11 Synchronous State Machines

- Synchronous (finite) state machines are also known as clocked sequential circuits.
- Registers and counters are examples of specialised synchronous sequential circuits.
- Recall that in a general case we have two types of state machines, Mealy and Moore, that differ in the way the output signals are form.
state equations: $\quad Q(t+1)=f(Q(t), X(t))$ D FFs excitation eqs: $D(t)=f(Q(t), X(t))$

Output equations:

$$
\begin{aligned}
\text { Mealy: } & Y(t)=g(Q(t), X(t)) \\
\text { Moore: } & Y(t)=g(Q(t))
\end{aligned}
$$

- In the Moore state machine the output signals are re-coded state signals.
- In the Mealy state machine the output signals depends both on state signals and input signals.

- Typically, state machines are primarily described by state diagrams.
- State diagrams are converted into state and output tables from which the structure of the excitation and output circuits can be derived.

11.1 Example of a Moore state machine

- Consider a Moore state machine described by the following symbolic state diagram:
- The state machine has a single input, x, three states labeled a, b, c and a single binary output $y \in\{y a, y b\}$
- At least two state signals, say q_{1}, q_{0} are required to code three states.
- Unlike in the asynchronous case, the states can be flexibly coded, simplicity of the excitation circuit being the only limitation.
- We start with state assignment replacing symbolic names of the states with their binary equivalent.
This results in the following state state diagram:
- The state machine now has two D flip-flops q_{1}, q_{0}.
- Note that in the synchronous case the machine is in any given state for at least one clock cycle.

- The next step is to convert the state diagram into the state and output equations.
- the excitation table for D flip-flops is identical with the state table.

x	Q_{1}	Q_{0}	D_{1}	D_{0}
0	0	0	0	0
1	0	0	0	1
0	0	1	0	0
1	0	1	1	1
0	1	0	-	-
1	1	0	-	-
0	1	1	0	1
1	1	1	0	0

Q_{1}	Q_{0}	y
0	0	0
0	1	1
1	0	-
1	1	1

- Resulting Karnaugh maps

D_{1}				
$Q_{1} Q_{0}$				
x	00	01	11	10
0	0	0	0	-
1	0	1	0	-

\[

\]

Excitation and output equations:

$$
\begin{aligned}
D_{1} & =x \cdot \bar{Q}_{1} \cdot Q_{0} \\
D_{0} & =x \cdot \bar{Q}_{1}+\bar{x} \cdot Q_{1}=x \oplus Q_{1} \\
y & =Q_{0}
\end{aligned}
$$

- Excitation and output equations:

$$
\begin{aligned}
D_{1} & =x \cdot \bar{Q}_{1} \cdot Q_{0} \\
D_{0} & =x \cdot \bar{Q}_{1}+\bar{x} \cdot Q_{1}=x \oplus Q_{1} \\
y & =Q_{0}
\end{aligned}
$$

- The excitation circuit generates input signals to the flip-flops
- These signals are clocked in during the rising edge of the clock.
- The output circuits is trivial in this example, but in general the output signals are generate by a combinational circuit from the state signals.
- Timing diagram:

Logic diagram:

VHDL specification of the Moore state machine

```
library IEEE
use IEEE.std_logic_1164.all ;
ENTITY MSTM IS
    PORT ( x, clk : IN STD_LOGIC
                Q : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
        y : OUT STD_LOGIC
    ) ;
END MSTM
ARCHITECTURE behv OF MSTM IS
-- TYPE states IS (sa, sb, sc) ;
-- SIGNAL D : states := sa ;
    SIGNAL D, stt : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
-- a "hard" encoding of states:
    CONSTANT sa : STD_LOGIC_VECTOR(1 DOWNTO 0) := "00"
    CONSTANT sb : STD_LOGIC_VECTOR(1 DOWNTO 0) := "01"
    CONSTANT Sc : STD_LOGIC_VECTOR(1 DOWNTO 0) := "11" ;
-- encoding of output signals
    CONSTANT ya : STD_LOGIC := '0' ;
    CONSTANT yb : STD_LOGIC := '1' ;
BEGTN
    -- to synthesize edge-triggered flip-flops
    clkd: PROCESS ( clk
    BEGIN
        IF clk'EVENT AND clk = '1' THEN
            stt <= D ;
            END IF ;
END PROCESS clkd ;
```

-- the stm process describes the transitions between states -- and the output signals

```
stm: PROCESS ( Q )
BEGIN
-- default assignments
    D <= Q ;
    y <= ya ;
    CASE stt IS -- state transitions and output signals
    WHEN sa =>
        y <= ya ;
        IF x = '0' THEN
            D <= sa ; ELSE D <= sb
        END IF ;
    WHEN sb =>
        y <= yb ;
            CASE x IS
            WHEN '0' => D <= sa ;
            WHEN OTHERS => D <= SC ;
            END CASE ;
    WHEN OTHERS => --- when sc
        y <= yb ;
            CASE x IS
            WHEN '0' => D <= sb
            WHEN OTHERS => D <= sa
            END CASE ;
    END CASE ;
END PROCESS stm ;
Q <= stt ;
END behv ;
```


11.2 Example of a Mealy state machine

- Consider a Mealy state machine described by the following symbolic state diagram:
- The state machine has
- a single input, x,
- four states labeled a, b, c, d that will be coded using (at lest) two state signals q_{1}, q_{0}, and
- binary output $y \in\{y a, y b, y c, y d\}$ that will be coded by two output signals y_{1}, y_{0}
- Note that the output signals depend now on both the state signals and the input signals).
- Labeling of the output signals might be confusing: it is the state that arrow originates from that generates the output signal together with the input signal.
- After the state and output assignment we have the following state state diagram:

- Timing diagram

- Note that output signals change in response to a change in both input signals and state signals.
- The next step is to convert the state diagram into the state and output equations.
- the excitation table for D flip-flops is identical with the state table.

The excitation (state) and output tables:

x	Q_{1}	Q_{0}	D_{1}	D_{0}
0	0	0	0	0
1	0	0	0	1
0	0	1	1	0
1	0	1	1	1
0	1	0	0	1
1	1	0	1	1
0	1	1	1	1
1	1	1	0	0

x	Q_{1}	Q_{0}	y_{1}	y_{0}
0	0	0	0	0
1	0	0	0	1
0	0	1	1	0
1	0	1	1	1
0	1	0	1	0
1	1	0	0	0
0	1	1	0	1
1	1	1	1	0

Resulting Karnaugh maps:

D_{1}^{+}	$Q_{1} Q_{0}$			
x	00	01	11	10
0	0	1	1	0
1	0	1	0	1

D_{0}^{+}						$Q_{1} Q_{0}$
x	00	01	11	10		
0	0	0	1	1		
1	1	1	1	0		

$y_{1}^{+} Q_{1} Q_{0}$				
x	00	01	11	10
0	0	1	0	1
1	0	1	1	0

$Q_{0}^{+} Q_{0}$					
$S R \\|$	00	01	11	10	
0	0	0	0	1	
1	1	1	0	0	

Write out the logic equations as an exercise.

Logic diagram:

Write a VHDL description as an exercise

