
Digital Logic/Design. — L. 10 May 2, 2006

10 Registers and counters

10.1 Registers

• The simplest n-bit register is a collection of n D
flip-flops triggered by a common clock.

• I would prefer to call it just an n-bit D flip-flop, since
it performs only a load operation on each rising edge
of the clock.

clk 0dn−1 d1

q1 q0qn−1

C D

Q

D
Q

q

d

C
clk

n

n

C D

Q
C D

Q
...

d

• The simplest n-bit register should perform at least two
operations load and hold

• This can be implemented in two ways:

– blocking/gating the clock (typically a bad idea for a
number of reasons)

– adding an input multiplexer.

gated clock:

holdload

D
Q

d

C

n

n

ld
gcclk

ld
clk

gc

q

hold load

A.P. Papliński 10–1

Digital Logic/Design. — L. 10 May 2, 2006

10.1.1 An n-bit “parallel load” register

Load

Clock

D

C

A0
I0

I1

I2

I3

D

C

A1

D

C

A2

D

C

A3

Fig. 6-2 4-Bit Register with Parallel Load© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

=⇒

a

D
Q

C

n

n

clk

q

ld

a

d

1 0
n

ld

D
Q

C
clk

n

n

q
p

The operation table of the n-bit register with parallel load:
load operation

0 q <= q hold
1 q <= a load

The timing diagram:

q
��������
��������
��������
��������

��������������
��������������
��������������
��������������

�
�
�
�

ld
clk

a a a
load hold load

A.P. Papliński 10–2

Digital Logic/Design. — L. 10 May 2, 2006

The VHDL architecture consists of three concurrent statements describing the input multiplexer, the
flip-flop process and assignment of internal outputs from the flip-flops to the output port:

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY plReg IS
GENERIC (N : integer :=4) ;
PORT (clk, ld : IN std_logic ;

A : IN std_logic_vector(N-1 downto 0) ;
Q : OUT std_logic_vector(N-1 downto 0)) ;

END ENTITY plReg;

ARCHITECTURE rtl OF plReg IS
SIGNAL P, D : std_logic_vector(A’RANGE) ;

BEGIN
-- the input multiplexer:

D <= A WHEN ld = ’1’ ELSE P ;

-- internal signal on output port
Q <= P ;

-- the flip-flop process
PROCESS (clk)
BEGIN

IF clk’EVENT AND clk=’1’ THEN
P <= D ;

END IF ;
END PROCESS ;

END rtl ;

A.P. Papliński 10–3

Digital Logic/Design. — L. 10 May 2, 2006

10.1.2 A simple shift register

• In general, a shift register allows the binary
words stored in the register to be shifted left or
right by one position, with additional bit being
shifted in.

• The simplest shift register performs only one
operation, say shift-right, at each rising edge of
the clock, that can be described as (4-bit register
has been assumed):

q <= shr(sn,q) , or

(q3, q2, q1, q0) <= (sn, q3, g2, q1) , or

q[3 : 0] <= (sn, q[3 : 1])

sn

C
D

Q
C

D

Q
C

D

Q
C

D

Q

q1q3 q2

q0

q0q0
C

sn
clk
s3

shR

clk

D

C

SI SOD

C

D

C

D

C

Serial
input

Serial
output

CLK

Fig. 6-3 4-Bit Shift Register

© 2002 Prentice Hall, Inc.
M. Morris Mano
DIGITAL DESIGN, 3e.

• The timing diagram illustrate how a 4-bit binary
word (0, 1, 0, 1) presented bit-by-bit at the serial
input sn has been shifted into the register during
the four consecutive rising edges of the clock.

• Such an operation can be referred to as a “serial
load”. 1

3

q2

q1

q0

������
������
������
������

������
������
������
������

���
���
���
���

��
��
��
��

����������
����������
����������
����������

�����������������
�����������������
�����������������
�����������������

�������������������������
�������������������������
�������������������������
�������������������������

������
������
������
������

clk

sn
1 1

1

0 0

0

0

q

A.P. Papliński 10–4

Digital Logic/Design. — L. 10 May 2, 2006

10.1.3 A bi-directional shift register

• A bidirectional shift register can be considered as the most typical sequential component.
• The register performs both shift-right and shift-left

operations and in addition load and hold operations.

• Operation to be performed is selected by a 2-bit opcode word.

• Note that we have three types of signals:

– data (e.g. A, Q),

– control signals, (Qop), and

– a synchronizing (clocking) signal (clock).

Q[3:0]

shReg
clk

Qop[1:0]

sN s0A[3:0]

• Specification of the register is given in the form of the
following function table (4-bit structure is assumed):

• As usual, operations are performed on the rising edge of
the clock.

• Note that there are two single-bit serial inputs, sN and
s0 from which the bits are shifted in on the vacated
position during the respective shift operation.

Shift register, Q
Qop operation

0 Q ⇐ Q hold
1 Q ⇐ (sN, Q[3:1]) shiftR
2 Q ⇐ (Q[2:0], s0) shiftL
3 Q ⇐ A load

A.P. Papliński 10–5

Digital Logic/Design. — L. 10 May 2, 2006

• The internal structure of the register consists of two
main parts:

– a set of N = 4 edge-triggered D flip-flops with
outputs P identical to the port signals Q, and
inputs, Din.
The flip-flops ensure the positive-edge sensitivity,

– a 4-bit 4-to-1 input multiplexer which effectively
implements operations as specified in the function
table, selecting appropriate signals to be loaded into
the flip-flops.

• Timing diagram:

sN

Din[3:0]

0123

P[3:0]

A
[3

:0
]

Qop[1:0]

clk

Q
[3

:0
]

Multiplexer

D Flip−Flops

s0

2

clk

Qop

A

Q 5U 7

s0

sN

A (1010) D (1101) B (1011)

5 6

3 1 1 0 2
shLshLload shR shR hold

A.P. Papliński 10–6

Digital Logic/Design. — L. 10 May 2, 2006

• VHDL code follows from the
specification given in the block-
diagram and the operation table.

• Two version of the code differs in the
way the multiplexer is specified.

LIBRARY ieee;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_arith.all;
ENTITY shreg IS
GENERIC (N : integer := 4 ; M : integer := 2) ;
PORT (clk, sN, s0 : IN std_logic ;

Qop : IN std_logic_vector(M-1 downto 0) ;
A : IN std_logic_vector(N-1 downto 0) ;
Q : OUT std_logic_vector(N-1 downto 0)) ;

END shreg ;

ARCHITECTURE rtlA OF shreg IS
SIGNAL P, Din : std_logic_vector(A’RANGE) ;
CONSTANT nop : std_logic_vector(Qop’RANGE) := "00" ;
CONSTANT shr : std_logic_vector(Qop’RANGE) := "01" ;
CONSTANT shl : std_logic_vector(Qop’RANGE) := "10" ;
CONSTANT ldd : std_logic_vector(Qop’RANGE) := "11" ;

BEGIN
--- Qop range must be static eg. (1 downto 0)
WITH Qop SELECT
Din <= P WHEN nop ,

sN & P(P’LEFT downto 1) WHEN shR ,
P(P’LEFT-1 downto 0) & s0 WHEN shL ,
A WHEN OTHERS ;

ARCHITECTURE rtlB OF shreg IS
SIGNAL P, Din : std_logic_vector(A’RANGE) ;
TYPE arrvec IS ARRAY (natural range <>)

OF std_logic_vector(A’RANGE) ;
SIGNAL YMUX : arrvec(0 to 2**M-1) ;

BEGIN
YMUX <= (P,

sN & P(P’LEFT downto 1),
P(P’LEFT-1 downto 0) & s0,
A);

Din <= YMUX(conv_integer(unsigned(Qop))) ;

-- flip-flop process
PROCESS (clk)
BEGIN

IF clk’EVENT AND clk=’1’ THEN
P <= Din ;

END IF ;
END PROCESS ;
Q <= P ;

END rtlA ; END rtlB ;

A.P. Papliński 10–7

Digital Logic/Design. — L. 10 May 2, 2006

• Both codes are similar and consists of three concurrent statements: one for a multiplexer, one for
flip-flops P and the one which assigns internal signal P to an output port signal Q.

• In the rtlA architecture we have specified mnemonic names of constants, which increases code
readability.

• The selected signal assignment expression is a bit more limited because the select signal size must be
static.

• In the rtlB architecture, the multiplexer is specified as an array (table) of 2m n-bit words.

• The words in the array are equivalent to the multiplexer inputs.

• The opcode Qop selects the n-bit word from the array

A.P. Papliński 10–8

Digital Logic/Design. — L. 10 May 2, 2006

Figure 6-4: Serial Transfer from Register A to Register B from Mano

Consider bi-directional serial transfer of data

Discuss tri-state line driver.

A.P. Papliński 10–9

Digital Logic/Design. — L. 10 May 2, 2006

10.2 Counters

• Counters are sequential circuits that increment or decrement a binary number stored in the flip-flops in
response to the rising edge of the clock.

• The name counter is used rather than incrementer/decrementer becuse in the first application of the
counters was counting the number of pulses coming to its clock input.

10.2.1 A ripple counter

• The simplest counter, known as a ripple counter, is
build from simplified T flip-flops having only the clock
input, that is, the toggle input is always on, T = 1. rst

1 q0q2q3

R Tff
Q C
Tff

Q
Tff Tff

QQ C CC

RR R

clkq

• Note that the flip-flops toggle on the falling edge of the clock.

• In addition the reset signal rst sets the initial stage of the flip-flops to q = (0000)

• Timing diagram demonstrate the
delay problem associated with the
ripple counter.
The change of the states does not
occur strictly on the clock edge, but
there is a growing delay between
stages.

clk

q0

q1

q2

0 01 2 3 4 5 6 7

A.P. Papliński 10–10

Digital Logic/Design. — L. 10 May 2, 2006

10.2.2 Synchronous counter

• The basic synchronous counter is an
improvement on the ripple counter and is
typically build from the standard T flip-flops

• The qi flip-flop is toggled only when the
previous flip-flop qi−1 = 1

• All flip-flops toggle synchronously on the rising
edge of the clock. q[3:0]

R
C
Q

T
R

C
Q

T
R

C
Q

T

q0q1q2q3

clk

rst

c

R
C
Q

T

rst
clk

counter
c

• Timing diagram:

clk

q0

q1

q2

0 01 2 3 4 5 6 7

• There are three feature that can be added to the above counter:

– We might want to start counting from a set number rather than from zero
– A signal that indicates that the final stage q = 2n − 1 has been reached.
– We might want to count both up and down.

A.P. Papliński 10–11

Digital Logic/Design. — L. 10 May 2, 2006

10.2.3 Universal up-down counter

• The universal up-down counter performs four operations
hold, load, count up (increment) and count down
(decrement)

• Operations are selected by a 2-bit opcode word op[1:0].

• In addition a signal cr indicated the maximum (all ones)
or minimum (all zeroes) counter contents depending on the
direction of counting.

• The above description is formalized by the following
operation table:

• As usual, operations ar performed on the rising edge of the
clock.

• For the hold and load operations cr has a “don’t care”
value.

cr

clk

A[3:0]

Q[3:0]

op[1:0] udCnt

Up-down counter Q
op operation cr
0 Q ⇐ Q hold −
1 Q ⇐ A load −
2 Q ⇐ Q + 1 inc Q = max
3 Q ⇐ Q − 1 dcr Q = min

A.P. Papliński 10–12

Digital Logic/Design. — L. 10 May 2, 2006

• Such a universal counter is implemented using D
flip-flops to store data and an appropriate excitation
circuit.

• The first implementation of the excitation circuit can
consist of a 4-to-1 n-bit multiplexer proceeded by
combinational incrementer and decrementer.

Multiplexer

A
[3

:0
]

cr

Din[3:0]

clk

P[3:0]

Q
[3

:0
]

D Flip−Flops

02op[1:0] 1 3

INC DEC

A.P. Papliński 10–13

Digital Logic/Design. — L. 10 May 2, 2006

• A possible VHDL description closely follows the
block diagram

• In order to be able to use a simple arithmetic
statements to describe increment/decrement
operations, the relevant signals are specified as
being of the unsigned type

• Fort the unsigned signals we can write
statements like

Y <= P ± 1

• Implementation of the multiplexer is identical to
that discussed for the universal shift register.

• Note that the architecture rtla does not specify
details of the implementation of the
increment/decrement circuits leaving these
details to the synthesizer to decide.

-- app, up-down counter
LIBRARY ieee;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_arith.all;
ENTITY udCnt IS

GENERIC (N : integer := 4 ; M : integer := 2) ;
PORT (clk : IN std_logic ;

op : IN std_logic_vector(M-1 downto 0) ;
A : IN std_logic_vector(N-1 downto 0) ;
Q : OUT std_logic_vector(N-1 downto 0) ;

cr : OUT std_logic) ;
END udCnt ;
ARCHITECTURE rtla OF udCnt IS

SIGNAL AA, P, Din : unsigned(A’RANGE) ;
TYPE arrvec IS ARRAY (natural range <>)

OF unsigned(A’RANGE) ;
SIGNAL YMUX : arrvec(0 to 2**M-1) ;

BEGIN
AA <= unsigned(A) ;

YMUX <= (P, AA, P + 1, P - 1) ; -- multiplexer
Din <= YMUX(conv_integer(unsigned(op))) ;
cr <= ’1’ WHEN ((op(0) = ’0’) AND (P = 2**N-1))

OR ((op(0) = ’1’) AND (P = 0))
ELSE ’0’ ;

-- flip-flop process
PROCESS
BEGIN

WAIT UNTIL clk’EVENT AND clk=’1’ ;
P <= Din ;

END PROCESS ;

Q <= std_logic_vector(P) ;
END rtla ;

A.P. Papliński 10–14

Digital Logic/Design. — L. 10 May 2, 2006

• Simulation waveforms for the universal up-down counter are shown below:

1 2 0 2 3

12 9

X 12 13 14 15 0 1 2 1 0 15 14

0 50 100

/udcnt/clk

/udcnt/op 1 2 0 2 3

/udcnt/a 12 9

/udcnt/q X 12 13 14 15 0 1 2 1 0 15 14

/udcnt/cr

Entity: udcnt Architecture: rtla

• Inspect the waveforms and verify that all operations are performed as specified in the counter
operation table.

A.P. Papliński 10–15

Digital Logic/Design. — L. 10 May 2, 2006

• In this architecture of the up-down counter we specify details of implementation of the
incrementer/decrementer circuit.

• Following considerations from sec. 7.2 we observe that input and output signals of the incrementer and
decrementer are related through the following arithmetic equalities:

Incrementer: c + p = 2 · d + y

Decrementer: −c + p = −2 · d + y

• If we denote by dn a signal to count down, then the arithmetic
equalities result in the following logic equations:

y = p⊕ c

d = c · (dn⊕ p)

• The 1-bit increment/decrement component can be now connected
into an n-bit component as discussed in sec. 7.2.

• The initial carry c0 must be set up to 1 for increment and to 0 for
decrement operation. Otherwise the output will be equal to input.

• We can use this property to implement the hold operation.

inc/dec/hold

ic

y i

c i+1

p i

c0

y

cdn

d

p

dn

Y[n−1:0]

P[n−1:0]

cn

dn

A.P. Papliński 10–16

Digital Logic/Design. — L. 10 May 2, 2006

• If we use the following increment/decrement circuit, the
excitation circuits for the universal up-down counter can be
much simplified:

• From the following truth table we can specify the required
control signals:

op op1 op0 cd c0

hold 0 0 0 0
load 0 1 – –
inc 1 0 0 1
dec 1 1 1 0

cd = op0

c0 = op1 · op0

ld = op1 · op0

Y
[3

:0
]

Din[3:0]

P[
3:

0]

0 1

A
[3

:0
]

ld

cdinc/dec/hold
cr 0c

• The modified VHDL architecture can be
written in the following way (D flip-flops
has been omitted):

ARCHITECTURE rtlb OF udCnt IS
SIGNAL P, Y, Din : std_logic_vector(A’RANGE) ;
SIGNAL c : std_logic_vector(N downto 0) ;

BEGIN
c(0) <= op(1) ;

gnrt: FOR i IN 0 TO N-1 GENERATE -- INC/DEC
Y(i) <= P(i) XOR c(i) ;

c(i+1) <= c(i) AND (op(0) XOR P(i)) ;
END GENERATE gnrt ;

cr <= c(N) ;
Din <= A WHEN op = "01" ELSE Y ;

-- flip-flop process

END rtlb ;

A.P. Papliński 10–17

