Digital Logic/Design. — L. 8 March 28, 2006

8 Design Example: A Division-by-Constant Combinational Circuit
8.1 A general case

A combinational circuit which divides n-bit binary number by a ‘small” constant /3 has a modular structure
of an iterative 1-D array circuit, similar to the structure of an incrementer or an adder. The carry propagates
from left to right, and its values are limited by the divisor, j3.

a
} (2" ¢, +a) — dividend (G isa ‘small’ integer constant,
CLW /B ngo p — divisor a,s € {0,...,2" — 1} are n-bit integers,
s — quotient 0 51y bit
. Cnyco €40,...,8 — are m-bit integers,
nJ[cp — remainder o> 3
S
]) 2" c,+a Co

Input/output variables are related by the following T =s+ E
equation which links divider, divisor, quotient and or
remainder: M.ocp+a=0-5+c

e The objective is to build a combinational circuit, which, given n-bit input a and possibly ¢,,, will
generate the quotient s and the remainder, c¢.

e It is possible to build such a circuit using 1-bit cells.

A.P. Paplifiski 8-1

Digital Logic/Design. — L. 8 March 28, 2006

8.2 Binary-to-decimal conversion
e The division-by-constant circuit can be used for binary-to-decimal conversion.

o [t is the “division-by-target” radix method, therefore § = 10.

ds by do
£ a»:9¢ 9999 = (lofom!oooolm)z

¢ In the example we consider conversion of a binary T
number to a 4-digit decimal number.

e The largest 4-digit decimal number, 9999, is LS .

represented by a 14-bit binary number. E'7 999= z‘rﬁ-m*ofoﬁ 1)
) /

e The first level division-by-10 circuit generate the first A
digit dy as a remainder and a 10-digit quotient that is
equivalent to 3-digit decimal number not greater than
999.

e The final level division-by-10 circuit generate two
last decimal digits, ds, ds

Io
*7 t

'L, 99 = (rmaofﬁz
=1, LT

A.P. Paplifiski 8-2

Digital Logic/Design. — L. 8 March 28, 2006

8.3 A 1-bit division-by-constant circuit

a

e Consider as an example a division-by-3 circuit. In d— (ded

this case, we have - (C—/—»h 00)2 /3 T —

n=1, =3 m=2 {2">0}
S

e Input and output carry signals, c¢, d, are 2-bit numbers de 01 9

which are less than the divisor, 3 = 3, that is: ¢, d €0, 1, 2}
e The I/O equation is now of the following form: 2. c+a=3-5s+d

Function Table Truth Table ‘ ‘
2c+ a p T e From the tables the logic equations for the three

€ 4 g +d 5 ‘ @ @ a ‘ 5 4 % outputs can be derived using the Karnaugh map

00 0 010 8 8 (1) 8 8 (1) technique.

01 1 01 0100 1 0 e One possible SoP form is as follows:

10 2 0]2

01 11 0 0

11 3 110

20 4 111 1 0071 0 1 3:61+a-00

21 5 119 1 01]1 10 di =a-cta -

30 G _1_ 1 1 (1) - dy =a-ci+a-¢-¢q

31 7 |-|- E—

A.P. Paplifiski 8-3
Digital Logic/Design. — L. 8 March 28, 2006

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

A possible VHDL implementations of the

—— div3bl, 1l-bit div-by-3 Entity Description

1-bit cell, div3bl based on the derived ENTITY div3bl IS
. . . PORT (
IOgIC equaUOHS 1S as fOHOWS: c : IN std_logic_vector (1 downto 0) ;
a : IN std_logic ;
B d : OUT std_logic_vector (1 downto 0) ;
é s : OUT std_logic
) &))i
:>:|/ div3b1l i d END div3bl;
o ©
S —— archl Architecture Description

M ARCHITECTURE archl OF div3bl IS

BEGIN
s <= c(l) or (a and c(0)) ;
d(l) <= (not a and c(0)) or (a and c (1)) ;
d(0) <= (not a and c(1l)) or (a and not c(l) and not c(0)) ;
END archl ;

o At this stage we might like to avoid deriving the logic equations and use the truth table directly, as in
the 1-bit adder example.

e We specify the truth table as a constant as it is illustrated in the next section.

A.P. Paplifiski 84

Digital Logic/Design. — L. 8 March 28, 2006

8.4 An architecture with the truth table specification

e The truth table is simply specified as a constant array of binary words. The array consists of 2° 3-bit
words as in the truth table on page 8-3.

ARCHITECTURE dv3tt OF div3bl IS

TYPE arr_vec TS ARRAY (natural range <>) e The truth table is a constant sd _ac of the type arr vec.
OF std_logic_vector (2 downto 0); .

CONSTANT sd_ac : arr_vec := (e The value of the constant is our truth table. Note that we

—-— sd1do0 ca

b 13 b kA b b
_______________ Che trutn taple: can also specify the “don’t care” values, '—’.

ooty Y e To read the values from the truth table we need an
"010", -- 2 assignment statement of the form
"100", -- 3
"101", -- 4 sd <= sd_ac(ca);
"i1io", -— 5
—w g e In the array specification we have implicitly specified
R A that the address signal ac is of the type integer.
SIGNAL sd : std_logic_vector (2 downto 0) ;
BEGIN e Therefore, we first concatenate (¢ & a) into a 3-bit
-— reading from the truth table :
sd <= sd_ac (conv_integer (unsigned(c & a))); std logic vector, which is subsequently converted into a
4 g) downto) i 3-bit unsigned vector that can be converted into an
END dv3tt ; integer.

e The conversion functions are specified in the libraries ieee.std logic 1164 and ieee.std logic arith.

A.P. Paplifiski 8-5

Digital Logic/Design. — L. 8 March 28, 2006

e We consider another architecture of the 1-bit .
LIBRARY ieee ;
division-by-3 circuit, based on the division and USE ieee.std logic_1164.all;

. . USE ieee.numeric_std.all;
remainder operations.

. . . —- div3bl, 1-bit div-by-3 Entity Description
Such operators are available in the numeric std IEEE o117y divabio 1s

library. PORT(,
c : IN std_logic_vector (1 downto 0) ;
o s s <7 . . a : IN std_logic ;
e The division ‘/’ and remainder rem , like all other 4 : OUT std logic vector (1 downto 0) ;
arithmetic operators, do not operate on signals of the o OUT std_logic
type std logic vector. END div3blb;
. . ARCHITECTURE dv3mod OF div3blb IS
Instead, we can use signals of the type unsigned . STGNAL ca : unsigned (2 downto 0);
SIGNAL ss, dd : std_logic_vector (2 downto 0);
e The conversion function std_logic_vector converts BEGIN
. . . ca <= unsigned(c & a) ;
signals back from the unsigned to std logic vector dd <= std_logic_vector(ca REM 3) ;
form d <= dd (1 downto 0) ;

ss <= std_logic_vector(ca/3) ;
s <= ss(0) ;

e Since ca is a 3-bit signal, the results of division and exp av3moa
remainder operations are also 3-bit signals.

i

A.P. Paplifiski 8-6

Digital Logic/Design. — L. 8 March 28, 2006

8.5 An n-bit division-by-three circuit

e In order to implement an n-bit division-by-3 circuit, we can instantiate the 1-bit component div3b1
using the port map and generate statements.

e The resulting structure of a 4-bit division-by-3 circuit has the following block-diagram:

ea(3:0)
D 2 N R e The numbers represented by the port
ctols © alls * 8lls ® 8lle * sl mgnals a.re relateid by the following
5 >% div3bl %>@—>% div3bl %>@—>% div3bl %>§>% div3bl %g— arithmetic equahty:
Q S Q Q S o S (5]
o o o o o
8 8 @ b es(3:0) 16-ec+ea=3-es+ed

e The internal carry signals, CC, form a 5 by 2 array of 2-bit signals.

The block diagram of the 4-bit division-by-3 circuit is equivalent to the following VHDL code:

A.P. Paplifiski 8-7

Digital Logic/Design. — L. 8 March 28, 2006

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

ENTITY div3b4 IS - 4-bit division-by-3
GENERIC (N : natural := 3, m : natural := 1) ;
PORT (

ec : IN std_logic_vector
ea : IN std_logic_vector
ed : OUT std_logic_vector
es : OUT std_logic_vector

END div3b4;

ARCHITECTURE strctrl OF div3b4 IS
COMPONENT div3bl Note that

PORT (
¢ @ IN std_logic_vector(l downto 0) ; e In the generate statement ea’range is
a : IN std_logic ; .
d : OUT std_logic_vector(l downto 0) ; equ1valent to 4 dOWhtO 0
s : OUT std_logic
) i . e In the component instantiation statement, port
END COMPONENT div3bl ; .
TYPE arr5b2 IS ARRAY (4 downto 0) map , we have used the association-by-name
OF std_logic_vector (1l downto 0);
SIGNAL cc : arr5b2 ; nieﬂ10d"

BEGIN
cc(4) <= ec ;
glp: FOR i IN ea’RANGE GENERATE

m downto
N downto
m downto
N downto

o o o o

Ul: div3bl

PORT MAP (c => cc(i+l),
a => eal(i),
d => cc(i),
s => es (1)

)i

END GENERATE ;

ed <= cc(0) ;
END strctrl ;

A.P. Paplifiski 8-8

