12 Simple serial arithmetic processor

- A processor is a digital device that implements either general or specialised algorithm described by a multi-step procedure.
- Structurally, a processor consists of the datapath and the control unit .

- Both parts of the processor are synchronised with the same clock signal.
- The control unit receives two type of signals: control signals like "start of the processing, or " input data ready", etc, from the outside world and conditions from the datapath.
- The control unit generates two types of signals: opcodes to blocks of datapath, and status signals, e.g. "ready" to the outside world
- The datapath processes input data into output data.
- A typical datapath consists of
- registers to store variable of the algorithm
- ALU and other combinational blocks that implement operation (operators) of the algorithm
- Step counters that implement the loop counters.
- A typical control unit is a sequential state machine, typically called an algorithmic state machine, that implements the structure of the algorithm and generates opcodes to the blocks of the datapath and possibly status signals to the outside world.
- In a typical processor all sequential blocks are synchronised by the same clock signal.
- Therefore, the duration of each processing step, equivalent to one state of the control unit is fixed.
- Assuming that an opcode for a sequential block like a register (e.g. load R) is generated during the current clock cycle, the result of the operation is known during the next clock cycle.
- Combinational circuits, like adders, form the result during the current clock cycle.

12.1 Example: A bit-serial adder

- As an example of a very simple processor let us consider a problem of a serial addition of two n-bit 2's complement numbers

$$
A=A+B
$$

- We start with specification of the top level component (entity) and the algorithm to be performed.
- The arguments of the addition and the results are n-bit numbers
- In addition we specify a reset signal, rst , and a start signal st .

- Subsequently we specify the concept of the algorithm in a top-level pseudo-language that can be of the following form:

$$
\begin{aligned}
& A=A A ; B=B B ; c=0 \\
& \text { for }(k=0 ; k \leq n ; k++)\{ \\
& \quad(c, A[k])=A[k]+B[k]+c
\end{aligned}
$$

- Variables on the left-hand side of the equations are normally need to be stored in registers, hence, we infer that two n-bit registers A and B, and a 1 -bit carry register, c are needed.
- Since the addition is performed in a serial fashion, a 1-bit adder is needed.
- Finally, a step counter is needed to count the number of speps.
- We first consider a way of extracting k-th bit from a register as required by the algorithm.
- A possible solution is based on using a n-to- 1 selector/multiplexer driven by the loop variable
- Output from the selector is a required single bit $A[k]$
- However, there is a simple way of avoiding a selector/multiplexer by shifting the register contents at each step so that the required bit is in a fixed position, say the least significant one, $\mathrm{A}[0]$
- Details are presented in the following modified pseudo-code:

$$
\begin{aligned}
& A=A A ; B=B B ; c=0 ; \\
& \text { for }(k=0 ; k \leq n ; k++)\{ \\
& \quad(d, s)=A[0]+B[0]+c ; \\
& \quad c=d ; A=\operatorname{shr}(s, A) ; B=\operatorname{shr}(B[0], B) ; \\
& \}
\end{aligned}
$$

- We shift registers to the right inserting at the vacated position of the A-register the sum s, and $B[0]$ at the vacated position of the B-register, thus implementing cyclic right shift/rotation.
- A complete datapath of the serial adder looks as follows:
- Note that the least significant bits of the A and B registers are being added by the serial adder together with the current carry bit stored in a 1 -bit register C.
- The least significant bit of the register B is connected to its serial shift-right input. As a result its contents is restored after n cyclic shifts (rotations).
- The step counter loads the number of steps to be performer n and counts down to 0 when the signal $\mathbf{z k}$ is generated.
- For each register and counter, we have to specify the set/table of operations, typically some of operations like: hold (nop), load, shift, count, etc.
Details have been discussed in sec. 10 .

- The control unit

- A good way to start is to prepare a flow-chart of operations in a form of a state transition diagram which describes details of the algorithmic state machine.
- Note that the state transition diagram consists of only two states, so that the related state register, STT, will be 1 -bit.
- The reset signal rst transfers the state machine to its initial state STA
- The external control signal, st (start), has been added to initialize the addition operation.
- When $s t=0$ we stay in the initial state STA waiting for the start signal $s t=1$
- At the rising edge of the clock at the end of
 the STA sate registers and counters are initialised as indicated.
- The main operation is performed in the state STA wher the sum is formed bit by bit.
- The step counter generates the signal zk indicating the end of summation.
- The structure of the control unit is typical and consists of
- the D flip-flops referred to as the state register (1-bit in this case),
- The "Next State" combinational circuit, and
- The "OpCode logic" that produces the opcodes to all blocks of the datapath.
- In order to properly interpret the state transition diagrams you have to remember that
- all sequential circuits are updated at the end of the current clock cycle, whereas
- combinational circuits form results during the current clock cycle.
- This becomes obvious when you analyze the time waveforms.

Generation of the opcodes

- It can be observed that each datapath block performes only two operations: one in the STA state, the other in the STB state.
- Therefore the OpCode logic is trivial and all opcodes are equal to STT, that is the output from the 1-bit state register.

Next state logic

The next state logic can be derived from the following excitation table:

st	zk	STT	nxtSt
0	-	0	0
1	-	0	1
-	0	1	1
-	1	1	0

$$
\mathrm{nxtSt}=\overline{\mathrm{STT}} \cdot \mathrm{st}+\mathrm{STT} \cdot \overline{\mathrm{zk}}
$$

