8 Design Example: A Division-by-Constant Combinational Circuit

8.1 A general case

A combinational circuit which divides n -bit binary number by a 'small' constant β has a modular structure of an iterative 1-D array circuit, similar to the structure of an incrementer or an adder. The carry propagates from left to right, and its values are limited by the divisor, β.

$$
\begin{aligned}
& \left(2^{n} \cdot c_{n}+a\right) \text { - dividend } \quad \beta \text { is a 'small' integer constant, } \\
& \beta \text { - divisor } \\
& s \text { - quotient } \\
& c_{0} \text { - remainder } \\
& a, s \in\left\{0, \ldots, 2^{n}-1\right\} \text { are n-bit integers, } \\
& c_{n}, c_{0} \in\{0, \ldots, \beta-1\} \text { are m-bit integers, } \\
& 2^{m} \geq \beta
\end{aligned}
$$

$$
\frac{2^{n} \cdot c_{n}+a}{\beta}=s+\frac{c_{0}}{\beta}
$$

Input/output variables are related by the following equation which links divider, divisor, quotient and remainder:

$$
2^{n} \cdot c_{n}+a=\beta \cdot s+c_{0}
$$

- The objective is to build a combinational circuit, which, given n-bit input a and possibly c_{n}, will generate the quotient s and the remainder, c_{0}.
- It is possible to build such a circuit using 1-bit cells.

8.2 Binary-to-decimal conversion

- The division-by-constant circuit can be used for binary-to-decimal conversion.
- It is the "division-by-target" radix method, therefore $\beta=10$.
- In the example we consider conversion of a binary number to a 4-digit decimal number.
- The largest 4-digit decimal number, 9999 , is represented by a 14 -bit binary number.
- The first level division-by-10 circuit generate the first digit d_{0} as a remainder and a 10 -digit quotient that is equivalent to 3 -digit decimal number not greater than 999.
- The final level division-by-10 circuit generate two last decimal digits, d_{3}, d_{2}

8.3 A 1-bit division-by-constant circuit

- Consider as an example a division-by-3 circuit. In this case, we have

$$
n=1 ; \quad \beta=3 ; \quad m=2 ; \quad\left\{2^{m} \geq \beta\right\}
$$

- Input and output carry signals, c, d, are 2-bit numbers which are less than the divisor, $\beta=3$, that is:
- The I/O equation is now of the following form:

$$
c, d \in\{0,1,2\}
$$

$2 \cdot c+a=3 \cdot s+d$

Function Table			
$c \quad a$	$\begin{aligned} & 2 c+a \\ & 3 s+d \end{aligned}$	s	d
00	0	0	0
01	1	0	1
10	2	0	2
11	3	1	0
20	4	1	1
21	5	1	2
30	6	-	-
31	7	-	-

Truth Table					
c_{1}	c_{0}	a	s	d_{1}	d_{0}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	-	-	-
1	1	1	-	-	-

- From the tables the logic equations for the three outputs can be derived using the Karnaugh map technique.
- One possible SoP form is as follows:

$$
\begin{aligned}
s & =c_{1}+a \cdot c_{0} \\
d_{1} & =\bar{a} \cdot c_{0}+a \cdot c_{1} \\
d_{0} & =\bar{a} \cdot c_{1}+a \cdot \overline{c_{1}} \cdot \overline{c_{0}}
\end{aligned}
$$

```
LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
```

```
-- div3b1, 1-bit div
```

-- div3b1, 1-bit div
PORT(
C : IN std_logic_vector (1 downto 0) ;
a : IN std_logic ;
d : OUT std_logic_vector (1 downto 0) ;
s : OUT std_logic
);
END div3b1;
-- arch1 Architecture Description
ARCHITECTURE arch1 OF div3b1 IS
BEGIN
s <= c(1) or (a and c(0)) ;
d(1) <= (not a and c(0)) or (a and c(1)) ;
d(0) <= (not a and c(1)) or (a and not c(1) and not c(0)) ;
END arch1 ;

```

A possible VHDL implementations of the 1-bit cell, div3b1 based on the derived logic equations is as follows:
- At this stage we might like to avoid deriving the logic equations and use the truth table directly, as in the 1-bit adder example.
- We specify the truth table as a constant as it is illustrated in the next section.

\subsection*{8.4 An architecture with the truth table specification}
- The truth table is simply specified as a constant array of binary words. The array consists of \(2^{3} 3\)-bit words as in the truth table on page 8-3.
```

ARCHITECTURE dv3tt OF div3b1 IS
TYPE arr_vec IS ARRAY (natural range <>)
OF std_logic_vector(2 downto 0);
CONSTANT sd_ac : arr_vec := (
-- sd1d0 ca
--------------- the truth table:
"000", -- 0
"001", -- 1
"010", -- 2
"100", -- 3
"101", -- 4
"110", -- 5
"---", -- 6
"---"'); -- 7
SIGNAL sd : std_logic_vector (2 downto 0) ;
BEGIN
-- reading from the truth table :
sd <= sd_ac(conv_integer(unsigned(c \& a)));
d <= sd (1 downto 0) ;
s <= sd (2) ;
END dv3tt ;
ARCHITECTURE dv3tt OF div3b1 IS TYPE arr_vec IS ARRAY (natural range <>)
OF std_logic_vector(2 downto 0);

```

\section*{arr_vec :=}
```

-------------- the truth table:
-- 0
"001", -- 1
"010", -- 2
100", -- 3
"110", -- 5 "---", -- 6
IGNAL sd : std_logic_vector (2 downto 0) ;
BEGIN
-- reading from the truth table :
sd <= sd_ac(conv_integer(unsigned(c \& a)));
$\mathrm{s}<=\operatorname{sd}$ (2) ;
END dv3tt ;

```
- The truth table is a constant sd_ac of the type arr_vec.
- The value of the constant is our truth table. Note that we can also specify the "don't care" values, ' - '.
- To read the values from the truth table we need an assignment statement of the form
sd <= sd_ac(ca);
- In the array specification we have implicitly specified that the address signal ac is of the type integer.
- Therefore, we first concatenate (c \& a) into a 3-bit std logic_vector, which is subsequently converted into a 3-bit unsigned vector that can be converted into an integer.
- The conversion functions are specified in the libraries ieee.std_logic_1164 and ieee.std logic arith.
- We consider another architecture of the 1-bit division-by-3 circuit, based on the division and remainder operations.
Such operators are available in the numeric_std IEEE library.
- The division ' \(/\) ' and remainder rem, like all other arithmetic operators, do not operate on signals of the type std_logic_vector.
Instead, we can use signals of the type unsigned .
- The conversion function std logic_vector converts signals back from the unsigned to std logic_vector form.
- Since ca is a 3-bit signal, the results of division and remainder operations are also 3-bit signals.
```

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
-- div3b1, 1-bit div-by-3 Entity Description
ENTITY div3b1b IS
PORT(
c : IN std_logic_vector (1 downto 0) ;
a : IN std_logic ;
d : OUT std_logic_vector (1 downto 0) ;
s : OUT std_logic
);
END div3b1b;
ARCHITECTURE dv3mod OF div3b1b IS
SIGNAL ca : unsigned (2 downto 0);
SIGNAL ss, dd : std_logic_vector (2 downto 0);
BEGIN
ca <= unsigned(c \& a) ;
dd <= std_logic_vector(ca REM 3) ;
d <= dd(1 downto 0) ;
ss <= std_logic_vector(ca/3) ;
s <= ss(0) ;
END dv3mod ;

```

\subsection*{8.5 An n-bit division-by-three circuit}
- In order to implement an n-bit division-by-3 circuit, we can instantiate the 1 -bit component div3b1 using the port map and generate statements.
- The resulting structure of a 4-bit division-by-3 circuit has the following block-diagram:

- The numbers represented by the port signals are related by the following arithmetic equality:
\[
16 \cdot e c+e a=3 \cdot e s+e d
\]
- The internal carry signals, cc, form a 5 by 2 array of 2-bit signals.

The block diagram of the 4-bit division-by- 3 circuit is equivalent to the following VHDL code:
```

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
ENTITY div3b4 IS --- 4-bit division-by-3
GENERIC (N : natural := 3, m : natural := 1) ;
PORT(
ec : IN std_logic_vector(m downto 0) ;
ea : IN std logic_vector(N downto 0) ;
ed : OUT std_logic_vector(m downto 0) ;
es : OUT std_logic_vector(N downto 0));
END div3b4;
ARCHITECTURE strctrl OF div3b4 IS
COMPONENT div3b1
PORT(
: IN std_logic_vector(1 downto 0) ;
: IN std_logic ;
d : OUT std_logic_vector(1 downto 0) ;
s : OUT std_logic
) ;
END COMPONENT div3b1 ;
TYPE arr5b2 IS ARRAY(4 downto 0)
OF std_logic_vector(1 downto 0);
SIGNAL CC : arr5b2 ;
BEGIN
Cc(4) <= ec ;
glp: FOR i IN ea'RANGE GENERATE
U1: div3b1
PORT MAP (c => cc(i+1),
a => ea(i),
d => cc(i)
s => es(i)
);
END GENERATE ;
ed <= cc(0) ;
END strctrl;

```

Note that
- In the generate statement ea'range is equivalent to 4 downto 0 .
- In the component instantiation statement, port map, we have used the association-by-name method.```

