11 Synchronous State Machines

- Synchronous (finite) state machines are also known as clocked sequential circuits.
- Registers and counters are examples of specialised synchronous sequential circuits.
- Recall that in a general case we have two types of state machines, Mealy and Moore, that differ in the way the output signals are form.

state equations: Q(t+1) = f(Q(t), X(t))D FFs excitation eqs: D(t) = f(Q(t), X(t))

Output equations:

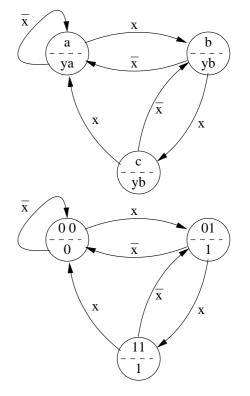
- Mealy: Y(t) = g(Q(t), X(t))Moore: Y(t) = g(Q(t))
- In the Moore state machine the output signals are re-coded state signals.
- In the Mealy state machine the output signals depends both on state signals and input signals.
- Typically, state machines are primarily described by **state diagrams**.
- State diagrams are converted into **state and output tables** from which the structure of the excitation and output circuits can be derived.

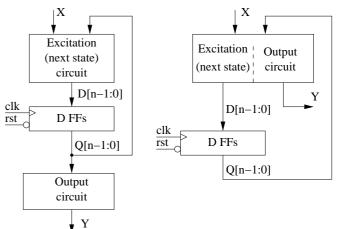
A.P. Papliński

Digital Logic/Design. - L. 11

11.1 Example of a Moore state machine

- Consider a Moore state machine described by the following symbolic state diagram:
- The state machine has a single input, x, three states labeled a, b, c and a single binary output $y \in \{ya, yb\}$
- At least two state signals, say q_1, q_0 are required to code three states.
- Unlike in the asynchronous case, the states can be flexibly coded, simplicity of the excitation circuit being the only limitation.
- We start with **state assignment** replacing symbolic names of the states with their binary equivalent. This results in the following state state diagram:
- The state machine now has two D flip-flops q_1, q_0 .
- Note that in the synchronous case the machine is in any given state for at least one clock cycle.





May 8, 2006

11 - 1

11-2

- The next step is to convert the state diagram into the state and output equations.
- the excitation table for D flip-flops is identical with the state table.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x	Q_1	Q_0	D_1	D_0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	0	0	0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	0	0	1	Q_1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0	1	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0	1	1	1	0
0 1 1 0 1	0	1	0	-	_	1
	1	1	0	-	—	1
1 1 1 0 0	0	1	1	0	1	
	1	1	1	0	0	

D_1		Q_1		
x	00	01	11	10
0	0	0	0	—
1	0	1	0	_

D_0		Q_1		
x	00	01	11	10
0	0	0	1	—
1	1	1	0	—

 Q_0

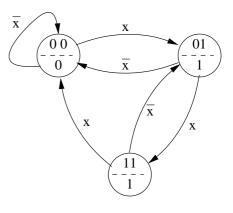
0 0

1 1

0 || -

1 1

y



Excitation and output equations:

$$D_1 = x \cdot \overline{Q}_1 \cdot Q_0$$

$$D_0 = x \cdot \overline{Q}_1 + \overline{x} \cdot Q_1 = x \oplus Q_1$$

$$y = Q_0$$

A.P. Papliński

Digital Logic/Design. — L. 11

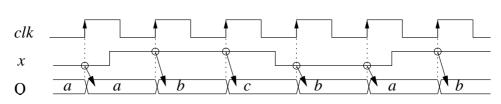
• Excitation and output equations:

$$D_1 = x \cdot \overline{Q}_1 \cdot Q_0$$

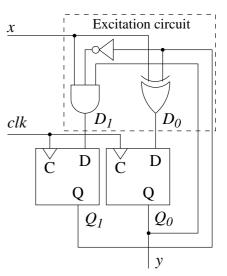
$$D_0 = x \cdot \overline{Q}_1 + \overline{x} \cdot Q_1 = x \oplus Q_1$$

$$y = Q_0$$

- The excitation circuit generates input signals to the flip-flops
- These signals are clocked in during the rising edge of the clock.
- The output circuits is trivial in this example, but in general the output signals are generate by a combinational circuit from the state signals.
- Timing diagram:



Logic diagram:



11-3

May 8, 2006

VHDL specification of the Moore state machine

```
library IEEE ;
use IEEE.std_logic_1164.all ;
ENTITY MSTM IS
  PORT ( x, clk : IN STD_LOGIC ;
        Q : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
          y : OUT STD_LOGIC
  ) :
END MSTM ;
ARCHITECTURE behv OF MSTM IS
-- TYPE states IS (sa, sb, sc) ;
-- SIGNAL D : states := sa ;
   SIGNAL D, stt : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
-- a "hard" encoding of states:
  CONSTANT sa : STD_LOGIC_VECTOR(1 DOWNTO 0) := "00";
  CONSTANT sb : STD_LOGIC_VECTOR(1 DOWNTO 0) := "01" ;
  CONSTANT sc : STD_LOGIC_VECTOR(1 DOWNTO 0) := "11";
-- encoding of output signals
  CONSTANT ya : STD_LOGIC := '0' ;
  CONSTANT yb : STD_LOGIC := '1';
BEGIN
       -- to synthesize edge-triggered flip-flops
 clkd: PROCESS ( clk )
BEGIN
   IF clk'EVENT AND clk = '1' THEN
     stt <= D ;
   END IF ;
END PROCESS clkd ;
-- the stm process describes the transitions between states -- and the output signals
```

A.P. Papliński

Digital Logic/Design. - L. 11

```
stm: PROCESS ( O )
BEGIN
-- default assignments
    D <= Q ;
    y <= ya ;
  CASE stt IS -- state transitions and output signals
  WHEN sa =>
    y <= ya ;
IF x = '0' THEN
      D <= sa ; ELSE D <= sb ;
    END IF ;
  WHEN sb =>
    y <= yb ;
    CASE x IS
      WHEN '0'
                 => D <= sa ;
      WHEN OTHERS => D <= sc ;
    END CASE ;
 WHEN OTHERS =>
                 --- when sc
    y <= yb ;
    CASE x IS
      WHEN '0'
                 => D <= sb ;
      WHEN OTHERS => D <= sa ;
    END CASE ;
  END CASE ;
END PROCESS stm ;
Q <= stt ;
END behv ;
```

11–5

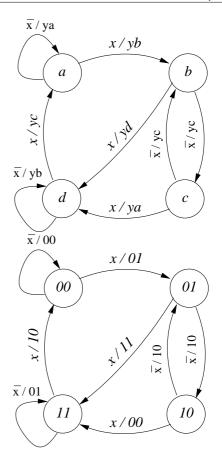
May 8, 2006

11.2 Example of a Mealy state machine

- Consider a Mealy state machine described by the following symbolic state diagram:
- The state machine has

Digital Logic/Design. - L. 11

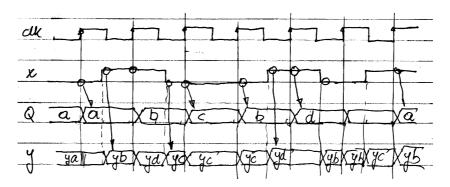
- a single input, x,
- four states labeled a, b, c, d that will be coded using (at lest) two state signals q_1, q_0 , and
- binary output $y \in \{ya, yb, yc, yd\}$ that will be coded by two output signals y_1, y_0
- Note that the output signals depend now on both the state signals and the input signal(s).
- Labeling of the output signals might be confusing: it is the **state that arrow originates** from that generates the output signal together with the input signal.
- After **the state and output assignment** we have the following state state diagram:



A.P. Papliński

Digital Logic/Design. - L. 11

• Timing diagram



- Note that output signals change in response to a change in both input signals and state signals.
- The next step is to convert the state diagram into the state and output equations.
- the excitation table for D flip-flops is identical with the state table.

May 8, 2006

11-7

01

10

 \mathbf{x}'

10

x	Q_1	Q_0	D_1	D_0
0	0	0	0	0
1	0	0	0	1
0	0	1	1	0
1	0	1	1	1
0	1	0	0	1
1	1	0	1	1
0	1	1	1	1
1	1	1	0	0

The excitation (state) and output tables:

x	Q_1	Q_0	y_1	y_0
0	0	0	0	0
1	0	0	0	1
0	0	1	1	0
1	0	1	1	1
0	1	0	1	0
1	1	0	0	0
0	1	1	0	1
1	1	1	1	0

Resulting Karnaugh maps:

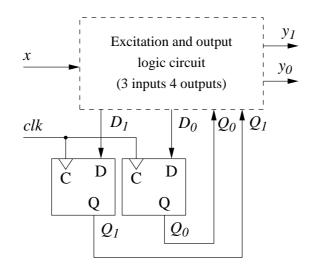
$D_1^+ \qquad Q_1 Q_0$	$D_0^+ \qquad Q_1 Q_0$	$y_1^+ \qquad Q_1 Q_0$	$y_0^+ \qquad Q_1 Q_0$
$x \mid 00 \mid 01 \mid 11 \mid 10$	$x \mid \mid 00 \mid 01 \mid 11 \mid 10 \mid$	$x \mid 00 \mid 01 \mid 11 \mid 10$	$SR \mid 00 \mid 01 \mid 11 \mid 10 \mid$
0 0 1 1 0	0 0 0 1 1	0 0 1 0 1	0 0 0 0 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 0 0

Write out the logic equations as an exercise.

A.P. Papliński

Digital Logic/Design. — L. 11

Logic diagram:



Write a VHDL description as an exercise

x / 01 00 x/10*/11 $\overline{x}/10$ $\overline{x}/01$ 11 *x / 00*

 $\overline{x}/00$

y_1^+	$y_1^+ \qquad Q_1 Q_0$			y_0^+ Q_1Q_0			Q_0		
x	00	01	11	10	SR	00	01	11	10
0	0	1	0	1	0	0	0	0	1
1	0	1	1	0	1	1	1	0	0

May 8, 2006

11–9