

c0′m

?

a
′n

?s

′n

(2n · cn + a) − dividend
β − divisor
s − quotient
c0 − remainder

β is a ‘small’ integer constant,

a, s ∈ {0, . . . , 2n − 1} are n-bit integers,

cn, c0 ∈ {0, . . . , β − 1} are m-bit integers,
2m ≥ β

Input/output variables are related by the following
equation which links divider, divisor, quotient and
remainder:

2n · cn + a

β
= s +

c0

β
or

2n · cn + a = β · s + c0

• The objective is to build a combinational circuit, which, given n-bit input a and possibly cn, will
generate the quotient s and the remainder, c0.

• It is possible to build such a circuit using 1-bit cells.

A.P. Papliński 8–1

Digital Logic/Design. — L. 8 March 28, 2006

8.2 Binary-to-decimal conversion

• The division-by-constant circuit can be used for binary-to-decimal conversion.

• It is the “division-by-target” radix method, therefore β = 10.

• In the example we consider conversion of a binary
number to a 4-digit decimal number.

• The largest 4-digit decimal number, 9999, is
represented by a 14-bit binary number.

• The first level division-by-10 circuit generate the first
digit d0 as a remainder and a 10-digit quotient that is
equivalent to 3-digit decimal number not greater than
999.

• The final level division-by-10 circuit generate two
last decimal digits, d3, d2

A.P. Papliński 8–2

Digital Logic/Design. — L. 8 March 28, 2006

8.3 A 1-bit division-by-constant circuit

• Consider as an example a division-by-3 circuit. In
this case, we have

n = 1; β = 3; m = 2; {2m ≥ β}

-
c = (c1, c0)

′
2

/3 -
d = (d1, d0)

′
2

?

a

?s

• Input and output carry signals, c, d, are 2-bit numbers
which are less than the divisor, β = 3, that is: c, d ∈ {0, 1, 2}

• The I/O equation is now of the following form: 2 · c + a = 3 · s + d

Function Table

c a
2c + a

3s + d
s d

0 0 0 0 0

0 1 1 0 1

1 0 2 0 2

1 1 3 1 0

2 0 4 1 1

2 1 5 1 2

3 0 6 − −
3 1 7 − −

Truth Table
c1 c0 a s d1 d0

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 − − −
1 1 1 − − −

• From the tables the logic equations for the three
outputs can be derived using the Karnaugh map
technique.

• One possible SoP form is as follows:

s = c1 + a · c0

d1 = a · c0 + a · c1

d0 = a · c1 + a · c1 · c0

A.P. Papliński 8–3

Digital Logic/Design. — L. 8 March 28, 2006

A possible VHDL implementations of the
1-bit cell, div3b1 based on the derived
logic equations is as follows:

a
div3b1

v

v v

c(
1:

0)

d(
1:

0)

v

s

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

-- div3b1, 1-bit div-by-3 Entity Description
ENTITY div3b1 IS

PORT(
c : IN std_logic_vector (1 downto 0) ;
a : IN std_logic ;
d : OUT std_logic_vector (1 downto 0) ;
s : OUT std_logic

);
END div3b1;

-- arch1 Architecture Description
ARCHITECTURE arch1 OF div3b1 IS

BEGIN
s <= c(1) or (a and c(0)) ;

d(1) <= (not a and c(0)) or (a and c(1)) ;
d(0) <= (not a and c(1)) or (a and not c(1) and not c(0)) ;

END arch1 ;

• At this stage we might like to avoid deriving the logic equations and use the truth table directly, as in
the 1-bit adder example.

• We specify the truth table as a constant as it is illustrated in the next section.

A.P. Papliński 8–4

Digital Logic/Design. — L. 8 March 28, 2006

8.4 An architecture with the truth table specification

• The truth table is simply specified as a constant array of binary words. The array consists of 23 3-bit
words as in the truth table on page 8–3.

ARCHITECTURE dv3tt OF div3b1 IS
TYPE arr_vec IS ARRAY (natural range <>)

OF std_logic_vector(2 downto 0);
CONSTANT sd_ac : arr_vec := (
-- sd1d0 ca
--------------- the truth table:

"000", -- 0
"001", -- 1
"010", -- 2
"100", -- 3
"101", -- 4
"110", -- 5
"---", -- 6
"---"); -- 7

SIGNAL sd : std_logic_vector (2 downto 0) ;
BEGIN
-- reading from the truth table :
sd <= sd_ac(conv_integer(unsigned(c & a)));
d <= sd (1 downto 0) ;
s <= sd (2) ;

END dv3tt ;

• The truth table is a constant sd ac of the type arr vec.

• The value of the constant is our truth table. Note that we
can also specify the “don’t care” values, ’–’.

• To read the values from the truth table we need an
assignment statement of the form
sd <= sd_ac(ca);

• In the array specification we have implicitly specified
that the address signal ac is of the type integer.

• Therefore, we first concatenate (c & a) into a 3-bit
std logic vector, which is subsequently converted into a
3-bit unsigned vector that can be converted into an
integer.

• The conversion functions are specified in the libraries ieee.std logic 1164 and ieee.std logic arith.

A.P. Papliński 8–5

Digital Logic/Design. — L. 8 March 28, 2006

• We consider another architecture of the 1-bit
division-by-3 circuit, based on the division and
remainder operations.

Such operators are available in the numeric std IEEE
library.

• The division ‘/’ and remainder rem , like all other
arithmetic operators, do not operate on signals of the
type std logic vector.

Instead, we can use signals of the type unsigned .

• The conversion function std logic vector converts
signals back from the unsigned to std logic vector
form.

• Since ca is a 3-bit signal, the results of division and
remainder operations are also 3-bit signals.

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

-- div3b1, 1-bit div-by-3 Entity Description
ENTITY div3b1b IS

PORT(
c : IN std_logic_vector (1 downto 0) ;
a : IN std_logic ;
d : OUT std_logic_vector (1 downto 0) ;
s : OUT std_logic

);
END div3b1b;
ARCHITECTURE dv3mod OF div3b1b IS

SIGNAL ca : unsigned (2 downto 0);
SIGNAL ss, dd : std_logic_vector (2 downto 0);

BEGIN
ca <= unsigned(c & a) ;
dd <= std_logic_vector(ca REM 3) ;
d <= dd(1 downto 0) ;

ss <= std_logic_vector(ca/3) ;
s <= ss(0) ;

END dv3mod ;

A.P. Papliński 8–6

Digital Logic/Design. — L. 8 March 28, 2006

8.5 An n-bit division-by-three circuit

• In order to implement an n-bit division-by-3 circuit, we can instantiate the 1-bit component div3b1
using the port map and generate statements.

• The resulting structure of a 4-bit division-by-3 circuit has the following block-diagram:

a
div3b1

v

v v

c(
1:

0)

d(
1:

0)
v

s

a
div3b1

v

v v

c(
1:

0)

d(
1:

0)

v

s

a
div3b1

v

v v

c(
1:

0)

d(
1:

0)

v

s

a
div3b1

v

v v

c(
1:

0)

d(
1:

0)

v

s

3 2 1 0

3 2 1 0

ed(1:0)

ea(3:0)

ec(1:0)

es(3:0)

cc
(4

)

cc
(0

)

cc
(3

)

cc
(2

)

cc
(1

)

• The numbers represented by the port
signals are related by the following
arithmetic equality:

16 · ec + ea = 3 · es + ed

• The internal carry signals, cc, form a 5 by 2 array of 2-bit signals.

The block diagram of the 4-bit division-by-3 circuit is equivalent to the following VHDL code:

A.P. Papliński 8–7

Digital Logic/Design. — L. 8 March 28, 2006

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY div3b4 IS --- 4-bit division-by-3
GENERIC (N : natural := 3, m : natural := 1) ;
PORT(

ec : IN std_logic_vector(m downto 0) ;
ea : IN std_logic_vector(N downto 0) ;
ed : OUT std_logic_vector(m downto 0) ;
es : OUT std_logic_vector(N downto 0));

END div3b4;
ARCHITECTURE strctrl OF div3b4 IS
COMPONENT div3b1

PORT(
c : IN std_logic_vector(1 downto 0) ;
a : IN std_logic ;
d : OUT std_logic_vector(1 downto 0) ;
s : OUT std_logic

) ;
END COMPONENT div3b1 ;
TYPE arr5b2 IS ARRAY(4 downto 0)

OF std_logic_vector(1 downto 0);
SIGNAL cc : arr5b2 ;

BEGIN
cc(4) <= ec ;
glp: FOR i IN ea’RANGE GENERATE

U1: div3b1
PORT MAP (c => cc(i+1),

a => ea(i),
d => cc(i),
s => es(i)

);
END GENERATE ;
ed <= cc(0) ;

END strctrl ;

Note that

• In the generate statement ea’range is
equivalent to 4 downto 0.

• In the component instantiation statement, port
map , we have used the association-by-name
method.

A.P. Papliński 8–8

