Digital Logic/Design. — L. 10 May 2, 2006

10 Registers and counters

10.1 Registers ok |dn1 | d1 do
[| .
c P c Pllc P
e The simplest n-bit register is a collection of n D Q Q Q
flip-flops triggered by a common clock. -1 oy a0
o [would prefer to call it just an n-bit D flip-flop, since *d
it performs only a load operation on each rising edge clk | c Dn
of the clock. Q
n
q
gated clock:
d
e The simplest n-bit register should perform at least two ak n
operations load and hold Id gc c D
e This can be implemented in two ways: (,‘?n
— blocking/gating the clock (typically a bad idea for a ‘ ‘ q‘ ‘
number of reasons hold | load | hold | load |
. .). kTN LN LN
— adding an input multiplexer. Id ! | !
o L |
A.P. Paplifiski 10-1
Digital Logic/Design. — L. 10 May 2, 2006
10.1.1 An n-bit “parallel load” register
e
— a
E{} o] |
I P C D
Dl q
‘ load H operation ‘ ‘
The operation table of the n-bit register with parallel load: 0 | gq<=q |hold
1 q<=a |load
The timing diagram:
cl k47 | -
Id load ! hold ' load’ !
a [ag
q_ i\ :

A.P. Paplifiski 10-2

Digital Logic/Design. — L. 10 May 2, 2006

The VHDL architecture consists of three concurrent statements describing the input multiplexer, the
flip-flop process and assignment of internal outputs from the flip-flops to the output port:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY plReg IS
GENERIC (N : integer :=4) ;
PORT (clk, 1d : IN std_logic ;
A : IN std_logic_vector (N-1 downto 0) ;
Q : OUT std_logic_vector (N-1 downto 0)) ;
END ENTITY plReg;

ARCHITECTURE rtl OF plReg IS
SIGNAL P, D : std_logic_vector (A’RANGE) ;

BEGIN
—— the input multiplexer:
D <= A WHEN 1d = "1’ ELSE P ;

—— internal signal on output port
Q <=P;

-— the flip-flop process
PROCESS (clk)
BEGIN
IF clk’EVENT AND clk=’1’ THEN
P <=D ;
END IF ;
END PROCESS ;
END rtl ;

A.P. Paplifiski 10-3

Digital Logic/Design. — L. 10 May 2, 2006

10.1.2 A simple shift register

ck__ o _____.
e In general, a shift register allows the binary ! 1
n ‘
words stored in the register to be shifted left or D ﬁD ﬁD ﬁD |
right by one position, with additional bit being ! 8 g g g |
shifted in. | | | | i
e The simplest shift register performs only one % G 9 |
operation, say shift-right, at each rising edge of < o
the clock, that can be described as (4-bit register ok $R o do
has been assumed):
q <= Shr(sn, q) 5 or Serial SI D D D D SO Serial
input output

(g3, @2, q1, Qo) <= (sn,q3,92,q1), OF

3] <= smaf3 1) wl [T [TF

e The timing diagram illustrate how a 4-bit binary
word (0, 1, 0, 1) presented bit-by-bit at the serial
input sn has been shifted into the register during
the four consecutive rising edges of the clock.

e Such an operation can be referred to as a “serial
load”.

A.P. Paplifiski 104

Digital Logic/Design. — L. 10

May 2, 2006

10.1.3 A bi-directional shift register

e A bidirectional shift register can be considered as the most typical sequential component.

e The register performs both shift-right and shift-left
operations and in addition load and hold operations.

e Operation to be performed is selected by a 2-bit opcode word.

e Note that we have three types of signals:

— data (e.g. A, Q),
— control signals, (Qop), and

— a synchronizing (clocking) signal (clock).

e Specification of the register is given in the form of the

L
SN A[3:.0]

Qop[1:0] shReg
Q[3:0]

0

—_—

—

following function table (4-bit structure is assumed): Shift register, Q
e As usual, operations are performed on the rising edge of Qop H operation
the clock. 0 1Q=Q ho_ld
e Note that there are two single-bit serial inputs, SN and ; 8 z Eg\[l’z%][3'1)])) 22:2:?
sO from which the bits are shifted in on the vacated S
..) i .) 3 Q<A load
position during the respective shift operation.
A.P. Paplifiski 10-5
Digital Logic/Design. — L. 10 May 2, 2006
3|3 % U
<
e The internal structure of the register consists of two :_ ___________________ :
main parts: ! / i
— aset of N = 4 edge-triggered D flip-flops with | !
outputs P identical to the port signals Q, and Qop[1:0] | 3 2 1 0 |
inputs, Din. D—:" Multiplexer :
|
The flip-flops ensure the positive-edge sensitivity, : !
— a 4-bit 4-to-1 input multiplexer which effectively : Din[3:0] :
implements operations as specified in the function k| _ |
table, selecting appropriate signals to be loaded into [| D Flip=Flops |
. |
the flip-flops. | 30 !
e Timing diagram: N :
ok L 1L L f L1 f L N
load: $R: $R: hold: ShL: shL S
op 3 111 Jo _Jo 2
6
/
77777777 i~
(1010)| D (1101) dB@oiy | 7
A.P. Paplifiski 10-6

Digital Logic/Design. — L. 10 May 2, 2006

LIBRARY ieee;

e VHDL code follows from the USE ieee.std logic_l164.all ;
. . . . USE ieee.std_logic_arith.all;
specification given in the block- ENTITY shreg IS

GENERIC (N : integer := 4 ; M : integer := 2) ;
PORT (clk, sN, sO : IN std_logic ;

Qop : IN std_logic_vector (M-1 downto 0) ;
e Two version of the code differs in the A : IN std_logic_vector(N-1 downto 0) ;
Q : OUT std_logic_vector (N-1 downto 0)) ;

diagram and the operation table.

way the multiplexer is specified.

END shreg ;
ARCHITECTURE «rtlA OF shreg IS
SIGNAL P, Din : std_logic_vector (A’ RANGE)
, ARCHITECTURE rtlB OF shreg IS
CONSTANT nop : std_logic_vector (Qop’RANGE) := "00" ;

SIGNAL P, Din : std_logic_vector (A’RANGE) ;
TYPE arrvec IS ARRAY (natural range <>)

OF std_logic_vector (A’ RANGE) ;
SIGNAL YMUX : arrvec (0 to 2xxM-1) ;

CONSTANT shl : std_logic_vector (Qop’RANGE) := "10" ;

(;
()
CONSTANT shr : std_logic_vector (Qop’RANGE) := "01" ;
()
CONSTANT 1dd : std_logic_vector (Qop’RANGE) := "11" ;

BEGIN BEGIN
——= t b tati . 1d to 0
WITHQOZ rang:Lgii e static eg (ownto 0) YMUX <= (P,
o
K p sN & P(P'LEFT downto 1),
Din <= P WHEN nop ,
P (P'LEFT-1 downto 0) & sO,
sN & P(P'LEFT downto 1) WHEN shR , A);
P (P'LEFT-1 downto 0) & s0O WHEN shL ,) !))
Din <= YMUX (conv_integer (unsigned (Qop))) ;
A WHEN OTHERS ;
- flip-flop process
PROCESS (clk)
BEGIN
IF clk’EVENT AND clk='1’ THEN
P <= Din ;
END IF ;
END PROCESS ;
Q <=P ;
END rtlA ; END rtlB ;
A.P. Paplifiski 10-7
Digital Logic/Design. — L. 10 May 2, 2006

e Both codes are similar and consists of three concurrent statements: one for a multiplexer, one for
flip-flops P and the one which assigns internal signal P to an output port signal Q.

e In the rtlA architecture we have specified mnemonic names of constants, which increases code
readability.

e The selected signal assignment expression is a bit more limited because the select signal size must be
static.

e In the rtIB architecture, the multiplexer is specified as an array (table) of 2™ n-bit words.
e The words in the array are equivalent to the multiplexer inputs.

e The opcode Qop selects the n-bit word from the array

A.P. Paplifiski 10-8

Digital Logic/Design. — L. 10

May 2, 2006
Figure 6-4: Serial Transfer from Register A to Register B from Mano
Consider bi-directional serial transfer of data
Discuss tri-state line driver.
A.P. Paplifiski 10-9
Digital Logic/Design. — L. 10 May 2, 2006

10.2 Counters

e Counters are sequential circuits that increment or decrement a binary number stored in the flip-flops in
response to the rising edge of the clock.

e The name counter is used rather than incrementer/decrementer becuse in the first application of the
counters was counting the number of pulses coming to its clock input.

1021 A ripple counter

e The simplest counter, known as a ripple counter, is RE a2 a1 o
Q C<o—Q C<o—Q C<o—1Q Co—<T

build from simplified T flip-flops having only the clock TH R TH R TH R TH R
input, that is, the toggle input is always on, 7" = 1. T 31 01 01 st

e Note that the flip-flops toggle on the falling edge of the clock.

e In addition the reset signal rst sets the initial stage of the flip-flops to ¢ = (0000)
e Timing diagram demonstrate the

delay problem associated with the 0, r 2 /3 4 /5 6 7 |0
tipple counter. St st e i e i e i e
The change of the states does not o :‘ * :‘ m
occur strictly on the clock edge, but o m
there is a growing delay between % ‘ ‘ ‘ : | | | it
stages.

A.P. Paplifiski 10-10

Digital Logic/Design. — L. 10 May 2, 2006

1022 Synchronous counter

. . clk
e The basic synchronous counter is an — c
improvement on the ripple counter and is [T [T [T ‘ T
typically build from the standard T flip-flops Rg o Rg 4 Rg iy Rg
e The ¢; flip-flop is toggled only when the st F a @ @ o
previous flip-flop ¢;_1 =1
clke—>— . c
o All flip-flops toggle synchronously on the rising g O
edge of the clock. [5q[3:0]
e Timing diagram:
| O | 1 | 2 | 3 | 4 | 5 | 6 | 7 | O
kil LA LA b
G| s T e T s S e
e e e T

e There are three feature that can be added to the above counter:

— We might want to start counting from a set number rather than from zero
— A signal that indicates that the final stage ¢ = 2" — 1 has been reached.
— We might want to count both up and down.

A.P. Paplifiski 10-11

Digital Logic/Design. — L. 10 May 2, 2006

1023 Universal up-down counter

e The universal up-down counter performs four operations l
hold, load, count up (increment) and count down - o A[3:0]
(decrement)

e Operations are selected by a 2-bit opcode word op[1:0].] ?:TE:O] udCnt

e In addition a signal cr indicated the maximum (all ones) T QS:0]

or minimum (all zeroes) counter contents depending on the l
direction of counting.

e The above description is formalized by the following Up-down counter Q
operation table: op H operation ‘ cr

e As usual, operations ar performed on the rising edge of the 0]Q«<=Q hold —
clock. 1 |Q«<A load —

e For the hold and load operations cr has a “don’t care” 2 Q<=Q+1]inc |Q=max
value. 3/Q«<Q—1|dcr | Q=min

A.P. Paplifiski 10-12

Digital Logic/Design. — L. 10 May 2, 2006

T |
! ! ! |
oo [~ INC (DEC |
1
< I
e Such a universal counter is implemented using D : ~ !
flip-flops to store data and an appropriate excitation op[1:0] | 1 2 3 0 :
circuit. D-:—» Multiplexer |
I
. . e - [
e The first implementation of the excitation circuit can | —— |
. . . 1 Infs!
consist of a 4-to-1 n-bit multiplexer proceeded by a ! |
. . . I
combinational incrementer and decrementer. o D Flip-Flops |
I
! I
! PI3:0] |
|
I
I
____________________ I
U =)
o,
(o7
A.P. Paplifiski 10-13
Digital Logic/Design. — L. 10 May 2, 2006

- app, up-down counter
LIBRARY ieee;
. L. USE ieee.std_logic_1164.all ;
e A possible VHDL description closely follows the — vse ieee.std_logic_arith.all;
ENTITY wudCnt IS

blOCk dlagram GENERIC (N : integer := 4 ; M : integer := 2) ;
X X . PORT (clk : IN std_logic ;
e In order to be able to use a simple arithmetic op : IN std_logic_vector (M-1 downto 0) ;
tat ts t d b . tjd t A : IN std_logic_vector (N-1 downto 0) ;
statements to describe increment/decremen O : OUT std logic_vector (N-1 downto 0) :
operations, the relevant signals are specified as cr : OUT std_logic) ;
. . END udCnt ;
being of the unsigned type ARCHITECTURE rtla OF udCnt IS
SIGNAL AA, P, Din : unsigned(A’RANGE) ;
o Fort the UnS|gned Signals we can Write TYPE arrvec IS ARRAY (natural range <>)
. OF unsigned (A’ RANGE) ;
statements like SIGNAL YMUX : arrvec(0 to 2x+«M-1) ;
BEGIN
Y <= P :t 1 AA <= unsigned(Ad) ;
YMUX <= (P, AA, P + 1, P - 1) ; -- multiplexer
Din <= YMUX (conv_integer (unsigned(op))) ;
e Implementation of the multiplexer is identical to er <= 71’7 WHEN ((op(0) = ’07) AND (P = 2xN-1))
. . . . OR ((op(0) = "1") AND (P = 0))
that discussed for the universal shift register. ELSE ' 0’
e Note that the architecture rtla does not specify -- flip-flop process
. . . PROCESS
details of the implementation of the BEGIN
increment/decrement circuits leaving these gAi LDHEIL S EVENT BID et
details to the synthesizer to decide. END PROCESS ;

Q <= std_logic_vector (P) ;
END rtla ;

A.P. Paplifiski 10-14

Digital Logic/Design. — L. 10 May 2, 2006

e Simulation waveforms for the universal up-down counter are shown below:

S e e e T e T T O o B
fudent/op [T)2 0)2 3)
/udent/a [12 19)
fudent/q [X 12 Y13 T4 Y15 0 T Y2 YT Yo [Y15 Y
fudent/cr 11 11
[T T T I R B I [T T T I R B I I
0 50 100

Entity: udcnt Architecture: rtla

e Inspect the waveforms and verify that all operations are performed as specified in the counter
operation table.

A.P. Paplifiski 10-15

Digital Logic/Design. — L. 10 May 2, 2006

e In this architecture of the up-down counter we specify details of implementation of the
incrementer/decrementer circuit.

e Following considerations from sec. 7.2 we observe that input and output signals of the incrementer and
decrementer are related through the following arithmetic equalities:

Incrementer: c+p=2-d+vy
Decrementer: —c+p=-—-2-d+y

e If we denote by dn a signal to count down, then the arithmetic
equalities result in the following logic equations:

y =phc
d = c-(dn®p)

e The 1-bit increment/decrement component can be now connected
into an n-bit component as discussed in sec. 7.2.

P[n-1:0]

e The initial carry ¢y must be set up to 1 for increment and to O for c, l Co
decrement operation. Otherwise the output will be equal to input. *—| inc/dec/hold | 4

e We can use this property to implement the hold operation. l Y[n-1:0]

A.P. Paplifiski 10-16

Digital Logic/Design. — L. 10 May 2, 2006

o If we use the following increment/decrement circuit, the

excitation circuits for the universal up-down counter can be g 3
much simplified: . < &
. . . cr -
e From the following truth table we can specify the required <— inc/dec/hold I cd
control signals: =
8
op |op1 opy|cd|c e
hold[0 0 [0]0 cd = opy 0 1 Id
— i
load| 0 1 |- |- Co = Op1- 0Py
inc| 1 0/]0]|1 ld = op, - opy Din[3:0]
dec| 1 1 |1]0
ARCHITECTURE rtlb OF wudCnt IS
SIGNAL P, Y, Din : std_logic_vector (A’ RANGE) ;
SIGNAL c : std_logic_vector (N downto 0) ;
e The modified VHDL architecture can be BEGIN

c(0) <= op(l) ;
written in the following way (D flip-flops :

. t: FOR i IN 0 TO N-1 GENERATE —-- INC/DEC
has been omitted): anr *

Y (i) <= P(i) XOR c(i) ;
c(i+l) <= «c(i) AND (op(0) XOR P(i)) ;
END GENERATE gnrt ;

cr <= c(N) ;
Din <= A WHEN op = "01" ELSE Y ;

-—- flip-flop process

END rtlb ;

A.P. Paplifiski 10-17

